WO2014013939A1 - Co2回収システム - Google Patents
Co2回収システム Download PDFInfo
- Publication number
- WO2014013939A1 WO2014013939A1 PCT/JP2013/069028 JP2013069028W WO2014013939A1 WO 2014013939 A1 WO2014013939 A1 WO 2014013939A1 JP 2013069028 W JP2013069028 W JP 2013069028W WO 2014013939 A1 WO2014013939 A1 WO 2014013939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- pressure
- rich solution
- recovery system
- absorption tower
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1418—Recovery of products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention relates to a CO 2 recovery system that absorbs carbon dioxide in a gas and reduces carbon dioxide compression power.
- Patent Document 1 the washing liquid is brought into gas-liquid contact with the decarbonized exhaust gas from which CO 2 has been absorbed and removed by gas-liquid contact with the absorbent, thereby washing the water with which the amine compound entrained in the decarbonized exhaust gas is recovered. It is shown that a plurality of stages are provided, and the recovery process of the amine accompanying the decarbonation exhaust gas is sequentially performed in the plurality of stages of water washing sections.
- Patent Document 2 the cooling unit that cools the decarbonized exhaust gas from which CO 2 has been absorbed and removed by gas-liquid contact with the absorbing liquid, and the countercurrent contact between the condensed water condensed in the cooling unit and the decarbonized exhaust gas.
- Patent Document 2 shows a device provided with a water washing section for collecting amine compounds entrained in decarbonized exhaust gas, and the cleaning liquid was condensed in a cooling tower for cooling the exhaust gas before CO 2 was collected. Condensed water is used.
- an object of the present invention is to provide a CO 2 recovery system that absorbs carbon dioxide in a gas and reduces carbon dioxide compression power.
- the first aspect of the present invention to solve the above problems, an absorption tower for removing CO 2 by contacting the gas with CO 2 absorbing liquid containing CO 2, the rich solution that has absorbed CO 2 CO 2 having a regenerator for regeneration, the while reusing the lean solution from which CO 2 has been removed in the regeneration tower in the absorption tower, and a compression device for compressing the CO 2 emission gas emitted by the regenerator
- the rich solution has a high pressure
- the high-pressure rich solution is gas-liquid separated by a flash drum
- the rich solution of the liquid component separated by the flash drum is introduced into a regeneration tower
- the flash A CO 2 recovery system is characterized in that a high-pressure CO 2 gas of a gas component separated by a drum is introduced into a compression device having a predetermined compression pressure.
- the flash drum is provided in a plurality of stages, has a pressure reducing valve on the upstream side of the gas-liquid separator, and CO 2 of the gas component separated by each flash drum.
- the CO 2 gas of the gas component is introduced into a compression device having a predetermined compression pressure corresponding to the pressure of the gas.
- a third invention is the CO 2 recovery system according to the second invention, further comprising a heat exchanger for heating the rich solution between the absorption tower and the first gas-liquid separator.
- an inert gas separator for separating an inert gas between the absorption tower and the first gas-liquid separator, and the separated inert gas to the absorption tower.
- an inert gas introduction line to introduce the CO 2 recovery system.
- a normal pressure absorption tower when the gas introduced into the absorption tower is a normal pressure gas, a normal pressure absorption tower is used, and a pressure increase for boosting the rich solution from the normal pressure absorption tower A CO 2 recovery system having a pump and performing gas-liquid separation of the pressurized rich solution by the gas-liquid separator.
- the pressure absorption tower is used, and the pressurized rich solution from the pressure absorption tower is
- the CO 2 recovery system is characterized by gas-liquid separation using a separator.
- the pressure is released by this flash operation, and part of the CO 2 absorbed in the pressurized rich solution is released and released as high-pressure CO 2 gas.
- the released high-pressure CO 2 gas is introduced into a compressor of a CO 2 compression device that compresses CO 2 installed on the downstream side of the gas flow in the regeneration tower.
- FIG. 1 is a schematic diagram of a CO 2 recovery system according to the first embodiment.
- FIG. 2 is a schematic diagram of the CO 2 recovery system according to the first embodiment.
- FIG. 3 is a schematic diagram of another CO 2 recovery system according to the first embodiment.
- FIG. 4 is a schematic diagram of a CO 2 recovery system according to the second embodiment.
- FIG. 5 is a schematic diagram of a CO 2 recovery system according to the second embodiment.
- FIG. 6 is a schematic diagram of a CO 2 recovery system according to the third embodiment.
- FIG. 7 is a schematic diagram of a CO 2 recovery system according to the third embodiment.
- FIG. 8 is a schematic diagram of a CO 2 recovery system according to the fourth embodiment.
- FIG. 9 is a schematic diagram of a CO 2 recovery system according to the fifth embodiment.
- CO 2 recovery system 10A normal pressure of the exhaust gas containing CO 2 (referred to as "gas (normal pressure)") 11 is brought into contact with and the CO 2 absorbing liquid 12 Absorbs a normal pressure absorption tower 13 for removing CO 2 , a normal pressure regeneration tower 15 for regenerating a rich solution 14 that has absorbed CO 2 , and a lean solution 17 from which CO 2 has been removed by the normal pressure regeneration tower 15.
- gas (normal pressure) normal pressure of the exhaust gas containing CO 2
- a CO 2 recovery system 10A having the bets the rich solution 14 is pressurized rich solution 14A which is a high pressure by the boost pump 32, separating carbon dioxide gas (CO 2) by flush operation pressurized rich solution 14A
- the first flash to The drum 21A is provided, together with a partial regenerated rich solution 14B of the liquid component separated in the first flash drum 21A is introduced to the regenerator 15, the high-pressure CO 2 gas 22H gaseous components separated in the first flash drum 21A This is introduced into the high-pressure compressor 16H having a predetermined pressure.
- a gas (normal pressure) 11 containing carbon dioxide (CO 2 ) discharged from a boiler or the like is in countercurrent contact with a CO 2 absorbent (amine solution) 12 based on, for example, an alkanolamine in an absorption tower 13.
- CO 2 in the gas 11 is absorbed by the CO 2 absorbent 12 and removes CO 2 from the gas 11.
- the rich solution 14 is CO 2 absorbent that has absorbed CO 2 emits CO 2 in the regenerator 15, the time to reach the lower regenerator 15, CO 2 most are removed, the lean solution 17 As played.
- the regenerated lean solution 17 is sent again to the absorption tower 13 as the CO 2 absorbent 12 and reused.
- L 1 denotes a first liquid feed line for sending the rich solution from the absorption tower 13 to the regeneration tower 15 side
- L 2 denotes a lean solution 17 from the regeneration tower 15 to the absorption tower 13 side
- L 3 is a second liquid feed line
- L 3 is a gas delivery line for feeding high-pressure CO 2 gas 22H from the first flash drum 21A to the first gas-liquid separator 23A side
- L 4 is a first gas-liquid separator 23A.
- L 5 is a return liquid line for returning the absorption liquid 14a recovered from the first flash drum 21A
- L 5 is a gas delivery line for sending the high-pressure CO 2 gas 22H from the first gas-liquid separator 23A to the high-pressure compressor 16H
- L 6 is A gas delivery line for sending the low pressure CO 2 gas 22L from the top of the regeneration tower 15 to the low pressure compressor 16L
- 31 is a purified gas from which CO 2 has been removed
- 32 is interposed in the first liquid feed line L 1 .
- the booster pump 33 for the rich solution 14 is a pressure lip.
- a heat exchanger for exchanging heat between the H solution 14A and the lean solution 17 a cooler condenser for cooling the steam condensate 34 in the upper part of the regeneration tower with the cooling water 35, and 37 for reheating a part 16a of the lean solution 17.
- Reboiler, 38 is saturated steam supplied to reboiler 37
- 39 is steam condensed water
- 41A and 41B are pressure reducing valves interposed in first liquid feed line L1
- 42 is a lean solution from regeneration tower 15 to absorption tower 13.
- a liquid feed pump for feeding 17 and a cooling means 43 for cooling the lean solution 17 are illustrated.
- the atmospheric gas 11 is introduced into the absorber 13, as the rich solution 14 of CO 2 is absorbed by the CO 2 absorbing liquid 12 contained in the gas is discharged from the absorption tower bottom.
- the pressurized rich solution 14A pressurized by the booster pump 32 is adjusted to a predetermined pressure by the pressure reducing valve 41A and introduced into the first flash drum 21A.
- the pressure boosted by the booster pump 32 needs to be higher than the compression pressure of the high-pressure compressor 16H of the CO 2 compressor 16.
- the pressure reducing valve 41A installed upstream of the first flash drum 21A is adjusted so that the temperature of the partially regenerated rich solution 14B is about 102 ° C. and 655 kPaG.
- the pressurized rich solution 14A is flushed at a predetermined pressure, a part of carbon dioxide (CO 2 ) in the pressurized rich solution 14A is released, and the pressurized rich solution 14A is partially regenerated. Yes.
- the high pressure CO 2 gas 22H and the partially regenerated rich absorbent 14B are separated.
- the high-pressure CO 2 gas 22H having a desired pressure (for example, 630 kPaG) subjected to gas-liquid separation is sent to the first gas-liquid separator 23A via the gas delivery line L 3 , and is absorbed by the gas when flushed here.
- the liquid 14a is separated, and sent to the high pressure compressor 16H via gas delivery lines L 5.
- the separated absorption liquid 14a is returned to the first flash drum 21A side.
- Each of the pressure reducing valves 41A and 41B is a pressure reducing valve that reduces the pressure to a predetermined pressure.
- the pressure reducing valves 41A and 41B are interposed in the first liquid feed line L 1 and are installed on the upstream side of the first flash drum 21A and the regeneration tower 15, The solutions 14A and 14B are adjusted to have a predetermined pressure.
- FIG. 2 is a schematic diagram of a CO 2 capture system illustrating the temperature and pressure of the flushed gas of an example of this example.
- the pressurized rich solution 14A is brought to a predetermined pressure (655 kPa, 102 ° C.) by the pressure reducing valve 41A, introduced into the first flash drum 21A, a part of CO 2 is liberated, and a partially regenerated rich solution 14B is obtained.
- the rich solution 14B is sent to the regeneration tower 15 side.
- the high-pressure CO 2 gas 22H released by the first flash drum 21A is delivered at 17% of the total amount of CO 2 to the high-pressure compressor 16H via the gas delivery line L 5 at a gas pressure of 630 kPaG and 40 ° C.
- the low pressure CO 2 gas 22L discharged from the top of the regeneration tower 15 is sent to the low pressure compressor 16L via the gas delivery line L 6 at a gas pressure of 50 kPaG and 40 ° C.
- the lean solution 17 from the bottom of the regeneration tower 15 has a temperature of 120 ° C. and a pressure of 80 kPaG, which is lower than the deterioration temperature of the amine solution constituting the absorption liquid, so that there is no deterioration of the absorption liquid.
- the lean solution regenerated by releasing CO 2 in the high-pressure regeneration tower has a temperature of about 150 ° C. or higher from the bottom. And the pressure of 380 kPaG was discharged, the lean solution 17 was in a high temperature state, and the amine solution as the composition of the absorbing solution was deteriorated.
- the first flash drum 21A interposed first feed line L 1 the pressure was released by flash operation, CO 2 which is absorbed to the pressure rich solution 14A part by free released as a high-pressure CO 2 gas 22H of the released high-pressure CO 2 gas 22H had a, CO 2 compressor 16 for compressing the CO 2 installed in the gas flow downstream side of the regenerator 15
- the high pressure compressor 16H is to be introduced.
- FIG. 3 is a schematic diagram of another CO 2 recovery system according to the present embodiment.
- the CO 2 recovery system 10B according to the present embodiment is the same as the CO 2 recovery system 10A according to the present embodiment of the first embodiment shown in FIG.
- An inert gas separator 50 is installed between them. If an inert gas is present, it is a non-condensable gas, and therefore the compression purity of the CO 2 gas cannot be improved. Therefore, in the present embodiment, the inert gas (N 2 , H 2, etc.) 51 present (0.1 wt% or less) in the pressurized rich solution 14A is removed on the upstream side of the first flash drum 21A. Yes. Inert gas 51, which is removed by inert gas circulation line L 20, and is circulated again to the absorption tower 13. The inert gas circulation line L 20, cooler 52 and gas-liquid separator 53 is interposed.
- the purity of the compressed CO 2 recovery gas is improved.
- gas-liquid separation is performed using a flash drum, but the present invention is not limited to this.
- gas-liquid separation is performed using a distillation column, a separation column, or the like. Also good.
- FIG. 4 and 5 are schematic views of the CO 2 recovery system according to the second embodiment.
- the CO 2 recovery system 10C according to the present embodiment is similar to the CO 2 recovery system 10B shown in FIG. 3 in the first flash drum 21A and the second flash drum 21B in the first liquid feed line L 1 . Is intervening.
- the pressure is released by a flash operation, a part of CO 2 absorbed in the pressurized rich solution 14A is released and released as high-pressure CO 2 gas 22H, and the released high pressure
- the CO 2 gas 22H is introduced into the high-pressure compressor 16H of the CO 2 compressor 16 that compresses CO 2 installed on the downstream side of the gas flow in the regeneration tower 15.
- the pressure is released by a flash operation, and a part of CO 2 absorbed in the partially regenerated rich solution 14B is released and released as an intermediate pressure CO 2 gas 22M.
- the medium pressure CO 2 gas 22M is introduced into the medium pressure compressor 16M of the CO 2 compression device 16 that compresses CO 2 installed on the downstream side of the gas flow in the regeneration tower 15.
- FIG. 5 is a schematic diagram of a CO 2 recovery system illustrating the temperature and pressure of an example of this embodiment.
- the pressurized rich solution 14A is brought to a predetermined pressure (655 kPa, 102 ° C.) by the pressure reducing valve 41A, introduced into the first flash drum 21A, a part of CO 2 is liberated, and a partially regenerated rich solution 14B is obtained.
- the rich solution 14B is sent to the regeneration tower 15 side.
- the pressure reducing valve 41A installed upstream of the first flash drum 21A is adjusted so that the temperature of the partially regenerated rich solution 14B is about 102 ° C. and 655 kPaG.
- the high-pressure CO 2 gas 22H released by the first flash drum 21A is delivered at 17% of the total amount of CO 2 to the high-pressure compressor 16H via the gas delivery line L 5 at a gas pressure of 630 kPaG and 40 ° C.
- the pressure reducing valve 41C installed upstream of the second flash drum 21B is adjusted so that the temperature of the partially regenerated rich solution 14C is about 95 ° C. and about 255 kPaG.
- the medium pressure CO 2 gas 22M released by the second flash drum 21B is delivered at 19% of the total amount of CO 2 to the medium pressure compressor 16M via the gas delivery line L 9 at a gas pressure of 230 kPaG and 40 ° C.
- the low pressure CO 2 gas 22L discharged from the top of the regeneration tower 15 is sent to the low pressure compressor 16L through the gas delivery line L 6 at a gas pressure of 50 kPaG and 40 ° C.
- the lean solution 17 from the bottom of the regeneration tower 15 has a temperature of 120 ° C. and a pressure of 80 kPaG, which is lower than the deterioration temperature of the amine solution that constitutes the absorption liquid, so that there is no deterioration of the absorption liquid.
- the high-pressure CO 2 gas 22H and the medium-pressure CO 2 gas 22M can be extracted.
- the compression power when the CO 2 gas discharged from the regeneration tower 15 is compressed can be greatly saved, and the scale of the compression equipment can be reduced.
- FIG. 6 and 7 are schematic views of the CO 2 recovery system according to the third embodiment.
- the CO 2 recovery system 10D according to the present embodiment is similar to the CO 2 recovery system 10C shown in FIG. 4 in that the heat exchanger 33 and the pressure reducing valve interposed in the first liquid feed line L 1 Between 41A, the heat exchanger 61 which heats the pressure rich solution 14A is provided. And the pressure rich solution 14A is heated by the installed heat exchanger 61 to near 120 ° C. which is the heat resistant temperature. By heating the pressurized rich solution 14A by the heat exchanger 61, the temperature of the pressurized rich solution 14A introduced into the first flash drum 21A rises, and the amount of CO 2 gas liberated by the first flash drum 21A is increased. Increase.
- FIG. 7 is a schematic diagram of a CO 2 recovery system illustrating the temperature and pressure of an example of this embodiment. Since the pressure rich solution 14A is heated by the heat exchanger 61, the pressure is reduced to a predetermined pressure (655 kPa, 120 ° C.) by the pressure reducing valve 41A, introduced into the first flash drum 21A, a part of CO 2 is released, and partial regeneration is performed. The rich solution 14B is used, and the partially regenerated rich solution 14B is sent to the regeneration tower 15 side. The high pressure CO 2 gas 22H released by the first flash drum 21A is sent at 37% of the total amount of CO 2 to the high pressure compressor 16H via the gas delivery line L 5 at a gas pressure of 630 kPaG and 40 ° C.
- a predetermined pressure (655 kPa, 120 ° C.)
- the rich solution 14B is used, and the partially regenerated rich solution 14B is sent to the regeneration tower 15 side.
- the medium pressure CO 2 gas 22M released by the second flash drum 21B is delivered at 28% of the total amount of CO 2 to the medium pressure compressor 16M via the gas delivery line L 9 at a gas pressure of 230 kPaG and 40 ° C.
- the low pressure CO 2 gas 22L released from the top of the regeneration tower 15 is sent to the low pressure compressor 16L through the gas delivery line L 6 at a gas pressure of 50 kPaG and 40 ° C.
- the lean solution 17 from the bottom of the regeneration tower 15 has a temperature of 120 ° C. and a pressure of 80 kPaG, which is lower than the deterioration temperature of the amine solution that constitutes the absorption liquid, so that there is no deterioration of the absorption liquid.
- the first flash drum 21A and the second flash drum 21B are continuously provided in two stages, and the pressure rich is performed by the heat exchanger 61 on the upstream side of the first flash drum 21A. Since the solution 14A is heated, the high-pressure CO 2 gas 22H and the medium-pressure CO 2 gas 22M can be extracted, and the amount of CO 2 gas released from the high-pressure gas is increased. This greatly saves the compression power when the CO 2 gas discharged from the compressor is compressed, and the scale of the compression facility can be reduced.
- FIG. 8 is a schematic diagram of a CO 2 recovery system according to the fourth embodiment.
- the CO 2 recovery system 10E according to the present embodiment is provided with a pressure reducing valve 41D in the gas delivery line L 6 discharged from the regeneration tower 15 in the CO 2 recovery system 10B shown in FIG.
- the gas discharged from the top of 15 towers is sent out as 22 L of low-pressure CO 2 gas.
- a rich solution under pressure is introduced into the regeneration tower, so that the lean solution 17 from the bottom of the regeneration tower 15 is about 140 ° C. and 250 kPaG.
- some types of absorbing liquid allow a high temperature (140 ° C.)
- the configuration of this embodiment can be applied when using such a high temperature resistant absorbing liquid.
- the pressurized rich solution 14A is brought to a predetermined pressure (655 kPa, 102 ° C.) by the pressure reducing valve 41A, introduced into the first flash drum 21A, a part of CO 2 is liberated, and a partially regenerated rich solution 14B is obtained.
- the rich solution 14B is sent to the regeneration tower 15 side.
- the high-pressure CO 2 gas 22H released by the first flash drum 21A is delivered at 36% of the total CO 2 amount to the high-pressure compressor 16H via the gas delivery line L 5 at a gas pressure of 630 kPaG and 40 ° C.
- the low pressure CO 2 gas 22L released from the top of the regeneration tower 15 is sent to the low pressure compressor 16L via the gas delivery line L 6 at a gas pressure of 50 kPaG and 40 ° C.
- the lean solution 17 from the bottom of the regeneration tower 15 has a temperature of 140 ° C. and a pressure of 250 kPaG. However, when the deterioration temperature of the amine solution constituting the absorption liquid is around 150 ° C., the deterioration of the absorption liquid is small. It becomes.
- the temperature of the lean solution 17 discharged from the bottom of the regeneration tower 15 is 140 ° C. and the pressure is 250 kPaG, it is allowed when the absorbing solution has high temperature resistance.
- FIG. 9 is a schematic diagram of a CO 2 recovery system according to the fifth embodiment.
- the absorption tower 13 is a pressurized type, and the introduced gas is a pressurized gas.
- pressurized gas containing CO 2 include pressurized gas for fertilizer synthesis, high-pressure natural gas, etc. (gas pressure: 3,000 kPaG, for example).
- the booster pump as in the first embodiment is not necessary, and the solution feed pump 32A is installed to feed the solution.
- the lean solution 17 regenerated in the regeneration tower 15 needs to be pressurized when sent to the absorption tower 13, it is boosted by the boost pump 42A interposed in the second liquid feed line L2.
- the first flash drum 21A releases the pressure by a flash operation to release a part of the CO 2 absorbed in the pressurized rich solution 14A, thereby causing the high-pressure CO 2 gas 22H.
- the released high-pressure CO 2 gas 22H is introduced into the high-pressure compressor 16H of the CO 2 compressor 16 that compresses CO 2 installed on the downstream side of the gas flow in the regeneration tower 15.
- the low-pressure CO 2 gas 22L emitted from the top of the regeneration tower 15, the gas pressure remaining CO 2 is delivered through the gas delivery line L 6 to the low-pressure compressor 16L at 50 kPaG, 40 ° C..
- the lean solution 17 from the bottom of the regeneration tower 15 has a temperature of 120 ° C. and is lower than or equal to the deterioration temperature of the amine solution that constitutes the absorbing solution, so that the absorbing solution does not deteriorate.
- the high pressure CO 2 gas 22H can be extracted because the first flash drum 21A is interposed, and the CO discharged from the regeneration tower 15 can be extracted.
- the compression power when gas is compressed is greatly saved, and the scale of the compression equipment can be reduced.
- the inert gas circulation line L 20 for circulating the inert gas 51 can be joined to the high-pressure gas 11 by inserting a compressor 54 on the downstream side of the gas-liquid separator 53.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
CO2を含有する常圧の排ガス11とCO2吸収液12とを接触させてCO2を除去する常圧の吸収塔13と、リッチ溶液14を再生する常圧の再生塔15と、常圧の再生塔15からのリーン溶液17を吸収塔で再利用すると共に、常圧の再生塔で放出された放出ガス中のCO2を複数の所定圧力で徐々に圧縮する高圧圧縮器16H、低圧圧縮器16Lを有するCO2圧縮装置16とを有するCO2回収システム10Aであって、リッチ溶液が昇圧ポンプ32により高圧とされた加圧リッチ溶液14Aであり、加圧リッチ溶液14Aをフラッシュ操作により炭酸ガスを分離する第1フラッシュドラム21Aを設け、第1フラッシュドラム21Aで分離された液体成分のリッチ溶液14Bを再生塔15に導入すると共に、第1フラッシュドラムで分離された気体成分の高圧CO2ガス22Hを所定圧力の高圧圧縮器16Hへ導入する。
Description
本発明は、ガス中の二酸化炭素を吸収すると共に、二酸化炭素圧縮動力の軽減を図るCO2回収システムに関する。
地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては、化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い、大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの排ガスをアミン化合物水溶液などのアミン系吸収液と接触させ、排ガス中のCO2を除去し回収する方法が精力的に研究されている。
従来、特許文献1では、吸収液との気液接触によりCO2が吸収除去された脱炭酸排ガスに対して洗浄液を気液接触させることで、脱炭酸排ガスに同伴されたアミン化合物を回収する水洗部を複数段設け、この複数段の水洗部にて、順次、脱炭酸排ガスに同伴するアミンの回収処理を行うことが示されている。
また、従来、特許文献2では、吸収液との気液接触によりCO2が吸収除去された脱炭酸排ガスを冷却する冷却部と、冷却部で凝縮した凝縮水と脱炭酸排ガスとを向流接触させる接触部を設けたものが示されている。さらに、特許文献2では、脱炭酸排ガスに同伴されたアミン化合物を回収する水洗部を設けたものが示され、洗浄液は、CO2が回収される前の排ガスを冷却する冷却塔で凝縮された凝縮水が用いられている。
しかしながら、近年では、環境保全の見地から、処理ガス流量の多い火力発電所などの排ガスに対して、CO2回収装置を設置する場合、除去される二酸化炭素量が多量であることから、例えば地中に埋設する場合におけるその圧縮に係る動力の軽減を図ることが、二酸化炭素回収プラントにおいて、切望されている。
本発明は、前記問題に鑑み、ガス中の二酸化炭素を吸収すると共に、二酸化炭素圧縮動力の軽減を図るCO2回収システムを提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、CO2を含有するガスとCO2吸収液とを接触させてCO2を除去する吸収塔と、CO2を吸収したリッチ溶液を再生する再生塔と、前記再生塔でCO2が除去されたリーン溶液を吸収塔で再利用すると共に、前記再生塔で放出された放出ガス中のCO2を圧縮する圧縮装置とを有するCO2回収システムであって、前記リッチ溶液が高圧であり、該高圧のリッチ溶液をフラッシュドラムにより気液分離し、前記フラッシュドラムで分離された液体成分のリッチ溶液を再生塔に導入すると共に、前記フラッシュドラムで分離された気体成分の高圧CO2ガスを所定圧縮圧力の圧縮装置へ導入することを特徴とするCO2回収システムにある。
第2の発明は、第1の発明において、前記フラッシュドラムを複数段設置すると共に、気液分離器の前流側に減圧弁を有すると共に、前記各フラッシュドラムで分離された気体成分のCO2ガスの圧力に応じた所定圧縮圧力の圧縮装置へ、該気体成分のCO2ガスを導入することを特徴とするCO2回収システムにある。
第3の発明は、第2の発明において、前記吸収塔と最初の気液分離器との間に、リッチ溶液を加熱する熱交換器を有することを特徴とするCO2回収システムにある。
第4の発明は、第2の発明において、前記吸収塔と最初の気液分離器との間に、不活性ガスを分離する不活性ガス分離器と、分離された不活性ガスを吸収塔へ導入する不活性ガス導入ラインとを有することを特徴とするCO2回収システムにある。
第5の発明は、第1の発明において、前記吸収塔へ導入されるガスが、常圧ガスである場合、常圧吸収塔を用いると共に、前記常圧吸収塔からのリッチ溶液を昇圧する昇圧ポンプを有し、昇圧されたリッチ溶液を前記気液分離器で気液分離することを特徴とするCO2回収システムにある。
第6の発明は、第1の発明において、前記吸収塔へ導入されるガスが、高圧ガスである場合、加圧吸収塔を用いると共に、加圧吸収塔からの加圧リッチ溶液を前記気液分離器で気液分離することを特徴とするCO2回収システムにある。
本発明によれば、フラッシュドラムを設置しているので、このフラッシュ操作により圧力を開放し、加圧リッチ溶液に吸収されているCO2の一部を遊離させて圧力の高いCO2ガスとして放出し、この放出された圧力の高いCO2ガスは、再生塔のガス流れ後流側に設置されるCO2を圧縮するCO2圧縮装置の圧縮器へ導入する。これにより、従来のような再生塔から排出されるCO2ガスを圧縮する際の圧縮動力の大幅な節約となり、また圧縮設備の規模の軽減を図ることができる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
本発明による実施例1に係るCO2回収システムについて、図面を参照して説明する。
図1及び2は、実施例1に係るCO2回収システムの概略図である。図1に示すように、本実施例に係るCO2回収システム10Aは、CO2を含有する常圧の排ガス(「ガス(常圧)」という)11とCO2吸収液12とを接触させてCO2を除去する常圧の吸収塔13と、CO2を吸収したリッチ溶液14を再生する常圧の再生塔15と、常圧の再生塔15でCO2が除去されたリーン溶液17を吸収塔13で再利用すると共に、常圧の再生塔15で放出された放出ガス中のCO2を複数の所定圧力で徐々に圧縮する高圧圧縮器16H、低圧圧縮器16Lを有するCO2圧縮装置16とを有するCO2回収システム10Aであって、前記リッチ溶液14が昇圧ポンプ32により高圧とされた加圧リッチ溶液14Aであり、加圧リッチ溶液14Aをフラッシュ操作により炭酸ガス(CO2)を分離する第1フラッシュドラム21Aを設け、第1フラッシュドラム21Aで分離された液体成分の部分再生したリッチ溶液14Bを再生塔15に導入すると共に、第1フラッシュドラム21Aで分離された気体成分の高圧CO2ガス22Hを所定圧力の高圧圧縮器16Hへ導入するものである。
図1及び2は、実施例1に係るCO2回収システムの概略図である。図1に示すように、本実施例に係るCO2回収システム10Aは、CO2を含有する常圧の排ガス(「ガス(常圧)」という)11とCO2吸収液12とを接触させてCO2を除去する常圧の吸収塔13と、CO2を吸収したリッチ溶液14を再生する常圧の再生塔15と、常圧の再生塔15でCO2が除去されたリーン溶液17を吸収塔13で再利用すると共に、常圧の再生塔15で放出された放出ガス中のCO2を複数の所定圧力で徐々に圧縮する高圧圧縮器16H、低圧圧縮器16Lを有するCO2圧縮装置16とを有するCO2回収システム10Aであって、前記リッチ溶液14が昇圧ポンプ32により高圧とされた加圧リッチ溶液14Aであり、加圧リッチ溶液14Aをフラッシュ操作により炭酸ガス(CO2)を分離する第1フラッシュドラム21Aを設け、第1フラッシュドラム21Aで分離された液体成分の部分再生したリッチ溶液14Bを再生塔15に導入すると共に、第1フラッシュドラム21Aで分離された気体成分の高圧CO2ガス22Hを所定圧力の高圧圧縮器16Hへ導入するものである。
例えばボイラ等から排出される二酸化炭素(CO2)を含有するガス(常圧)11は、吸収塔13において、例えばアルカノールアミンをベースとするCO2吸収液(アミン溶液)12と対向流接触し、ガス11中のCO2はCO2吸収液12に吸収され、ガス11からCO2を除去する。そして、CO2を吸収したCO2吸収液であるリッチ溶液14は、再生塔15においてCO2を放出し、再生塔15下部に至る頃には、大部分のCO2が除去され、リーン溶液17として再生される。この再生されたリーン溶液17は、CO2吸収液12として再び吸収塔13に送給され、再利用されるものである。
ここで、図1中、符号L1はリッチ溶液を吸収塔13から再生塔15側へ送液する第1の送液ライン、L2はリーン溶液17を再生塔15から吸収塔13側へ送液する第2の送液ライン、L3は高圧CO2ガス22Hを第1フラッシュドラム21Aから第1気液分離器23A側へ送液するガス送出ライン、L4は第1気液分離器23Aから回収した吸収液14aを第1フラッシュドラム21Aへ戻す戻し液ライン、L5は第1気液分離器23Aからの高圧CO2ガス22Hを高圧圧縮器16Hへ送出するガス送出ライン、L6は再生塔15の頂部からの低圧CO2ガス22Lを低圧圧縮器16Lへ送出するガス送出ライン、31はCO2が除去された浄化ガス、32は第1の送液ラインL1に介装されたリッチ溶液14の昇圧ポンプ、33は加圧リッチ溶液14Aとリーン溶液17とを熱交換する熱交換器、36は再生塔上部の水蒸気凝縮水34を冷却水35で冷却する冷却器デンサ、37はリーン溶液17の一部16aを再熱するリボイラ、38はリボイラ37へ供給する飽和水蒸気、39は水蒸気凝縮水、41A、41Bは第1の送液ラインL1に介装される減圧弁、42は再生塔15から吸収塔13へリーン溶液17を送液する送液ポンプ、43はリーン溶液17を冷却する冷却手段を各々図示する。
常圧のガス11が吸収塔13に導入され、ガス中に含まれるCO2をCO2吸収液12で吸収させてリッチ溶液14として、吸収塔底部から排出される。その後昇圧ポンプ32で昇圧された加圧リッチ溶液14Aは、減圧弁41Aにより所定圧力に調節され、第1フラッシュドラム21Aに導入される。
ここで、昇圧ポンプ32で昇圧する圧力は、CO2圧縮装置16の高圧圧縮器16Hの圧縮圧力よりも高い圧力とする必要がある。例えば高圧圧縮器16Hの圧縮圧力が630kPaGの場合には、800kPaG程度(圧縮器の所定圧縮圧力よりも50~200kPaG程度高い圧力)まで昇圧している。
そして、第1フラッシュドラム21Aの前流に設置した減圧弁41Aを調節して、部分再生したリッチ溶液14Bの温度が102℃、655kPaG程度となるようにしている。
ここで、昇圧ポンプ32で昇圧する圧力は、CO2圧縮装置16の高圧圧縮器16Hの圧縮圧力よりも高い圧力とする必要がある。例えば高圧圧縮器16Hの圧縮圧力が630kPaGの場合には、800kPaG程度(圧縮器の所定圧縮圧力よりも50~200kPaG程度高い圧力)まで昇圧している。
そして、第1フラッシュドラム21Aの前流に設置した減圧弁41Aを調節して、部分再生したリッチ溶液14Bの温度が102℃、655kPaG程度となるようにしている。
第1フラッシュドラム21Aでは、加圧リッチ溶液14Aが所定の圧力においてフラッシュされ、加圧リッチ溶液14A中の二酸化炭素(CO2)の一部を遊離させ、加圧リッチ溶液14Aを部分再生している。
そして第1フラッシュドラム21A内で高圧CO2ガス22Hと、部分再生したリッチ吸収液14Bとに分離させている。
そして第1フラッシュドラム21A内で高圧CO2ガス22Hと、部分再生したリッチ吸収液14Bとに分離させている。
気液分離された所望圧力(例えば630kPaG)の高圧CO2ガス22Hは、ガス送出ラインL3を介して第1気液分離器23Aに送られ、ここでフラッシュした際のガスに同伴される吸収液14aを分離し、ガス送出ラインL5を介して高圧圧縮器16Hへ送られる。分離された吸収液14aは、第1フラッシュドラム21A側に戻される。
減圧弁41A、41Bは、それぞれ所定圧力まで減圧する減圧弁であり、第1の送液ラインL1に介装され、第1フラッシュドラム21A及び再生塔15の前流側に設置して、リッチ溶液14A,14Bが所定圧力となるように調節している。
図2は、本実施例の一例のフラッシュしたガスの温度及び圧力を例示するCO2回収システムの概略図である。
加圧リッチ溶液14Aを減圧弁41Aにより所定圧力(655kPa、102℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の17%が送出される。
再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの83%が送出される。
加圧リッチ溶液14Aを減圧弁41Aにより所定圧力(655kPa、102℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の17%が送出される。
再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの83%が送出される。
再生塔15の底部からのリーン溶液17は、その温度が120℃、圧力80kPaGであり、吸収液を構成するアミン溶液の劣化温度以下であるので、吸収液の劣化がない。
これに対し、従来のような高圧リッチ溶液を直接高圧再生塔内へ導入した場合、高圧再生塔内でCO2を放出して再生されたリーン溶液は、底部から150℃程度又はそれ以上の温度及び380kPaGの圧力で排出されるので、リーン溶液17が高温状態となり、吸収液の組成であるアミン溶液が劣化していた。
このように、本実施例によれば、第1の送液ラインL1に第1フラッシュドラム21Aを介装し、フラッシュ操作により圧力を開放し、加圧リッチ溶液14Aに吸収されているCO2の一部を遊離させて高圧CO2ガス22Hとして放出し、この放出された高圧CO2ガス22Hは、再生塔15のガス流れ後流側に設置されるCO2を圧縮するCO2圧縮装置16の高圧圧縮器16Hへ導入することとしている。
これにより、従来のような再生塔15から排出されるCO2ガスを圧縮する際の圧縮動力の大幅な節約となり、また圧縮設備の規模の軽減を図ることができる。
これにより、従来のような再生塔15から排出されるCO2ガスを圧縮する際の圧縮動力の大幅な節約となり、また圧縮設備の規模の軽減を図ることができる。
図3は、本実施例に係る他のCO2回収システムの概略図である。
図3に示すように、本実施例に係るCO2回収システム10Bは、図1に示す実施例1の本実施例に係るCO2回収システム10Aにおいて、さらに昇圧ポンプ32と熱交換器33との間に、イナートガス分離器50を設置している。
不活性ガスが存在すると非凝縮ガスであるので、CO2ガスの圧縮純度の向上を図ることができない。そこで、本実施例では、第1フラッシュドラム21Aの前流側において、加圧リッチ溶液14A中に存在(0.1wt%以下)するイナートガス(N2、H2等)51を除去するようにしている。除去されたイナートガス51は、イナートガス循環ラインL20により、吸収塔13に再度循環させている。イナートガス循環ラインL20には、冷却器52及び気液分離器53が介装されている。
図3に示すように、本実施例に係るCO2回収システム10Bは、図1に示す実施例1の本実施例に係るCO2回収システム10Aにおいて、さらに昇圧ポンプ32と熱交換器33との間に、イナートガス分離器50を設置している。
不活性ガスが存在すると非凝縮ガスであるので、CO2ガスの圧縮純度の向上を図ることができない。そこで、本実施例では、第1フラッシュドラム21Aの前流側において、加圧リッチ溶液14A中に存在(0.1wt%以下)するイナートガス(N2、H2等)51を除去するようにしている。除去されたイナートガス51は、イナートガス循環ラインL20により、吸収塔13に再度循環させている。イナートガス循環ラインL20には、冷却器52及び気液分離器53が介装されている。
このイナートガス分離器50を設けて、イナートガス51を除いているので、圧縮CO2回収ガスの純度が向上する。
本実施例では、フラッシュドラムを用いて、気液分離を行っているが、本発明はこれに限定されるものではなく、例えば蒸留塔、分離カラム等を用いて気液分離を行うようにしてもよい。
本発明による実施例2に係るCO2回収システムについて、図面を参照して説明する。
図4及び5は、実施例2に係るCO2回収システムの概略図である。図4に示すように、本実施例に係るCO2回収システム10Cは、図3に示すCO2回収システム10Bにおいて、第1の送液ラインL1に第1フラッシュドラム21A及び第2フラッシュドラム21Bを介装している。
そして、第1フラッシュドラム21Aにおいて、フラッシュ操作により圧力を開放し、加圧リッチ溶液14Aに吸収されているCO2の一部を遊離させて高圧CO2ガス22Hとして放出し、この放出された高圧CO2ガス22Hは、再生塔15のガス流れ後流側に設置されるCO2を圧縮するCO2圧縮装置16の高圧圧縮器16Hへ導入することとしている。
図4及び5は、実施例2に係るCO2回収システムの概略図である。図4に示すように、本実施例に係るCO2回収システム10Cは、図3に示すCO2回収システム10Bにおいて、第1の送液ラインL1に第1フラッシュドラム21A及び第2フラッシュドラム21Bを介装している。
そして、第1フラッシュドラム21Aにおいて、フラッシュ操作により圧力を開放し、加圧リッチ溶液14Aに吸収されているCO2の一部を遊離させて高圧CO2ガス22Hとして放出し、この放出された高圧CO2ガス22Hは、再生塔15のガス流れ後流側に設置されるCO2を圧縮するCO2圧縮装置16の高圧圧縮器16Hへ導入することとしている。
また、第2フラッシュドラム21Bにおいて、フラッシュ操作により圧力を開放し、部分再生したリッチ溶液14Bに吸収されているCO2の一部を遊離させて中圧CO2ガス22Mとして放出し、この放出された中圧CO2ガス22Mは、再生塔15のガス流れ後流側に設置されるCO2を圧縮するCO2圧縮装置16の中圧圧縮器16Mへ導入することとしている。
図5は、本実施例の一例の温度及び圧力を例示するCO2回収システムの概略図である。
加圧リッチ溶液14Aを減圧弁41Aにより所定圧力(655kPa、102℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
そして、第1フラッシュドラム21Aの前流に設置した減圧弁41Aを調節して、部分再生したリッチ溶液14Bの温度が102℃、655kPaG程度となるようにしている。第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の17%が送出される。
そして、第2フラッシュドラム21Bの前流に設置した減圧弁41Cを調節して、部分再生リッチ溶液14Cの温度が95℃、255kPaG程度となるようにしている。
第2フラッシュドラム21Bで遊離された中圧CO2ガス22Mは、ガス圧力が230kPaG、40℃でガス送出ラインL9を介して中圧圧縮器16Mへ、全CO2量の19%が送出される。
また、再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの64%が送出される。
加圧リッチ溶液14Aを減圧弁41Aにより所定圧力(655kPa、102℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
そして、第1フラッシュドラム21Aの前流に設置した減圧弁41Aを調節して、部分再生したリッチ溶液14Bの温度が102℃、655kPaG程度となるようにしている。第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の17%が送出される。
そして、第2フラッシュドラム21Bの前流に設置した減圧弁41Cを調節して、部分再生リッチ溶液14Cの温度が95℃、255kPaG程度となるようにしている。
第2フラッシュドラム21Bで遊離された中圧CO2ガス22Mは、ガス圧力が230kPaG、40℃でガス送出ラインL9を介して中圧圧縮器16Mへ、全CO2量の19%が送出される。
また、再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの64%が送出される。
再生塔15の底部からのリーン溶液17は、温度が120℃、圧力80kPaGであり、吸収液を構成するアミン溶液の劣化温度以下であるので、吸収液の劣化がない。
このように、本実施例では、第1フラッシュドラム21A及び第2フラッシュドラム21Bを介装しているので、高圧CO2ガス22Hと中圧CO2ガス22Mとを抜出すことができ、実施例1の場合よりも再生塔15から排出されるCO2ガスを圧縮する際の圧縮動力の大幅な節約となり、また圧縮設備の規模の軽減を図ることができる。
本発明による実施例3に係るCO2回収システムについて、図面を参照して説明する。
図6及び7は、実施例3に係るCO2回収システムの概略図である。図6に示すように、本実施例に係るCO2回収システム10Dは、図4に示すCO2回収システム10Cにおいて、第1の送液ラインL1に介装された熱交換器33と減圧弁41Aとの間に、加圧リッチ溶液14Aを加熱する熱交換器61を設けている。
そして、設置された熱交換器61により加圧リッチ溶液14Aを、その耐熱温度である120℃近傍まで加熱している。
加圧リッチ溶液14Aを熱交換器61により加熱することで、第1フラッシュドラム21Aに導入される加圧リッチ溶液14Aの温度が上昇し、第1フラッシュドラム21Aで遊離されるCO2ガス量が増大する。
図6及び7は、実施例3に係るCO2回収システムの概略図である。図6に示すように、本実施例に係るCO2回収システム10Dは、図4に示すCO2回収システム10Cにおいて、第1の送液ラインL1に介装された熱交換器33と減圧弁41Aとの間に、加圧リッチ溶液14Aを加熱する熱交換器61を設けている。
そして、設置された熱交換器61により加圧リッチ溶液14Aを、その耐熱温度である120℃近傍まで加熱している。
加圧リッチ溶液14Aを熱交換器61により加熱することで、第1フラッシュドラム21Aに導入される加圧リッチ溶液14Aの温度が上昇し、第1フラッシュドラム21Aで遊離されるCO2ガス量が増大する。
図7は、本実施例の一例の温度及び圧力を例示するCO2回収システムの概略図である。
加圧リッチ溶液14Aを熱交換器61で加熱するので、減圧弁41Aにより所定圧力(655kPa、120℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の37%が送出される。
第2フラッシュドラム21Bで遊離された中圧CO2ガス22Mは、ガス圧力が230kPaG、40℃でガス送出ラインL9を介して中圧圧縮器16Mへ、全CO2量の28%が送出される。
また、再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの35%が送出される。
加圧リッチ溶液14Aを熱交換器61で加熱するので、減圧弁41Aにより所定圧力(655kPa、120℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の37%が送出される。
第2フラッシュドラム21Bで遊離された中圧CO2ガス22Mは、ガス圧力が230kPaG、40℃でガス送出ラインL9を介して中圧圧縮器16Mへ、全CO2量の28%が送出される。
また、再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの35%が送出される。
再生塔15の底部からのリーン溶液17は、温度が120℃、圧力80kPaGであり、吸収液を構成するアミン溶液の劣化温度以下であるので、吸収液の劣化がない。
このように、本実施例では、第1フラッシュドラム21A及び第2フラッシュドラム21Bを2段連続して介装すると共に、第1フラッシュドラム21Aの前流側において、熱交換器61により加圧リッチ溶液14Aを加熱するので、高圧CO2ガス22Hと中圧CO2ガス22Mとを抜出すことができると共に高圧ガスのCO2ガス遊離量が増大するので、実施例2の場合よりも再生塔15から排出されるCO2ガスを圧縮する際の圧縮動力の大幅な節約となり、また圧縮設備の規模の軽減を図ることができる。
本発明による実施例に係るCO2回収システムについて、図面を参照して説明する。
図8は、実施例4に係るCO2回収システムの概略図である。図8に示すように、本実施例に係るCO2回収システム10Eは、図3に示すCO2回収システム10Bにおいて、再生塔15から排出するガス送出ラインL6に減圧弁41Dを設け、再生塔15の塔頂部から放出するガスを低圧CO2ガス22Lとして送出するようにしている。
このように調整すると、再生塔内に圧力がかかったリッチ溶液が導入されるので、再生塔15の底部からのリーン溶液17は、140℃、250kPaG程度となる。しかし、吸収液の種類によっては高温(140℃)程度を許容するものがあるので、このような耐高温性の吸収液を用いる場合には、本実施例の構成を適用することができる。
図8は、実施例4に係るCO2回収システムの概略図である。図8に示すように、本実施例に係るCO2回収システム10Eは、図3に示すCO2回収システム10Bにおいて、再生塔15から排出するガス送出ラインL6に減圧弁41Dを設け、再生塔15の塔頂部から放出するガスを低圧CO2ガス22Lとして送出するようにしている。
このように調整すると、再生塔内に圧力がかかったリッチ溶液が導入されるので、再生塔15の底部からのリーン溶液17は、140℃、250kPaG程度となる。しかし、吸収液の種類によっては高温(140℃)程度を許容するものがあるので、このような耐高温性の吸収液を用いる場合には、本実施例の構成を適用することができる。
加圧リッチ溶液14Aを減圧弁41Aにより所定圧力(655kPa、102℃)とし、第1フラッシュドラム21Aに導入し、CO2の一部を遊離させ、部分再生したリッチ溶液14Bとし、この部分再生したリッチ溶液14Bは再生塔15側に送られる。
第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の36%が送出される。
再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの64%が送出される。
第1フラッシュドラム21Aで遊離された高圧CO2ガス22Hは、ガス圧力が630kPaG、40℃でガス送出ラインL5を介して高圧圧縮器16Hへ、全CO2量の36%が送出される。
再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りの64%が送出される。
再生塔15の底部からのリーン溶液17は、温度が140℃、圧力250kPaGであるが、吸収液を構成するアミン溶液の劣化温度が150℃近傍である場合には、吸収液の劣化が少ないものとなる。
本実施例では、再生塔15の底部から排出されるリーン溶液17の温度が140℃、圧力250kPaGであるので、吸収液において高温耐性があるものである場合に、許容されることとなる。
本発明による実施例5に係るCO2回収システムについて、図面を参照して説明する。
図9は、実施例5に係るCO2回収システムの概略図である。図9に示すように、本実施例に係るCO2回収システム10Fは、吸収塔13を加圧型とし、導入するガスを加圧ガスとしている。
このようなCO2を含む加圧ガスとしては、例えば肥料合成用の加圧ガス、高圧天然ガス等(ガス圧力:例えば3,000kPaG)を例示することができる。
なお、吸収塔13からのリッチ溶液14は、加圧状態であるので、実施例1のような昇圧ポンプが不要となり、送液ポンプ32Aを設置して、送液している。
また、再生塔15で再生されたリーン溶液17は、吸収塔13へ送る際に昇圧する必要があるので、第2の送液ラインL2に介装された昇圧ポンプ42Aにより昇圧されている。
図9は、実施例5に係るCO2回収システムの概略図である。図9に示すように、本実施例に係るCO2回収システム10Fは、吸収塔13を加圧型とし、導入するガスを加圧ガスとしている。
このようなCO2を含む加圧ガスとしては、例えば肥料合成用の加圧ガス、高圧天然ガス等(ガス圧力:例えば3,000kPaG)を例示することができる。
なお、吸収塔13からのリッチ溶液14は、加圧状態であるので、実施例1のような昇圧ポンプが不要となり、送液ポンプ32Aを設置して、送液している。
また、再生塔15で再生されたリーン溶液17は、吸収塔13へ送る際に昇圧する必要があるので、第2の送液ラインL2に介装された昇圧ポンプ42Aにより昇圧されている。
図9に示すCO2回収システム10Fにおいて、第1フラッシュドラム21Aにより、フラッシュ操作により圧力を開放し、加圧リッチ溶液14Aに吸収されているCO2の一部を遊離させて高圧CO2ガス22Hとして放出し、この放出された高圧CO2ガス22Hは、再生塔15のガス流れ後流側に設置されるCO2を圧縮するCO2圧縮装置16の高圧圧縮器16Hへ導入することとしている。
また、再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りのCO2が送出される。
また、再生塔15の塔頂部から放出される低圧CO2ガス22Lは、ガス圧力が50kPaG、40℃でガス送出ラインL6を介して低圧圧縮器16Lへ残りのCO2が送出される。
再生塔15の底部からのリーン溶液17は、温度が120℃であり、吸収液を構成するアミン溶液の劣化温度以下であるので、吸収液の劣化がない。
このように、本実施例では、加圧ガスを用いる場合でも、第1フラッシュドラム21Aを介装しているので、高圧CO2ガス22Hを抜出すことができ、再生塔15から排出されるCO2ガスを圧縮する際の圧縮動力の大幅な節約となり、また圧縮設備の規模の軽減を図ることができる。
なお、イナートガス51を循環させるイナートガス循環ラインL20には、気液分離器53の後流側に圧縮器54を介装して、高圧ガス11と合流可能としている。
なお、イナートガス51を循環させるイナートガス循環ラインL20には、気液分離器53の後流側に圧縮器54を介装して、高圧ガス11と合流可能としている。
10A~10F CO2回収システム
11 ガス
12 CO2吸収液
13 吸収塔
14 リッチ溶液
15 再生塔
16 CO2圧縮装置
16H 高圧圧縮器
16L 低圧圧縮器
16M 中圧圧縮器
17 リーン溶液
21A 第1フラッシュドラム
21B 第2フラッシュドラム
22H 高圧CO2ガス
22L 低圧CO2ガス
22M 中圧CO2ガス
11 ガス
12 CO2吸収液
13 吸収塔
14 リッチ溶液
15 再生塔
16 CO2圧縮装置
16H 高圧圧縮器
16L 低圧圧縮器
16M 中圧圧縮器
17 リーン溶液
21A 第1フラッシュドラム
21B 第2フラッシュドラム
22H 高圧CO2ガス
22L 低圧CO2ガス
22M 中圧CO2ガス
Claims (6)
- CO2を含有するガスとCO2吸収液とを接触させてCO2を除去する吸収塔と、
CO2を吸収したリッチ溶液を再生する再生塔と、
前記再生塔でCO2が除去されたリーン溶液を吸収塔で再利用すると共に、前記再生塔で放出された放出ガス中のCO2を圧縮する圧縮装置とを有するCO2回収システムであって、
前記リッチ溶液が高圧であり、
該高圧のリッチ溶液をフラッシュドラムにより気液分離し、
前記フラッシュドラムで分離された液体成分のリッチ溶液を再生塔に導入すると共に、
前記フラッシュドラムで分離された気体成分の高圧CO2ガスを所定圧縮圧力の圧縮装置へ導入することを特徴とするCO2回収システム。 - 請求項1において、
前記フラッシュドラムを複数段設置すると共に、気液分離器の前流側に減圧弁を有すると共に、
前記各フラッシュドラムで分離された気体成分のCO2ガスの圧力に応じた所定圧縮圧力の圧縮装置へ、該気体成分のCO2ガスを導入することを特徴とするCO2回収システム。 - 請求項2において、
前記吸収塔と最初の気液分離器との間に、リッチ溶液を加熱する熱交換器を有することを特徴とするCO2回収システム。 - 請求項2において、
前記吸収塔と最初の気液分離器との間に、不活性ガスを分離する不活性ガス分離器と、分離された不活性ガスを吸収塔へ導入する不活性ガス導入ラインとを有することを特徴とするCO2回収システム。 - 請求項1において、
前記吸収塔へ導入されるガスが、常圧ガスである場合、常圧吸収塔を用いると共に、
前記常圧吸収塔からのリッチ溶液を昇圧する昇圧ポンプを有し、
昇圧されたリッチ溶液を前記気液分離器で気液分離することを特徴とするCO2回収システム。 - 請求項1において、
前記吸収塔へ導入されるガスが、高圧ガスである場合、加圧吸収塔を用いると共に、
加圧吸収塔からの加圧リッチ溶液を前記気液分離器で気液分離することを特徴とするCO2回収システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/410,418 US9895648B2 (en) | 2012-07-20 | 2013-07-11 | CO2 recovery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-161238 | 2012-07-20 | ||
JP2012161238A JP5972696B2 (ja) | 2012-07-20 | 2012-07-20 | Co2回収システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014013939A1 true WO2014013939A1 (ja) | 2014-01-23 |
Family
ID=49948768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069028 WO2014013939A1 (ja) | 2012-07-20 | 2013-07-11 | Co2回収システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US9895648B2 (ja) |
JP (1) | JP5972696B2 (ja) |
WO (1) | WO2014013939A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3221030B1 (en) * | 2014-11-21 | 2019-12-04 | Gas Technology Institute | Energy efficient solvent regeneration process for carbon dioxide capture |
CN110639335A (zh) * | 2019-09-26 | 2020-01-03 | 江苏城乡建设职业学院 | 天然气深度脱碳中再生塔节能方法及系统 |
WO2024201895A1 (ja) * | 2023-03-30 | 2024-10-03 | 三菱重工業株式会社 | 二酸化炭素回収システム |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3552687B1 (en) * | 2015-08-19 | 2020-11-04 | Casale Sa | A method for revamping a co2 removal section for purification of a hydrogen-containing gas |
CN108277050B (zh) * | 2018-03-10 | 2023-11-24 | 河南晋控天庆煤化工有限责任公司 | 一种低温甲醇洗闪蒸塔二段闪蒸气回收利用系统 |
CN111420515A (zh) * | 2020-03-07 | 2020-07-17 | 湖北宜化化工股份有限公司 | 改进的低温甲醇洗co2产品气提压工艺 |
EP3912704B1 (de) * | 2020-05-20 | 2024-09-04 | L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude | Gaswäscheverfahren zur reinigung von rohsynthesegas durch physikalische absorption in methanol |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63151330A (ja) * | 1986-12-02 | 1988-06-23 | ノートン カンパニー | 二酸化炭素を回収するためのガス処理方法 |
JPH09150029A (ja) * | 1995-12-01 | 1997-06-10 | Mitsubishi Heavy Ind Ltd | ガス中の炭酸ガスを除去する方法 |
JP2007533431A (ja) * | 2003-11-10 | 2007-11-22 | ビーエーエスエフ アクチェンゲゼルシャフト | 酸性ガスを流体の流れから除去することによって高い圧力下にある酸性ガス流を取得する方法 |
WO2010136425A1 (en) * | 2009-05-26 | 2010-12-02 | Basf Se | Process for recovery of carbon dioxide from a fluid stream, in particular from syngas |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2539103B2 (ja) | 1991-03-07 | 1996-10-02 | 三菱重工業株式会社 | 燃焼排ガスの脱炭酸ガス装置及び方法 |
JP3969949B2 (ja) | 2000-10-25 | 2007-09-05 | 関西電力株式会社 | アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置 |
CA2503656C (en) * | 2002-12-17 | 2010-10-05 | Fluor Corporation | Configurations and methods for acid gas and contaminant removal with near zero emission |
DE602004027708D1 (de) * | 2003-03-10 | 2010-07-29 | Univ Texas | Regenerierung einer wässrigen lösung aus einem sauergasabsorptionsverfahren mittels mehrstufigem stripping und flashing |
US6929680B2 (en) * | 2003-09-26 | 2005-08-16 | Consortium Services Management Group, Inc. | CO2 separator method and apparatus |
CN102238994B (zh) * | 2008-10-02 | 2014-08-20 | 氟石科技公司 | 移除高压酸性气体的装置和方法 |
EP2536481A4 (en) * | 2010-02-17 | 2014-02-19 | Fluor Tech Corp | CONFIGURATIONS AND METHODS FOR REMOVAL OF HIGH PRESSURE ACID GAS IN THE PRODUCTION OF LOW SOFT SULFUR GAS |
CN103889546B (zh) * | 2011-08-08 | 2016-03-30 | 氟石科技公司 | 用于酸气去除中h2s浓缩的方法和构造 |
-
2012
- 2012-07-20 JP JP2012161238A patent/JP5972696B2/ja active Active
-
2013
- 2013-07-11 WO PCT/JP2013/069028 patent/WO2014013939A1/ja active Application Filing
- 2013-07-11 US US14/410,418 patent/US9895648B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63151330A (ja) * | 1986-12-02 | 1988-06-23 | ノートン カンパニー | 二酸化炭素を回収するためのガス処理方法 |
JPH09150029A (ja) * | 1995-12-01 | 1997-06-10 | Mitsubishi Heavy Ind Ltd | ガス中の炭酸ガスを除去する方法 |
JP2007533431A (ja) * | 2003-11-10 | 2007-11-22 | ビーエーエスエフ アクチェンゲゼルシャフト | 酸性ガスを流体の流れから除去することによって高い圧力下にある酸性ガス流を取得する方法 |
WO2010136425A1 (en) * | 2009-05-26 | 2010-12-02 | Basf Se | Process for recovery of carbon dioxide from a fluid stream, in particular from syngas |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3221030B1 (en) * | 2014-11-21 | 2019-12-04 | Gas Technology Institute | Energy efficient solvent regeneration process for carbon dioxide capture |
CN110639335A (zh) * | 2019-09-26 | 2020-01-03 | 江苏城乡建设职业学院 | 天然气深度脱碳中再生塔节能方法及系统 |
WO2024201895A1 (ja) * | 2023-03-30 | 2024-10-03 | 三菱重工業株式会社 | 二酸化炭素回収システム |
Also Published As
Publication number | Publication date |
---|---|
US9895648B2 (en) | 2018-02-20 |
JP5972696B2 (ja) | 2016-08-17 |
JP2014019621A (ja) | 2014-02-03 |
US20150321136A1 (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014013939A1 (ja) | Co2回収システム | |
JP5657543B2 (ja) | 高圧酸性ガスを除去する構成および方法 | |
JP5875245B2 (ja) | Co2回収システム及びco2ガス含有水分の回収方法 | |
CN108136321B (zh) | 用于co2捕集的方法和设备 | |
JP5725992B2 (ja) | Co2回収設備 | |
KR101914439B1 (ko) | Co2포집 플랜트에서의 열 통합 | |
KR20120112604A (ko) | 포집 매질의 재생방법 | |
WO2010122830A1 (ja) | Co2回収装置及びco2回収方法 | |
JP2018501947A (ja) | 二酸化炭素回収のためのエネルギー効率のよい溶媒再生プロセス | |
JP6174239B2 (ja) | 脱水圧縮システム及びco2回収システム | |
JP6066605B2 (ja) | Co2回収システム | |
KR101725555B1 (ko) | 흡수효율이 향상된 이산화탄소 회수장치 및 회수방법 | |
KR20160035790A (ko) | 탈거탑 리보일러의 응축수 에너지를 재활용한 이산화탄소 포집 장치 | |
US20140366720A1 (en) | Method and system for removing carbon dioxide from flue gases | |
JP2014205102A (ja) | 被処理ガス中の二酸化炭素を回収する方法およびそのための装置 | |
JP2012161750A (ja) | Co2回収方法およびco2回収装置 | |
US8906141B2 (en) | Carbon dioxide recovery apparatus and method | |
Seiki et al. | CO 2 recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13819758 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14410418 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13819758 Country of ref document: EP Kind code of ref document: A1 |