WO2014013934A1 - ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法 - Google Patents

ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法 Download PDF

Info

Publication number
WO2014013934A1
WO2014013934A1 PCT/JP2013/068994 JP2013068994W WO2014013934A1 WO 2014013934 A1 WO2014013934 A1 WO 2014013934A1 JP 2013068994 W JP2013068994 W JP 2013068994W WO 2014013934 A1 WO2014013934 A1 WO 2014013934A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass molded
molded product
optical element
coating agent
Prior art date
Application number
PCT/JP2013/068994
Other languages
English (en)
French (fr)
Inventor
幹男 池西
静男 鈴木
ナッタシット ワンウィ
ジラポーン ルアンチャイ
Original Assignee
Hoya株式会社
ホーヤ オプティクス タイランド リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, ホーヤ オプティクス タイランド リミテッド filed Critical Hoya株式会社
Priority to JP2014525801A priority Critical patent/JP6283611B2/ja
Priority to US14/415,358 priority patent/US20150218043A1/en
Priority to CN201380037608.5A priority patent/CN104470860B/zh
Priority to KR20147035728A priority patent/KR20150041610A/ko
Publication of WO2014013934A1 publication Critical patent/WO2014013934A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0013Re-forming shaped glass by pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a glass molded article and a manufacturing method thereof, an optical element blank, an optical element and a manufacturing method thereof.
  • a method for producing a glass optical element such as a lens
  • a glass molded product having a shape approximating the optical element is produced, ground and polished to finish the optical element.
  • a method for producing a glass molded product for example, a method is used in which a glass lump made of homogeneous optical glass is prepared, and the glass lump is heated and softened to form a glass molded product.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-210863
  • Patent Document 2 an optical element blank having a shape that approximates the shape of an optical element is produced by press molding, and the optical element blank is processed to produce an optical element. How to do is described.
  • the glass surface crystallization during molding is suppressed without lowering the heating temperature of the glass lump, and a method for producing a high-quality glass molded product, a method for producing a glass molded product with little loss of glass material Is required.
  • the present inventors paid attention to the difference between the surface of the glass lump and the free energy inside as a factor for selectively crystallizing the glass surface when the glass lump is heated and softened. That is, the surface of the glass block has a larger free energy than the inside and tends to be crystallized. Therefore, it is considered that the surface of the glass lump is preferentially crystallized compared to the inside.
  • the glass lump was coated with a coating agent in order to prevent crystallization generated on the surface of the glass lump.
  • a coating agent By coating the glass lump with the coating agent, the surface free energy of the glass lump that is easily crystallized can be reduced, and crystallization on the surface of the glass lump can be suppressed.
  • the coating itself is prevented from crystal hardening and being woven into the glass lump. I found out that I can do it.
  • the present invention provides a glass molded article and a method for producing the glass molded article described below.
  • a coating agent is a manufacturing method of a glass molded article containing the component used as a melt at the temperature below the softening temperature of the glass which comprises a glass lump.
  • the coating agent is one or more selected from the group consisting of boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, alkali silicate, phosphoric acid and phosphate.
  • a glass molded product obtained by molding a glass lump into a predetermined shape It has a glass molded product body part and a surface layer formed on the surface of the body part, A surface layer is a glass molded product containing the component used as a melt at the temperature below the softening temperature of the glass which comprises a main-body part.
  • the content of one or more components selected from the group consisting of boron, phosphorus, silicon, and bismuth in the surface layer is greater than the content of the components in the main body, as described in [9] above Glass molded product.
  • the surface layer is one or more selected from the group consisting of boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, alkali silicate, phosphoric acid and phosphate.
  • the “softening temperature” is a temperature at which the viscosity of the glass is 10 7.6 dPa ⁇ s, and is also referred to as “Littleton temperature”.
  • the “softening temperature” refers to a temperature measured by a method defined in JIS R 3103-1: 2001.
  • the method for producing a glass molded product of the present invention When the method for producing a glass molded product of the present invention is used, generation of a hardened layer on the glass surface due to crystallization during heating and softening can be suppressed. It is possible to prevent the deterioration of the homogeneity. As a result, when the present invention is used, a high-quality glass molded product can be produced. Moreover, the manufacturing method of the glass molded product of this invention has little loss of glass material, and can manufacture a glass molded product and an optical element at low cost.
  • the method for producing a glass molded article of the present invention includes a step A for coating the surface of the glass block with a coating, and a step B for heating, softening and molding the glass block coated with the coating agent,
  • a coating agent contains the component used as a melt at the temperature below the softening temperature of the glass which comprises a glass lump.
  • the glass lump used in the present invention can be produced by a known method.
  • a glass raw material is melted, clarified, stirred to produce a homogeneous molten glass, cast into a mold to prepare a glass block, and after annealing this glass block, Glass pieces can be obtained by cutting into a cubic shape and barrel-polishing to produce glass ingots having the same weight and shape from each optical glass.
  • molten glass is cast into a cylindrical mold placed below the outflow pipe to form a cylindrical glass column, and the glass formed in the mold
  • the column body is drawn vertically downward from the opening at the bottom of the mold, and after slowly cooling the glass columnar body, it is cut or cleaved to obtain a substantially disk-shaped glass piece, and this glass piece is polished or processed. Barrel polish to make a glass lump.
  • the drawing speed may be set so that the molten glass liquid level in the mold becomes constant.
  • the molten glass produced by melting, clarifying and stirring the glass raw material is discharged from the outflow pipe, and the tip of the outflowing molten glass flow is received in the mold.
  • the mold for receiving glass is not particularly limited, and a mold for float molding (a recess for receiving molten glass is formed of a porous body, and gas is ejected from the surface of the recess through the porous body. It may be a mold having a structure in which upward wind pressure is applied to the lump), or may be a tray-shaped mold in which a concave-shaped receiving portion is formed.
  • composition of the glass which comprises the glass lump used for the glass molded article of this invention and its manufacturing method is not specifically limited,
  • a fluorophosphate glass useful as optical glass, a lanthanum borate containing glass, etc. can be used.
  • Step A Step of coating the surface of glass lump with coating agent
  • the surface of the glass block is coated with a coating agent containing a component that becomes a melt at a temperature equal to or lower than the softening temperature of the glass constituting the glass block.
  • the coating agent a component that becomes a melt at a temperature lower than the softening temperature of the glass constituting the glass lump is used. Moreover, it is preferable that the compound used as a coating agent does not crystallize easily.
  • Such a coating agent is not particularly limited as long as it contains a component that becomes a melt at a temperature lower than the softening temperature of the glass constituting the glass lump.
  • the coating agent is made of boron, phosphorus, silicon, and bismuth. Examples thereof include a coating agent containing one or more selected from the group. Since these components are easy to form a glass network, they are likely to be taken into the glass constituting the glass lump and difficult to crystallize on the surface.
  • the glass which comprises a glass lump is a boric acid type glass
  • the glass which comprises a glass lump is phosphoric acid type glass
  • a coating agent compounds such as boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, alkali silicate, phosphoric acid, phosphate, etc., or these
  • a composition containing at least one of the above is used.
  • the composition include a combination of the above compounds or a solution dissolved in water or an organic solvent.
  • the aspect of the coating agent is not limited, and may be solid or liquid.
  • glass such as bismuth borate-containing glass or zinc borate-containing glass
  • a coating agent When glass such as bismuth borate-containing glass or zinc borate-containing glass is used as a coating agent, if these glasses are processed into a powder and used, it is easy to adhere uniformly on the surface of the glass lump. This is preferable.
  • Such glass powder can be attached to the glass mass using methods such as spraying, spraying and rubbing.
  • the bismuth borate-containing glass a glass marketed as a bismuth borate low-melting glass, and as the zinc borate-containing glass, those marketed as a zinc borate-based low melting glass can be used. Since these compounds have a property that is very difficult to crystallize even when heated, crystallization of the glass lump surface can be effectively prevented when a melted coating agent is provided on the surface of the glass lump.
  • the particle diameter of the powdery coating material is preferably 5 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • a liquid coating agent When using a liquid coating agent, it is preferable to use a solution in which the above compound is dissolved.
  • boric acid, borate, phosphoric acid, phosphate, or the like When used as a coating agent, it is preferable to use an aqueous solution in which these compounds are dissolved in water.
  • the coating agent is a solution, it is preferable to immerse the glass block in a container containing the solution, or to apply the solution to the surface of the glass block by spraying or applying with a brush.
  • the concentration of the coating agent which is an aqueous solution is preferably 1 to 30% by weight, more preferably 1 to 20% by weight.
  • the coating agent is a boric acid aqueous solution, it is preferably 1 to 5% by weight, more preferably 1 to 3% by weight.
  • the coating agent is a phosphoric acid aqueous solution, it is preferably 1 to 20% by weight, more preferably 1 to 10% by weight.
  • the coating agent is preferably coated at least on the surface on which crystallization is desired to be suppressed during heating and softening, and more preferably on the entire surface of the glass lump surface.
  • a glass lump (glass gob) for one glass molded product is prepared, and the temperature of the glass lump constituting the glass lump is below the softening temperature of the glass lump. It is preferable to coat a substance that becomes a melt.
  • the glass lump is a glass lump placing tool (for example, “softening tray 10” described in Patent Document 1) on which the heated glass lump is placed. You may further coat
  • the mold release agent may be used by mixing with a coating agent or may be used after coating the coating agent.
  • the release agent include powder release agents such as boron nitride, alumina, silicon oxide, and magnesium oxide.
  • Process to heat and soften glass lump (Process B)
  • the glass lump coated with the coating agent is heated and softened and molded to obtain a glass molded product.
  • the step of heating and softening the glass lump is performed by placing the glass lump whose surface is coated with a coating material on a heat-resistant glass lump mounting tool and heating the whole glass lump mounting tool.
  • a coating material for example, “softening furnace 30” described in Patent Document 1
  • the glass lump coated with the coating agent is heated, the glass lump becomes softened, and the coating agent on the surface of the glass lump is melted to form a surface layer on the surface of the glass lump.
  • the thickness of the surface layer based on the coating agent is not limited, but it needs to be thick enough to suppress the crystallization of the surface of the glass block coated with the coating agent, and preferably has a thickness of 1 to 100 ⁇ m. A thickness of 50 ⁇ m is more preferred.
  • the heating of the glass prior to molding, softening it is preferably heated to a temperature at which the viscosity of the glass becomes less 10 6 dPa ⁇ s, 10 5 dPa -It is more preferable to heat to the temperature which becomes s or less. According to the present invention, devitrification of the glass surface is suppressed even when the glass is heated and softened to such a viscosity.
  • the coating agent When boric acid, borate, phosphoric acid, phosphate, or the like is used as the coating agent, it is preferable to coat the glass lump surface with an aqueous solution obtained by dissolving these compounds in water.
  • the coating is a liquid such as an aqueous solution
  • the coating is applied to the glass lump using means such as immersing the lump in the liquid, spraying the liquid with a spray, or applying the liquid with a brush or the like. can do. After coating, it is preferable to use after drying to such an extent that the coating agent does not flow.
  • the coating agent when coating glass such as bismuth borate-containing glass or zinc borate-containing glass as a coating agent, it is preferable to coat the glass lump surface with glass powder processed into a powder form.
  • the coating agent can be coated on the glass mass using a method such as passing the glass mass through the powder, spraying the powder onto the glass mass, spraying, or rubbing.
  • a component that promotes adhesion may be added to the surface of the glass lump.
  • the glass powder When the glass lump covered with the glass powder is heated, the glass powder is softened and melted on the surface of the glass lump to be melted.
  • the glass that is originally exposed on the surface is coated with the surface layer by coating the coating agent that becomes a melt at a temperature equal to or lower than the softening temperature of the glass constituting the glass lump before heating the glass lump, Crystallization of the glass lump surface that can occur during heating of the glass lump can be greatly suppressed.
  • the yield of manufacture of a glass molded product which can utilize a glass material effectively improves.
  • the method of molding the softened glass is not particularly limited, but a known molding method such as a press molding method, a rolling method in which a glass lump is sandwiched between a plurality of rotating rollers and molded into a rod-shaped glass, or a stretching method is used. Can be used.
  • the glass lump is softened by heating, and the softened glass lump is pressed by a press mold in a press molding apparatus to be formed into a desired shape.
  • the press molding apparatus used when the press molding method a known apparatus can be used.
  • the press molding apparatus include an upper mold, a lower mold, or a mold having a barrel mold as necessary, and a pressurizing mechanism that applies a press pressure to the upper mold and the lower mold.
  • the number of molds may be set according to the number of glass lumps supplied simultaneously from the glass lumps placing tool. When the glass lump is supplied to the mold, the upper mold is retracted upward, and in this state, the glass lump is supplied onto the lower mold.
  • the upper mold After the supply of the glass lump onto the lower mold, the upper mold is lowered, the mold is closed, the softened glass lump is pressed with the upper and lower molds, and the molding surface of the upper and lower molds (using the barrel mold, (Including the case where the inner surface of the mold is transferred to glass) can be transferred to glass, and a glass molded product having a desired shape can be obtained.
  • the glass molded product is released from the press mold and annealed.
  • the distortion inside the glass is reduced so that the optical characteristics such as the refractive index become a desired value.
  • the glass lump heating conditions, molding conditions, materials used for the press mold, etc. may be applied.
  • the above steps can be performed in the atmosphere.
  • the obtained glass molded article can be suitably used mainly as an optical element blank.
  • the optical element blank is a glass blank having a shape that approximates the shape of the target optical element, and the optical element can be finally produced by grinding and polishing the glass blank.
  • a glass molded product that can be used as an optical element is obtained.
  • the optical element can be obtained without subjecting the glass molded product to polishing or the like, so that the production efficiency is high and the material loss due to processing is small.
  • a glass molded article by a precision press molding method among the above-described glass lump manufacturing methods, use the glass lump (preform) obtained by float forming described in the third example. Is preferred.
  • the glass molded product of the present embodiment is a glass molded product obtained by molding a glass lump into a predetermined shape, It has a glass molded product body part and a surface layer formed on the surface of the body part, The surface layer is a glass molded article containing a component that becomes a melt at a temperature equal to or lower than the softening temperature of the glass constituting the main body.
  • the surface layer contains a component that becomes a melt at a temperature equal to or lower than the softening temperature of the glass constituting the main body, so that the surface is difficult to crystallize during molding and suppresses deterioration of homogeneity due to the cured film. be able to.
  • the content of one or more components selected from the group consisting of boron, phosphorus, silicon, and bismuth in the surface layer is larger than the content of the components in the main body. large.
  • the term “inside” refers to the inside in the thickness direction of the glass molded product (the deep part of the glass molded product main body), which is the portion that exists inside the surface layer of the glass molded product.
  • the surface layer is preferably made of boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, alkali silicate, phosphoric acid and phosphate.
  • a glass molded article when producing a highly homogenous glass product such as an optical element, the amount of removal of the surface of the glass molded article can be reduced, and material loss and manufacturing cost can be reduced. it can. Moreover, when the whole glass molded article is homogeneous, a glass molded article can also be used as an optical element.
  • the glass molded product of the present embodiment can be manufactured, for example, by the above-described glass molded product manufacturing method.
  • the thickness of the surface layer of the glass molded product is preferably 1 ⁇ m or more from the viewpoint of suppressing crystallization of the surface.
  • the thickness of the surface layer is preferably 100 ⁇ m or less from the viewpoint of reducing the amount of removal when processing a glass molded product.
  • the more preferable lower limit of the thickness of the surface layer is 5 ⁇ m, and the more preferable upper limit is 50 ⁇ m.
  • the glass molded product of the present embodiment is suitable for an optical element or an optical element blank because the inside is homogeneous and surface crystallization is suppressed.
  • Process C The glass molded product obtained through the steps A and B can be further processed by a known processing method such as grinding or polishing.
  • the glass molded product is an optical element blank.
  • An optical element such as a lens or a prism can be manufactured by forming the glass molded product by approximating the shape of the glass molded product to that of the optical element, and further grinding and / or polishing.
  • the grinding and / or polishing method can be performed, for example, through the following steps.
  • (i) Grinding process A glass molded product is ground using a diamond grindstone or the like so as to have a shape that approximates the shape of the target optical element.
  • (ii) Polishing Step The surface ground in the above grinding step is polished using free abrasive grains such as cerium oxide to smooth the surface.
  • (iii) Polishing process The polished surface is polished using zirconia or the like.
  • Step C it is preferable to remove the surface layer of the glass molded product by polishing or grinding to obtain a homogeneous glass molded product based on the glass lump.
  • the process C is not an essential process,
  • molded at the process B can also be used as an optical element.
  • a glass molded product can be produced with high productivity, and optical elements such as lenses and prisms can be stably produced using the glass molded product.
  • illustrated spherical lenses, aspherical lenses, various lenses such as a micro lens, a diffraction grating, lenses with diffraction grating, a lens array, a prism, etc. be able to.
  • the lens etc. which comprise can be illustrated.
  • the optical element may be provided with an optical thin film such as an antireflection film, a total reflection film, a partial reflection film, or a film having spectral characteristics.
  • an optical thin film such as an antireflection film, a total reflection film, a partial reflection film, or a film having spectral characteristics.
  • the softening temperature of the glass was measured by the method specified in JIS R 3103-1: 2001.
  • Each glass lump whose surface is coated with a coating material using optical glasses 1 to 5 is placed on a softening basin, which is a glass lump mounting tool, and stored in a softening furnace, whereby the glass lump is heated and softened.
  • the temperature of the softening furnace was 100 ° C. higher than the softening temperature of the glass lump, and the time during which the glass lump was held in the softening furnace was 10 minutes.
  • the glass lump was taken out from the softening furnace.
  • the temperature at which the coating agent used in each example becomes a melt is lower than the softening temperature of the glass lump (Table 2). Therefore, the surface of the glass lump of Examples 1 to 12 heated in the softening furnace was formed so as to cover the surface of the softened glass lump.
  • the molding surface of the press mold has a shape obtained by inverting the surface of the glass molded product (optical element blank) to be obtained.
  • the heating temperature at the time of molding was as shown in Table 2.
  • the glass molded product (optical element blank) obtained by press molding in this manner was taken out from the mold.
  • the surfaces of the glass molded articles of Examples 1 to 12 were not crystallized, and no cured film was formed by crystallization.
  • the cured film was not woven into the glass molded product. Further, the glass molded articles of Examples 1 to 12 were not devitrified.
  • Examples 1 to 12 boron nitride powder was applied to the surface of the glass block together with the aqueous solution (coating agent) shown in Table 2, and the glass block was heated, softened and press-molded in the same manner as in Examples 1 to 12. Thus, a glass molded product was produced. The surface of the glass molded product thus produced was not crystallized, and no cured film was formed by crystallization. In addition, the cured film was not woven into the glass molded product. Furthermore, the inside of each glass molded product was not devitrified.
  • Example 13 Production of spherical lens
  • the glass molded article (lens blank) of Example 1 was annealed to match the optical characteristics with those of the target lens and to reduce distortion in the glass. Thereafter, the lens blank was ground and polished by a known method to produce a spherical lens (Example 13).
  • Example 13 the spherical lenses of Examples 14 to 24 were produced from the glass molded articles (optical element blanks) of Examples 2 to 12.
  • a coating agent contains the component used as a melt at the temperature below the softening temperature of the glass which comprises a glass lump.
  • step B the glass block is heated at a temperature at which the viscosity of the glass constituting the glass block is 10 6 dPa ⁇ s or less. To do.
  • the coating agent contains one or more selected from the group consisting of boron, phosphorus, silicon and bismuth.
  • the coating agent is boric acid, borate, borate ester, bismuth borate-containing glass, boron It contains at least one component selected from the group consisting of zinc acid-containing glass, alkali silicate, phosphoric acid and phosphate.
  • the coating agent comprises a solution.
  • the coating agent comprises an aqueous solution containing boric acid or phosphoric acid.
  • the process B includes a press molding process.
  • the glass molded article according to the present embodiment is obtained by the manufacturing method according to any one of [1] to [7] above.
  • the glass molded product of the present embodiment is a glass molded product obtained by molding a glass lump into a predetermined shape, It has a glass molded product body part and a surface layer formed on the surface of the body part, A surface layer contains the component used as a melt at the temperature below the softening temperature of the glass which comprises a main-body part.
  • the content of one or more components selected from the group consisting of boron, phosphorus, silicon, and bismuth in the surface layer is within the body portion. Greater than the content of ingredients.
  • the surface layer includes boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, silica 1 or more types of components chosen from the group which consists of acid alkali salt, phosphoric acid, and phosphate are included.
  • the thickness of the surface layer is 1 to 100 ⁇ m.
  • the optical element blank according to the present embodiment is formed of the glass molded product according to any one of [8] to [12].
  • the optical element of the present embodiment is formed of the glass molded product according to any one of [8] to [12].
  • the method for manufacturing an optical element according to the present embodiment includes a process C for further processing the optical element blank described in [13].
  • step C includes a step of removing a surface layer of the optical element blank.
  • [A1] In the method for producing a glass molded article of the present embodiment, the process A for coating the surface of the glass block with a coating agent that becomes a melt at a temperature equal to or lower than the softening temperature of the glass constituting the glass block, and the coating agent A step B of heating and softening the coated glass lump to form.
  • step B the glass block is heated at a temperature at which the viscosity of the glass constituting the glass block is 10 6 dPa ⁇ s or less.
  • the coating agent contains boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing It contains at least one component selected from the group consisting of glass, alkali silicate, phosphoric acid and phosphate.
  • the coating agent is an aqueous solution containing boric acid or phosphoric acid.
  • the molding in step B is press molding.
  • the glass molded product has a glass lump and a surface layer formed on the surface thereof.
  • the surface layer comprises at least one component selected from the group consisting of boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, alkali silicate, phosphoric acid and phosphate. Including.
  • the method for producing a glass molded product according to the present embodiment is a step of processing the glass molded product obtained by the method for producing a glass molded product according to any one of [A1] to [A6]. C is included.
  • the glass molded product obtained by the method for producing a glass molded product described in [A6] above is processed to remove the surface layer C. including.
  • the glass molded article is an optical element or an optical element blank.
  • the glass molded product of the present embodiment in another aspect is a glass molded product having a glass lump and a surface layer formed on the surface thereof, and the surface layer softens the glass constituting the glass lump. It consists of a component that becomes a melt at a temperature lower than the temperature.
  • the surface layer includes boric acid, borate, borate ester, bismuth borate-containing glass, zinc borate-containing glass, alkali silicate, phosphorus 1 or more types of components chosen from the group which consists of an acid and a phosphate are included.
  • the thickness of the surface layer is 1 to 100 ⁇ m.
  • the glass molded article is an optical element or an optical element blank.
  • the glass molded product of the present invention can be used for optical elements such as lenses and prisms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】 結晶化しやすいガラスのガラス塊をプレス成形が可能な温度まで加熱する際、ガラス塊の表面が結晶化して硬化するケースが多い。特に高温でプレス成形を行う研磨されるガラスでは、プレス成形時のガラス塊の表面の結晶化の問題が顕著である。 【解決手段】 本発明のガラス成形品の製造方法は、ガラス塊の表面に被覆剤を被覆する工程A、および前記被覆剤が被覆された前記ガラス塊を、加熱し、軟化させ、成形する工程B、を含み、前記被覆剤は、前記ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む。 

Description

ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法
 本発明は、ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法に関する。
 レンズなどのガラス製光学素子を生産する方法として、光学素子に近似する形状のガラス成形品を作り、研削、研磨して光学素子に仕上げる方法がある。ガラス成形品を製造する方法としては、たとえば、均質な光学ガラスからなるガラス塊を準備し、当該ガラス塊を加熱して軟化させて成形してガラス成形品を製造する方法が用いられる。
 具体的には、特開2007-210863号(特許文献1)には、プレス成形により光学素子の形状に近似する形状をもつ光学素子ブランクを作製し、光学素子ブランクを加工して光学素子を製造する方法が記載されている。
特開2007-210863号
 結晶化しやすいガラスのガラス塊をプレス成形が可能な温度まで加熱する際、ガラス塊の表面が結晶化して硬化するケースが多い。特に近年開発された高屈折低分散ガラスや超低分散ガラスなどの高機能光学レンズ用ガラスでは、プレス成形時のガラス塊の表面の結晶化の問題が顕著である。
 表面の結晶化により硬化被膜を有するガラス塊を成形すると、ガラス塊の内部に硬化被膜が織り込まれるため、得られるガラス成形品は表面から深い部分まで不均一となってしまう。このような不均一なガラス成形品は、研削や研磨等によって織り込まれた硬化被膜等の不均一分を除去する必要がある。その結果、材料ロスが大きくなり、製造コストの増加という問題が生じる。
 そこで、ガラス表面の温度を低下させる、または、高温保持時間を減少させることによって、ガラス塊の加熱温度を低下させ、ガラス表面の結晶化を抑制することが考えられる。
 しかし、ガラス塊の加熱温度を低下させて低温でプレス成形されると、ガラスの割れが発生したり、ガラス塊内の温度分布が大きくなる等して、所望の形状に成形できないという問題が生じる。
 このような状況において、ガラス塊の加熱温度を低下させずに成形時のガラス表面の結晶化を抑制し、高品質のガラス成形品の製造方法、ガラス材料のロスの少ないガラス成形品の製造方法が求められている。
 本発明者らは、ガラス塊を加熱して軟化する際に、選択的にガラス表面が結晶化する要因として、ガラス塊の表面と、内部の自由エネルギーの差に着目した。すなわち、ガラス塊の表面は、内部に比べて自由エネルギーが大きく、結晶化しやすい傾向がある。そのため、ガラス塊の表面は、その内部に比べて、優先的に結晶化が進むと考えられる。
 そこで、ガラス塊の表面に生じる結晶化を防止するため、被覆剤でガラス塊を被覆することを見出した。ガラス塊を被覆剤で被覆することにより、容易に結晶化するガラス塊の表面自由エネルギーを低下させ、ガラス塊表面の結晶化を抑制できる。
 また、被覆剤として、ガラス塊の表面で結晶化せず、軟化ガラスとしての流動状態を保つことができる成分を用いることで、被覆剤自体が結晶硬化してガラス塊中に織り込まれることを防止できることを見出した。
 本発明は以下に記載するガラス成形品およびガラス成形品の製造方法等を提供する。
[1] ガラス塊の表面に被覆剤を被覆する工程A、および
 被覆剤が被覆されたガラス塊を、加熱し、軟化させ、成形する工程B、を含み、
 被覆剤は、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む、ガラス成形品の製造方法。
[2] 工程Bにおいて、ガラス塊を構成するガラスの粘度が10dPa・s以下となる温度にて、ガラス塊を加熱する、上記[1]に記載のガラス成形品の製造方法。
[3] 被覆剤は、ホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上を含む、上記[1]または[2]に記載のガラス成形品の製造方法。
[4] 被覆剤は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む、上記[1]~[3]のいずれかに記載のガラス成形品の製造方法。
[5] 被覆剤は、溶液からなる、上記[1]~[4]のいずれかに記載のガラス成形品の製造方法。
[6] 被覆剤は、ホウ酸またはリン酸を含有する水溶液からなる、上記[1]~[5]のいずれかに記載のガラス成形品の製造方法。
[7] 工程Bは、プレス成形工程を含む、上記[1]~[6]のいずれかに記載のガラス成形品の製造方法。
[8] 上記[1]~[7]のいずれかに記載の製造方法により得られる、ガラス成形品。
[9] ガラス塊を所定の形状に成形したガラス成形品であって、
 ガラス成形品本体部と、本体部の表面に形成された表面層とを有し、
 表面層は、本体部を構成するガラスの軟化温度以下の温度で融液となる成分を含む、ガラス成形品。
[10] 表面層におけるホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上の成分の含有量は、本体部の内部における当該成分の含有量に比べて大きい、上記[9]に記載のガラス成形品。
[11] 表面層は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む、上記[9]または[10]に記載のガラス成形品。
[12] 表面層の厚さは、1~100μmである、上記[9]~[11]のいずれかに記載のガラス成形品。
[13] 上記[8]~[12]のいずれかに記載のガラス成形品からなる、光学素子ブランク。
[14] 上記[8]~[12]のいずれかに記載のガラス成形品からなる、光学素子。
[15] 上記[13]に記載の光学素子ブランクを、さらに加工する工程Cを含む、光学素子の製造方法。
[16] 工程Cは、光学素子ブランクの表面層を除去する工程を含む、上記[15]に記載の光学素子の製造方法。
 本明細書中、「軟化温度」とは、ガラスの粘度は107.6dPa・sになる温度であり、「リトルトン温度」ともいう。本明細書中、「軟化温度」とは、JIS R 3103-1:2001に規定される方法により測定された温度をいう。
 本発明のガラス成形品の製造方法を用いると、加熱、軟化時の結晶化によるガラス表面の硬化層の生成を抑制することができ、成形によって硬化層がガラス内部へ進入してガラス内部の光学的均質性を悪化させることを防ぐことができる。その結果、本発明を用いると、高品質のガラス成形品が製造できる。また、本発明のガラス成形品の製造方法は、ガラス材料のロスが少なく、低コストでガラス成形品および光学素子の製造が可能になる。
 以下に、本発明のガラス成形品およびその製造方法の実施の形態等を説明する。
 本発明のガラス成形品の製造方法は、ガラス塊の表面に被覆剤を被覆する工程A、および
 被覆剤が被覆されたガラス塊を、加熱し、軟化させ、成形する工程B、を含み、
 被覆剤は、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む。
1 ガラス塊
 本発明で用いられるガラス塊は公知の方法で作製できる。
 ガラス塊の製造方法の第一の例としては、ガラス原料を熔解、清澄、撹拌して均質な熔融ガラスを作製し、鋳型に鋳込んでガラスブロックを準備し、このガラスブロックをアニールした後、立方体形状に切断してガラス片を得て、バレル研磨してそれぞれの光学ガラスからなる互いに重量、形状が等しいガラス塊を作製することができる。
 ガラス塊の製造方法の第二の例としては、流出パイプの下方に配置された円筒状の鋳型内に熔融ガラスを鋳込んで円柱状のガラス柱体を成形し、鋳型内で成形されたガラス柱体は鋳型底部の開口部から一定の速度で鉛直下方に引き出され、ガラス柱形体を徐冷した後、切断もしくは割断して略円盤状のガラス片を得て、このガラス片を研磨加工またはバレル研磨を施してガラス塊とする。引き出し速度は鋳型内での熔融ガラス液位が一定になるように行えばよい。
 ガラス塊の製造方法の第三の例としては、ガラス原料を熔解、清澄、撹拌して作製された熔融ガラスを流出パイプから流出させ、流出する熔融ガラス流の先端を成形型で受けた状態で、ガラス成形品の製造に必要な量の熔融ガラス塊を分離して成形型上に受け、ガラス塊を作製する方法がある。このように作製されたガラス塊はプレス成形に適した形状、質量になっているので、上記方法のようにバレル研磨をしなくてもプレス成形に供することが可能であるが、バレル研磨してからプレス成形に供してもよい。また、ガラスを受ける成形型は、特に限定されるものではなく、浮上成形用の鋳型(熔融ガラスを受ける凹部が多孔質体で形成され、多孔質体を通して凹部表面からガスが噴出し、熔融ガラス塊に上向きの風圧を加える構造になっている鋳型)でもよいし、単に凹曲形状の受け部が形成された受け皿状の鋳型であってもよい。
 本発明のガラス成形品およびその製造方法に用いられるガラス塊を構成するガラスの組成は特に限定されないが、たとえば、光学ガラスとして有用なフツリン酸ガラス、ホウ酸ランタン含有ガラスなどを用いることができる。
2 被覆剤をガラス塊の表面に被覆する工程(工程A)
 本発明の工程Aでは、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む被覆剤をガラス塊の表面に被覆する。
 被覆剤としては、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分が用いられる。また、被覆剤として用いられる化合物は容易に結晶化しないことが好ましい。
 このような被覆剤としては、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む限り、特に限定されるものではないが、たとえば、ホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上を含む被覆剤等が挙げられる。これらの成分は、ガラスネットワークを形成しやすいため、ガラス塊を構成するガラスに取り込まれやすく、その表面で結晶化しにくいと考えられる。
 中でも、ガラス塊を構成するガラスが、ホウ酸系ガラスである場合は、ホウ酸を含む被覆剤を用いることが好ましい。また、ガラス塊を構成するガラスが、リン酸系のガラスである場合には、リンを含む被覆剤を用いることが好ましい。
 さらに、このような被覆剤としては、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸、リン酸塩等の化合物、またはこれらの少なくともいずれか一つを含有する組成物が用いられる。当該組成物としては、上記化合物の組み合わせ、または、水や有機溶媒等に溶解した溶液が挙げられる。被覆剤の態様は限定されず、固体であっても液体であってもよい。
 ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラスなどのガラスを被覆剤に用いる場合には、これらのガラスを粉末状に加工して用いると、ガラス塊の表面上に均一に付着させることが容易となるから好ましい。このようなガラス粉末は、散布、吹付け、擦り込みなどの方法を用いてガラス塊に付着させることができる。
 ホウ酸ビスマス含有ガラスはホウ酸ビスマス系低融点ガラスとして市販されているガラス、ホウ酸亜鉛含有ガラスはホウ酸亜鉛系低融点ガラスとして市販されているものを使用することができる。これらの化合物は、加熱しても非常に結晶化しにくい性質を有するため、融液化した被覆剤がガラス塊の表面に設けられると、ガラス塊表面の結晶化を効果的に防止することができる。
 粉末状である被覆剤の粒径は5~100μmであることが好ましく、10~50μmであることがさらに好ましい。
 液体の被覆剤を用いる場合には、上記化合物を溶解した溶液を用いることが好ましい。ホウ酸、ホウ酸塩、リン酸、リン酸塩等を被覆剤に用いる場合には、これらの化合物を水に溶かした水溶液とすることが好ましい。被覆剤が溶液である場合には、溶液を収納した容器にガラス塊を浸漬する、または、溶液をスプレーで噴霧または刷毛で塗布することによってガラス塊表面に付着させることが好ましい。
 水溶液である被覆剤の濃度は1~30重量%が好ましく、1~20重量%がさらに好ましい。とくに、被覆剤がホウ酸水溶液の場合は1~5重量%が好ましく、1~3重量%がさらに好ましい。また、被覆剤がリン酸水溶液の場合は1~20重量%が好ましく、1~10重量%がさらに好ましい。
 被覆剤は少なくとも加熱、軟化時に結晶化を抑制したい面に被覆されることが好ましく、ガラス塊表面の全域に被覆することがより好ましい。
 本発明の製造方法の成形にプレス成形を用いる場合には、ガラス成形品1個分のガラス塊(ガラスゴブ)を用意し、ガラス塊の表面に、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる物質を被覆することが好ましい。
 なお、ガラス塊の表面に被覆剤を被覆した後、ガラス塊が、加熱されたガラス塊が載置されるガラス塊載置具(たとえば、特許文献1に記載された「軟化盆10」)や成形型(たとえば、特許文献1に記載された「下型60」、「上型61」)に融着しないよう粉末状の離型剤をさらに被覆してもよい。離型剤の被覆は、公知の方法が用いられる。
 離型剤は、被覆剤と混合して用いられても、被覆剤の被覆後に用いられてもよい。離型剤としては、たとえば、窒化ホウ素、アルミナ、酸化ケイ素、酸化マグネシウム等の粉末状離型剤が挙げられる。
3 ガラス塊を加熱して軟化させて成形する工程(工程B)
 本発明の工程Bでは、被覆剤が被覆されたガラス塊を加熱して軟化させて成形して、ガラス成形品を得る。
 (1) ガラス塊の軟化
 ガラス塊を加熱して軟化させるステップは、表面に被覆剤が被覆されたガラス塊を耐熱性のガラス塊載置具の上に置き、ガラス塊載置具ごと加熱装置(たとえば、特許文献1に記載された「軟化炉30」)に入れて行うことができる。被覆剤が被覆されたガラス塊が加熱されるとガラス塊は軟化状態となり、ガラス塊の表面上の被覆剤は融液化してガラス塊の表面に表面層を形成する。
 ガラス塊の表面に表面層が形成されると、本来表面に露出するガラスが表面層で被覆され、ガラス塊の結晶化が大幅に抑制できる。
 被覆剤に基づく表面層の厚さは限定されないが、被覆剤に被覆されたガラス塊の表面の結晶化を抑制できる程度の厚さが必要であり、1~100μmの厚さが好ましく、5~50μmの厚さがさらに好ましい。
 ガラスを破損させずに所望の形状に成形するために、成形に先立ってのガラスの加熱、軟化は、ガラスの粘度が10dPa・s以下となる温度に加熱することが好ましく、10dPa・s以下となる温度に加熱することがより好ましい。本発明によれば、このような粘度までガラスを加熱、軟化しても、ガラス表面の失透は抑制される。
 被覆剤としてホウ酸、ホウ酸塩、リン酸、リン酸塩等を用いる場合には、これらの化合物を水に溶かした水溶液をガラス塊表面に被覆することが好ましい。被覆剤が水溶液等の液体の場合、ガラス塊を当該液体中に浸漬する、当該液体をスプレー等で噴霧する、刷毛等で当該液体を塗布する等の手段を用いてガラス塊に被覆剤を被覆することができる。被覆後は被覆剤が流動しない程度に乾燥させた後に使用することが好ましい。
 これらの化合物が溶解した水溶液を被覆剤としてガラス塊に被覆し、加熱されると、被覆剤中の含有水、結合水が抜け、ホウ酸等の溶剤がガラスの軟化温度以下の温度で融液化する。たとえば、被覆剤としてホウ酸水溶液をガラス塊に被覆して加熱すると、被覆剤中のホウ酸はガラス塊の表面上で脱水縮合し、融液化する。
 また、被覆剤としてホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラスなどのガラスを被覆する場合は、粉末状に加工されたガラス粉末をガラス塊表面に被覆することが好ましい。被覆剤が粉末状の場合、粉末の中にガラス塊をくぐらせる、粉末をガラス塊に散布する、吹付ける、擦り込む等の方法を用いて、ガラス塊に被覆剤を被覆することができる。ガラス粉末をガラス塊に付着させるために、ガラス塊の表面に付着を促進する成分を添加してもよい。
 ガラス粉末が被覆されたガラス塊を加熱すると、ガラス粉末はガラス塊の表面上で軟化熔融し、融液化する。
 このように、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる被覆剤をガラス塊の加熱前に被覆することによって、本来表面に露出するガラスが表面層で被覆されるため、ガラス塊の加熱時に生じ得るガラス塊表面の結晶化が大幅に抑制できる。その結果、加熱後の成形によって硬化層がガラス内部へ進入することを防ぎ、ガラス内部の光学的均質性を保持することができる。また、本発明を用いることによって、ガラス材料を有効に利用することができる、ガラス成形品の製造の歩留まりが向上する。
 (2) 成形
 軟化したガラスを成形する方法は特に限定されないが、プレス成形法、ガラス塊を複数本の回転するローラで挟みロッド状のガラスに成形する圧延法、延伸法など公知の成形法を用いることができる。
 プレス成形法を採用する場合、ガラス塊を加熱することにより軟化させ、軟化したガラス塊をプレス成形装置内のプレス成形型により加圧して、所望の形状に成形する。
 プレス成形法を採用するときに用いるプレス成形装置としては公知のものを使用することができる。例えば、プレス成形装置としては、上型、下型、あるいは必要に応じて胴型を備えた成形型と、上型、下型にプレス圧を加える加圧機構を有するものを例示することができる。成形型の個数は、ガラス塊載置具から同時に供給されるガラス塊の個数に応じて設定すればよい。ガラス塊を成形型へ供給する際、上型は上方へ退避され、この状態で、ガラス塊が下型上に供給される。下型上へのガラス塊の供給が終了した後、上型を下降して、型閉めをし、上下型で軟化したガラス塊をプレスし、上下型の成形面(胴型を使用し、胴型内面をガラスに転写する場合も含む)をガラスに転写し、所望形状のガラス成形品を得ることができる。
 次いで、ガラス成形品を離型してプレス成形型から取り出し、アニール処理する。このアニール処理によってガラス内部の歪を低減し、屈折率などの光学特性が所望の値になるようにする。
 ガラス塊の加熱条件、成形条件、プレス成形型に使用する材料などは公知のものを適用すればよい。以上の工程は大気中で行うことができる。
 得られるガラス成形品は、主として、光学素子ブランクとして好適に用いることができる。光学素子ブランクは、目的とする光学素子の形状に近似する形状を有するガラスブランクであって、これを研削、研磨することにより最終的に光学素子を作製することができる。
 また、上記プレス成形法を高い精度で行うことにより(精密プレス成形法)、光学素子として用いることができるガラス成形品が得られる。この場合、ガラス成形品に対して研磨加工等を施すことなく、光学素子が得られるため生産効率が高く、また加工による材料の損失が少ない。なお、精密プレス成形法により、ガラス成形品を作製する場合には、上述したガラス塊の製造方法のうち、第三の例で説明した、浮上成形により得られるガラス塊(プリフォーム)を用いることが好ましい。
4 ガラス成形品
 本実施形態のガラス成形品は、ガラス塊を所定の形状に成形したガラス成形品であって、
 ガラス成形品本体部と、本体部の表面に形成された表面層とを有し、
 表面層は、本体部を構成するガラスの軟化温度以下の温度で融液となる成分を含む、ガラス成形品である。
 このガラス成形品において、表面層は、本体部を構成するガラスの軟化温度以下の温度で融液となる成分を含むため、成形時に表面が結晶化しにくく、硬化被膜による均質性の悪化を抑制することができる。
 また、このガラス成形品は、好ましくは、表面層におけるホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上の成分の含有量は、本体部の内部における当該成分の含有量に比べて大きい。ここで、内部とは、ガラス成形品の厚み方向における内部(ガラス成形品本体部の深部)であり、ガラス成形品の表面層よりも内側に存在する部分である。
 また、このガラス成形品は、好ましくは、表面層は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む。
 このようなガラス成形品によれば、光学素子などの均質性の高いガラス製品を作製する際、ガラス成形品の表面の除去量を低減することができ、材料ロス、製造コストを低減することができる。また、ガラス成形品全体が均質である場合は、ガラス成形品を光学素子として用いることもできる。
 本実施形態のガラス成形品は、例えば、上記のガラス成形品の製造方法により製造することができる。
 ガラス成形品の表面層の厚さは、表面の結晶化を抑制する上から1μm以上であることが好ましい。一方、ガラス成形品を加工する際の除去量を低減する上から、上記表面層の厚さは100μm以下であることが好ましい。表面層の厚さのより好ましい下限は5μm、より好ましい上限は50μmである。
 本実施形態のガラス成形品は、内部が均質であり、表面の結晶化が抑制されているので、光学素子または光学素子ブランクに好適である。
5 光学素子ブランクを加工する工程(工程C)
 工程Aと工程Bを経て得られたガラス成形品を、研削、研磨等の公知の加工方法によって、さらに加工できる。ここで、ガラス成形品は、光学素子ブランクである。
 ガラス成形品の形状を光学素子に近似させて成形し、さらに、研削および/または研磨を施すことによって、レンズ、プリズム等の光学素子を製造できる。
 研削および/または研磨の方法は、たとえば、次の工程を経て行うことができる。
 (i)研削工程
 目的とする光学素子の形状に近似する形状になるように、ダイヤモン砥石等を用いてガラス成形品を研削する。
 (ii)研磨工程
 上記研削工程で研削された面を、酸化セリウムなどの遊離砥粒を用いて研磨し、表面を平滑にする。
 (iii)ポリッシュ工程
 研磨された面を、ジルコニアなどを用いてポリッシュする。
 このような、工程を行うことによってガラス成形品の加工し、光学素子を製造することができる。
 工程Cの加工で、ガラス成形品の表面層を研磨または研削によって取り除き、ガラス塊に基づく均質なガラス成形品を得ることが好ましい。
 なお、本発明のガラス成形品の製造方法において、工程Cは必須の工程ではなく、たとえば、工程Bで成形されたガラス成形品を光学素子として用いることもできる。
 本発明によれば、生産性よくガラス成形品を製造でき、さらにこのガラス成形品を用いて、レンズ、プリズム等の光学素子を安定して生産することができる。
6 光学素子
 本発明のガラス成形品を加工して光学素子としては、球面レンズ、非球面レンズ、マイクロレンズなどの各種のレンズ、回折格子、回折格子付のレンズ、レンズアレイ、プリズムなどを例示することができる。用途面からは、デジタルスチルカメラ、デジタルビデオカメラ、一眼レフカメラ、携帯電話搭載カメラ、車載カメラなどの撮像光学系を構成するレンズ、DVD、CDなどの光ディスクへのデータ読み書きを行うための光学系を構成するレンズなどを例示することができる。
 光学素子には必要に応じて、反射防止膜、全反射膜、部分反射膜、分光特性を有する膜などの光学薄膜を設けることもできる。
 以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。
 本発明を実施例によってさらに具体的に説明するが、本発明は、以下の実施例の記載に限定されるものではない。
[実施例1~12,比較例1~5]ガラス成形品の作製
 (1) ガラス塊の作製 
 表1に示す特性を有する5種類の光学ガラス(光学ガラス1~5)を作製するため、ガラス原料を準備し、それぞれのガラス原料を熔解、清澄、撹拌して均質な熔融ガラスを作製し、流出パイプから流出させた。流出する熔融ガラス流の先端を成形型で受けた状態で、ガラス成形品の製造に必要な量の熔融ガラス塊を分離して成形型上に受けた。成形型からガスを噴出して成形型上の熔融ガラス塊に上向きの風圧を加え、浮上状態でガラス塊に成形した。このようにして、5種類の光学ガラス1~5のガラス塊を作製した。
 ガラスの軟化温度はJIS R 3103-1:2001に規定される方法で測定した。
Figure JPOXMLDOC01-appb-T000001
 (2) ガラス成形品の作製
 光学ガラス1~5の各ガラス塊を表2に示す水溶液(被覆剤)に浸漬して、ガラス塊の表面に被覆剤を被覆した。
 光学ガラス1~5を用い、表面が被覆剤で被覆された各ガラス塊をガラス塊載置具である軟化盆に載せて、軟化炉内に格納することにより、ガラス塊を加熱して軟化させた(実施例1~12)。軟化炉の温度はガラス塊の軟化温度より100℃高い温度であり、ガラス塊が軟化炉内に保持されている時間は10分であった。
 各ガラス塊が軟化したところで、軟化炉からガラス塊を取り出した。各実施例で用いられた被覆剤が融液となる温度はガラス塊の軟化温度よりも低い(表2)。したがって、軟化炉で加熱された実施例1~12のガラス塊の表面には融液となった被覆剤が軟化したガラス塊の表面を覆うように形成されていた。
Figure JPOXMLDOC01-appb-T000002
 次に、軟化盆上のガラス塊をプレス成形型に導入してプレス成形した。プレス成形型の成形面は得ようとするガラス成形品(光学素子ブランク)の表面を反転した形状を有している。なお、成形時の加熱温度は表2に示すとおりであった。
 このようにしてプレス成形されて得られたガラス成形品(光学素子ブランク)を成形型から取り出した。ガラス成形品の表面を観察したところ、実施例1~12のガラス成形品の表面は結晶化せず、結晶化による硬化被膜は形成されていなかった。また、硬化被膜がガラス成形品の内部に織り込まれることもなかった。さらに、実施例1~12のガラス成形品は失透していなかった。
 なお、実施例1~12において、ガラス塊の表面に表2に示す水溶液(被覆剤)とともに窒化ホウ素粉末を塗布し、実施例1~12と同様にガラス塊を加熱、軟化し、プレス成形してガラス成形品を作製した。このようにして作製したガラス成形品についても、その表面はいずれも結晶化せず、結晶化による硬化被膜は形成されていなかった。また、硬化被膜がガラス成形品の内部に織り込まれることもなかった。さらに、各ガラス成形品の内部も失透していなかった。
 一方、比較例1~5では、被覆剤を用いなかった以外は、実施例1~12と同じ条件で光学ガラス1~5の各ガラス塊によりガラス成形品(光学素子ブランク)を作製した。
 ガラス塊に被覆剤を被覆しなかった比較例1~5のガラス成形品についても、実施例1~12と同様に、得られたガラス成形品の表面を観察したところ、ガラス成形品の表面は結晶化し、硬化被膜が形成されていた。また、比較例1~5で得られたガラス成形品は失透していた。
[実施例13~24]球面レンズの作製
 実施例1のガラス成形品(レンズブランク)をアニールして光学特性を目的のレンズの光学特性に一致させると共に、ガラス中の歪を低減した。その後、レンズブランクを公知の方法で、研削および研磨して加工し、球面レンズを作製した(実施例13)。
 実施例13と同様に、実施例2~12の各ガラス成形品(光学素子ブランク)から実施例14~24の各球面レンズを作製した。
 実施例13~24では球面レンズを作製したが、実施例1~12のガラス成形品からプリズムなどのその他の光学素子を製造することもできる。
 最後に、本発明の実施の形態を総括する。
[1] 本実施の形態のガラス成形品の製造方法は、ガラス塊の表面に被覆剤を被覆する工程A、および
 被覆剤が被覆されたガラス塊を、加熱し、軟化させ、成形する工程B、を含み、
 被覆剤は、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む。
[2] 好ましくは、上記[1]に記載のガラス成形品の製造方法では、工程Bにおいて、ガラス塊を構成するガラスの粘度が10dPa・s以下となる温度にて、ガラス塊を加熱する。
[3] 好ましくは、上記[1]または[2]に記載のガラス成形品の製造方法において、被覆剤は、ホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上を含む。
[4] 好ましくは、上記[1]~[3]のいずれかに記載のガラス成形品の製造方法において、被覆剤は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む。
[5] 好ましくは、上記[1]~[4]のいずれかに記載のガラス成形品の製造方法において、被覆剤は、溶液からなる。
[6] 好ましくは、上記[1]~[5]のいずれか記載のガラス成形品の製造方法において、被覆剤は、ホウ酸またはリン酸を含有する水溶液からなる。
[7] 好ましくは、上記[1]~[6]のいずれかに記載のガラス成形品の製造方法において、工程Bは、プレス成形工程を含む。
[8] 好ましくは、本実施形態に係るガラス成形品は、上記[1]~[7]のいずれかに記載の製造方法により得られる。
[9] 別の局面では、本実施の形態のガラス成形品は、ガラス塊を所定の形状に成形したガラス成形品であって、
 ガラス成形品本体部と、本体部の表面に形成された表面層とを有し、
 表面層は、本体部を構成するガラスの軟化温度以下の温度で融液となる成分を含む。
[10] 好ましくは、上記[9]に記載のガラス成形品において、表面層におけるホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上の成分の含有量は、本体部の内部における当該成分の含有量に比べて大きい。
[11] 好ましくは、上記[9]または[10]に記載のガラス成形品において、表面層は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む。
[12] 好ましくは、上記[9]~[11]のいずれかに記載のガラス成形品において、表面層の厚さは、1~100μmである。
[13] 別の局面では、本実施の形態の光学素子ブランクは、上記[8]~[12]のいずれかに記載のガラス成形品からなる。
[14] 別の局面では、本実施の形態の光学素子は、上記[8]~[12]のいずれかに記載のガラス成形品からなる。
[15] 別の局面では、本実施の形態の光学素子の製造方法は、上記[13]に記載の光学素子ブランクを、さらに加工する工程Cを含む。
[16] 好ましくは、上記[15]に記載の光学素子の製造方法において、工程Cは、光学素子ブランクの表面層を除去する工程を含む。
 さらに、本実施の形態の他の局面では、
[A1] 本実施の形態のガラス成形品の製造方法は、ガラス塊を構成するガラスの軟化温度以下の温度で融液となる被覆剤をガラス塊の表面に被覆する工程A、および
 被覆剤が被覆されたガラス塊を加熱して軟化させて成形する工程B、を含む。
[A2] 好ましくは、上記[A1]に記載のガラス成形品の製造方法では、工程Bにおいて、ガラス塊を構成するガラスの粘度が10dPa・s以下となる温度でガラス塊を加熱する。
[A3] 好ましくは、上記[A1]または[A2]に記載のガラス成形品の製造方法において、被覆剤は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む。
[A4] 好ましくは、上記[A1]または[A2]に記載のガラス成形品の製造方法において、被覆剤は、ホウ酸またはリン酸を含有する水溶液である。
[A5] 好ましくは、上記[A1]~[A4]のいずれかに記載のガラス成形品の製造方法において、工程Bの成形はプレス成形である。
[A6] 好ましくは、上記[A3]に記載のガラス成形品の製造方法において、ガラス成形品はガラス塊とその表面に形成された表面層とを有し、
 表面層は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む。
[A7] 好ましくは、本実施の形態のガラス成形品の製造方法は、上記[A1]~[A6]のいずれかに記載のガラス成形品の製造方法で得られたガラス成形品を加工する工程Cを含む。
[A8] 好ましくは、本実施の形態のガラス成形品の製造方法は、上記[A6]に記載のガラス成形品の製造方法で得られたガラス成形品を加工し、表面層を除去する工程Cを含む。
[A9] 好ましくは、上記[A1]~[A8]のいずれかに記載のガラス成形品の製造方法において、ガラス成形品は光学素子または光学素子ブランクである。
[A10] 別の局面での本実施の形態のガラス成形品は、ガラス塊とその表面に形成された表面層とを有するガラス成形品であって、表面層がガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分からなる。
[A11] 好ましくは、上記[A10]に記載のガラス成形品において表面層は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む。
[A12] 好ましくは、上記[A10]または[A11]に記載のガラス成形品において、表面層の厚さは1~100μmである。
[A13] 好ましくは、上記[A10]~[A12]のいずれかに記載のガラス成形品において、ガラス成形品は光学素子または光学素子ブランクである。
 本発明のガラス成形品はレンズやプリズム等の光学素子に用いることができる。

Claims (16)

  1.  ガラス塊の表面に被覆剤を被覆する工程A、および
     前記被覆剤が被覆された前記ガラス塊を、加熱し、軟化させ、成形する工程B、を含み、
     前記被覆剤は、前記ガラス塊を構成するガラスの軟化温度以下の温度で融液となる成分を含む、ガラス成形品の製造方法。
  2.  前記工程Bにおいて、前記ガラス塊を構成するガラスの粘度が10dPa・s以下となる温度にて、前記ガラス塊を加熱する、請求項1に記載のガラス成形品の製造方法。
  3.  前記被覆剤は、ホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上を含む、請求項1または2に記載のガラス成形品の製造方法。
  4.  前記被覆剤は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む、請求項1~3のいずれかに記載のガラス成形品の製造方法。
  5.  前記被覆剤は、溶液からなる、請求項1~4のいずれかに記載のガラス成形品の製造方法。
  6.  前記被覆剤は、ホウ酸またはリン酸を含有する水溶液からなる、請求項1~5のいずれかに記載のガラス成形品の製造方法。
  7.  前記工程Bは、プレス成形工程を含む、請求項1~6のいずれかに記載のガラス成形品の製造方法。
  8.  請求項1~7のいずれかに記載の製造方法により得られる、ガラス成形品。
  9.  ガラス塊を所定の形状に成形したガラス成形品であって、
     ガラス成形品本体部と、前記本体部の表面に形成された表面層とを有し、
     前記表面層は、前記本体部を構成するガラスの軟化温度以下の温度で融液となる成分を含む、ガラス成形品。
  10.  前記表面層におけるホウ素、リン、ケイ素およびビスマスからなる群から選択される一種以上の成分の含有量は、前記本体部の内部における当該成分の含有量に比べて大きい、請求項9に記載のガラス成形品。
  11.  前記表面層は、ホウ酸、ホウ酸塩、ホウ酸エステル、ホウ酸ビスマス含有ガラス、ホウ酸亜鉛含有ガラス、ケイ酸アルカリ塩、リン酸およびリン酸塩からなる群から選ばれる1種以上の成分を含む、請求項9または10に記載のガラス成形品。
  12.  前記表面層の厚さは、1~100μmである、請求項9~11のいずれかに記載のガラス成形品。
  13.  請求項8~12のいずれかに記載のガラス成形品からなる、光学素子ブランク。
  14.  請求項8~12のいずれかに記載のガラス成形品からなる、光学素子。
  15.  請求項13に記載の光学素子ブランクを、さらに加工する工程Cを含む、光学素子の製造方法。
  16.  前記工程Cは、前記光学素子ブランクの表面層を除去する工程を含む、請求項15に記載の光学素子の製造方法。
PCT/JP2013/068994 2012-07-18 2013-07-11 ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法 WO2014013934A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014525801A JP6283611B2 (ja) 2012-07-18 2013-07-11 ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法
US14/415,358 US20150218043A1 (en) 2012-07-18 2013-07-11 Glass molded article and method for producing same, optical element blank, and optical element and method for producing same
CN201380037608.5A CN104470860B (zh) 2012-07-18 2013-07-11 玻璃成型品及其制造方法、光学元件坯料、以及光学元件及其制造方法
KR20147035728A KR20150041610A (ko) 2012-07-18 2013-07-11 유리 성형품 및 그 제조 방법, 광학 소자 블랭크, 그리고 광학 소자 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012159453 2012-07-18
JP2012-159453 2012-07-18

Publications (1)

Publication Number Publication Date
WO2014013934A1 true WO2014013934A1 (ja) 2014-01-23

Family

ID=49948763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068994 WO2014013934A1 (ja) 2012-07-18 2013-07-11 ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法

Country Status (5)

Country Link
US (1) US20150218043A1 (ja)
JP (1) JP6283611B2 (ja)
KR (1) KR20150041610A (ja)
CN (1) CN104470860B (ja)
WO (1) WO2014013934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022050486A (ja) * 2016-09-13 2022-03-30 コーニング インコーポレイテッド ガラス基板を加工する装置および方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803861A (zh) * 2019-09-02 2020-02-18 湖北新华光信息材料有限公司 一种大尺寸硫系玻璃成型方法及专用的大口径成型模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335423A (ja) * 1986-07-25 1988-02-16 Minolta Camera Co Ltd ガラスレンズの成形方法
JPS6335424A (ja) * 1986-07-25 1988-02-16 Minolta Camera Co Ltd ガラスレンズの成形方法
JPH08283042A (ja) * 1995-04-12 1996-10-29 Central Glass Co Ltd 親水性物品およびその製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2225159A (en) * 1937-03-17 1940-12-17 Du Pont Acid resisting glass flux
US3425817A (en) * 1964-09-16 1969-02-04 Nippon Electric Co Low melting point devitrified glass and method
US3746556A (en) * 1971-10-12 1973-07-17 Corning Glass Works Chemically resistant aluminophosphate glasses
US3986855A (en) * 1975-02-13 1976-10-19 Anchor Hocking Corporation Method of making glassware having a handcrafted appearance
JPS5438311A (en) * 1977-08-31 1979-03-22 Hoya Glass Works Ltd Low temperature melting coating glass capable of highly absorbing laser
JPS6067118A (ja) * 1983-09-24 1985-04-17 Canon Inc 光学素子の製造方法
JPS61291427A (ja) * 1985-06-17 1986-12-22 Hoya Corp モ−ルドレンズおよびその製造方法
US4821151A (en) * 1985-12-20 1989-04-11 Olin Corporation Hermetically sealed package
US4836838A (en) * 1987-09-30 1989-06-06 Hoya Corporation Apparatus for molding glass articles
US6332338B1 (en) * 1997-07-30 2001-12-25 Hoya Corporation Method of producing glass substrate for information recording medium
JP3173472B2 (ja) * 1998-09-11 2001-06-04 日本電気株式会社 半導体装置及び半導体装置の製造方法
EP1130135B1 (en) * 1999-10-08 2007-08-08 Hoya Corporation Silicon carbide film and method for manufacturing the same
KR20010066793A (ko) * 1999-05-14 2001-07-11 가네꼬 히사시 저융점 글래스, 절연 패키지 및 밀봉 부재
JP2002012445A (ja) * 2000-01-18 2002-01-15 Central Glass Co Ltd 低融点ガラス
US20020009602A1 (en) * 2000-03-13 2002-01-24 Hoya Corporation Method and apparatus of fabricating glass molded article, method of fabricating glass substrate, and information recording medium
DE10016108C2 (de) * 2000-03-31 2002-09-26 Schott Glas Heißformgebungsverfahren und Vorrichtung zur Herstellung eines Glaskörpers sowie dessen Verwendung
US20020118465A1 (en) * 2001-02-28 2002-08-29 Konica Corporation Molding die for optical element, optical element and master die
JP4300786B2 (ja) * 2001-12-21 2009-07-22 昭栄化学工業株式会社 ガラスおよびこれを用いた導体ペースト
US20040177648A1 (en) * 2002-08-02 2004-09-16 Hoya Corporation Glass material for molding, method of manufacturing same, and method of manufacturing glass articles using same
DE102004052312A1 (de) * 2004-08-23 2006-03-02 Heraeus Quarzglas Gmbh & Co. Kg Beschichtetes Bauteil aus Quarzglas sowie Verfahren zur Herstellung des Bauteils
JP5085049B2 (ja) * 2006-03-31 2012-11-28 Hoya株式会社 モールドプレス用ガラス素材、該ガラス素材の製造方法、及びガラス光学素子の製造方法
JP5160043B2 (ja) * 2006-03-31 2013-03-13 Hoya株式会社 モールドプレス用ガラス素材、及びガラス光学素子の製造方法
JP5160042B2 (ja) * 2006-03-31 2013-03-13 Hoya株式会社 ガラス光学素子の製造方法
CN101622207B (zh) * 2007-03-06 2016-08-31 Hoya株式会社 光学玻璃、模压成形用预成形件、光学元件以及它们的制造方法
DE102007054437A1 (de) * 2007-11-13 2009-05-20 Tesa Ag Verfahren zur Herstellung eines schichtförmigen oder geschichteten anorganisch/organischen Verbundmaterials
US20110094584A1 (en) * 2008-06-17 2011-04-28 Nippon Electric Glass Co., Ltd. Solar cell substrate and oxide semiconductor electrode for dye-sensitized solar cell
KR101347944B1 (ko) * 2009-05-20 2014-01-07 호야 가부시키가이샤 프레스 성형용 유리 소재, 상기 유리 소재를 이용한 유리 광학 소자의 제조 방법, 및 유리 광학 소자
JP5555204B2 (ja) * 2011-06-27 2014-07-23 Hoya株式会社 プレス成形用ガラス素材およびその製造方法、ならびに光学素子の製造方法
WO2013129302A1 (ja) * 2012-02-28 2013-09-06 Hoya株式会社 光学ガラスおよびその利用
JP6088938B2 (ja) * 2013-08-23 2017-03-01 Hoya株式会社 光学ガラスおよびその利用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335423A (ja) * 1986-07-25 1988-02-16 Minolta Camera Co Ltd ガラスレンズの成形方法
JPS6335424A (ja) * 1986-07-25 1988-02-16 Minolta Camera Co Ltd ガラスレンズの成形方法
JPH08283042A (ja) * 1995-04-12 1996-10-29 Central Glass Co Ltd 親水性物品およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022050486A (ja) * 2016-09-13 2022-03-30 コーニング インコーポレイテッド ガラス基板を加工する装置および方法
KR20220138016A (ko) * 2016-09-13 2022-10-12 코닝 인코포레이티드 유리 기재 프로세싱 장치 및 방법
JP7331082B2 (ja) 2016-09-13 2023-08-22 コーニング インコーポレイテッド ガラス基板を加工する装置および方法
KR102632509B1 (ko) * 2016-09-13 2024-02-02 코닝 인코포레이티드 유리 기재 프로세싱 장치 및 방법

Also Published As

Publication number Publication date
JPWO2014013934A1 (ja) 2016-06-30
CN104470860B (zh) 2018-04-13
KR20150041610A (ko) 2015-04-16
JP6283611B2 (ja) 2018-02-21
CN104470860A (zh) 2015-03-25
US20150218043A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
TWI428308B (zh) 光學玻璃、模壓成形用預成型物、光學元件及其製造方法
KR101147589B1 (ko) 정밀 프레스 성형용 프리폼의 제조 방법 및 광학 소자의 제조 방법
CN1827541B (zh) 精密压力成形用预塑形坯的制造方法及光学元件的制造方法
CN101172754B (zh) 玻璃制预成形件的制造方法和光学元件的制造方法
JP5635636B2 (ja) 精密ガラス球の製造方法及びガラス光学素子の製造方法
KR20090024774A (ko) 인산염 유리, 불화인산염 유리, 정밀 프레스 성형용 프리폼, 광학 소자 및 각각의 제조 방법
JP4166173B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
KR20090103839A (ko) 불화인산 유리, 프레스 성형용 유리 소재, 광학 소자 블랭크, 광학 소자와 각각의 제조 방법
US9868661B2 (en) Glass lens blank for polishing, manufacturing method therefore, and optical lens manufacturing method
CN102300823B (zh) 氟磷酸盐玻璃、模压成型用玻璃材料、光学元件坯料、光学元件及其制造方法和玻璃成型体的制造方法
JP4166174B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP6283611B2 (ja) ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法
JP5248740B2 (ja) 精密ガラス球の製造方法及びガラス光学素子の製造方法
JP6283612B2 (ja) ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法
JP4743681B2 (ja) 光学ガラス、プレス成形用ガラス素材およびその製造方法ならびに光学部品およびその製造方法
JP4511221B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2008110917A (ja) プレス成形用ガラス素材およびその製造方法、ガラスプレス成形品の製造方法、ならびに光学素子の製造方法
WO2015064684A1 (ja) プレス成形用光学ガラス素材、研磨用ガラス光学素子ブランクおよびガラス光学素子、並びにプレス成形用光学ガラス素材の製造方法
JP2017066018A (ja) 研磨用ガラスレンズブランク、および光学レンズの製造方法
KR20080028797A (ko) 유리 유출 파이프, 유리 제조 장치, 유리 성형체의 제조방법, 및 광학 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035728

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014525801

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14415358

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820329

Country of ref document: EP

Kind code of ref document: A1