WO2014010778A1 - 광 반도체 조명장치 - Google Patents

광 반도체 조명장치 Download PDF

Info

Publication number
WO2014010778A1
WO2014010778A1 PCT/KR2012/006766 KR2012006766W WO2014010778A1 WO 2014010778 A1 WO2014010778 A1 WO 2014010778A1 KR 2012006766 W KR2012006766 W KR 2012006766W WO 2014010778 A1 WO2014010778 A1 WO 2014010778A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
heat dissipation
thin plate
disposed
optical semiconductor
Prior art date
Application number
PCT/KR2012/006766
Other languages
English (en)
French (fr)
Inventor
김동수
강석진
김규석
장윤길
김동희
윤성복
김정화
Original Assignee
주식회사 포스코엘이디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120075103A external-priority patent/KR101389096B1/ko
Priority claimed from KR1020120076852A external-priority patent/KR101347391B1/ko
Application filed by 주식회사 포스코엘이디 filed Critical 주식회사 포스코엘이디
Priority to AU2012385007A priority Critical patent/AU2012385007B2/en
Priority to CN201280072550.3A priority patent/CN104246365A/zh
Priority to EP12880752.6A priority patent/EP2873914A4/en
Publication of WO2014010778A1 publication Critical patent/WO2014010778A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/507Cooling arrangements characterised by the adaptation for cooling of specific components of means for protecting lighting devices from damage, e.g. housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/005Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with keying means, i.e. for enabling the assembling of component parts in distinctive positions, e.g. for preventing wrong mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an optical semiconductor lighting device.
  • Optical semiconductors such as LEDs or LEDs are one of the components that are widely used for lighting recently due to their low power consumption, long service life, excellent durability, and much higher brightness than incandescent and fluorescent lamps.
  • the lighting apparatus using the optical semiconductor is used for industrial use of high output such as factories, street lights or security lights.
  • the lighting apparatus using the optical semiconductor used for such a high-power industrial is usually a heat generation problem also increases in proportion to its size and output, so that the capacity and volume of the heat sink is also increased to properly display the heat generation performance.
  • Heat sinks mounted on luminaires using optical semiconductors are generally manufactured to be integrally or detachably coupled to the housing by die casting or the like.
  • heat sinks manufactured in such a manner have increased weight of the entire product and are expensive to manufacture. There was also a problem that the usage of.
  • the existing heat sink manufactured by die casting has a narrow heat dissipation fin for a limited area because the thickness of the heat dissipation fin cannot be made thinner than a certain standard, and a large number of heat dissipation fins are formed to secure a sufficient heat dissipation area. If you do, the volume and size of the heat sink itself will increase.
  • a circuit board on which an optical semiconductor is disposed is usually connected to a heat sink, the circuit board is embedded in a housing, and an optical member such as a lens installed in the housing irradiates light more broadly or narrowly from the optical semiconductor. It is a structure that makes it possible.
  • the luminaire using the optical semiconductor is generally disposed on a rectangular or circular circuit board uniformly for the convenience of manufacturing, and the housing for accommodating the above-mentioned circuit board is also mainly rectangular or circular.
  • the present invention has been invented to improve the above problems, and to provide an optical semiconductor lighting apparatus capable of implementing a light weight of the whole product.
  • the present invention is to provide an optical semiconductor lighting device to induce natural convection to further improve the heat dissipation efficiency.
  • the present invention is to provide an optical semiconductor lighting device that is easy to assemble and install the product and easy to maintain.
  • the present invention is to provide an optical semiconductor lighting device that can provide a product with high reliability by increasing the placement efficiency per unit area of the semiconductor optical device.
  • the housing A light emitting module including at least one semiconductor optical device, the light emitting module being disposed outside the bottom of the housing;
  • a heat dissipation unit disposed radially inside the bottom of the housing and forming a communication space at a center inside the bottom of the housing;
  • a first heat dissipation passage formed radially from an inner center of a bottom surface of the housing;
  • a second heat dissipation passage formed in an up-down direction along an edge of the bottom of the housing.
  • the heat dissipation unit is characterized in that a plurality of unit heat dissipating bodies including a pair of heat dissipating thin plates that are orthogonal to the bottom of the housing and face each other.
  • the optical semiconductor lighting device is characterized in that it further comprises a core fixing piece which is disposed in the inner center of the bottom surface of the housing to fix the inner end of the heat dissipation unit.
  • the outer end portion of the heat dissipation unit may be in communication with the second heat dissipation passage formed from the outside of the bottom of the housing.
  • the housing further includes a sidewall extending along the bottom edge of the housing, wherein the heat dissipation unit is received inside the sidewall, and the second heat dissipation passage is formed parallel to the sidewall. .
  • the housing may further include a cover coupled to an upper edge of the side wall and having a communication hole formed at a central portion thereof.
  • the housing is in communication with the first and second heat dissipation passages, and a plurality of upper portions penetrated on a circumference of a virtual concentric circle formed in plural along a forming direction of the cover and a communication hole formed at a central portion thereof. Characterized in that it further comprises a vent slot.
  • the housing may further include a cover disposed on an upper side of the heat dissipation unit and coupled to the housing and having a communication hole formed at a center thereof to be connected to the communication space.
  • the cover further includes a plurality of upper vent slots penetrating through a plurality of circumferences of a virtual concentric circle formed in a plurality of directions along the forming direction of the cover.
  • the housing may further include a ventilation fan disposed in the communication space.
  • the housing may further include a plurality of lower vent slots penetrating the bottom surface of the housing along an edge of the light emitting module, and the lower vent slots may communicate with the second heat dissipation passage.
  • the present invention includes a housing in which at least one semiconductor optical device is disposed outside the bottom surface of the housing; A plurality of bottom thin plates disposed radially inside the bottom of the housing; And a heat dissipating thin plate extending along both edges of the bottom thin plate to face each other.
  • the optical semiconductor lighting device further comprises an extended thin plate extending from the inner end of the bottom thin plate toward the center of the inner bottom, and the fixed thin plate extending along both edges of the extended thin plate to face each other. It is done.
  • the optical semiconductor lighting device is characterized in that it further comprises a core fixing piece which is disposed in the central portion of the inside of the bottom surface to fix the upper edge of the fixing thin plate.
  • the bottom thin plate is characterized in that the tapered shape gradually widened toward the edge side of the inner bottom surface.
  • the housing may further include a plurality of fixing protrusion pieces protruding from the inner side of the bottom surface and disposed along both edges of the bottom thin plate.
  • the housing further includes a communication space formed between a plurality of the bottom thin plates and the inner ends of the heat dissipating thin plates from a central portion inside the bottom surface, wherein the communication spaces communicate with the first heat dissipation passage. do.
  • the housing may further include a ventilation fan disposed in the communication space.
  • semiconductor optical element described in the claims and the detailed description means such as a light emitting diode chip including or using an optical semiconductor.
  • Such a 'semiconductor optical device' may be said to include a package level that includes various kinds of optical semiconductors including the light emitting diode chip described above.
  • the present invention includes a heat dissipation unit disposed radially in a housing on which the light emitting module is mounted, and forms a first heat dissipation passage along a direction in which the heat dissipation unit is formed, and a second heat dissipation unit along the edge of the light emitting module in a vertical direction of the housing.
  • the present invention extends from both side edges of the bottom thin plate radially disposed in the housing including the semiconductor optical element to adopt a 'U' shaped structure in which the heat dissipating thin plates face each other, it is possible to implement the weight reduction of the whole product, Production costs and raw material usage can be greatly reduced.
  • the present invention solves the difficulty of thinning the heat sink, which is a problem of the existing heat sink manufactured by die casting, by thinning the unit heat sink itself, thereby enabling the implementation of light weight, and according to the line contact method of the conventional thin heat sink.
  • the difficulty of securing the heat transfer area was solved through the bottom plate.
  • the present invention is easy to assemble the product by fitting the unit heat sink including the bottom plate and the heat dissipation plate to the housing and fastening the cover with the upper vent slot formed in the housing, so that the confirmation of the occurrence of the failure immediately It can be made, and the maintenance and management is simple, so that a reliable product can be supplied to the consumer.
  • the present invention provides a light engine concept of a device including a light emitting module, an optical member, and a heat dissipation unit, and an engine main body having a bottom surface which gradually widens from one side to the other side, thereby being disposed per unit area of a semiconductor optical element. It can increase efficiency and provide reliable products.
  • the present invention may implement a high-power lighting by radially disposing the engine main body of the light engine concept in a base casing provided with a separate accommodation space may also be properly adjusted according to the installation and construction environment.
  • FIG. 1 is a perspective view showing the overall configuration of an optical semiconductor lighting apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1.
  • FIG. 3 is a conceptual view seen from a point B of FIG. 1.
  • FIG. 4 is a conceptual view seen from a point C of FIG. 1.
  • FIG 5 and 6 are views showing the overall structure of a unit heat sink constituting a heat dissipation unit which is a main part of an optical semiconductor lighting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing the overall structure of an optical semiconductor lighting apparatus according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line E-E 'of FIG.
  • FIG. 9 is a perspective view showing the overall structure of an optical semiconductor lighting apparatus according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along line F-F 'of FIG. 9;
  • FIG. 11 is a conceptual view seen from the point G of FIG. 9.
  • FIG. 12 is a conceptual view seen from a point I of FIG. 9.
  • FIG. 13 and 14 illustrate the overall structure of a unit heat sink constituting a heat dissipation unit that is a main part of an optical semiconductor lighting apparatus according to another embodiment of the present invention.
  • 15 to 18 are conceptual views illustrating practical application examples of an optical semiconductor lighting apparatus according to various embodiments of the present disclosure.
  • FIG. 1 is a perspective view showing the overall configuration of an optical semiconductor lighting apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1
  • FIG. 3 is a partial conceptual view seen from a point B of FIG. 1.
  • 4 is a partial conceptual view seen from a point C of FIG. 1
  • FIGS. 5 and 6 are views illustrating an overall structure of a unit heat sink constituting a heat dissipation unit that is a main part of an optical semiconductor lighting apparatus according to an embodiment of the present invention. to be.
  • the heat dissipation unit 300 is mounted on the housing 100 in which the light emitting module 200 is disposed, and the first and second heat dissipation passages H1 and H2 are formed inside the housing 100. Able to know.
  • reference numeral 600 denotes a waterproof connector.
  • the outer surface of the bottom surface 110 is a lower surface of the drawing based on the bottom surface 110
  • the inner surface of the bottom surface 110 is a bottom surface
  • the housing 100 provides a space in which the light emitting module 200 and the heat dissipation unit 300 are mounted.
  • the light emitting module 200 includes at least one semiconductor optical device 201, and a bottom surface of the housing 100. It is disposed outside (110), and acts as a light source.
  • the heat dissipation unit 300 is disposed radially inside the bottom surface 110 of the housing 100, and forms a communication space 101 at the inner center of the bottom surface 110 of the housing 100. It is to be able to discharge the generated heat to the outside of the housing 100.
  • the first heat dissipation passage H1 is radially formed from the inner center of the bottom surface 110 of the housing 100, and specifically, may be radially formed according to each forming direction of the heat dissipation unit 300.
  • the second heat dissipation path H2 is formed in the vertical direction along the edge of the bottom surface 110 of the housing 100, and specifically, is formed to communicate in the vertical direction of the housing 100 along the edge of the light emitting module 200.
  • the second heat dissipation path H2 is formed in the vertical direction along the edge of the bottom surface 110 of the housing 100, and specifically, is formed to communicate in the vertical direction of the housing 100 along the edge of the light emitting module 200.
  • the present invention by actively forming a natural convection by forming a plurality of paths through which the heat generated from the light emitting module 200 is discharged by the first and second heat dissipation passages (H1, H2) as shown in the drawing to further enhance the heat dissipation effect. You can increase it.
  • the housing 100 is to provide a space in which the light emitting module 200 and the heat dissipation unit 300 are mounted as described above, and the side wall 120 extending along the edge of the bottom surface 110 of the housing 100 (FIG. 2). Reference) is further included, the side wall 120 surrounds the heat dissipation unit 300 from the outside, the second heat dissipation passage (H2) is formed to be parallel to the side wall (120).
  • the housing 100 further includes a plurality of lower vent slots 130 penetrating the bottom surface 110 of the housing 100 along the edge of the light emitting module 200, and the lower vent slot 130 is a second It is in communication with the heat dissipation passage (H2).
  • the housing 100 is coupled to the upper edge of the side wall 120 is applicable to the embodiment further comprises a cover 500 formed with a communication hole 501 in the center.
  • the cover 500 is in communication with the first and second heat dissipation passages H1 and H2, and the communication hole 501 is formed in the center thereof.
  • the cover 500 is formed of a plurality of virtual concentric circles along the forming direction of the cover 500.
  • a plurality of upper vent slots 510 penetrates the circumference.
  • the communication hole 501 is connected to the communication space 101 through the first heat dissipation passage H1, and the second heat dissipation passage H2 is connected to the outermost upper vent slot 510.
  • the lower vent slot 130 is a structure formed to communicate with each other through the upper vent slot 510, which will be more clearly understood with a detailed structure description of the heat dissipation unit 300 to be described later. .
  • the optical semiconductor lighting device is disposed in the inner center of the bottom surface 110 of the housing 100, as shown in Figure 1 and 4 core fixing piece for fixing the inner end of the heat dissipation unit 300 It is preferable to further include (400).
  • a ventilation fan may be further mounted to forcibly condense heat generated from the light emitting module 200 to discharge the heat to the outside of the housing 100 so as to quickly achieve a heat dissipation effect. It may be.
  • the heat dissipation unit 300 is mounted on the bottom surface 110 of the housing 100 as described above to implement a heat dissipation performance, a pair orthogonal to the bottom surface 110 of the housing 100, facing
  • the unit radiator 301 including the heat dissipation thin plate 320 of FIG. 5 and FIG. 6 is disposed in plural.
  • the outer end portion of the heat dissipation unit 300 communicates with the second heat dissipation passage H2 formed from the outside of the bottom surface 110 of the housing 100.
  • the heat dissipation unit 300 is disposed radially inside the bottom surface 110 of the housing 100, the opposite side on which the semiconductor optical device 201 is disposed, that is, inside the bottom surface 110 It can be seen that the structure includes a plurality of bottom thin plates 310 in contact.
  • the heat dissipation unit 300 includes heat dissipation thin plates 320 extending along both edges of the bottom thin plate 310 and facing each other.
  • the first heat dissipation path H1 is radially formed between the heat dissipation thin plate 320 and the adjacent heat dissipation thin plate 320, and the second heat dissipation path H2 is formed as follows.
  • the second heat dissipation passage H2 is orthogonal to the first heat dissipation passage H1 up and down from the bottom vent slot 130 to correspond to the plurality of lower vent slots 130 penetrating along the inner edge of the bottom surface 110. It is formed.
  • the bottom thin plate 310 is cut off the outer end ( ⁇ ) to form a cutout 315 between the heat dissipation thin plate 320, the cutout 315 is in communication with the lower vent slot 130, the second heat dissipation
  • the passage H2 may be formed through the upper vent slot 510 of the cover 500.
  • the heat dissipation unit 300 extends along both edges of the extended thin plate 311 extending from the inner end of the bottom thin plate 310 toward the center portion of the inner bottom surface 110, and extends to face each other. It is preferable to further include a fixed thin plate 312.
  • the extended thin plate 311 is for providing a space for forming the fixed thin plate 312, and the fixed thin plate 312 distributes and supports the fixed supporting force by the core fixing piece 400 which fixes the upper edge of the fixed thin plate 312. It serves as a reinforcement structure for doing so.
  • the core fixing piece 400 is disposed at the central portion inside the bottom surface 110 as described above with reference to the drawings.
  • the communication space 101 is formed between the inner spaces of the plurality of bottom thin plates 310 and the heat dissipation thin plates 320 from the upper space of the core fixing piece 400, that is, the central portion inside the bottom surface 110. It is in communication with the heat dissipation passage (H1).
  • the housing 100 provides a seating space of the bottom thin plate 310 constituting the unit radiator 301 as shown in FIG. 5 and the bottom surface 110 so that the lower side of the heat dissipating thin plate 320 can be firmly supported. It is preferable to further include a plurality of fixing protrusions 160 protruding from the inner side and disposed along both edges of the bottom thin plate 310.
  • the bottom thin plate 310 is to be produced in a tapered shape gradually widening toward the edge side of the inner bottom surface 110 so that heat can be discharged smoothly from the center of the bottom surface 110 toward the outside as shown in FIG. .
  • the heat dissipation unit 300 is such that the bottom thin plate 310 and the heat dissipating thin plate 320 constituting the unit heat dissipator 301 have an overall U-shaped cross section, and the bottom thin plate 310 has a bottom surface ( By being disposed in contact with the inside of 110, it is possible to achieve a further increased heat dissipation effect from the result that the heat transfer area is increased compared to the existing heat dissipation fin structure.
  • the present invention is a radial arrangement of the unit heat dissipator 301 including the bottom thin plate 310 and the heat dissipation thin plate 320, which is a thin plate structure, due to the heat sink being manufactured by die casting in the existing lighting device. By replacing the structure, it is possible to reduce the weight of the whole product.
  • the present invention can also be applied to the embodiment utilizing the structure of the light engine concept (light engine) as shown in Figs.
  • Figure 7 is a perspective view showing the overall structure of the optical semiconductor lighting apparatus according to an embodiment of the present invention
  • Figure 8 is a cross-sectional conceptual view of the line E-E 'of FIG.
  • FIG. 9 is a perspective view showing the overall structure of an optical semiconductor lighting apparatus according to another embodiment of the present invention.
  • FIG. 10 is a sectional view taken along the line FF ′ of FIG. 9, and
  • FIG. 11 is a partial conceptual view seen from the point G of FIG. 9.
  • 12 is a partial conceptual view seen from the point I of FIG. 9, and
  • FIGS. 13 and 14 illustrate the overall structure of a unit heat sink constituting a heat dissipation unit that is a main part of an optical semiconductor lighting apparatus according to another embodiment of the present invention. Drawing.
  • FIG. 15 to 18 are conceptual views illustrating actual application examples of the optical semiconductor lighting apparatus according to various embodiments of the present disclosure
  • FIG. 19 is a cross-sectional conceptual view taken along line K-K 'of FIG. 17.
  • reference numeral 600 in FIG. 8 denotes a waterproof connector.
  • the other side of the bottom surface 110 of the housing 100 refers to a side that is wider than one side
  • the 'one side' of the bottom surface 110 of the housing 100 refers to the lower right side
  • the 'other side' refers to the upper left side.
  • one side of the bottom surface 110 of the housing 100 points to the right side, and the other side points to the left side.
  • the 'one side' of the bottom surface 110 of the housing 100 refers to the lower right side, and the 'other side' indicates the upper left side.
  • the 'one side' of the bottom surface 110 of the housing 100 refers to the lower left side, and the 'other side' indicates the upper right side.
  • the 'one side' of the bottom surface 110 of the housing 100 indicates the left side, and the 'other side' indicates the right side.
  • reference numeral 600 denotes a waterproof connector
  • an outer side of the bottom surface 110 in FIGS. 7, 8, 9, 10, and 19 is directed to the lower side of the drawing based on the bottom surface 110.
  • the inner surface of the bottom surface 110 refers to the upper surface of the drawing with respect to the bottom surface 110, and the same applies to other drawings.
  • the engine main body 800 is coupled to the bottom of the base casing 700, and the heat dissipation unit 300 is coupled to the bottom of the base casing 700.
  • the base casing 700 is a cylindrical member for providing a space in which the heat dissipation unit 300 to be described later is accommodated, and also provides an area in which the engine main body 800 to be described later is mounted.
  • the engine main body 800 is coupled to the outer bottom of the base casing 700 and forms an upper surface gradually widening from one side to the other side.
  • the engine main body 800 refers to a structure including an optical member corresponding to the light emitting module together with a light emitting module (not shown) including a semiconductor optical device, and is a consortium of LED lighting engine standard specification development. It can be understood that it is a structural concept that is extended to the light emitting module defined in the 'Zhaga consortium' and the coupling form with the electrically connected power unit.
  • the heat dissipation unit 300 is disposed in a fan shape inside the bottom of the base casing 700 and includes a plurality of unit heat dissipators 301 (see FIGS. 13 and 14 below) having a pair of heat dissipating thin plates 320 facing each other. It will include.
  • the unit radiator 301 is appropriately added or subtracted according to the size of the housing 800 mounted outside the bottom of the base casing 700 or the light output amount of the light emitting module mounted inside the engine main body 800. Can be.
  • the heat dissipation unit 300 includes a bottom thin plate 310 (see FIG. 9) in contact with the base casing 700 to secure a sufficient heat transfer area, and the heat dissipating thin plate 320 has both edges of the bottom thin plate 310. Extending from.
  • the engine main body 800 is disposed in a plurality of radially from the outer center of the bottom surface of the base casing 700, and in more detail, the heat dissipation unit 300 is arranged to correspond to the position where the engine main body 800 is coupled It is desirable for the implementation of performance.
  • the base casing 700 is provided to provide a mounting space and an area of the engine main body 800 and the heat dissipation unit 300 as described above, and as shown in FIG. 8, the inner ends of the plurality of unit heat sinks 301 are upwards. It further includes a ring-shaped core fixing piece 400 for fixing.
  • the base casing 700 is disposed above the plurality of unit radiators 301 to protect the heat dissipation unit 300 and the components mounted inside the base casing 700 from physical and chemical shocks applied from the outside. It is preferable to further include a ring-shaped cover 500 which is fixed to the edge of the base casing 700 and the plurality of upper vent slots 510 penetrate.
  • the cover 500 is also disposed above the heat dissipation thin plate 320 so as to smoothly discharge heat generated from the light emitting module 200 while inducing natural convection through the space formed by the heat dissipation unit 300. It is coupled to the upper edge of the 700.
  • the number of the unit heat sinks 301 constituting the heat dissipation unit 300 and the number of the engine main bodies 800 are appropriately added or subtracted without regard to the placement area inside and outside the bottom of the base casing 700.
  • the deployment will enable a broad and active response to a variety of installation and construction environments.
  • the present invention may not only apply to the embodiments of the above-described structure, but also to various embodiments of the present invention as shown in FIGS. 9 to 19.
  • the present invention may be understood that the heat dissipation unit 300 is included in the housing 100 in which the light emitting module 200 is mounted.
  • the housing 100 forms a bottom surface 110 that gradually widens from one side to the other side, and specifically, has a fan shape and includes a space in which the light emitting module 200, the optical member, and the heat dissipation unit 300 will be described. It is a member for providing an area.
  • the light emitting module 200 includes at least one semiconductor optical device 201 and is disposed outside the bottom 110 of the housing 100, and serves as a light source.
  • the optical member is coupled to the outside of the bottom surface 110 of the housing 100 and faces the light emitting module 200 to adjust the light distribution area of the light emitted from the light emitting module 200.
  • the heat dissipation unit 300 includes a plurality of unit heat dissipators 301 disposed in a fan shape inside the bottom surface 110 of the housing 100 and having a pair of heat dissipation thin plates 320 facing each other. It is to be able to discharge the heat generated from the module 200 to the outside of the housing 100.
  • the optical semiconductor lighting apparatus according to the structure and the embodiment is mounted on the base casing 700 (see FIGS. 15 to 19) to be described later due to the structural features of the bottom surface 110 of the housing 100 to adjust the light output amount.
  • the housing 100 is to provide a space and an area in which each component of the present invention is mounted, and the side wall 120 extending along both edges of the bottom surface 110 and the other edge of the housing 100. It further includes, the heat dissipation unit 300 is to be accommodated in the inner space formed by the side wall 120.
  • the optical member is opposed to the light emitting module 200 as described above, and includes an optical cover 210 of a transparent or translucent material facing the light emitting module 200 and allowing the light emitted from the light emitting module 200 to be projected. do.
  • the optical member includes a lens 220 provided in the optical cover 210 and corresponding to the semiconductor optical device 201 to reduce or enlarge an area and a range to which light is irradiated from each of the semiconductor optical device 201. Include.
  • the housing 100 may be applied to the embodiment further provided with a coupling rib 150 and the frame rib 170 for mounting the optical member as shown in FIG.
  • the coupling ribs 150 protrude along edges outside the bottom 110, and the frame ribs 170 are coupled to the coupling ribs 150, and the edges of the optical member are coupled to the coupling ribs 150 and the frame ribs 170. You can see that it is fixed between).
  • the housing 100 is formed to be stepped along the outer edge of the first rib 152 and the frame rib 170, stepped along the outer edge of the coupling rib 150, the first stepped 152
  • the structure may further include a corresponding second step 172.
  • the first step 152 and the second step 172 are provided to ensure a firm and secure fastening of the coupling rib 150 and the frame rib 170, the edge of the optical member, that is, the optical cover 210 is secure It can be referred to as a technical means provided to be fixed.
  • the sealing member 180 is preferably coupled to the edge of the optical member, that is, the optical cover 210 for airtightness and watertightness.
  • the housing 100 is disposed above the heat dissipation thin plate 320 so that heat dissipation generated from the light emitting module 200 can be smoothly induced while inducing natural convection through the space formed by the heat dissipation unit 300. It is preferable to further include a cover 500 coupled to the upper edge of the (100).
  • the cover 500 also serves to protect the components mounted inside the heat dissipation unit 300 and the base casing 700 from physical and chemical shocks applied from the outside.
  • the cover 500 may be applied to an embodiment in which at least one or more upper vent slots 510 penetrated along the other direction from one side of the housing 100 are further formed.
  • the housing 100 is also applicable to the embodiment further includes at least one or more lower vent slots 130 (see FIGS. 10 to 12) penetrating the other edge of the bottom surface (110).
  • the heat dissipation unit 300 is to implement the heat dissipation performance as described above, the contact with the inside of the bottom surface 110 of the housing 100 so that the heat dissipation thin plate 320 constituting the unit heat dissipator 301 is formed.
  • the bottom thin plate 310 is included.
  • the heat dissipation thin plate 320 extends from both edges of the bottom thin plate 310.
  • the first heat dissipation passage (H1, below 10, 13 and 14 in a fan shape from one side to the other side of the bottom surface 110 of the housing 100, see FIG. ) Is formed.
  • a second heat dissipation path H2 (see FIGS. 10 and 13) is formed from the lower vent slot 130 to the upper vent slot 510 located at the outermost portion of the cover 500.
  • the present invention by actively forming a natural convection by forming a plurality of paths through which the heat generated from the light emitting module 200 is discharged by the first and second heat dissipation passages (H1, H2) as shown in the drawing to further enhance the heat dissipation effect. You can increase it.
  • the heat dissipation unit 300 may apply a structure further provided with an extended thin plate 311 and the fixed thin plate 312 to be utilized when fixed to the base casing 700 to be described later.
  • the extended thin plate 311 extends from the inner end of the bottom thin plate 310 toward one side of the bottom surface 110, and the fixed thin plate 312 extends along both edges of the extended thin plate 311 to face each other. .
  • the fixed thin plate 312 is connected to the heat dissipation thin plate 320, the height that the fixed thin plate 312 protrudes from the bottom surface 110 is preferably lower than the heat dissipation thin plate 320 for assembly fixing.
  • the bottom thin plate 310 is preferably manufactured in a tapered shape so as to gradually widen from one side of the bottom surface 110 to the other side so as to secure a sufficient contact area due to the structural features disposed radially on the bottom surface 110. .
  • the housing 100 provides a seating space of the bottom thin plate 310 constituting the unit radiator 301 and the lower side of the heat dissipating thin plate 320 can be firmly fixed and supported. It is preferable to further include a plurality of fixing protrusions 160 protruding in and disposed along both edges of the bottom thin plate 310.
  • the heat dissipation unit 300 is such that the bottom thin plate 310 and the heat dissipating thin plate 320 constituting the unit heat dissipator 301 have an overall U-shaped cross section, and the bottom thin plate 310 has a bottom surface ( By being disposed in contact with the inside of 110, it is possible to achieve a further increased heat dissipation effect from the result that the heat transfer area is increased compared to the existing heat dissipation fin structure.
  • the present invention is a radial arrangement of the unit heat dissipator 301 including the bottom thin plate 310 and the heat dissipation thin plate 320, which is a thin plate structure, due to the heat sink being manufactured by die casting in the existing lighting device. By replacing the structure, it is possible to reduce the weight of the whole product.
  • the present invention can adjust the light output by arranging a plurality of housings 100 of the light engine concept as shown in FIGS. 15 to 19, and can realize the weight reduction by increasing the placement efficiency per unit area of the semiconductor optical device 201.
  • the embodiment of arranging the housing 100 in the base casing 700 so as to provide a product of high power may be applied.
  • the heat dissipation thin plate 320 of the heat dissipation unit 300 disposed in the housing 100 and the neighboring housing 100 is disposed radially with respect to the center of the base casing 700.
  • the plurality of housings 100 may have a structure that is radially disposed with respect to the center of the base casing 700 as shown in FIGS. 15 to 18.
  • the other side of the housing 100 toward the outside of the base casing 700 is of course the arrangement structure that can maximize the placement efficiency of the housing 100 per unit area.
  • base casing 700 is illustrated as having a bottom surface of a disk shape to form a cylindrical shape in the drawings, various applications and deformation designs, such as a polygonal bottom shape having a polygonal bottom surface, are also not limited thereto.
  • the base casing 700 further includes a core fixing piece 400 for pressing and fixing the upper edge of the fixing sheet 312 as shown in FIG. 19, and the core fixing piece 400 is disposed at the center of the base casing 700.
  • a core fixing piece 400 for pressing and fixing the upper edge of the fixing sheet 312 as shown in FIG. 19, and the core fixing piece 400 is disposed at the center of the base casing 700.
  • the first heat dissipation passage H1 will also be formed radially, and the second heat dissipation passage H2 may be formed. Together, the heat generated from the light emitting module 200 may be induced to be actively discharged through natural convection.
  • the base casing 700 may be further equipped with a ventilation fan to rapidly heat dissipation effect by forcibly convection heat generated from the light emitting module 200 to be discharged to the outside of the housing 100. It may be.
  • the present invention can realize the weight reduction of the entire product, further improve heat dissipation efficiency by inducing natural convection, and the assembly and installation of the product is simple and convenient for maintenance, as well as arrangement per unit area of the semiconductor optical device. It can be seen that the basic technical idea is to provide an optical semiconductor lighting device that can increase the efficiency and provide a reliable product.
  • the lighting device may utilize the lighting device according to various embodiments of the present invention in various fields such as a street light, a security light, a factory, etc. as well as an indoor light.
  • a street light such as a street light, a security light, a factory, etc.
  • an indoor light such as a street light, a security light, a factory, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 발광 모듈이 장착된 하우징에 방사상으로 배치되는 방열 유닛의 형성 방향으로 제1 방열통로를 형성하고, 발광 모듈의 가장자리를 따라 제2 방열통로를 형성하는 실시예와, 발광 모듈과 광학 부재 및 방열 유닛을 포함하여 일측에서 타측으로 갈수록 점차 넓어지는 저면이 형성된 엔진 본체를 포함한 라이트 엔진(light engine) 개념의 실시예를 제공함으로써 제품 전체의 경량화 구현이 가능하고, 자연 대류를 유도하여 방열 효율을 더욱 향상시킬 수 있으며, 제품의 조립 및 설치가 간단하고 유지 보수가 편리함은 물론, 반도체 광소자의 단위 면적당 배치 효율을 높여 신뢰도 높은 제품을 제공할 수 있도록 하는 광 반도체 조명장치에 관한 것이다.

Description

광 반도체 조명장치
본 발명은 광 반도체 조명장치에 관한 것이다.
엘이디 또는 엘디 등과 같은 광 반도체는 백열등과 형광등에 비하여 전력 소모량이 적으면서도 사용 수명이 길며 내구성도 뛰어남은 물론 훨씬 높은 휘도로 인하여 최근 조명용으로 널리 각광받고 있는 부품 중의 하나이다.
통상, 이러한 광 반도체를 이용한 조명기구는 광 반도체로부터의 발열이 불가피하므로, 열이 발생하는 부위에는 반드시 히트싱크를 설치하여 발생한 열을 외부로 방출해주어야 한다.
최근에는 위와 같은 광 반도체가 대중화되고 대량 생산되어 광 반도체의 제품 단가 또한 낮아짐에 따라 광 반도체를 이용한 조명기구를 공장등이나 가로등 또는 보안등 등 고출력의 산업용으로 활용하는 추세이다.
따라서, 이러한 고출력의 산업용으로 활용되는 광 반도체를 이용한 조명기구는 통상 발열 문제 또한 그 크기와 출력에 비례하여 커지게 되므로, 발열 성능을 제대로 발휘하기 위해서는 히트싱크의 용량 및 부피도 함께 커지게 된다.
광 반도체를 이용한 조명기구에 장착된 히트싱크는 통상 다이캐스팅 등의 방식으로 하우징과 일체 또는 탈착 결합 가능하게 제작되는 것이 일반적이지만, 이러한 방식으로 제작된 히트싱크는 제품 전체의 중량이 커지고 제작 비용과 원자재의 사용량이 증대되는 문제도 있었다.
특히, 다이캐스팅으로 제작된 기존 히트싱크는 그 제작 방식의 특성상 방열핀의 두께를 일정 기준 이하로 얇게 만들 수 없기 때문에 한정된 부위에서 도모하고자 하는 방열 면적은 좁으며, 충분한 방열 면적 확보를 위하여 방열핀을 다수 형성할 경우, 히트싱크 자체의 부피와 크기가 커지게 되는 것이다.
한편, 이러한 점을 감안하여 박판을 이용하여 방열판 형태로 제작된 히트싱크의 경우는 충분한 방열 면적의 확보가 가능할지는 모르나, 하우징에 선접촉 형태로 배치되어야 하는 구조적 한계상 광 반도체로부터 발생되는 열을 전달하여 배출시키는 열전달의 측면에서 한계가 있었던 것이다.
또한, 광 반도체를 이용한 조명기구는 통상 광 반도체가 배치된 회로기판이 히트싱크와 연결되고, 회로기판은 하우징에 내장되며 하우징에 설치된 렌즈 등의 광학 부재는 광 반도체로부터 빛이 보다 넓게 혹은 좁게 조사되도록 하는 구조인 것이다.
이러한 광 반도체를 이용한 조명기구는 일반적으로 제작의 편의를 위하여 일률적으로 사각 형상 또는 원형의 회로기판상에 배치된 것이 대부분이며, 전술한 회로기판을 수용하는 하우징 또한 사각 또는 원형의 것이 주를 이루었다.
그러나, 이러한 조명기구는 고출력을 도모하기 위하여 단위면적당 배열하기 위한 그 갯수면에 있어서 전술한 바와 같은 구조적 형상의 한계로 인하여 많이 배열할 경우 조명기구 전체의 중량과 부피가 커지는 문제점이 있다.
본 발명은 상기와 같은 문제점을 개선하기 위하여 발명된 것으로, 제품 전체의 경량화 구현이 가능한 광 반도체 조명장치를 제공하기 위한 것이다.
그리고, 본 발명은 자연 대류를 유도하여 방열 효율을 더욱 향상시킬 수 있도록 하는 광 반도체 조명장치를 제공하기 위한 것이다.
그리고, 본 발명은 제품의 조립 및 설치가 간단하고 유지 보수가 편리한 광 반도체 조명장치를 제공하기 위한 것이다.
또한, 본 발명은 반도체 광소자의 단위 면적당 배치 효율을 높여 신뢰도 높은 제품을 제공할 수 있도록 하는 광 반도체 조명장치를 제공하기 위한 것이다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 하우징; 적어도 하나 이상의 반도체 광소자를 포함하며, 상기 하우징의 저면 외측에 배치되는 발광 모듈; 상기 하우징의 저면 내측에 방사상으로 배치되고, 상기 하우징의 저면 내측 중심부에 연통 공간을 형성하는 방열 유닛; 상기 하우징의 저면 내측 중심부로부터 방사상으로 형성되는 제1 방열통로; 및 상기 하우징 저면의 가장자리를 따라 상하 방향으로 형성되는 제2 방열통로;를 포함하는 것을 특징으로 하는 광 반도체 조명장치를 제공할 수 있다.
여기서, 상기 방열 유닛은, 상기 하우징의 저면과 직교되고, 마주보는 한 쌍의 방열 박판을 포함하는 단위 방열체가 복수로 배치된 것을 특징으로 한다.
이때, 상기 광 반도체 조명장치는, 상기 하우징의 저면 내측 중심부에 배치되어 상기 방열 유닛의 내측 단부를 고정하는 코어 고정편을 더 포함하는 것을 특징으로 한다.
그리고, 상기 방열 유닛의 외측 단부는 상기 하우징의 저면 외측으로부터 형성되는 상기 제2 방열통로와 연통되는 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 하우징의 저면 가장자리를 따라 연장되는 측벽을 더 포함하며, 상기 방열 유닛은 상기 측벽의 내측에 수용되고, 상기 제2 방열통로는 상기 측벽에 평행하게 형성되는 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 측벽의 상측 가장자리에 결합되고 중심부에 연통홀이 형성된 커버를 더 포함하는 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 제1, 2 방열통로와 연통되고, 중심부에 연통홀이 형성되는 커버와, 상기 커버의 형성 방향을 따라 복수로 형성한 가상의 동심원의 원주 상에 복수로 관통된 상부 벤트슬롯을 더 포함하는 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 방열 유닛의 상측에 배치되어 상기 하우징과 결합되고 중심부에 상기 연통 공간과 연결되는 연통홀이 형성된 커버를 더 포함하는 것을 특징으로 한다.
그리고, 상기 커버는, 상기 커버의 형성 방향을 따라 복수로 형성한 가상의 동심원의 원주 상에 복수로 관통된 상부 벤트슬롯을 더 포함하는 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 연통공간에 배치되는 환기 팬을 더 포함하는 것을 특징으로 한다.
또한, 상기 하우징은, 상기 발광 모듈의 가장자리를 따라 상기 하우징의 저면에 관통된 복수의 하부 벤트슬롯을 더 포함하며, 상기 하부 벤트슬롯은 상기 제2 방열통로와 연통되는 것을 특징으로 한다.
한편, 본 발명은 적어도 하나 이상의 반도체 광소자가 상기 하우징의 저면 외측에 배치되는 하우징; 상기 하우징의 저면 내측에 방사상으로 배치되는 복수의 바닥 박판; 및 상기 바닥 박판의 양측 가장자리를 따라 연장되어 마주보는 방열 박판;을 포함하는 것을 특징으로 하는 광 반도체 조명장치를 제공할 수도 있다.
여기서, 상기 광 반도체 조명장치는, 상기 저면 내측의 중심부를 향하여 상기 바닥 박판의 내측 단부로부터 연장되는 연장 박판과, 상기 연장 박판의 양측 가장자리를 따라 연장되어 상호 마주보는 고정 박판을 더 포함하는 것을 특징으로 한다.
이때, 상기 광 반도체 조명장치는, 상기 저면 내측의 중심부에 배치되고 상기 고정 박판의 상측 가장자리를 고정하는 코어 고정편을 더 포함하는 것을 특징으로 한다.
그리고, 상기 바닥 박판은, 상기 저면 내측의 가장자리측을 향하여 점차 넓어지게 테이퍼진 형상인 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 저면 내측으로부터 돌출되고 상기 바닥 박판의 양측 가장자리를 따라 배치된 복수의 고정 돌편을 더 포함하는 것을 특징으로 한다.
그리고, 상기 하우징은, 상기 저면 내측의 중심부로부터 복수의 상기 바닥 박판 및 상기 방열 박판의 내측 단부 사이에서 형성되는 연통 공간을 더 포함하며, 상기 연통 공간은 제1 방열통로와 상호 연통되는 것을 특징으로 한다.
또한, 상기 하우징은, 상기 연통 공간에 배치되는 환기 팬을 더 포함하는 것을 특징으로 한다.
아울러, 청구범위 및 상세한 설명에 기재된 '반도체 광소자'는 광 반도체를 포함하거나 이용하는 발광다이오드 칩 등과 같은 것을 의미한다.
이러한 '반도체 광소자'는 전술한 발광다이오드 칩을 포함한 다양한 종류의 광 반도체를 내부에 포함하는 패키지 레벨의 것을 포함한다고 할 수 있다.
상기와 같은 구성의 본 발명에 따르면, 다음과 같은 효과를 도모할 수 있다.
우선, 본 발명은 발광 모듈이 장착된 하우징에 방사상으로 배치되는 방열 유닛을 포함하고, 방열 유닛의 형성 방향을 따라 제1 방열통로를 형성하며, 발광 모듈의 가장자리를 따라 하우징의 상하 방향으로 제2 방열통로를 형성한 구조를 채택함으로써 제1, 2 방열통로를 통한 자연 대류를 활발하게 유도하여 방열 효과를 대폭 증대시키고 발열 문제를 해결할 수 있다.
그리고, 본 발명은 반도체 광소자를 포함한 하우징에 방사상으로 배치된 바닥 박판의 양측 가장자리로부터 연장되어 방열 박판이 상호 마주보는 'U'자 형상의 구조를 채택함으로써 제품 전체의 경량화를 구현할 수 있으며, 제품의 생산 원가와 원자재 사용량을 대폭 줄일 수 있게 된다.
즉, 본 발명은 단위 방열체 자체를 박판화함으로써 다이캐스팅으로 제작된 기존 히트싱크의 문제점인 히트싱크를 박판화하기 힘든 문제점을 해결하여 경량화의 구현을 가능케 하며, 기존의 박판형 히트싱크의 선접촉 방식에 따른 전열면적 확보의 어려움을 바닥 박판을 통하여 해결한 것이라 하겠다.
그리고, 본 발명은 바닥 박판과 방열 박판을 포함하는 단위 방열체를 하우징에 끼움 결합시키고 상부 벤트슬롯이 형성된 커버를 하우징에 체결하는 것으로 제품의 조립이 간편하게 이루어지므로, 고장 발생 개소의 확인이 즉각적으로 이루어질 수 있으며, 유지 보수 관리도 간편하여 신뢰성이 높은 제품을 수요자에게 공급할 수 있을 것이다.
그리고, 본 발명은 발광 모듈과 광학 부재 및 방열 유닛이 포함되고 일측에서 타측으로 갈수록 점차 넓어지는 저면을 형성한 엔진 본체를 포함한 라이트 엔진(light engine) 개념의 장치를 제공함으로써 반도체 광소자의 단위 면적당 배치 효율을 높이고 신뢰도 높은 제품을 제공할 수 있다.
즉, 본 발명은 라이트 엔진 개념의 엔진 본체를 별도의 수용 공간이 마련된 베이스 케이싱에 방사상으로 배치함으로써 고출력의 조명을 구현할 수 있음은 물론 출력 조절 또한 설치 및 시공 환경에 따라 적절히 가변할 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 광 반도체 조명장치의 전체적인 구성을 나타낸 사시도
도 2는 도 1의 A-A'선 단면도
도 3은 도 1의 B 시점에서 바라본 일부 개념도
도 4는 도 1의 C 시점에서 바라본 일부 개념도
도 5 및 도 6은 본 발명의 일 실시예에 따른 광 반도체 조명장치의 주요부인 방열 유닛을 구성하는 단위 방열체의 전체적인 구조를 나타낸 도면
도 7은 본 발명의 일 실시예에 따른 광 반도체 조명장치의 전체적인 구조를 나타낸 사시도
도 8은 도 7의 E-E'선 단면 개념도
도 9는 본 발명의 다른 실시예에 따른 광 반도체 조명장치의 전체적인 구조를 나타낸 사시도
도 10은 도 9의 F-F' 선 단면 개념도
도 11은 도 9의 G 시점에서 바라본 일부 개념도
도 12는 도 9의 I 시점에서 바라본 일부 개념도
도 13 및 도 14는 본 발명의 다른 실시예에 따른 광 반도체 조명장치의 주요부인 방열 유닛을 구성하는 단위 방열체의 전체적인 구조를 나타낸 도면
도 15 내지 도 18은 본 발명의 다양한 실시예에 따른 광 반도체 조명장치의 실제 적용 사례를 나타낸 개념도
도 19는 도 17의 K-K'선 단면 개념도
이하, 첨부된 도면을 참고로 본 발명의 바람직한 실시예에 대하여 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 광 반도체 조명장치의 전체적인 구성을 나타낸 사시도이며, 도 2는 도 1의 A-A'선 단면도이고, 도 3은 도 1의 B 시점에서 바라본 일부 개념도이며, 도 4는 도 1의 C 시점에서 바라본 일부 개념도이고, 도 5 및 도 6은 본 발명의 일 실시예에 따른 광 반도체 조명장치의 주요부인 방열 유닛을 구성하는 단위 방열체의 전체적인 구조를 나타낸 도면이다.
본 발명은 도시된 바와 같이 발광 모듈(200)이 배치된 하우징(100)에 방열 유닛(300)이 장착되고, 하우징(100) 내측에 제1, 2 방열통로(H1, H2)가 형성된 구조임을 알 수 있다.
참고로, 도 2에서 미설명 부호로 600은 방수 커넥터를 나타내며, 도 2에서의 저면(110) 외측은 저면(110)을 기준으로 도면의 하측을 향하는 면을, 저면(110) 내측은 저면(110)을 기준으로 도면의 상측을 향하는 면을 각각 지칭하는 것으로 하며, 이하의 도면에서도 마찬가지로 적용하기로 한다.
하우징(100)은 발광 모듈(200)과 방열 유닛(300)이 장착되는 공간을 제공하는 것이며, 발광 모듈(200)은 적어도 하나 이상의 반도체 광소자(201)를 포함하며, 하우징(100)의 저면(110) 외측에 배치되는 것으로, 광원으로 작용하게 된다.
방열 유닛(300)은 하우징(100)의 저면(110) 내측에 방사상으로 배치되고, 하우징(100)의 저면(110) 내측 중심부에 연통 공간(101)을 형성하는 것으로, 발광 모듈(200)로부터 발생되는 열을 하우징(100)의 외측으로 배출시킬 수 있도록 하기 위한 것이다.
제1 방열통로(H1)는 하우징(100)의 저면(110) 내측 중심부로부터 방사상으로 형성되는 것으로, 구체적으로는 방열 유닛(300) 각각의 형성 방향에 따라서 방사상으로 형성될 수 있을 것이다.
제2 방열통로(H2)는 하우징(100) 저면(110)의 가장자리를 따라 상하 방향으로 형성되는 것으로, 구체적으로는 발광 모듈(200)의 가장자리를 따라 하우징(100)의 상하 방향으로 연통되게 형성될 수 있을 것이다.
따라서, 본 발명은 도시된 바와 같이 제1, 2 방열통로(H1, H2)에 의하여 발광 모듈(200)로부터 발생되는 열이 배출되는 경로를 다수 형성하도록 함으로써 자연 대류를 활발히 유도하여 방열 효과를 더욱 증대시킬 수 있다.
본 발명은 상기와 같은 실시예의 적용이 가능하며, 다음과 같은 다양한 실시예의 적용 또한 가능함은 물론이다.
하우징(100)은 전술한 바와 같이 발광 모듈(200)과 방열 유닛(300)이 장착되는 공간을 제공하기 위한 것으로, 하우징(100)의 저면(110) 가장자리를 따라 연장되는 측벽(120, 도 2 참고)을 더 포함하며, 측벽(120)은 방열 유닛(300)을 외측에서 감싸고, 제2 방열통로(H2)는 측벽(120)에 평행하게 형성되는 것이다.
그리고, 하우징(100)은 발광 모듈(200)의 가장자리를 따라 하우징(100)의 저면(110)에 관통된 복수의 하부 벤트슬롯(130)을 더 포함하며, 하부 벤트슬롯(130)은 제2 방열통로(H2)와 상호 연통되는 것이다.
그리고, 하우징(100)은 측벽(120)의 상측 가장자리에 결합되고 중심부에 연통홀(501)이 형성된 커버(500)를 더 포함하는 실시예의 적용이 가능하다.
커버(500)는 제1, 2 방열통로(H1, H2)와 상호 연통되고, 중심부에 연통홀(501)이 형성되는 것으로, 커버(500)의 형성 방향을 따라 복수로 형성한 가상의 동심원의 원주 상에 상부 벤트슬롯(510)이 복수로 관통된다.
구체적으로는 연통홀(501)은 제1 방열 통로(H1)를 통하여 연통 공간(101)과 연결되는 것이며, 제2 방열통로(H2)는 최외곽의 상부 벤트슬롯(510)을 통하여 연결된다.
도 3에서는 하부 벤트슬롯(130)이 상부 벤트슬롯(510)을 통하여 상호 연통되도록 형성된 구조임을 파악할 수 있으며, 이는 후술할 방열 유닛(300)의 상세한 구조 설명과 함께 더욱 명확하게 이해될 수 있을 것이다.
그리고, 본 발명의 일 실시예에 따른 광 반도체 조명장치는 도 1 및 도 4와 같이 하우징(100)의 저면(110) 내측 중심부에 배치되어 방열 유닛(300)의 내측 단부를 고정하는 코어 고정편(400)을 더 포함하는 것이 바람직하다.
또한, 연통 공간(101)에는 특별히 도시하지 않았으나, 발광 모듈(200)로부터 발생되는 열을 강제 대류시켜 하우징(100)의 외측으로 배출시킴으로써 방열 효과를 신속하게 도모할 수 있도록 환기 팬을 더 장착할 수도 있다.
한편, 방열 유닛(300)은 전술한 바와 같이 하우징(100)의 저면(110)에 장착되어 방열 성능을 구현할 수 있도록 한 것으로, 하우징(100)의 저면(110)과 직교되고, 마주보는 한 쌍의 방열 박판(320)을 포함하는 단위 방열체(301, 도 5 및 도 6 참고)가 복수로 배치된 것이다.
여기서, 방열 유닛(300)의 외측 단부는 하우징(100)의 저면(110) 외측으로부터 형성되는 제2 방열통로(H2)와 연통되는 것을 확인할 수 있다.
방열 유닛(300)의 구조에 대하여 더욱 상세하게 살펴보면, 하우징(100)의 저면(110) 내측에 방사상으로 배치되는 것으로, 반도체 광소자(201)가 배치된 반대측면, 즉 저면(110) 내측에 접촉되는 복수의 바닥 박판(310)을 포함하는 구조임을 파악할 수 있다.
그리고, 방열 유닛(300)은 바닥 박판(310)의 양측 가장자리를 따라 연장되어 상호 마주보는 방열 박판(320)을 포함한다.
따라서, 제1 방열통로(H1)는 방열 박판(320)과 인접한 방열 박판(320) 사이에 방사상으로 형성되고, 제2 방열통로(H2)는 다음과 같이 형성된다.
즉, 제2 방열통로(H2)는 저면(110) 내측의 가장자리를 따라 관통된 복수의 하부 벤트슬롯(130)과 대응되게 하부 벤트슬롯(130)으로부터 상하로 제1 방열통로(H1)와 직교되게 형성되는 것이다.
여기서, 바닥 박판(310)은 외측 단부가 절제(切除)되어 방열 박판(320) 사이에 절결부(315)가 형성됨으로써 절결부(315)가 하부 벤트슬롯(130)과 연통되며, 제2 방열통로(H2)는 커버(500)의 상부 벤트슬롯(510)을 통하여 형성될 수 있다.
이때, 방열 유닛(300)은 저면(110) 내측의 중심부를 향하여 바닥 박판(310)의 내측 단부로부터 연장되는 연장 박판(311)과, 연장 박판(311)의 양측 가장자리를 따라 연장되어 상호 마주보는 고정 박판(312)을 더 포함하는 것이 바람직하다.
연장 박판(311)은 고정 박판(312)의 형성 공간을 제공하기 위한 것이며, 고정 박판(312)은 고정 박판(312)의 상측 가장자리를 고정하는 코어 고정편(400)에 의한 고정 지지력을 분산 지지하기 위한 보강 구조의 역할을 하는 것이다.
코어 고정편(400)은 저면(110) 내측의 중심부에 배치되는 것임은 도면과 전술한 바와 같다.
따라서, 연통 공간(101)은 코어 고정편(400)의 상측 공간, 즉 저면(110) 내측의 중심부로부터 복수의 바닥 박판(310) 및 방열 박판(320)의 내측 단부 사이에서 형성되며, 제1 방열통로(H1)와 상호 연통되는 것이다.
또한, 하우징(100)은 도 5와 같이 단위 방열체(301)를 구성하는 바닥 박판(310)의 안착 공간을 제공하고 방열 박판(320)의 하부측이 견고하게 고정 지지될 수 있도록 저면(110) 내측으로부터 돌출되고 바닥 박판(310)의 양측 가장자리를 따라 배치된 복수의 고정 돌편(160)을 더 포함하는 것이 바람직하다.
또한, 바닥 박판(310)은 도 6과 같이 저면(110)의 중심부로부터 외측으로 갈수록 원활하게 열이 배출될 수 있도록 저면(110) 내측의 가장자리측을 향하여 점차 넓어지게 테이퍼진 형상으로 제작되도록 한다.
따라서, 방열 유닛(300)은 단위 방열체(301)를 구성하는 바닥 박판(310)과 방열 박판(320)이 전체적으로 그 단면이 'U'자 형상을 이루도록 하되, 바닥 박판(310)이 저면(110)의 내측에 접촉 배치되도록 함으로써 기존의 방열핀 구조에 비하여 전열 면적이 증대되는 결과로부터 더욱 증대된 방열 효과를 도모할 수도 있게 되는 것이다.
나아가, 본 발명은 기존의 조명장치에서 히트싱크가 다이캐스팅으로 제작됨으로 인하여 부피와 크기가 커지는 문제점을 박판 구조인 바닥 박판(310)과 방열 박판(320)을 포함한 단위 방열체(301)의 방사상 배치 구조로써 대체함으로써 제품 전체의 경량화가 가능하게 된다 하겠다.
한편, 본 발명은 도 7 내지 도 19와 같이 라이트 엔진(light engine) 개념의 구조를 활용한 실시예의 적용도 가능하다.
참고로, 도 7 내지 도 19에서의 도면 부호 중 도 1 내지 도 6과 동일한 구조와 역할을 하는 부재에는 동일한 부호를 붙이기로 한다.
우선, 도 7은 본 발명의 일 실시예에 따른 광 반도체 조명장치의 전체적인 구조를 나타낸 사시도이며, 도 8은 도 7의 E-E'선 단면 개념도이다.
그리고, 도 9는 본 발명의 다른 실시예에 따른 광 반도체 조명장치의 전체적인 구조를 나타낸 사시도이며, 도 10은 도 9의 F-F' 선 단면 개념도이고, 도 11은 도 9의 G 시점에서 바라본 일부 개념도이며, 도 12는 도 9의 I 시점에서 바라본 일부 개념도이고, 도 13 및 도 14는 본 발명의 다른 실시예에 따른 광 반도체 조명장치의 주요부인 방열 유닛을 구성하는 단위 방열체의 전체적인 구조를 나타낸 도면이다.
아울러, 도 15 내지 도 18은 본 발명의 다양한 실시예에 따른 광 반도체 조명장치의 실제 적용 사례를 나타낸 개념도이고, 도 19는 도 17의 K-K'선 단면 개념도이다.
참고로, 도 8에서 미설명 부호로 600은 방수 커넥터를 나타낸다.
그리고, 도 9에서 하우징(100) 저면(110)의 타측은 일측에 비하여 넓어지는 측을 말하며, 하우징(100) 저면(110)의 '일측'은 우측 하단을, '타측'은 좌측 상단을 가리킨다.
그리고, 도 10에서 하우징(100) 저면(110)의 '일측'은 우측을, '타측'은 좌측을 가리킨다.
그리고, 도 11에서 하우징(100) 저면(110)의 '일측'은 좌측 상단을, '타측'은 우측 하단을 가리킨다.
그리고, 도 12에서 하우징(100) 저면(110)의 '일측'은 우측 하단을, '타측'은 좌측 상단을 가리킨다.
그리고, 도 13에서 하우징(100) 저면(110)의 '일측'은 좌측 하단을, '타측'은 우측 상단을 가리킨다.
그리고, 도 14에서 하우징(100) 저면(110)의 '일측'은 좌측을, '타측'은 우측을 가리킨다.
또한, 도 19에서 미설명 부호로 600은 방수 커넥터를 나타내며, 도 7, 도 8, 도 9, 도 10 및 도 19에서의 저면(110) 외측은 저면(110)을 기준으로 도면의 하측을 향하는 면을, 저면(110) 내측은 저면(110)을 기준으로 도면의 상측을 향하는 면을 각각 지칭하는 것으로 하며, 이외의 도면에서도 마찬가지로 적용하기로 한다.
본 발명은 도시된 바와 같이 베이스 케이싱(700)의 저면 외측에 엔진 본체(800)가 결합되고, 베이스 케이싱(700)의 저면 내측에 방열 유닛(300)이 결합되는 구조임을 파악할 수 있다.
베이스 케이싱(700)은 통 형상의 부재로 후술할 방열 유닛(300)이 수용되는 공간을 제공하면서 후술할 엔진 본체(800)가 장착되는 면적 또한 제공하기 위한 것이다.
엔진 본체(800)는 베이스 케이싱(700)의 저면 외측에 결합되며 일측에서 타측으로 갈수록 점차 넓어지는 상면을 형성하는 것이다.
여기서, 엔진 본체(800)라 함은 특별히 도시되지는 않았으나, 반도체 광소자를 포함한 발광 모듈(미도시)과 함께 발광 모듈에 대응되는 광학 부재를 포함한 구조를 일컬으며, LED조명엔진 표준규격 개발 컨소시엄인 '자가 컨소시엄(Zhaga consortium)'에서 정의하는 발광 모듈 및 이와 전기적으로 연결되는 파워유닛과의 결합 형태까지 확장된 구조적 개념이라 파악하면 될 것이다.
방열 유닛(300)은 베이스 케이싱(700)의 저면 내측에 부채꼴 형상으로 배치되고, 마주보는 한 쌍의 방열 박판(320)을 구비한 복수의 단위 방열체(301, 이하 도 13 및 도 14 참고)를 포함하는 것이다.
이때, 단위 방열체(301)는 베이스 케이싱(700)의 저면 외측에 장착되는 하우징(800)의 크기 또는 엔진 본체(800) 내부에 장착된 발광 모듈의 광출력량에 따라 그 갯수를 적절히 가감하여 배치될 수 있다.
그리고, 방열 유닛(300)은 충분한 전열 면적을 확보를 위하여 베이스 케이싱(700)에 접촉되는 바닥 박판(310, 도 9 참고)을 포함하며, 방열 박판(320)은 바닥 박판(310)의 양측 가장자리로부터 연장되는 것이다.
또한, 엔진 본체(800)는 베이스 케이싱(700)의 저면 외측 중심부로부터 방사상으로 복수로 배치되며, 더욱 상세히 살펴보면 방열 유닛(300)은 엔진 본체(800)가 결합된 위치에 대응되게 배치되는 것이 방열 성능의 구현을 위하여 바람직하다.
본 발명은 상기와 같은 실시예의 적용이 가능하며, 다음과 같은 다양한 실시예의 적용이 가능함은 물론이다.
베이스 케이싱(700)은 전술한 바와 같이 엔진 본체(800)와 방열 유닛(300)의 장착 공간 및 면적을 제공하기 위한 것으로, 도 8과 같이 복수의 단위 방열체(301)의 내측 단부를 상측에서 고정하는 링 형상의 코어 고정편(400)을 더 포함한다.
또한, 베이스 케이싱(700)은 방열 유닛(300) 및 베이스 케이싱(700) 내부에 장착된 부품을 외부로부터 가해지는 물리, 화학적 충격에서 보호하기 위하여 복수의 단위 방열체(301)의 상측에 배치되고, 베이스 케이싱(700)의 가장자리에 고정되며, 복수의 상부 벤트슬롯(510)이 관통된 링 형상의 커버(500)를 더 구비하는 것이 바람직하다.
커버(500)는 또한 방열 유닛(300)이 형성하는 공간을 통하여 자연 대류를 유도하면서 발광 모듈(200)로부터 발생된 열 배출이 원활하게 이루어질 수 있도록 방열 박판(320)의 상측에 배치되어 베이스 케이싱(700)의 상측 가장자리에 결합되는 것이다.
따라서, 본 발명은 베이스 케이싱(700)의 저면 내측 및 외측에 배치 영역에 구애됨이 없이 엔진 본체(800)의 갯수 및 방열 유닛(300)을 구성하는 단위 방열체(301)의 갯수를 적절히 가감 배치함으로써 다양한 설치 및 시공 환경에 폭넓고 적극적인 대응을 할 수 있을 것이다.
한편, 본 발명은 전술한 구조의 실시예를 적용할 수도 있음은 물론, 도 9 내지 도 19에 도시된 바와 같은 다양한 구조의 실시예를 적용할 수도 있다.
우선, 본 발명은 크게 발광 모듈(200)이 장착된 하우징(100)에 방열 유닛(300)이 포함된 구조임을 파악할 수 있다.
하우징(100)은 일측에서 타측으로 갈수록 점차 넓어지는 저면(110)을 형성하는 것으로, 구체적으로는 부채꼴 형상으로 이루어져 후술할 발광 모듈(200)과 광학 부재 및 방열 유닛(300)이 장착되는 공간과 면적을 제공하기 위한 부재이다.
발광 모듈(200)은 적어도 하나 이상의 반도체 광소자(201)를 포함하며, 하우징(100)의 저면(110) 외측에 배치되는 것으로, 광원으로 작용하게 된다.
광학 부재는 하우징(100)의 저면(110) 외측에 결합되며, 발광 모듈(200)과 대면하는 것으로, 발광 모듈(200)로부터 조사되는 빛의 배광 면적을 조절할 수 있도록 하는 것이다.
방열 유닛(300)은 하우징(100)의 저면(110) 내측에 부채꼴 형상으로 배치되고, 마주보는 한 쌍의 방열 박판(320)을 구비한 복수의 단위 방열체(301)를 포함하는 것으로, 발광 모듈(200)로부터 발생되는 열을 하우징(100)의 외측으로 배출시킬 수 있도록 하기 위한 것이다.
따라서, 이와 같은 구조 및 실시예에 따른 광 반도체 조명장치는 하우징(100) 저면(110)의 구조적 특징상 후술할 베이스 케이싱(700, 도 15 내지 도 19 참조)에 복수로 장착됨으로써 광출력량을 조절할 수도 있을 것이다.
하우징(100)은 전술한 바와 같이 본 발명의 각 구성 요소가 장착되는 공간 및 면적을 제공하기 위한 것으로, 저면(110)의 양측 가장자리 및 하우징(100)의 타측 가장자리를 따라 연장되는 측벽(120)을 더 포함하며, 방열 유닛(300)은 측벽(120)이 형성하는 내부공간에 수용되는 것이다.
광학 부재는 전술한 바와 같이 발광 모듈(200)에 대향되는 것으로, 발광 모듈(200)과 대면하고 발광 모듈(200)로부터 조사된 빛이 투사되도록 하는 투명 또는 반투명 재질의 광학 커버(210)를 포함한다.
그리고, 광학 부재는 광학 커버(210)에 구비되며 반도체 광소자(201)와 대응되어 반도체 광소자(201) 각각으로부터 빛이 조사되는 면적과 범위를 축소 또는 확대시키는 역할을 하는 렌즈(220)를 포함한다.
한편, 하우징(100)은 도 10과 같이 광학 부재의 장착을 위하여 결합 리브(150)와 프레임 리브(170)를 더 구비한 실시예를 적용할 수 있다.
결합 리브(150)는 저면(110) 외측의 가장자리를 따라 돌출된 것이며, 프레임 리브(170)는 결합 리브(150)에 결합되는 것으로, 광학 부재의 가장자리는 결합 리브(150)와 프레임 리브(170) 사이에 고정되는 것을 파악할 수 있다.
여기서, 하우징(100)은 결합 리브(150)의 외측 가장자리를 따라 단차지게 형성된 제1 단턱(152)과, 프레임 리브(170)의 외측 가장자리를 따라 단차지게 형성되고, 제1 단턱(152)에 대응되는 제2 단턱(172)을 더 포함하는 구조를 적용할 수 있다.
제1 단턱(152)과 제2 단턱(172)은 결합 리브(150)와 프레임 리브(170)의 확실하고 견고한 체결을 도모하기 위하여 마련된 것이며, 광학 부재, 즉 광학 커버(210)의 가장자리가 확실하게 고정되도록 마련된 기술적 수단이라 할 수 있다.
이때, 광학 부재, 즉 광학 커버(210)의 가장자리에는 기밀 및 수밀 유지를 위하여 씰링 부재(180)가 결합되는 것이 바람직하다.
또한, 하우징(100)은 방열 유닛(300)이 형성하는 공간을 통하여 자연 대류를 유도하면서 발광 모듈(200)로부터 발생된 열 배출이 원활하게 이루어질 수 있도록 방열 박판(320)의 상측에 배치되어 하우징(100)의 상측 가장자리에 결합되는 커버(500)를 더 구비하는 것이 바람직하다.
커버(500)는 또한 방열 유닛(300) 및 베이스 케이싱(700) 내부에 장착된 부품을 외부로부터 가해지는 물리, 화학적 충격에서 보호하는 역할 또한 수행함은 물론이다.
여기서, 커버(500)에는 하우징(100)의 일측에서 타측 방향을 따라 관통된 적어도 하나 이상의 상부 벤트슬롯(510)이 더 형성되는 실시예를 적용할 수 있을 것이다.
이때, 하우징(100)은 저면(110)의 타측 가장자리에 관통되는 적어도 하나 이상의 하부 벤트슬롯(130, 도 10 내지 도 12 참고)을 더 포함하는 실시예의 적용 또한 가능하다.
한편, 방열 유닛(300)은 전술한 바와 같이 방열 성능을 구현할 수 있도록 한 것으로, 단위 방열체(301)를 구성하는 방열 박판(320)이 형성되도록 하우징(100)의 저면(110) 내측에 접촉되는 바닥 박판(310)을 포함한다.
여기서, 방열 박판(320)은 바닥 박판(310)의 양측 가장자리로부터 연장되는 구조임을 파악할 수 있다.
이때, 방열 박판(320) 각각의 사이에 형성되는 공간으로는 하우징(100)의 저면(110) 일측으로부터 타측에 걸쳐 부채꼴 형상으로 제1 방열통로(H1, 이하 도 10, 도 13 및 도 14 참고)가 형성된다.
또한, 하부 벤트슬롯(130)으로부터 커버(500)의 최외곽에 위치한 상부 벤트슬롯(510)에 걸쳐서는 제2 방열통로(H2, 이하 도 10 및 도 13 참고)가 형성된다.
따라서, 본 발명은 도시된 바와 같이 제1, 2 방열통로(H1, H2)에 의하여 발광 모듈(200)로부터 발생되는 열이 배출되는 경로를 다수 형성하도록 함으로써 자연 대류를 활발히 유도하여 방열 효과를 더욱 증대시킬 수 있다.
또한, 방열 유닛(300)은 후술할 베이스 케이싱(700)에 고정 배치될 때 활용될 수 있도록 연장 박판(311) 및 고정 박판(312)을 더 구비한 구조를 적용할 수도 있을 것이다.
즉, 연장 박판(311)은 저면(110)의 일측을 향하여 바닥 박판(310)의 내측 단부로부터 연장되는 것이며, 고정 박판(312)은 연장 박판(311)의 양측 가장자리를 따라 연장되어 마주보는 것이다.
이때, 고정 박판(312)은 방열 박판(320)과 연결되는 것임을 알 수 있으며, 고정 박판(312)이 저면(110)으로부터 돌출된 높이는 방열 박판(320)보다 낮은 것이 조립 고정을 위하여 바람직하다.
그리고, 바닥 박판(310)은 저면(110)에 방사상으로 배치되는 구조적 특징상 충분한 접촉 면적을 확보할 수 있도록 저면(110)의 일측으로부터 타측으로 갈수록 점차 넓어지게 테이퍼진 형상으로 제작되는 것이 바람직하다.
또한, 하우징(100)은 도 13과 같이 단위 방열체(301)를 구성하는 바닥 박판(310)의 안착 공간을 제공하고 방열 박판(320)의 하부측이 견고하게 고정 지지될 수 있도록 반대측면 상에 돌출되고 바닥 박판(310)의 양측 가장자리를 따라 배치된 복수의 고정 돌편(160)을 더 포함하는 것이 바람직하다.
따라서, 방열 유닛(300)은 단위 방열체(301)를 구성하는 바닥 박판(310)과 방열 박판(320)이 전체적으로 그 단면이 'U'자 형상을 이루도록 하되, 바닥 박판(310)이 저면(110)의 내측에 접촉 배치되도록 함으로써 기존의 방열핀 구조에 비하여 전열 면적이 증대되는 결과로부터 더욱 증대된 방열 효과를 도모할 수도 있게 되는 것이다.
나아가, 본 발명은 기존의 조명장치에서 히트싱크가 다이캐스팅으로 제작됨으로 인하여 부피와 크기가 커지는 문제점을 박판 구조인 바닥 박판(310)과 방열 박판(320)을 포함한 단위 방열체(301)의 방사상 배치 구조로써 대체함으로써 제품 전체의 경량화가 가능하게 된다 하겠다.
한편, 본 발명은 도 15 내지 도 19와 같이 라이트 엔진 개념의 하우징(100)을 복수로 배치하여 광출력을 조절할 수 있고, 반도체 광소자(201)의 단위 면적당 배치 효율을 높여 경량화의 구현이 가능함은 물론 고출력의 제품을 제공할 수 있도록 베이스 케이싱(700)에 하우징(100)을 배치하는 실시예를 적용할 수도 있음은 물론이다.
여기서, 하우징(100)과 이웃한 하우징(100)에 배치된 방열 유닛(300)의 방열 박판(320)은 베이스 케이싱(700)의 중심부에 대하여 방사상으로 배치된다.
복수의 하우징(100)은 구체적으로는 도 15 내지 도 18과 같이 베이스 케이싱(700)의 중심부에 대하여 방사상으로 배치되는 구조를 적용할 수 있을 것이다.
이때, 하우징(100)의 타측은 베이스 케이싱(700)의 외측을 향하는 것이 단위 면적당 하우징(100)의 배치 효율을 최대화할 수 있는 배치 구조임은 물론이다.
그리고, 도면상에서 베이스 케이싱(700)이 원통 형상을 이루도록 원판 형상의 저면을 가진 것으로 도시되어 있으나, 반드시 이에 국한되지는 않으며, 다각형의 저면을 가진 다각 기둥 형상 등 다양한 응용 및 변형 설계 또한 가능하다.
또한, 베이스 케이싱(700)은 도 19와 같이 고정 박판(312)의 상측 가장자리를 누름 고정하는 코어 고정편(400)을 더 포함하며, 코어 고정편(400)은 베이스 케이싱(700)의 중심부에 배치되도록 함으로써 하우징(100) 각각의 견고한 체결 상태를 유지할 수 있을 것이다.
따라서, 하우징(100)이 도 15 내지 도 18과 같이 베이스 케이싱(700)의 중심부에 대하여 방사상으로 배치되면, 제1 방열통로(H1) 또한 방사상으로 형성될 것이며, 제2 방열통로(H2)와 함께 발광 모듈(200)로부터 발생되는 열을 자연 대류를 통하여 활발하게 배출시킬 수 있도록 유도할 수 있게 될 것이다.
또한, 베이스 케이싱(700)은 특별히 도시하지 않았으나, 발광 모듈(200)로부터 발생되는 열을 강제 대류시켜 하우징(100)의 외측으로 배출시킴으로써 방열 효과를 신속하게 도모할 수 있도록 환기 팬을 더 장착할 수도 있다.
이상과 같이 본 발명은 제품 전체의 경량화 구현이 가능하고, 자연 대류를 유도하여 방열 효율을 더욱 향상시킬 수 있으며, 제품의 조립 및 설치가 간단하고 유지 보수가 편리함은 물론, 반도체 광소자의 단위 면적당 배치 효율을 높여 신뢰도 높은 제품을 제공할 수 있도록 하는 광 반도체 조명장치를 제공하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있다.
그리고, 본 발명의 기본적인 기술적 사상의 범주 내에서 당해 업계 통상의 지식을 가진 자에게 있어서는 본 발명의 다양한 실시예에 따른 조명장치를 실내 조명은 물론, 가로등이나 보안등 또는 공장등 등 다양한 분야에서 활용할 수도 있는 등 다른 많은 변형 및 응용 또한 가능함은 물론일 것이다.

Claims (18)

  1. 하우징;
    적어도 하나 이상의 반도체 광소자를 포함하며, 상기 하우징의 저면 외측에 배치되는 발광 모듈;
    상기 하우징의 저면 내측에 방사상으로 배치되고, 상기 하우징의 저면 내측 중심부에 연통 공간을 형성하는 방열 유닛;
    상기 하우징의 저면 내측 중심부로부터 방사상으로 형성되는 제1 방열통로; 및
    상기 하우징 저면의 가장자리를 따라 상하 방향으로 형성되는 제2 방열통로;를 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  2. 청구항 1에 있어서,
    상기 방열 유닛은,
    상기 하우징의 저면과 직교되고, 마주보는 한 쌍의 방열 박판을 포함하는 단위 방열체가 복수로 배치된 것을 특징으로 하는 광 반도체 조명장치.
  3. 청구항 1에 있어서,
    상기 광 반도체 조명장치는,
    상기 하우징의 저면 내측 중심부에 배치되어 상기 방열 유닛의 내측 단부를 고정하는 코어 고정편을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  4. 청구항 1에 있어서,
    상기 방열 유닛의 외측 단부는 상기 하우징의 저면 외측으로부터 형성되는 상기 제2 방열통로와 연통되는 것을 특징으로 하는 광 반도체 조명장치.
  5. 청구항 1에 있어서,
    상기 하우징은,
    상기 하우징의 저면 가장자리를 따라 연장되는 측벽을 더 포함하며,
    상기 방열 유닛은 상기 측벽의 내측에 수용되고,
    상기 제2 방열통로는 상기 측벽에 평행하게 형성되는 것을 특징으로 하는 광 반도체 조명장치.
  6. 청구항 5에 있어서,
    상기 하우징은,
    상기 측벽의 상측 가장자리에 결합되고 중심부에 연통홀이 형성된 커버를 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  7. 청구항 5에 있어서,
    상기 하우징은,
    상기 제1, 2 방열통로와 상호 연통되고, 중심부에 연통홀이 형성되는 커버와,
    상기 커버의 형성 방향을 따라 복수로 형성한 가상의 동심원의 원주 상에 복수로 관통된 상부 벤트슬롯을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  8. 청구항 1에 있어서,
    상기 하우징은,
    상기 방열 유닛의 상측에 배치되어 상기 하우징과 결합되고 중심부에 상기 연통 공간과 연결되는 연통홀이 형성된 커버를 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  9. 청구항 8에 있어서,
    상기 커버는,
    상기 커버의 형성 방향을 따라 복수로 형성한 가상의 동심원의 원주 상에 복수로 관통된 상부 벤트슬롯을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  10. 청구항 1에 있어서,
    상기 하우징은,
    상기 연통공간에 배치되는 환기 팬을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  11. 청구항 1에 있어서,
    상기 하우징은,
    상기 발광 모듈의 가장자리를 따라 상기 하우징의 저면에 관통된 복수의 하부 벤트슬롯을 더 포함하며,
    상기 하부 벤트슬롯은 상기 제2 방열통로와 상호 연통되는 것을 특징으로 하는 광 반도체 조명장치.
  12. 적어도 하나 이상의 반도체 광소자가 상기 하우징의 저면 외측에 배치되는 하우징;
    상기 하우징의 저면 내측에 방사상으로 배치되는 복수의 바닥 박판; 및
    상기 바닥 박판의 양측 가장자리를 따라 연장되어 마주보는 방열 박판;을 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  13. 청구항 12에 있어서,
    상기 광 반도체 조명장치는,
    상기 저면 내측의 중심부를 향하여 상기 바닥 박판의 내측 단부로부터 연장되는 연장 박판과,
    상기 연장 박판의 양측 가장자리를 따라 연장되어 마주보는 고정 박판을 더 포함하며,
    상기 고정 박판은 상기 방열 박판과 연결되는 것을 특징으로 하는 광 반도체 조명장치.
  14. 청구항 13에 있어서,
    상기 광 반도체 조명장치는,
    상기 저면 내측의 중심부에 배치되고 상기 고정 박판의 상측 가장자리를 고정하는 코어 고정편을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  15. 청구항 12에 있어서,
    상기 바닥 박판은,
    상기 저면 내측의 가장자리측을 향하여 점차 넓어지게 테이퍼진 형상인 것을 특징으로 하는 광 반도체 조명장치.
  16. 청구항 12에 있어서,
    상기 하우징은,
    상기 저면 내측으로부터 돌출되고 상기 바닥 박판의 양측 가장자리를 따라 배치된 복수의 고정 돌편을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
  17. 청구항 12에 있어서,
    상기 하우징은,
    상기 저면 내측의 중심부로부터 복수의 상기 바닥 박판 및 상기 방열 박판의 내측 단부 사이에서 형성되는 연통 공간을 더 포함하며,
    상기 연통 공간은 제1 방열통로와 연통되는 것을 특징으로 하는 광 반도체 조명장치.
  18. 청구항 17에 있어서,
    상기 하우징은,
    상기 연통 공간에 배치되는 환기 팬을 더 포함하는 것을 특징으로 하는 광 반도체 조명장치.
PCT/KR2012/006766 2012-07-10 2012-08-24 광 반도체 조명장치 WO2014010778A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2012385007A AU2012385007B2 (en) 2012-07-10 2012-08-24 Optical semiconductor illumination device
CN201280072550.3A CN104246365A (zh) 2012-07-10 2012-08-24 光学半导体照明装置
EP12880752.6A EP2873914A4 (en) 2012-07-10 2012-08-24 OPTICAL SEMICONDUCTOR LIGHTING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0075103 2012-07-10
KR1020120075103A KR101389096B1 (ko) 2012-07-10 2012-07-10 광 반도체 조명장치
KR10-2012-0076852 2012-07-13
KR1020120076852A KR101347391B1 (ko) 2012-07-13 2012-07-13 광 반도체 조명장치

Publications (1)

Publication Number Publication Date
WO2014010778A1 true WO2014010778A1 (ko) 2014-01-16

Family

ID=49274026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006766 WO2014010778A1 (ko) 2012-07-10 2012-08-24 광 반도체 조명장치

Country Status (6)

Country Link
US (3) US8585250B1 (ko)
EP (1) EP2873914A4 (ko)
JP (3) JP5284522B1 (ko)
CN (1) CN104246365A (ko)
AU (1) AU2012385007B2 (ko)
WO (1) WO2014010778A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824861B2 (en) 2008-07-01 2014-09-02 Yoostar Entertainment Group, Inc. Interactive systems and methods for video compositing
WO2014010778A1 (ko) * 2012-07-10 2014-01-16 주식회사 포스코엘이디 광 반도체 조명장치
JP6135561B2 (ja) * 2013-08-22 2017-05-31 三菱電機株式会社 発光装置
JP6302686B2 (ja) * 2014-01-31 2018-03-28 コイト電工株式会社 投光照明装置
JP6374182B2 (ja) * 2014-02-27 2018-08-15 三菱電機株式会社 ヒートシンク及び照明器具
US9581321B2 (en) * 2014-08-13 2017-02-28 Dialight Corporation LED lighting apparatus with an open frame network of light modules
CN105650526A (zh) * 2014-12-02 2016-06-08 普司科Led股份有限公司 光学半导体照明设备
WO2017150040A1 (ja) * 2016-03-01 2017-09-08 パナソニックIpマネジメント株式会社 照明器具及びその製造方法
USD798247S1 (en) * 2016-06-09 2017-09-26 Nanolumens Acquisition, Inc. Round light emitting display
ES2839899T3 (es) 2016-12-02 2021-07-06 Signify Holding Bv Luminaria
MX2019013012A (es) 2017-05-05 2020-02-05 Hubbell Inc Accesorio de iluminacion.
JP6563052B2 (ja) * 2018-02-20 2019-08-21 三菱電機株式会社 照明器具及び照明器具の製造方法
JP6598922B2 (ja) * 2018-05-07 2019-10-30 三菱電機株式会社 照明器具
JP6717878B2 (ja) * 2018-05-22 2020-07-08 三菱電機株式会社 照明器具
JP6648206B2 (ja) * 2018-07-19 2020-02-14 三菱電機株式会社 放熱フィン、ヒートシンク及び照明器具
JP6861783B2 (ja) * 2019-11-29 2021-04-21 三菱電機株式会社 放熱フィン、ヒートシンク及び照明器具
JP7497112B2 (ja) 2020-03-11 2024-06-10 三菱電機株式会社 照明装置
JP7190766B2 (ja) * 2020-07-10 2022-12-16 アイリスオーヤマ株式会社 Led照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927114B1 (ko) * 2009-05-20 2009-11-18 주식회사 파인테크닉스 할로겐 램프 대용 발광다이오드형 조명등
KR100933990B1 (ko) * 2009-05-20 2009-12-28 주식회사 파인테크닉스 다운 램프용 발광다이오드형 조명등
EP2206945A1 (en) * 2008-12-30 2010-07-14 I.B.T. Lighting S.P.A LED lighting device for outdoors and large covered areas having opitmized heat dissipation
EP2312202A1 (en) * 2009-10-13 2011-04-20 Sunonwealth Electric Machine Industry Co., Ltd. Lamp
KR101125747B1 (ko) * 2011-10-28 2012-03-27 주식회사 금영 엘이디 램프

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE31635T1 (de) 1983-06-22 1988-01-15 Univ Ohio State Res Found Herstellung von feinen materialien.
JPH03155521A (ja) 1988-11-07 1991-07-03 Sanyo Electric Co Ltd 液晶表示器
JP2008059965A (ja) 2006-09-01 2008-03-13 Stanley Electric Co Ltd 車両前照灯,照明装置及びその放熱部材
JP4640313B2 (ja) 2006-10-19 2011-03-02 パナソニック電工株式会社 Led照明装置
US7651245B2 (en) * 2007-06-13 2010-01-26 Electraled, Inc. LED light fixture with internal power supply
US7458706B1 (en) * 2007-11-28 2008-12-02 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. LED lamp with a heat sink
WO2009071111A1 (en) 2007-12-07 2009-06-11 Osram Gesellschaft mit beschränkter Haftung Heat sink and lighting device comprising a heat sink
TW200934362A (en) * 2008-01-16 2009-08-01 Neng Tyi Prec Ind Co Ltd Method of manufacturing heat dissipaters having heat sinks and structure thereof
TWM336390U (en) * 2008-01-28 2008-07-11 Neng Tyi Prec Ind Co Ltd LED lamp
TWI413536B (zh) 2008-06-02 2013-11-01 Advanced Optoelectronic Tech 光觸媒燈具
CN101598268A (zh) * 2008-06-05 2009-12-09 先进开发光电股份有限公司 光触媒灯具
US7918587B2 (en) * 2008-11-05 2011-04-05 Chaun-Choung Technology Corp. LED fixture and mask structure thereof
US7992624B2 (en) * 2008-11-27 2011-08-09 Tsung-Hsien Huang Heat sink module
JP3155521U (ja) * 2009-09-08 2009-11-19 信睿企業有限公司 放熱モジュール
WO2011162048A1 (ja) * 2010-06-23 2011-12-29 シーシーエス株式会社 Led光源装置
KR20120001803U (ko) 2010-09-01 2012-03-09 (주)엔엠엘이디 엘이디 조명 장치
US20120057344A1 (en) * 2010-09-08 2012-03-08 Robert Wang Led disc lamp
CN102588756B (zh) * 2011-01-13 2014-05-07 光宝电子(广州)有限公司 灯具装置
CN202228978U (zh) * 2011-09-28 2012-05-23 宝电电子(张家港)有限公司 一种具有主动散热功能的led灯
US20150070911A1 (en) * 2012-07-10 2015-03-12 Posco Led Company Ltd. Optical semiconductor lighting apparatus
WO2014010778A1 (ko) * 2012-07-10 2014-01-16 주식회사 포스코엘이디 광 반도체 조명장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206945A1 (en) * 2008-12-30 2010-07-14 I.B.T. Lighting S.P.A LED lighting device for outdoors and large covered areas having opitmized heat dissipation
KR100927114B1 (ko) * 2009-05-20 2009-11-18 주식회사 파인테크닉스 할로겐 램프 대용 발광다이오드형 조명등
KR100933990B1 (ko) * 2009-05-20 2009-12-28 주식회사 파인테크닉스 다운 램프용 발광다이오드형 조명등
EP2312202A1 (en) * 2009-10-13 2011-04-20 Sunonwealth Electric Machine Industry Co., Ltd. Lamp
KR101125747B1 (ko) * 2011-10-28 2012-03-27 주식회사 금영 엘이디 램프

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2873914A4 *

Also Published As

Publication number Publication date
EP2873914A1 (en) 2015-05-20
JP5628950B2 (ja) 2014-11-19
US8585250B1 (en) 2013-11-19
US20140043833A1 (en) 2014-02-13
JP2014017234A (ja) 2014-01-30
AU2012385007B2 (en) 2015-05-07
AU2012385007A1 (en) 2014-09-18
CN104246365A (zh) 2014-12-24
US8915618B2 (en) 2014-12-23
EP2873914A4 (en) 2016-02-10
JP2014241305A (ja) 2014-12-25
JP2014017229A (ja) 2014-01-30
US20150062914A1 (en) 2015-03-05
JP5284522B1 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2014010778A1 (ko) 광 반도체 조명장치
WO2013047929A1 (ko) 엘이디 조명 장치
WO2011118992A2 (ko) 엘이디 조명모듈 및 이를 이용한 조명램프
WO2012134079A2 (ko) 엘이디 램프
WO2013176355A1 (ko) 광 반도체 조명장치
WO2013032293A2 (ko) 엘이디 조명기구
WO2011096615A1 (ko) 엘이디 조명장치
WO2016003232A1 (ko) 엘이디 조명장치
WO2011112005A2 (ko) 에어 파이프를 갖는 조명 커버 및 이를 이용한 엘이디 조명장치
WO2015152667A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2014021550A1 (ko) 광 반도체 조명장치
WO2011055973A2 (en) Lighting apparatus using light emitting diodes
WO2017111413A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2014069857A1 (ko) 엘이디 조명장치
WO2013002511A2 (ko) 엘이디 램프
WO2011040671A1 (ko) 발광다이오드 조명기구
WO2013154216A1 (ko) 엘이디 발광모듈과 그 모듈을 이용한 조명장치
WO2014168379A1 (ko) 이중실링된 방수용 투광등 및 그 방법
WO2011025235A2 (ko) 엘이디 형광등
WO2011065705A2 (ko) 조명어셈블리 및 이를 구비하는 조명장치
WO2013032239A1 (en) Lighting device
EP3234460A1 (en) Illumination device
WO2017183938A1 (ko) 조명 장치
WO2013036061A1 (en) Lighting device
WO2015182884A1 (ko) 광 반도체 조명장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012385007

Country of ref document: AU

Date of ref document: 20120824

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012880752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012880752

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE