WO2014008669A1 - 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用 - Google Patents

用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用 Download PDF

Info

Publication number
WO2014008669A1
WO2014008669A1 PCT/CN2012/078635 CN2012078635W WO2014008669A1 WO 2014008669 A1 WO2014008669 A1 WO 2014008669A1 CN 2012078635 W CN2012078635 W CN 2012078635W WO 2014008669 A1 WO2014008669 A1 WO 2014008669A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
resin composition
additive
sensitive additive
resin
Prior art date
Application number
PCT/CN2012/078635
Other languages
English (en)
French (fr)
Inventor
严峡
蔡彤旻
宁凯军
姜苏俊
袁绍彦
刘奇祥
龙杰明
易庆锋
Original Assignee
金发科技股份有限公司
上海金发科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 上海金发科技发展有限公司 filed Critical 金发科技股份有限公司
Priority to PCT/CN2012/078635 priority Critical patent/WO2014008669A1/zh
Publication of WO2014008669A1 publication Critical patent/WO2014008669A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Definitions

  • the present invention relates to a resin composition, and more particularly to a modified resin composition for depositing a metal thin film, a process for producing the same, and use thereof.
  • Selective deposition of a metal film on the resin substrate not only maintains the insulation of the resin matrix, but also creates a complex three-dimensional ultra-fine conductive circuit on the part.
  • the first solution is to press the formed circuit metal piece by pressing on the resin substrate to form a part
  • the second method is to first mold the resin with the laser sensitive additive added. The formed piece is then selectively deposited in the laser-scanned area by a laser forming process and electroless plating to form a circuit metal film having a conductive function.
  • metal patches or metal films play a key role in the production of electrical and electronic parts and conductive circuits.
  • the adhesion between the metal patch and the resin substrate is not strong enough, defects such as lifting of the metal sheet are likely to occur. Due to factors such as multiple processes and large investment in human resources, the metal patch solution was gradually eliminated, and the second option was replaced.
  • Laser-sensitive additives play a key role in the process of the second approach.
  • Currently used laser sensitive additives can be divided into two major categories of organic and inorganic.
  • Chinese patent ZL03814691. 6 and US patent US 007393555B2 disclose one A copper (I) oxalate complex as a metal copper deposition precursor and a synthesis method thereof.
  • the copper (I) oxalate complex is a laser-sensitive additive belonging to the organic type. It can be seen from the thermogravimetric curve of the copper (II) oxalate complex that its thermal mass loss decomposition temperature is less than 200%. °C, when the temperature is higher than 250 °C, the weight loss is more serious.
  • Chinese patent 200910106506. X discloses a three-dimensional circuit manufacturing process and a composite component of a laser plastic raw material and a manufacturing method thereof.
  • the copper complex is a modified di-copper oxalate complex, which belongs to the organic class, and the network is not explicitly mentioned. The physical properties of the compound, the decomposition temperature and the clear chemical structure.
  • Chinese patent ZL 03802302. 4 discloses a volatile copper ( ⁇ ) complex deposited by atomic layer deposition of a copper film.
  • the deposition principle of this copper complex belongs to chemical vapor deposition (CVD) at 0-120 ° C.
  • the substrate is made of copper, a silicon wafer, and a barrier layer of silicon dioxide, and there is no particular mention that this process has the function of selectively depositing a copper film.
  • US Patent No. 006207344B1 discloses a composition for laser marking, the laser sensitive additive is a copper-containing inorganic additive; and US Patent No. 20040241422A1 discloses a processing method of a laser direct forming method and a resin matrix feature used, The laser-sensitive additive used is a copper-containing inorganic additive; likewise, the US patent
  • 20090292048A1 also discloses that the laser-sensitive additive in the resin matrix suitable for laser direct molding is a copper-containing inorganic additive.
  • the laser sensitive additive plays an important role, but the bonding strength between the metal film and the resin matrix is not good, and only the copper organic laser sensitive additive has a limited heat resistance temperature, and is not suitable for resistance.
  • High temperature resin processing such as high temperature resistant nylon, processing temperature 320-340 ° C, liquid crystal polymer LCP processing temperature is Up to 350 ° C; inorganic laser-sensitive additives containing copper and chromium can withstand high temperatures.
  • the above-mentioned copper-containing inorganic laser-sensitive additive contains trivalent chromium, it will undergo the following chemical reaction under the action of laser: ( iU3 ⁇ + C ⁇
  • the product in the above formula has hexavalent metal chromium ions and is toxic.
  • the technical solution adopted by the present invention is a modified resin composition for depositing a metal thin film, comprising the following components:
  • Resin matrix 35-95wt%
  • the metal element from the periodic table of the third group, the IB group, the II B group, the VIB group, the VIIB group, or the ring family; the laser-sensitive additive contains a metal oxide, the metal oxide accounted for 0.1. -10wt% o
  • the resin matrix selected for use in the present invention comprises a thermoplastic, a thermoset, a rubber or an elastomer.
  • the thermoplastic resin includes: polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate and acrylonitrile-butadiene-styrene ratio composition (PC/ABS) , Liquid Crystal Polymer (LCP), Polyamide (PA), Polyphenylene Sulfide (PPS), Polyphenylene Ether (PPE), Polysulfone, Polyarylate, Polyetheretherketone (PEEK), Polyether Ketone Ketone (PEKK) ), Polyetheretherketoneketone (PEEKK), thermoplastic polyimide (TPI), polyacetal, polyethylene ( ⁇ ), polypropylene ( ⁇ ), polystyrene (PS), polytetrafluoroethylene (PTFE), poly Acrylates, styrene-acrylonitrile copolymers (SA), polybutylene terephthalate (PBT), and polyethylene terephthalate (PET), polybutylene terephthalate An
  • the polyamide resin selected includes an aliphatic polyamide, a semi-aromatic polyamide, or a blend composition of a semi-aromatic polyamide and an aliphatic polyamide.
  • the aliphatic polyamide carbon chain selected is composed of 4 to 36 carbon atoms
  • the typical aliphatic polyamide includes one or more of PA6, PA66, PA610, PA612, PA1010, PA11, PA12, PA1012. Composition, but not limited to these combinations.
  • the semi-aromatic polyamide is composed of a dicarboxylic acid unit and a diamine unit, wherein the dicarboxylic acid unit comprises 45-100 mole percent of aromatic dicarboxylic acid units and 0-55 mole percent of An aliphatic dicarboxylic acid unit of 4 to 12 carbon atoms, and the diamine unit is a linear aliphatic diamine of 4 to 14 carbon atoms, a branched aliphatic diamine or an alicyclic diamine.
  • the aromatic dicarboxylic acid unit comprises terephthalic acid, isophthalic acid, 2-methylterephthalic acid, 2,5-dichloroterephthalic acid, 2,6-dichloro Phthalic acid, 1, 4-naphthalene dicarboxylic acid, 4, 4'-diphenyl phthalate or 2, 2 '-diphenyl phthalic acid.
  • the aliphatic dicarboxylic acid unit comprises 1,4-succinic acid, 1,6-hexanedioic acid, 1,8-octanedioic acid, 1,9-sebacic acid, 1, 10-anthracene. Diacid, l, l l- ⁇ -dioxalic acid, or 1,12-dodecanedioic acid.
  • the linear aliphatic diamine includes 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1, 10- Decane diamine, l, l l- ⁇ monocarbodiamine, or 1, 12-dodecadiamine.
  • the branched aliphatic diamine comprises 2-methyl-1, 5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,4-dimethyl-1,6-hexanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2, 4 , 4-trimethyl-1,6-hexanediamine, or 2-methyl-1, 8-octanediamine or 5-methyl-1,9-nonanediamine.
  • the alicyclic diamine includes cyclohexyl diamine, methylcyclohexyldiamine or 4,4 '-diaminodicyclohexylformamidine.
  • thermosetting plastic comprises: an epoxy resin, a phenolic resin, an unsaturated polyester, a polyimide resin, or a composition comprising at least one of the foregoing polymers.
  • the rubber includes natural rubber and synthetic rubber, or a composition comprising at least one of the foregoing polymers.
  • the elastomer includes a styrene elastomer, a polyolefin elastomer, a polyester elastomer, a polyamide elastomer, and a polyurethane elastomer, or a combination comprising at least one of the foregoing polymers
  • the additive acts to improve a certain property in the resin matrix, such as reinforcement, toughening, flame retardancy, processing stability, and product appearance.
  • These additives include: fibers, tougheners, flame retardants, nucleating agents, lubricants, mold release agents, antioxidants, mineral fillers, curing agents, weathering agents, and the like.
  • the fiber reinforcing agent is a combination of one or more of carbon fiber, glass fiber, boron fiber or mineral fiber; further, the glass fiber is chopped glass fiber, profiled cross section Glass fiber or ground glass fiber, the diameter of the monofilament is 5-20um;
  • the mineral filler may be round, needle or sheet;
  • the mineral filler comprises one or more of talc, wollastonite, titanium dioxide, kaolin, mica, barium sulfate, solid hollow glass microbeads, calcium carbonate, barium titanate, kaolin or copper calcium titanate. .
  • the modified resin composition further comprises a heat conductive filler to improve the modified resin group Thermal conductivity of the compound.
  • Thermally conductive fillers include alumina, aluminum nitride, silicon nitride, magnesium oxide, silicon carbide, boron nitride, carbon fibers, carbon nanotubes, carbon black, graphite, aluminum hydroxide, zinc oxide, magnesium oxide, magnesium hydroxide, and One or more of the metal fillers.
  • the thermally conductive filler boron nitride is in the form of a sphere, a sheet or a fiber, and includes cubic boron nitride, hexagonal boron nitride, diamond boron nitride, and amorphous boron nitride.
  • the spherical structure heat conductive filler has an average particle diameter of 10 ⁇ -200 ⁇ , the sheet-like heat conductive filler has a diameter-thickness ratio of 10-100, and the fiber diameter is distributed at 3-25 ⁇ .
  • the laser-sensitive additive plays an important role in the laser processing of the resin composition. The laser beam is swept over the surface of the product made of the resin composition, and the resin matrix is ablated to form an uneven region, which can increase the bonding strength between the electroless metal plating layer and the resin matrix; on the other hand, the laser sensitive additive is in the laser Under the action of the metal particles, the metal particles are fixed on the uneven resin matrix. In the subsequent electroless plating, the metal particles act as an activation center, and the metal ions in the electroless plating solution are selectively deposited. A metal film is formed.
  • the laser-sensitive additive selected for use in the present invention is a high temperature resistant inorganic additive capable of withstanding temperatures in excess of 600 °C.
  • the smallest structural unit contained in the laser-sensitive additive is a tetrahedral structure and an octahedral structure.
  • the oxygen atoms occupy all the centroid positions and form a dense packing.
  • Two different metal ions are distributed to the tetrahedral center position and the octahedral center position.
  • the center of the tetrahedron is a space between the tetrahedrons surrounded by four oxygen ions
  • the center of the octahedron is a gap between the octahedrons surrounded by six oxygen ions.
  • a complete unit cell structure contains eight tetrahedral atoms, sixteen octahedral atoms, and thirty-two oxygen atoms, so in its structural unit, the ratio of its corresponding simplest atomic number is 1. : twenty four.
  • Y is a metal element derived from the metal atoms of the Di, IB, ⁇ , VIB, VIIB, and ring of the Periodic Table of the Elements, including metals such as chromium, manganese, iron, cobalt, nickel, copper, and zinc. Any one of palladium and aluminum; for specific explanation, please refer to the textbook “Basic of Crystallography", by Qin Shan, published by Peking University Press.
  • the tetrahedral central atom therein is preferably derived from a transition metal atom, most preferably from the fourth period.
  • the octahedral central atom therein is preferably derived from a transition metal atom, most preferably from the fourth period.
  • the mass percentage of the laser-sensitive additive is 0. 01-10wt% o
  • Metal oxide refers to an oxide composed of two elements of a metal element and an oxygen element. These metal elements include magnesium, aluminum, potassium, calcium, titanium, manganese, iron, zinc, copper, and the like.
  • the thin-walled molded part having a thickness of between 0. 2mm and 2. 5mm is particularly suitable for a thin-walled molded part having a thickness of between 0. 2mm and 2. 5mm.
  • the metal oxide can also promote the degradation of the resin, making the laser-scanned area more rough, thereby improving the bonding strength of the metal film and the resin matrix, that is, improving the performance of the test.
  • the amount of the laser-sensitive additive selected for use in the present invention is 5 to 12% by weight.
  • the addition amount of the laser-sensitive additive is more than 12% by weight, the article is liable to cause deterioration such as overflow plating during the electroless plating process, and affects the electrical and electronic functions of the article.
  • the laser-sensitive additive is preferably added in an amount of 5 to 9 wt%.
  • the laser-sensitive additive selected is preferably a copper-manganese type laser-sensitive additive, that is, X is copper in the formula, Y is manganese, and the copper-manganese-type laser-sensitive additive can withstand a high temperature of 600 °C.
  • the intrinsic structure of copper-manganese is destroyed by the action of laser, and the copper ions are reduced to copper atoms, which are attached to the resin after laser ablation to form metal cores. These metal cores are in the process of electroless plating.
  • the role of the activation center is to promote the spontaneous redox reaction in the chemical solution. Without this metal core, this reaction could not be carried out.
  • the invention adopts a copper-manganese type laser sensitive additive, and the copper-manganese type laser sensitive additive can not only provide the copper atoms required for subsequent electroless plating in the laser direct forming process, but also has no toxic metal ions, and is safe. Environmentally friendly features.
  • the preparation method of the resin composition according to the present invention is as follows:
  • thermoplastic or elastomer resin matrix 35-95wt% thermoplastic or elastomer resin matrix; 0-60wt% additive; 5-12wt% laser-sensitive additive; wherein laser-sensitive additive contains metal oxide, metal oxide accounts for laser-sensitive additive
  • the percentage of the total amount is from 0.01 to 10% by weight.
  • Mixture Add the resin matrix, additives, and laser-sensitive additives to a high-speed mixer and mix well;
  • Extrusion The homogeneously mixed material is fed from the main feed hopper, extruded, cooled, and pelletized using a conventional twin-screw extruder. The obtained pellets can be used to produce injection molded products, extruded films, and the like.
  • the resin composition of the present invention can also be obtained by the following preparation method: Weighing material: 35-95 wt% of thermosetting plastic or rubber resin matrix; 0-60 wt% of additive; 5-12 wt% of laser-sensitive additive;
  • the laser sensitive additive contains a metal oxide, and the percentage of the metal oxide to the total amount of the laser sensitive additive is 0. 01- 10wt%.
  • the resin matrix, the additive, and the laser-sensitive additive are uniformly mixed; hot press molding: the obtained resin composition is charged into a suitable mold, heat-treated, and the resin composition is molded by a press molding method as a target article.
  • the above-mentioned modified resin composition capable of depositing a metal thin film can be used for making a film or can be applied to an injection molded product.
  • These films and injection molded parts can be used in smart phone antennas, notebook computers, automobiles, home appliances, mobile terminals and the like.
  • Figure 1 is a schematic diagram of the structure of a laser sensitive additive. detailed description
  • the modified resin composition for depositing a metal thin film of the present invention is made of different components or component contents; then the bonding strength of the metal thin film to the resin matrix is tested, and the test means used includes film thickness Test and Baige test. Further, the flow rate of the modified resin composition was measured by a melt flow rate test, and the test condition of the melt flow rate was 260 ° C / 5 KG. In Comparative Examples 1, 2, and Examples 3 and 4, the melt flow rate test was not performed.
  • Film thickness test which is to test the thickness of metal film deposited by LDS (Laser Direct Structuring) materials in electroless plating, the industry requires that the film thickness distribution within 7-12 ⁇ m is qualified, and the test equipment is Image measuring instrument. 100-gram test, that is, using a utility knife to cut 100 lmm*lmm squares on the metal film, stick it with 3M 610 tape and place it for about 2 minutes, then pull it up vertically, and the falling area of the metal film is less than 5%.
  • the modified resin composition for depositing a metal thin film is prepared by the following components and methods:
  • the resin matrix is PC/ABS alloy, 100 wt%, and the maximum processing temperature is 270 ° C, wherein resin PC and resin ABS are in weight percentage 7 :
  • the ratio of 3 is premixed evenly.
  • the mixture is uniformly fed from the main feed port of the twin-screw extruder, and extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • the modified resin composition for depositing a metal thin film is prepared by the following components and methods:
  • the resin matrix is PC/ABS alloy, 96 wt%, and the maximum processing temperature is 270 ° C, wherein resin PC and resin ABS are in weight percentage 7 :
  • the ratio of 3 is premixed evenly.
  • the laser-sensitive additive uses a copper-manganese laser-sensitive additive (purchased from Kohler Co., Ltd., the same below) containing no metal oxide, and the addition amount is 4 wt%.
  • the laser-sensitive additive is uniformly mixed with the resin matrix from the twin-screw extruder.
  • the feed port is fed, extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • the resin matrix is polyamide PA66, 65 wt%, the maximum processing temperature is 290 ° C ; the additive is glass fiber (purchased from Boulder Group), 30 wt%, the length distribution is 0. lmm-5 mm, and the diameter is distributed in lum-15um.
  • the laser sensitive additive uses a copper-manganese type laser sensitive additive containing zinc oxide in an amount of 5 wt%, wherein the addition amount of zinc oxide accounts for the laser sensitive additive. 5 wt%.
  • the laser sensitive additive is uniformly mixed with the resin matrix from the main feed port of the twin-screw extruder, and the glass fiber is fed from the side feed port of the twin-screw extruder, and is extruded and granulated to obtain a selectively depositable metal film.
  • Modified resin composition is uniformly mixed with the resin matrix from the main feed port of the twin-screw extruder, and the glass fiber is fed from the side feed port of the twin-screw extruder, and is extruded and granulated to obtain a selectively depositable metal film.
  • the resin matrix is thermotropic liquid crystal polymer LCP, 48wt%, the maximum processing temperature is 350°C; the additive is talc, 40wt%, sheet structure, and the ratio of diameter to thickness is 5-100.
  • the laser sensitive additive uses a copper-manganese type laser sensitive additive containing no metal oxide, and the added amount is 12wt%.
  • the laser sensitive additive and the resin matrix are uniformly mixed from the main feed port of the twin-screw extruder, and the talcum powder is fed from the double The side feed port of the screw extruder is fed, and extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • Comparative Examples 1 and 2 Comparing Comparative Examples 1 and 2 with Examples 3 and 4, it can be seen that when the amount of the laser-sensitive additive added in the modified resin composition is 5% to 12%, the film thickness test of the modified resin composition is qualified and the test is changed. The resin composition has good bonding strength. Comparative example 5
  • the resin matrix was a PC alloy, 100 wt%, and the maximum processing temperature was 270 ° C.
  • the feed was fed from a main feed port of a twin-screw extruder, and extruded and pelletized to obtain a modified resin composition capable of selectively depositing a metal thin film.
  • the resin matrix is PC alloy, 93wt%, the maximum processing temperature is 270°C, and the laser sensitive additive uses copper-manganese type laser sensitive additive containing zinc oxide, the added amount is 7wt%, and the triiron tetroxide accounts for 0. 005 wt%, the laser sensitive additive is uniformly mixed with the resin matrix, fed from the main feed port of the twin-screw extruder, and extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • the resin matrix is PC alloy, 93wt%, the maximum processing temperature is 270°C, and the laser sensitive additive uses copper-manganese type laser sensitive additive containing zinc oxide, the added amount is 7wt%, and the triiron tetroxide accounts for 0. 01wt%, the laser sensitive additive and the resin matrix are uniformly mixed and fed from the main feeding port of the twin-screw extruder, and extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • the resin matrix is PC alloy, 93wt%, the maximum processing temperature is 270°C, and the laser sensitive additive uses a copper-manganese type laser sensitive additive containing triiron tetroxide in an amount of 7wt%, wherein the triiron tetroxide accounts for the laser sensitive additive. 10wt%, the laser sensitive additive is uniformly mixed with the resin matrix, and then fed from the main feed port of the twin-screw extruder, and extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • the resin matrix is PC alloy, 90wt%, the maximum processing temperature is 270°C, and the laser sensitive additive uses a copper-manganese type laser sensitive additive containing triiron tetroxide in an amount of 10wt%, wherein the triiron tetroxide accounts for the laser sensitive additive. 10wt%, the laser sensitive additive is uniformly mixed with the resin matrix, and then fed from the main feed port of the twin-screw extruder, and extruded and granulated to obtain a modified resin composition capable of selectively depositing a metal film.
  • the resin matrix is made of nylon PA6T/66 35wt%
  • the thermal conductive filler is 30wt% boron nitride and 20wt% magnesium oxide
  • the copper-manganese laser sensitive additive is 5wt%
  • the zinc oxide accounts for 4wt% of the laser sensitive additive content
  • the nano-alumina is 2wt%.
  • Glass fiber from Jushi Group Co., Ltd. 8wt% 0
  • the resin matrix is made of polycarbonate PC, 28wt%, the thermal conductive filler is 30wt% boron nitride and 20wt% magnesium oxide, the copper-manganese laser sensitive additive is 12wt%, the zinc oxide accounts for 7wt% of the laser sensitive additive content, and the nano-alumina is 2wt%. , glass fiber 8wt%.
  • the boron nitride selected was a microscopic sheet structure having an average particle diameter of about 150 ⁇ m and a diameter to thickness ratio of about 20; magnesium nitride was a microscopic spherical structure, and the average particle diameter was about 20 ⁇ ⁇ ; nano-alumina is a microscopic spherical structure, the average particle size is about 20 m; the average particle diameter of the copper-manganese laser-sensitive additive is 1. 8 ⁇ 0. 3 ⁇ ⁇ , and the specific surface area is more than 35000 cm 2 /cm 3 .
  • the thermal conductivity test standard is ISO 8301. The results are shown in Table 3.

Abstract

本发明提供一种用于沉积金属薄膜的改性树脂组合物、制备所述改性树脂组合物的方法以及该改性树脂组合物的应用。所述改性树脂组合物包括:树脂基体:35-95wt%;添加剂:0-60wt%;激光敏感添加剂:5-12wt%;所述激光敏感添加剂的化学通式为XY2O4,等轴晶系,参摘要附图,轴长a=b=c,轴角α=β=γ=90°;X与Y均为金属元素,来自元素周期表中第ⅢA族、ⅠB族、ⅡB族、ⅥB族、ⅦB族、或Ⅷ族;激光敏感添加剂包含有金属氧化物,金属氧化物占激光敏感添加剂的0.01-10wt%。本发明改性树脂组合物在激光作用下,激光敏感添加剂有金属颗粒释出,在后续无电化学镀中,金属颗粒起到活化中心的作用,使化学镀液中的金属离子有选择性地沉积下来,形成金属薄膜,可用于表面贴装技术(SMT)的制件。

Description

说明书 用于沉积金属薄膜的改性树脂组合物、 其制备方法以及其应用 技术领域
本发明涉及一种树脂组合物,尤其涉及用于沉积金属薄膜的改性 树脂组合物, 其制备方法以及其应用。 背景技术
在树脂基体上有选择性地沉积金属薄膜,不但可以保持树脂基体 的绝缘性, 还可以在制件上制作出复杂的三维超细导电电路。
有两种方法可以实现上述目的:第一种方案是将已成型电路金属 片通过冲压的方式, 压在树脂基体上制成制件; 第二种方案是先将添 加有激光敏感添加剂的树脂注塑成制件,然后通过激光成型工艺和无 电化学镀, 将化学药水中的金属有选择性地沉积在激光扫描过的区 域, 形成具有导电功能的电路金属薄膜。
这些金属贴片或金属薄膜在生产电子电气制件和导电电路中起 着关键的作用。 在制作 3D电路时, 若金属贴片和树脂基体的粘结力 不够强, 容易产生金属片翘起等缺陷。 并因流程多、 人力资源投入大 等因素, 金属贴片方案逐渐被淘汰, 取而代之的是第二种方案。
在第二种方案的工艺制程中, 激光敏感添加剂起着关键的作用。 目前使用的激光敏感添加剂可分为有机和无机两大类。
中国专利 ZL03814691. 6以及美国专利 US 007393555B2公开了一 种作为金属铜沉积前体的草酸二铜 (I ) 络合物及其合成方法。 草酸 二铜 (I ) 络合物是一种激光敏感添加剂, 属于有机类, 从草酸二铜 ( I ) 络合物的热失重曲线可以看出, 其超过 50^%热失重分解温度 低于 200°C, 在温度高于 250°C时, 失重更加严重。 中国专利 200910106506. X公开了一种立体电路制造工艺及激光 塑胶原料的复合组分以及制造方法,其铜络合物为改性草酸二铜络合 物, 属于有机类, 没有明确提到此络合物的物性特征、 分解温度以及 明确的化学结构。
中国专利 ZL 03802302. 4公开了一种通过原子层沉积来沉积铜膜 的挥发性铜(Π )配合物, 此铜配合物的沉积原理属于化学气相沉积 (CVD) ,在 0-120°C下进行,基材为铜、硅片和有阻隔层的二氧化硅, 没有特别提到这种工艺具有选择性沉积铜膜的功能。
美国专利 US 006207344B1公开了一种用于激光打标的组合物, 激光敏感添加剂为含铜无机添加剂; 美国专利 US 20040241422A1公 开了一种激光直接成型方法的加工工艺以及所采用的树脂基体特征, 提到所使用的激光敏感添加剂为含铜无机添加剂; 同样, 美国专利
US 20090292051A1、 PCT 专利 WO 2009141799A1、 美国专利 US
20090292048A1同时公开了适合于激光直接成型的树脂基体中的激光 敏感添加剂为含铜无机添加剂。
通过以上分析可知, 在激光直接成型制程中, 激光敏感添加剂起 着重要的作用, 然金属薄膜与树脂基体的粘结强度欠佳, 且仅含铜有 机激光敏感添加剂耐热温度有限, 不适合耐高温树脂加工过程, 比如 耐高温尼龙, 加工温度 320-340°C, 液晶聚合物 LCP的加工温度更是 高达 350°C ; 含铜和铬的无机激光敏感添加剂可以耐高温, 上述的含 铜无机激光敏感添加剂中如果包含有三价的铬,其在激光的作用下会 发生如下的化学反应: (iU3÷+ C^ 上式中的产物有六价金 属铬离子, 是有毒的。 发明内容
为了克服现有技术的缺点与不足,本发明的目的在于提供一种金 属薄膜与树脂基体的粘结强度佳、耐热温度高, 用于沉积金属薄膜的 改性树脂组合物。
本发明所采用的技术方案是,一种用于沉积金属薄膜的改性树脂 组合物, 包括以下组分:
树脂基体: 35-95wt%;
添加剂: 0-60wt%; 以及
激光敏感添加剂: 5_12wt%
其中, 所述激光敏感添加剂的化学通式为 XY204, 等轴晶系, 参 见附图 1, 轴长 a=b=c, 轴角 α = β = Υ =90° ; X与 Υ均为金属元素, 来自元素周期表中第 ΠΙΑ族、 I B族、 II B族、 VIB族、 VIIB族、 或環 族; 激光敏感添加剂包含有金属氧化物, 金属氧化物占激光敏感添加 剂的 0. 01-10wt%o
本发明所选用的树脂基体包括热塑性塑料、热固性塑料、橡胶或 弹性体。
其中, 热塑性树脂包括: 聚碳酸酯 (PC)、 丙烯腈-丁二烯 -苯乙 烯共聚物 (ABS )、 聚碳酸酯与丙烯腈-丁二烯-苯乙烯任意比组合物 (PC/ABS)、 液晶聚合物(LCP)、 聚酰胺 (PA)、 聚苯硫醚(PPS)、 聚 苯醚 (PPE)、 聚砜、 聚芳酯、 聚醚醚酮 (PEEK)、 聚醚酮酮 (PEKK)、 聚醚醚酮酮(PEEKK)、热塑性聚酰亚胺(TPI )、聚縮醛、聚乙烯(ΡΕ)、 聚丙烯(ΡΡ)、 聚苯乙烯(PS)、 聚四氟乙烯 (PTFE)、 聚丙烯酸酯类、 苯乙烯-丙烯腈共聚物 (SA)、 聚对苯二甲酸丁二醇酯 (PBT) 以及聚 对苯二甲酸乙二醇酯(PET)、 聚对苯二甲酸环己二醇酯, 或者包括至 少一种上述聚合物的组合物。
更优选地, 所选用的聚酰胺树脂包括脂肪族聚酰胺、半芳香族聚 酰胺、 或者半芳香族聚酰胺与脂肪族聚酰胺的共混组合物。
更优选地, 所选用脂肪族聚酰胺碳链由 4-36个碳原子组成, 典 型的脂肪族聚酰胺包括 PA6、 PA66、 PA610、 PA612, PA1010、 PA11、 PA12、 PA1012中的一种或者多种的组合物, 但不局限于这些组合。
更优选地, 所述半芳香族聚酰胺由二元羧酸单元和二胺单元组 成, 其中二元羧酸单元包括 45-100摩尔百分比的芳香族二羧酸单元 和 0-55摩尔百分比的具有 4-12个碳原子的脂肪族二羧酸单元,二胺 单元为 4-14个碳原子直链脂肪族二元胺、 支链脂肪族二元胺或脂环 族二元胺。
更进一歩优选地, 芳香族二羧酸单元包括对苯二甲酸、 间苯二甲 酸、 2-甲基对苯二甲酸、 2, 5-二氯对苯二甲酸、 2, 6-二氯对苯二甲酸、 1, 4-萘二甲酸、 4, 4' -联苯二甲酸或 2, 2 ' -联苯二甲酸。
更进一歩优选地, 脂肪族二羧酸单元包括 1,4-丁二酸、 1,6-己 二酸、 1,8-辛二酸、 1,9-壬二酸、 1, 10-癸二酸、 l,l l- ^一垸二酸、 或 1, 12-十二垸二酸。
更进一歩优选地, 直链脂肪族二元胺包括 1,4-丁二胺、 1,6-己 二胺、 1,8-辛二胺、 1,9-壬二胺、 1, 10-癸二胺、 l,l l- ^一碳二胺、 或 1, 12-十二碳二胺。
更进一歩优选地, 支链脂肪族二元胺包括 2-甲基 -1, 5-戊二胺、 3-甲基 -1, 5-戊二胺、 2, 4-二甲基 -1, 6-己二胺、 2, 2, 4-三甲基 -1, 6- 己二胺、 2, 4, 4-三甲基 -1, 6-己二胺、 或 2-甲基 -1, 8-辛二胺或 5-甲 基 -1, 9-壬二胺。
更进一歩优选地, 脂环族二元胺包括环己垸二胺、 甲基环己垸二 胺或 4, 4 ' -二氨基二环己基甲垸。
所述热固性塑料包括: 环氧树脂、 酚醛树脂、 不饱和聚酯、 聚酰 亚胺树脂, 或者包括至少一种前述聚合物的组合物。
所述橡胶包括天然橡胶和合成橡胶,或者包括至少一种前述聚合 物的组合物。
所述弹性体包括苯乙烯类弹性体、聚烯烃类弹性体、聚酯弹性体、 聚酰胺弹性体和聚氨酯弹性体,或者包括至少一种前述聚合物的组合
添加剂在树脂基体中起到改善某一性能的作用, 比如增强作用、 增韧作用、 提高阻燃性、 提高加工稳定性以及改善产品外观等。这些 添加剂包括: 纤维、 增韧剂、 阻燃剂、 成核剂、 润滑剂、 脱模剂、 抗 氧剂、 矿物填料、 固化剂、 耐候剂等。
优选地, 所述的纤维增强剂为碳纤维、 玻璃纤维、硼纤维或矿物 纤维中的一种或几种的组合物; 进一歩优选地, 所述的玻璃纤维为短切玻璃纤维、异形横截面玻 璃纤维或磨碎玻璃纤维, 单丝直径为 5-20um;
优选地, 所述的矿物填料可以是圆状、 针状或片状;
优选地,所述的矿物填料包括滑石粉、硅灰石、钛白粉、高岭土、 云母、 硫酸钡、 实心空心玻璃微珠、 碳酸钙、 钛酸钡、 高岭土或钛酸 铜钙中的一种以上。
所述改性树脂组合物进一歩包括导热填料,用以改善改性树脂组 合物的导热性能。
导热填料包括氧化铝、 氮化铝、 氮化硅、 氧化镁、 碳化硅、 氮化 硼、 碳纤维、 碳纳米管、 炭黑、 石墨、 氢氧化铝、 氧化锌、 氧化镁、 氢氧化镁、 以及金属填料中的一种或多种。
所述导热填料氮化硼为球状、片状或纤维形式, 包括立方形氮化 硼、 六方氮化硼、 菱形氮化硼以及无定形氮化硼。
所述球状结构导热填料的平均粒径在 10 μ πι-200 μ πι, 片状导热 填料的径厚比在 10-100, 纤维直径分布在 3-25 μ πι。所述激光敏感添 加剂对树脂组合物在激光加工过程中起着重要的作用。激光光束在树 脂组合物制成的制品表面扫过, 将树脂基体烧蚀掉, 形成凹凸不平的 区域, 可以增加化学镀金属层与树脂基体的粘结强度; 另一方面, 激 光敏感添加剂在激光的作用下,还原出金属颗粒附着在凹凸不平的树 脂基体上,在后续无电化学镀中,这些金属颗粒起到活化中心的作用, 促使化学镀液中的金属离子有选择性地沉积下来, 形成金属薄膜。
本发明所选用的激光敏感添加剂是一种耐高温无机添加剂,所能 够承受的温度超过 600°C。 激光敏感添加剂中所包含的最小结构单元 为四面体结构和八面体结构。其中氧原子占据所有面心位置, 组成密 堆积,两种不同的金属离子分别分布到四面体中心位置和八面体中心 位置。 四面体中心位置为四个氧离子围成的四面体中间的空隙, 八面 体中心位置为六个氧离子围成的八面体中间的空隙。通常,一种完整 的晶胞结构中含有八个四面体原子、十六个八面体原子以及三十二个 氧原子, 所以在其结构单元中, 其对应的最简原子个数的比例为 1 : 2 : 4。
本发明所选用的激光敏感添加剂其化学通式为 XY204, 属等轴晶 系, 轴长 a=b=c, 轴角 α = β = γ =90 ° ; 其中, X为金属元素, 来自元 素周期表中第 IIIA族、 I B族、 ΠΒ族、 VIB族、 VIIB族、 環族的金属 原子, 包括金属铬、 锰、 铁、 钴、 镍、 铜、 锌、 钯、 铝中的任意一种; Y为金属元素, 来自元素周期表中第 ΙΠΑ族、 I B族、 Π Β族、 VIB族、 VIIB族、 環族的金属原子, 包括金属铬、 锰、 铁、 钴、 镍、 铜、 锌、 钯、 铝的任意一种; 具体说明可参考教材《晶体学基础》, 作者秦善, 北京大学出版社出版。
其中的四面体中心原子优选来自于过渡金属原子,最优选来自于 第四周期。
其中的八面体中心原子优选来自于过渡金属原子,最优选来自于 第四周期。
本发明所选用的激光敏感添加剂包含有金属氧化物,金属氧化物 占激光敏感添加剂的质量百分比为 0. 01-10wt%o
金属氧化物是指金属元素与氧元素 2种元素组成的氧化物。这些 金属元素包括镁、 铝、 钾、 钙、 钛、 锰、 铁、 锌、 铜等。
意想不到的是,这些金属氧化物可以明显降低树脂组合物的熔体 粘度, 提高其流动性, 使得聚合物更易于成型, 特别适合厚度在 0. 2mm-2. 5mm间的薄壁成型制件。 并且在激光的作用下, 金属氧化物 还可以促进树脂降解, 使得激光扫描过的区域变得更加粗糙, 从而提 高金属薄膜与树脂基体的粘结强度, 即提高百格测试的性能。
本发明所选用的激光敏感添加剂的量为 5_12wt%。 当激光敏感添 加剂的添加量大于 12wt%时, 制件在无电化学镀的过程中容易引起溢 镀等劣化现象, 影响制件的电子电气功能。较佳地, 所述激光敏感添 加剂的添加量优选为 5_9wt%。
所选用的激光敏感添加剂优选为铜-锰型激光敏感添加剂, 即通 式中 X为铜, Y为锰, 铜-锰型激光敏感添加剂能够耐 600°C的高温。 其中铜 -锰的固有结构在激光的作用下被破坏, 铜离子被还原为铜原 子, 附着在被激光烧蚀以后的树脂上, 形成金属核, 在无电化学镀的 过程中这些金属核起着活化中心的作用,从而促使化学药水中的氧化 还原反应能够自发地进行。如果没有这个金属核,则此反应无法进行。 低价态的锰离子在激光的作用下, 被氧化成高价态的锰离子, 不论是 低、 高价态的锰离子, 都是无毒的。 需要说明的是, 如果采用铜-锰 型激光敏感添加剂, 低价态的铬离子是无毒的, 而高价态的铬离子就 变成了有毒的金属离子。 因此, 本发明采用铜-锰型激光敏感添加剂, 铜-锰型激光敏感添加剂不但可以在激光直接成型制程中提供后续无 电化学镀所需要的铜原子, 而且没有有毒金属离子的产生, 具有安全 环保的特点。
本发明所涉及的树脂组合物的制备方法如下:
称取物料: 35-95wt%的热塑性塑料或弹性体树脂基体; 0-60wt% 的添加剂; 5_12wt%的激光敏感添加剂; 其中, 激光敏感添加剂中包 含有金属氧化物, 金属氧化物占激光敏感添加剂的总量百分比为 0. 01- 10wt%。
混合物料: 将树脂基体、添加剂、 激光敏感添加剂加入到高速混 合机中, 混合均匀;
挤出成型: 混合均匀的物料从主喂料斗中进料, 采用普通双螺杆 挤出机挤出, 冷却, 切粒。 得到的粒料可以用来制作注塑产品、 挤出 薄膜等。
本发明所涉及的树脂组合物, 也可以通过如下的制备方法得到: 称取物料: 35-95wt%的热固性塑料或橡胶树脂基体; 0-60wt% 的添加剂; 5_12wt%的激光敏感添加剂; 其中, 激光敏感添加剂中包 含有金属氧化物, 金属氧化物占激光敏感添加剂的总量百分比为 0. 01- 10wt%。
混合物料: 将树脂基体、 添加剂、 激光敏感添加剂混合均匀; 热压成型:将所得到的树脂组合物装入合适的模具中,加热处理, 并采用压制成型法成型树脂组合物为目标制件。
上述可沉积金属薄膜的改性树脂组合物可以被用来制作薄膜,也 可以应用到注塑产品中。这些薄膜以及注塑制件可以应用于智能手机 天线、 笔记本电脑、 汽车、 家电、 移动终端等领域。 附图说明
图 1为激光敏感添加剂结构示意图。 具体实施方式
下面结合实施例和对比例对本发明用于沉积金属薄膜的改性树 脂组合物、 制备方法、 效果以及用途作进一歩详细的描述, 但本发明 的实施方式不限于此。 下述实施例或对比例中,用于沉积金属薄膜的改性树脂组合物通 过不同组分或组分含量制成;然后测验金属薄膜与树脂基体的粘结强 度, 采用的测试手段包括膜厚测试以及百格测试。 另外, 通过熔体流 动速率测试以测量改性树脂组合物的流动性,熔体流动速率的测试条 件为 260°C /5KG。 其中对比例 1、 2 , 以及实施例 3、 4未进行熔体流 动速率测试。
膜厚测试, 即为测试 LDS (Laser Direct Structuring, 激光直接成 型)材料在无电化学镀中沉积的金属薄膜厚度, 行业内要求薄膜厚度 分布在 7-12 μ m内即为合格, 测试设备为影像量测仪。 百格测试,即用美工刀在金属薄膜上切割 100个 lmm*lmm的方格, 用 3M 610胶带黏贴后放置约 2min后垂直拉起, 金属薄膜的脱落面积 〈5%即为合格。
对比例 1
用于沉积金属薄膜的改性树脂组合物,由以下组分与方法制备得 到: 树脂基体为 PC/ABS合金, 100wt%, 最高加工温度 270°C, 其中 树脂 PC与树脂 ABS按照重量百分比 7 : 3的比例预混均匀。 混合均匀 从双螺杆挤出机主喂料口进料, 挤出造粒, 得到可选择性沉积金属薄 膜的改性树脂组合物。
对比例 2
用于沉积金属薄膜的改性树脂组合物,由以下组分与方法制备得 到: 树脂基体为 PC/ABS合金, 96wt%, 最高加工温度 270°C, 其中树 脂 PC与树脂 ABS按照重量百分比 7 : 3的比例预混均匀。 激光敏感添 加剂采用不含有金属氧化物的铜-锰型激光敏感添加剂 (购自科勒有 限公司, 下同), 添加量为 4wt%, 将激光敏感添加剂与树脂基体混合 均匀从双螺杆挤出机主喂料口进料, 挤出造粒, 得到可选择性沉积金 属薄膜的改性树脂组合物。
实施例 3
树脂基体为聚酰胺 PA66, 65wt%, 最高加工温度 290°C ; 添加剂 为玻璃纤维 (购自巨石集团), 30wt%, 长度分布在 0. lmm-5mm, 直径 分布在 lum-15um。 激光敏感添加剂采用含有氧化锌的铜 -锰型激光敏 感添加剂, 添加量为 5wt%, 其中氧化锌的添加量占激光敏感添加剂 的 5wt%。 将激光敏感添加剂与树脂基体混合均匀从双螺杆挤出机主 喂料口进料, 玻璃纤维从双螺杆挤出机的侧喂料口进料, 挤出造粒, 得到可选择性沉积金属薄膜的改性树脂组合物。
实施例 4
树脂基体为热致液晶聚合物 LCP, 48wt%, 最高加工温度 350°C ; 添加剂为滑石粉, 40wt%, 片状结构, 径厚比分布在 5-100。 激光敏 感添加剂采用不含有金属氧化物的铜-锰型激光敏感添加剂, 添加量 为 12wt%, 将激光敏感添加剂与树脂基体混合均匀从双螺杆挤出机主 喂料口进料, 滑石粉从双螺杆挤出机的侧喂料口进料, 挤出造粒, 得 到可选择性沉积金属薄膜的改性树脂组合物。
以上对比例和实施例的测试结果如表 1所示:
表 1 测试结果对照表
Figure imgf000013_0001
通过对比例 1、 2与实施例 3、 4比较可知, 改性树脂组合物中激 光敏感添加剂的添加量在 5%_12%时, 改性树脂组合物的膜厚测试与 百格测试合格, 改性树脂组合物的粘结强度好。 对比例 5
树脂基体为 PC合金, 100wt%, 最高加工温度 270°C, 从双螺杆 挤出机主喂料口进料, 挤出造粒, 得到可选择性沉积金属薄膜的改性 树脂组合物。
对比例 6
树脂基体为 PC合金, 93wt%, 最高加工温度 270°C, 激光敏感添 加剂采用含有氧化锌的铜-锰型激光敏感添加剂, 添加量为 7wt%, 其 中四氧化三铁占激光敏感添加剂的 0. 005wt%, 将激光敏感添加剂与 树脂基体混合均匀从双螺杆挤出机主喂料口进料, 挤出造粒, 得到可 选择性沉积金属薄膜的改性树脂组合物。
实施例 7
树脂基体为 PC合金, 93wt%, 最高加工温度 270°C, 激光敏感添 加剂采用含有氧化锌的铜-锰型激光敏感添加剂, 添加量为 7wt%, 其 中四氧化三铁占激光敏感添加剂的 0. 01wt%,将激光敏感添加剂与树 脂基体混合均匀从双螺杆挤出机主喂料口进料, 挤出造粒, 得到可选 择性沉积金属薄膜的改性树脂组合物。
实施例 8
树脂基体为 PC合金, 93wt%, 最高加工温度 270°C, 激光敏感添 加剂采用含有四氧化三铁的铜-锰型激光敏感添加剂,添加量为 7wt%, 其中四氧化三铁占激光敏感添加剂的 10wt%, 将激光敏感添加剂与树 脂基体混合均匀后从双螺杆挤出机主喂料口进料, 挤出造粒, 得到可 选择性沉积金属薄膜的改性树脂组合物。 实施例 9
树脂基体为 PC合金, 90wt%, 最高加工温度 270°C, 激光敏感添 加剂采用含有四氧化三铁的铜-锰型激光敏感添加剂, 添加量为 10wt%, 其中四氧化三铁占激光敏感添加剂的 10wt%, 将激光敏感添 加剂与树脂基体混合均匀后从双螺杆挤出机主喂料口进料, 挤出造 粒, 得到可选择性沉积金属薄膜的改性树脂组合物。
对比例 5、 对比例 6和实施例 7和实施例 8和实施例 9的测试结 果如表 2所示:
表 2 对比例 5-6以及实施例 7-9测试结果对照表
Figure imgf000015_0001
通过对比例 5、 6和实施例 7、 8比较可知, 激光敏感添加剂中, 金属氧化物占激光敏感添加剂 0. 01¾^%-10¾^%时, 组合物的熔体流动 速率增大, 改进了树脂组合物的流动性, 膜厚与百格测试合格。
实施例 10
树脂基体选用尼龙 PA6T/66 35wt%, 导热填料选用氮化硼 30wt% 和氧化镁 20wt%,铜锰型激光敏感添加剂 5wt%, 氧化锌占激光敏感添 加剂含量的 4wt%, 纳米氧化铝 2wt%, 玻璃纤维 (来自巨石集团有限 公司) 8wt%0
实施例 11
树脂基体选用聚碳酸酯 PC, 28wt%, 导热填料选用氮化硼 30wt% 和氧化镁 20wt%,铜锰型激光敏感添加剂 12wt%,氧化锌占激光敏感添 加剂含量的 7wt%, 纳米氧化铝 2wt%, 玻璃纤维 8wt%。
在实施例 10和 11中, 所选用的氮化硼为微观片状结构, 平均粒 径约为 150 μ πι, 直径与厚度比约为 20; 氮化镁为微观球状结构, 平 均粒径约为 20 μ πι; 纳米氧化铝为微观球状结构, 平均粒径约为 20 m; 铜锰型激光敏感添加剂的平均粒子直径为 1. 8 ± 0. 3 μ πι, 比 表面积大于 35000cm2/cm3。 导热系数的测试标准为 ISO 8301。 结果如 表 3所示。
表 3 实施例 10-11测试结果
Figure imgf000016_0001
Figure imgf000017_0001
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不 受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下 所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都 包含在本发明的保护范围之内。

Claims

1.种用于沉积金属薄膜的改性树脂组合物, 包括以下重量组分: 树脂基体: 35-95wt%;
添加剂: 0-60wt%; 以及
激光敏感添加剂: 5_12wt% ;
其中, 所述激光敏感添加剂的化学通式为 XY204, 等轴晶系, 轴 长相等, 轴角相同均为 90° ; X与 Υ均为金属元素, 来自元素周期 表中第 ΙΠΑ族、 I B族、 Π Β族、 VIB族、 VIIB族、 或環族; 激光敏感 添加剂包含有金属氧化物, 金属氧化物占激光敏感添加剂的 0. 01- 10wt%。
2.根据权利要求 1所述的改性树脂组合物, 其特征在于: 所述 X 金属元素与所述 Y金属元素分别包括铬、 锰、 铁、 钴、 镍、 铜、 锌、 钯、 铝中的一种。
3.根据权利要求 1所述的树脂组合物, 其特征在于: 所述树脂基 体包括热塑性树脂、 热固性树脂、 橡胶或弹性体。
4.根据权利要求 3所述的树脂组合物, 其特征在于: 所述热塑性 树脂包括: 聚碳酸酯、 丙烯腈 -丁二烯-苯乙烯共聚物、 液晶聚合物、 聚酰胺组合物、 聚苯硫醚、 聚苯醚、 聚砜、 聚芳酯、 聚醚醚酮、 聚醚 酮酮、 聚酰亚胺、聚縮醛、聚乙烯、聚丙烯、 聚苯乙烯、聚四氟乙烯、 聚丙烯酸类、 苯乙烯-丙烯腈共聚物、 聚对苯二甲酸丁二醇酯、 聚对 苯二甲酸乙二醇酯中的一种或多种的组合物。
5.根据权利要求 3所述的树脂组合物, 其特征在于: 所述热固性 树脂包括: 聚酰亚胺树脂、 不饱和聚脂、 环氧树脂、 酚醛树脂中的一 种或多种的组合物。
6. 根据权利要求 3所述的树脂组合物, 其特征在于: 所述橡胶 包括天然橡胶和合成橡胶中的一种或多种的组合物。
7. 根据权利要求 3所述的树脂组合物, 其特征在于: 所述弹性 体包括苯乙烯类弹性体、 聚烯烃类弹性体、 聚酯弹性体、 聚酰胺弹性 体和聚氨酯弹性体中的一种或多种的组合物。
8.根据权利要求 1所述的树脂组合物, 其特征在于: 所述激光敏 感添加剂的添加量为 5_9wt%。
9.根据权利要求 1所述的树脂组合物, 其特征在于: 所述激光敏 感添加剂为铜-锰型激光敏感添加剂, 即所述化学通式中 X 为铜, Y 为锰。
10.根据权利要求 1所述的树脂组合物, 其特征在于: 所述金属 氧化物中金属元素包括镁、 铝、 钾、 钙、 钛、 锰、 铁、 锌、 以及铜。
11.根据权利要求 1所述的树脂组合物, 其特征在于: 所述添加 剂包括纤维、 增韧剂、 阻燃剂、 成核剂、 润滑剂、 脱模剂、 抗氧剂、 矿物填料、 固化剂、 或耐候剂。
12.根据权利要求 1-11 任意一项所述的树脂组合物, 其特征在 于: 所述树脂组合物进一歩包括导热填料, 导热填料包括氧化铝、 氮 化铝、 氮化硅、氧化镁、碳化硅、氮化硼、碳纤维、碳纳米管、 炭黑、 石墨、 氢氧化铝、 氧化锌、 氧化镁、 氢氧化镁、 或金属填料中的一种 或多种。
13. 一种根据权利要求 1-12任意一项所述的树脂组合物的制备 方法, 包括以下歩骤:
称取物料: 35-95wt%的热塑性塑料或弹性体树脂基体; 0-60wt% 的添加剂; 5_12wt%的激光敏感添加剂; 其中, 激光敏感添加剂中包 含有金属氧化物, 金属氧化物占激光敏感添加剂的总量百分比为 0. 01_10wt%。 混合物料: 将树脂基体、 添加剂、 激光敏感添加剂加入到高速混 合机中, 混合均匀;
挤出成型: 混合均匀的物料从主喂料斗中进料, 采用双螺杆挤出 机挤出, 冷却, 切粒。
14.一种根据权利要求 1-12 任意一项所述的树脂组合物的制备 方法, 包括以下歩骤:
称取物料: 35-95wt%的热固性塑料或橡胶树脂基体; 0-60wt% 的添加剂; 5_12wt%的激光敏感添加剂; 其中, 激光敏感添加剂中包 含有金属氧化物, 金属氧化物占激光敏感添加剂的总量百分比为 0. 01- 10wt%。
混合物料: 将树脂基体、 添加剂、 激光敏感添加剂混合均匀; 热压成型: 将所得到的树脂组合物装入模具中, 加热处理, 并采 用压制成型法成型树脂组合物。
15. 一种权利要求 1-12任意一项所述的树脂组合物用于制作薄 膜、 注塑、 模压产品的用途。
PCT/CN2012/078635 2012-07-13 2012-07-13 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用 WO2014008669A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078635 WO2014008669A1 (zh) 2012-07-13 2012-07-13 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078635 WO2014008669A1 (zh) 2012-07-13 2012-07-13 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用

Publications (1)

Publication Number Publication Date
WO2014008669A1 true WO2014008669A1 (zh) 2014-01-16

Family

ID=49915340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078635 WO2014008669A1 (zh) 2012-07-13 2012-07-13 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用

Country Status (1)

Country Link
WO (1) WO2014008669A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110087A1 (en) * 2014-01-27 2015-07-30 Byd Company Limited Method for metalizing polymer substrate and polymer article prepared thereof
CN105111727A (zh) * 2015-09-07 2015-12-02 东莞市宝临塑胶有限公司 一种导热尼龙复合材料及其制备方法
CN105524406A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 耐低温耐磨peek/ptfe复合材料及其制备方法
CN112375307A (zh) * 2020-11-02 2021-02-19 浙江苗艺阀门股份有限公司 一种环保塑基导热材料及其制备方法
CN114479410A (zh) * 2022-02-16 2022-05-13 无锡赢同新材料科技有限公司 一种低介电损耗lds工程塑料及其制备方法
US11649357B2 (en) 2018-03-21 2023-05-16 Shpp Global Technologies B.V. Laser platable thermoplastic compositions with good flame retardancy, high heat property and good ductility and shaped articles made therefrom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769348A (zh) * 2004-10-20 2006-05-10 E.I.内穆尔杜邦公司 接受选择性金属化的可光活化聚酰亚胺组合物、制备方法和相关组合物
EP1734071A1 (en) * 2005-06-15 2006-12-20 E.I.Du pont de nemours and company Light-activatable polymer compositions
US20090263639A1 (en) * 2004-10-20 2009-10-22 E. I. Du Pont De Nemours And Company Light activatable polyimide compositions for receiving selective metalization, and methods and compositions related thereto
CN102066473A (zh) * 2008-05-23 2011-05-18 沙伯基础创新塑料知识产权有限公司 高介电常数激光直接结构化材料
WO2011076729A1 (en) * 2009-12-21 2011-06-30 Mitsubishi Chemical Europe Gmbh Aromatic polycarbonate composition
CN102643535A (zh) * 2012-05-04 2012-08-22 金发科技股份有限公司 一种改性树脂组合物及其制备方法与应用
CN102675865A (zh) * 2012-05-04 2012-09-19 金发科技股份有限公司 一种聚酰胺树脂组合物及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769348A (zh) * 2004-10-20 2006-05-10 E.I.内穆尔杜邦公司 接受选择性金属化的可光活化聚酰亚胺组合物、制备方法和相关组合物
US20090263639A1 (en) * 2004-10-20 2009-10-22 E. I. Du Pont De Nemours And Company Light activatable polyimide compositions for receiving selective metalization, and methods and compositions related thereto
EP1734071A1 (en) * 2005-06-15 2006-12-20 E.I.Du pont de nemours and company Light-activatable polymer compositions
CN102066473A (zh) * 2008-05-23 2011-05-18 沙伯基础创新塑料知识产权有限公司 高介电常数激光直接结构化材料
WO2011076729A1 (en) * 2009-12-21 2011-06-30 Mitsubishi Chemical Europe Gmbh Aromatic polycarbonate composition
CN102643535A (zh) * 2012-05-04 2012-08-22 金发科技股份有限公司 一种改性树脂组合物及其制备方法与应用
CN102675865A (zh) * 2012-05-04 2012-09-19 金发科技股份有限公司 一种聚酰胺树脂组合物及其制备方法与应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110087A1 (en) * 2014-01-27 2015-07-30 Byd Company Limited Method for metalizing polymer substrate and polymer article prepared thereof
US10138557B2 (en) 2014-01-27 2018-11-27 Byd Company Limited Method for metalizing polymer substrate and polymer article prepared thereof
CN105111727A (zh) * 2015-09-07 2015-12-02 东莞市宝临塑胶有限公司 一种导热尼龙复合材料及其制备方法
CN105524406A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 耐低温耐磨peek/ptfe复合材料及其制备方法
US11649357B2 (en) 2018-03-21 2023-05-16 Shpp Global Technologies B.V. Laser platable thermoplastic compositions with good flame retardancy, high heat property and good ductility and shaped articles made therefrom
CN112375307A (zh) * 2020-11-02 2021-02-19 浙江苗艺阀门股份有限公司 一种环保塑基导热材料及其制备方法
CN114479410A (zh) * 2022-02-16 2022-05-13 无锡赢同新材料科技有限公司 一种低介电损耗lds工程塑料及其制备方法
CN114479410B (zh) * 2022-02-16 2023-08-04 无锡赢同新材料科技有限公司 一种低介电损耗lds工程塑料及其制备方法

Similar Documents

Publication Publication Date Title
CN103540151B (zh) 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用
WO2014008669A1 (zh) 用于沉积金属薄膜的改性树脂组合物、其制备方法以及其应用
WO2013177850A1 (zh) 具有激光直接成型功能的树脂组合物、其制备方法以及该树脂组合物的应用
CN110272616B (zh) 通过反射添加剂具有增强镀敷性能和宽激光窗的高模量激光直接构建聚碳酸酯复合材料
EP2695914B1 (en) Thermally conductive polymer composite material and an article comprising same
CN102746623B (zh) 一种绝缘导热材料的制备方法
CN103694697B (zh) 一种具有选择性沉积金属的导热材料及其制备方法与应用
CN108250747B (zh) 一种热塑性聚醚酰亚胺绝缘导热复合材料及其制备方法
TW201500425A (zh) 高介電率材料用之樹脂組成物、包含其之成形品以及著色用母料
TW200912960A (en) Electrically conducting polymeric compositions, methods of manufacture thereof and articles comprising the same
TW201041956A (en) Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
WO2019167854A1 (ja) 熱可塑性樹脂組成物、成形品、熱可塑性樹脂組成物の製造方法、および、メッキ付成形品の製造方法
JP2011084714A (ja) 押出成形用高熱伝導性熱可塑性樹脂組成物
CN104004326B (zh) 聚酯复合材料及其制备方法
CN103160104B (zh) 一种改性树脂组合物及其制备方法与应用
JP2011016962A (ja) 熱伝導性樹脂組成物及び電子回路用基板
CN104559178A (zh) 一种散热组合物及其制备方法
CN103694719B (zh) 一种可选择性沉积金属的树脂组合物及其制备方法与应用
KR20110079103A (ko) 전자파 차폐성이 우수한 열가소성 수지 조성물
JP2006282678A (ja) フィラー高充填熱可塑性樹脂組成物
JP4088872B2 (ja) 樹脂製パーティションおよびその製造方法
Yang et al. Crystallization behaviors and properties of poly (arylene ether nitrile) nanocomposites induced by aluminum oxide and multi-walled carbon nanotubes
JP4260428B2 (ja) 燃料電池用セパレーターの製造方法
JP2004001487A (ja) 錠剤、その製造方法およびそれから得られる成形品
JP4200753B2 (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880927

Country of ref document: EP

Kind code of ref document: A1