WO2014007487A1 - 건물 보호를 위한 통신 신호 중계 시스템 - Google Patents

건물 보호를 위한 통신 신호 중계 시스템 Download PDF

Info

Publication number
WO2014007487A1
WO2014007487A1 PCT/KR2013/005711 KR2013005711W WO2014007487A1 WO 2014007487 A1 WO2014007487 A1 WO 2014007487A1 KR 2013005711 W KR2013005711 W KR 2013005711W WO 2014007487 A1 WO2014007487 A1 WO 2014007487A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
antenna
signal
module
link
Prior art date
Application number
PCT/KR2013/005711
Other languages
English (en)
French (fr)
Inventor
성경환
Original Assignee
주식회사 에스씨씨에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스씨씨에스 filed Critical 주식회사 에스씨씨에스
Priority to JP2015520019A priority Critical patent/JP2015522221A/ja
Publication of WO2014007487A1 publication Critical patent/WO2014007487A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems

Definitions

  • the present invention relates to a communication signal relay technology, and more particularly, to a communication signal relay system for protecting a building without damaging a building when installing a communication device installed inside and outside a building.
  • a wireless communication repeater is installed to solve a wireless communication shadow area occurring inside a building such as a house, an office, or an underground space.
  • an antenna for connecting to a base station (hereinafter referred to as a “link antenna”) is installed outside the building, and an antenna for connecting to a terminal (hereinafter referred to as a “service antenna”) is installed inside the building, and the repeater is a link antenna.
  • the service antenna are connected via a coaxial cable to amplify the bidirectional signal.
  • the signal transmitted from the base station toward the terminal hereinafter referred to as "forward signal" is received by the link antenna and then transmitted to the repeater via a coaxial cable.
  • This signal is amplified by the repeater and sent through the coaxial cable to the service antenna, radiated from the service antenna and delivered to the terminal.
  • a signal transmitted from the terminal toward the base station (hereinafter referred to as a "reverse signal") is received by the service antenna and then transmitted to the repeater via a coaxial cable.
  • This signal is amplified by the repeater and sent through the coaxial cable to the link antenna, radiated from the link antenna and forwarded to the base station.
  • a coaxial cable is required to connect the exterior and interior of the building and is generally installed through the exterior and interior of the building.
  • the installation of this coaxial cable causes the following problems. First, if there is no room for the coaxial cable to pass through, a portion of the building must be drilled. Punching walls or windows in buildings can increase construction costs and damage buildings. In particular, the lessee of the building may not be able to install a repeater without the landlord's consent, or may be required to make a post-monetary compensation for damage to the building. In addition, due to the noise generated when the hole is caused, a lot of inconvenience.
  • repeaters should be designed to be as thin as possible and as long as possible in order to reduce such restrictions.
  • the attenuation is the largest, and thus the design of the repeater becomes more difficult to counteract this disadvantage. In other words, the price is rising. Therefore, when installing the coaxial cable described above, it is necessary to study to solve the problem caused by penetrating the interior and exterior of the building.
  • a communication signal relay system in installing communication equipment such as a wireless communication repeater, when the connection between the outside and the interior of the coaxial cable, applying a technology that can connect the inside and outside of the building without damaging the building such as walls
  • a communication signal relay system can be provided.
  • Communication signal relay system is located in the building and the service antenna for wireless connection with the terminal located inside the building;
  • a repeater connected to the service antenna by a coaxial cable;
  • An inner wall module connected to the repeater and a coaxial cable and installed on an inner surface of a wall of the building;
  • An outer wall module installed on an outer surface of the wall of the building in an area corresponding to an area in which the inner wall module is installed, and transmitting and receiving a wireless communication signal wirelessly with the inner wall module with the building wall therebetween;
  • a link module connected to the outer wall module by a coaxial cable;
  • a link antenna connected to the link module by a coaxial cable and configured to wirelessly connect with the base station.
  • the inner wall module may include an inner wall antenna for transmitting and receiving the wireless communication signal, a wireless power transmitter converting the applied DC voltage into a wireless power signal when a DC voltage is applied from the repeater through a coaxial cable, and radiating the wireless power signal. It characterized in that it comprises a wireless power transmission antenna.
  • the outer wall module converts the outer wall antenna for transmitting and receiving the wireless communication signal, the wireless power receiving antenna for receiving the radiated wireless power signal, and the received wireless power signal into a DC voltage to be applied to the link module through a coaxial cable. It characterized in that it comprises a wireless power receiver.
  • the link antenna, the link module, the outer wall antenna of the outer wall module, the inner wall antenna of the inner wall module, the repeater and the service antenna sequentially relay the forward signal to the terminal. It is characterized by transmitting.
  • the service antenna, the repeater, the inner wall antenna of the inner wall module, the outer wall antenna of the outer wall module and the link antenna sequentially relays the reverse signal to the base station and transmits it to the base station. do.
  • the link antenna When the link antenna receives the forward signal from the base station, the link antenna transmits the received forward signal to the link module, and the link module amplifies the forward signal and transmits the amplified forward signal to the outer wall antenna of the outer wall module. And the outer wall antenna radiates the transmitted forward signal, the inner wall antenna of the inner wall module provides the radiated forward signal to the repeater, and the repeater amplifies the provided forward signal and amplifies the service antenna.
  • the forward signal is transmitted, and the service antenna is characterized by transmitting the transmitted forward signal to the terminal.
  • the service antenna receives a reverse signal from the terminal, and transmits the reverse signal to a repeater, and the repeater amplifies the reverse signal to provide to the inner wall antenna of the inner wall module, and the inner wall antenna radiates the reverse signal,
  • the outer wall antenna of the outer wall module receives and transmits the reverse signal to the link module, the link module transmits the reverse signal to the link antenna, and the link antenna transmits the reverse signal to the base station. .
  • the first communication device located outside the building;
  • An outer wall module connected to the first communication device by an unshielded twisted pair (UTP) cable and installed on an outer surface of a wall of the building;
  • An inner wall module installed on an inner surface of a wall of the building in an area corresponding to an area in which the outer wall module is installed, and transmitting and receiving a wireless LAN signal wirelessly with the outer wall module with the building wall therebetween;
  • a second communication device located in the building and connected to the inner wall module by a UTP cable.
  • an outer wall access point converts the received wired signal into a wireless LAN signal, and the wireless LAN signal.
  • the inner wall module includes a radiating outer wall antenna, and the inner wall module includes an inner wall antenna for receiving the wireless LAN signal, and an inner wall access point for converting the received wireless LAN signal into a wired signal and transmitting the converted wireless signal to the second communication device.
  • the inner wall access point is characterized in receiving power from the image receiver via a UTP cable.
  • the inner wall module includes a power device for receiving power from the inner wall access point; A wireless power transmitter receiving power from the power device and converting the power into a wireless power signal; And a wireless power transmission antenna for emitting the wireless power signal.
  • the outer wall module may include a wireless power reception antenna configured to receive the wireless power signal; A wireless power receiver configured to receive the wireless power signal from a wireless power reception antenna, supply power to the outer wall access point to drive the outer wall access point, and supply power to a PSE; And the PSE for supplying power to the outer wall access point so that the first communication device can be driven.
  • the outer wall access point is characterized in that for supplying the power received from the PSE to the first communication device.
  • a communication signal relay system without drilling a hole for a coaxial cable connection in a building, which has the advantage of protecting the building.
  • wiring can be connected in a desired path, thereby reducing costs.
  • FIG. 1 is a block diagram illustrating a structure of a relay system according to a first embodiment of the present invention.
  • 3 and 4 are views for explaining the structure of a relay system according to a second embodiment of the present invention.
  • 5 and 6 are views for explaining a relay system according to a third embodiment of the present invention.
  • terminal 2 base station
  • wireless power transmitter 204 wireless power transmitting antenna
  • outer wall module 302 outer wall antenna
  • wireless power receiver 304 wireless power receiving antenna
  • inner wall module 1202 inner wall antenna
  • wall access point 1204 powered device (PD)
  • outer wall module 1302 outer wall antenna
  • outer wall access point 1304 power sourcing equipment (PSE)
  • FIG. 1 is a block diagram illustrating a structure of a relay system according to a first embodiment of the present invention.
  • a relay system for relaying a radio communication signal between a terminal 1 and a base station 2 in a building.
  • This relay system wins the service antenna 110, the repeater 120 and the inner wall antenna 180, which is installed inside the building 3, and the link antenna 140 and the outer wall antenna, which are installed outside the building 3. 190. Except for the wireless connection between the inner wall antenna 180 and the outer wall antenna 190, the connection between the remaining components is made through the coaxial cable (101, 103, 105).
  • the link antenna 140 is located outside the building and is an antenna for wireless connection with the base station 2.
  • the service antenna 110 is located inside the building 3 and is an antenna for wireless connection with the terminal 1.
  • the repeater 120 is connected between the link antenna 140 and the service antenna 110 with the link antenna 140 and the service antenna 110, respectively, and transmits a forward signal transmitted from the base station 2 toward the terminal 1.
  • the terminal 1 amplifies the reverse signal transmitted from the terminal 1 toward the base station 2.
  • the connection between the repeater 120 with each of the link antenna 140 and the service antenna 110 is made through the coaxial cable 101, 103, 105, the inner wall antenna 180, and the outer wall antenna 190.
  • the service antenna 110 is connected to the repeater 120 through the coaxial cable 101, and the repeater 120 is connected to the inner wall antenna 180 through the coaxial cable 103.
  • the inner wall antenna 180 is installed inside the wall of the building (3).
  • the outer wall antenna 190 is installed in an area corresponding to the area in which the inner wall antenna 180 is installed.
  • the connection between the inner wall antenna 180 and the outer wall antenna 190 is wirelessly connected with the wall of the building 3 interposed therebetween.
  • the outer wall antenna 190 is connected to the link antenna 140 through the coaxial cable 105.
  • the forward signal transmitted from the base station 2 to the terminal 1 when the base station 2 transmits the forward signal, the link antenna 140, the outer wall antenna 190, the inner wall antenna ( 180), the relay 120, and the service antenna 110 are transmitted to the terminal 1.
  • the forward signal relay process will be described in more detail as follows.
  • the link antenna 140 receives it, and the received forward signal is transmitted to the outer wall antenna 190 via the coaxial cable 105.
  • the forward signal is radiated back to the inner wall antenna 180 by the outer wall antenna 190, and the radiated forward signal is received by the inner wall antenna 180.
  • the signal received at the inner wall antenna 180 is transmitted to the repeater 120, amplified by the repeater 120 and transmitted to the service antenna 110 through the coaxial cable 101, the service antenna 110 is the forward signal
  • the radiated forward signal is transmitted to the terminal 1.
  • the reverse signal transmitted by the terminal 1 to the base station 2 if the terminal 1 transmits the reverse signal, the service antenna 110, the repeater 120, the inner wall antenna 180 ), The outer wall antenna 190, and the link antenna 140 are transmitted to the base station 2.
  • the reverse signal relay process will be described in more detail as follows.
  • the service antenna 110 receives the signal and transmits it to the repeater 120 through the coaxial cable 101, and the repeater 120 amplifies it, and then the coaxial cable ( Transfer to the inner wall antenna 180 through 103.
  • the inner wall antenna 180 emits this reverse signal.
  • the outer wall antenna 190 then receives this radiated reverse signal, which is sent to the link antenna 140 via the coaxial cable 105.
  • the link antenna 140 emits this reverse signal, and the emitted reverse signal is transmitted to the base station 2.
  • path loss between the inner wall antenna 180 and the outer wall antenna 190 may occur. Therefore, since the inner wall antenna 180 and the outer wall antenna 190 are in close contact with the wall surface, the path loss between the two antennas 180 and 190 may be determined according to the material and the thickness of the wall of the building 3. For example, concrete may have a larger path loss than a material such as glass, and a thicker path may have a larger path loss. Thus, if the path loss is large enough to cause performance problems (eg, thick concrete walls), the path loss between the link antenna 140 and the repeater 120 may degrade the repeater's performance.
  • Equation 1 The overall gain (Gs) and the forward output (D out_pwr) of the conventional scheme (A) are shown in Equation 1 below.
  • Total gain (Gs) repeater gain (Gr)-link antenna cable loss (L_loss)-service antenna cable loss (S_loss)
  • Equation 2 The overall gain Gs and the forward output D out_pwr of the first embodiment B of the present invention are as shown in Equation 2 below.
  • Total gain (Gs) repeater gain (Gr)-link antenna cable loss (L_loss)-service antenna cable loss (S_loss)-wall pass loss (W_loss)
  • the difference from the conventional method is a path loss when passing through the inner wall antenna 180 and the outer wall antenna 190 (W_loss). , Hereinafter referred to as "wall passing loss").
  • the overall gain and the bidirectional output are reduced, respectively. If the wall pass loss is not large, there is no problem, but in many cases, the overall performance can be greatly degraded. The loss is only a few dB when passing through a glass that is 1 cm thick, but a loss of tens of dB or more can occur when passing through a wall of plywood that is 5 cm or thicker. Over a dozen dB of wall-loss can occur until the overall performance is severely degraded until the relay system becomes unavailable.
  • a link module 130 having a loss compensating amplifier function is added to the link antenna 140 to compensate for the wall passing loss. That is, when the link module 130 having the loss compensating amplifier function is installed on the link antenna 140 side, the gain of the loss compensating amplifier cancels the wall pass loss so that the overall gain and the bidirectional output are not reduced.
  • the link module 130 having the amplifier function for loss compensation compensates for the loss of the coaxial cable, it is possible to compensate the gain and the output loss even when the length of the coaxial cable is long.
  • the power source when adding a link module having a loss compensation amplification function, power is required to supply the link module.
  • the power line must be pulled from inside the building, which can cause the same problems as the coaxial cable penetration problem (wall damage, etc.) that was originally addressed. Therefore, the power source must pass through the wall as well as the wireless communication signal.
  • a method of passing the power source without puncturing the wall using the wireless power transmission technology is devised. That is, the wireless power transmitter is installed inside the building, the wireless power receiver is installed outside the building, and receives power from the repeater, and transmits the power to the wireless power receiver through the wireless power transmitter. In this way, the power is wirelessly passed through the wall.
  • 3 and 4 are views for explaining the structure of a relay system according to a second embodiment of the present invention.
  • the relay system is for relaying a wireless communication signal between the terminal 1 and the base station 2 in the building.
  • the relay system includes a service antenna 110, a repeater 120, and an inner wall module 200 installed inside the building 3, an outer wall module 300 installed on the outside of the building 3, and a link module ( 130 and link antenna 140. Except for the wireless connection of the inner wall module 200 and the outer wall module 300, the connection between each configuration is made of coaxial cable (101, 103, 105, 107).
  • the inner wall module 200 includes an inner wall antenna 202, a wireless power transmitter 203, and a wireless power transmission antenna 204.
  • the outer wall module 300 includes an outer wall antenna 302, a wireless power receiver 303, and a wireless power receiving antenna 304.
  • the service antenna 110 is located inside the building 3 and performs wireless communication with the terminal 1 located inside the building 3.
  • the repeater 120 is connected to the service antenna 110 through the coaxial cable 101.
  • the repeater 120 is connected to the inner wall module 200 through the coaxial cable 103.
  • the inner wall module 200 may be installed on the inner wall of the building 3.
  • the outer wall module 300 may be installed on the outer wall of the building 3 corresponding to the area in which the inner wall module 200 is installed.
  • the inner wall module 200 and the outer wall module 300 are wirelessly connected to communicate with each other.
  • the inner wall module 200 receives power from the repeater 120 and uses the wireless power transmission technique to receive the supplied outer wall module 300. ) Can be provided.
  • the outer wall module 300 is connected to the link module 130 by a coaxial cable 105, and the link module 130 is connected to the link antenna 140 by a coaxial cable 107.
  • the link antenna 140 is wirelessly connected to the base station 2.
  • the forward signal transmitted from the base station 2 may be received by the link antenna 140 and then transmitted to the link module 130 via the coaxial cable 107.
  • the link module 130 amplifies the forward signal, and the amplified forward signal is transmitted to the outer wall module 300 again.
  • the amplified forward signal is radiated from the outer wall antenna 302 of the outer wall module 300 to the inner wall antenna 202 and then transmitted to the inner wall antenna 202 of the inner wall module 200.
  • the forward signal received at the inner wall antenna 202 is transmitted to the repeater 120, and the forward signal is amplified at the repeater 120 and transmitted to the service antenna 110 through the coaxial cable 101. Then, the forward signal is radiated from the service antenna 110 and transmitted to the terminal 1.
  • the reverse signal transmitted from the terminal 1 is received by the service antenna 110 and then transmitted to the repeater 120 through the coaxial cable 101, and amplified by the repeater 120 to coax the cable 103. It is transmitted to the inner wall antenna 202 of the inner wall module 200 through. This reverse signal is radiated from the inner wall antenna 202 to the outer wall antenna 302 and received by the outer wall antenna 302. The reverse signal received at the outer wall antenna 302 is sent to the link module 130 through the coaxial cable 105, and the link module 130 amplifies the reverse signal. The amplified reverse signal is sent back to the link antenna 140, and the transmitted reverse signal is radiated from the link antenna 140 and transmitted to the base station 2.
  • the link module 130 by amplifying the forward signal and the reverse signal through the link module 130, it is possible to compensate for the path loss, thereby enabling smooth communication.
  • a DC voltage is applied to the coaxial cable 103 connected to the inner wall module 200 and is connected to the wireless power transmitter 203 in the inner wall module 200.
  • the DC voltage is transformed into a wireless power signal at the wireless power transmitter 203 and radiated from the wireless power transmitter antenna 204 of the wireless power transmitter 203 to the wireless power receiver antenna 303 of the outer wall module 300.
  • the wireless power signal received at the wireless power receiver antenna 303 of the outer wall module 300 is input to the wireless power receiver 303 and is changed back to a DC voltage.
  • This DC voltage is again applied to the coaxial cable 105 connected to the link module and supplied to the link module 130.
  • the components constituting the present invention are separated by modules performing each function and connected through coaxial cables, but adjacent modules may be integrated for ease of installation and use.
  • the service antenna 110 may be embedded in the repeater 120 or the link antenna 140 may be embedded in the link module 130.
  • the link module 130 and the outer wall module 300 may be integrated, or the repeater 120 and the inner wall module 200 may be integrated.
  • a pair of the inner module 200 and the outer module 300 may be installed on each of the plurality of walls.
  • the present invention uses a technology for transmitting signals and power wirelessly to allow the coaxial cable of the relay system to be installed through the wall as described above without puncturing the wall. You can solve the problem.
  • 5 and 6 are diagrams for explaining a communication signal relay system according to a third embodiment of the present invention.
  • a first communication device for example, a camera for a closed circuit television (CCTV)
  • a second communication device for example,
  • the first communication device 520 and the screen second communication device 510 are wired signals containing image data using an unshielded twisted pair (UTP) cable (or a cable for wired signal transmission).
  • UTP unshielded twisted pair
  • a hole must be formed in a wall of a building.
  • the wired signal is exchanged through wireless communication between the inner wall module 1200 and the outer wall module 1300 which are installed with the walls interposed therebetween, there is no need to make a hole in the wall. .
  • an inner wall module 1200 and an inner wall module 1200 installed in an interior of the building 1400 are disposed between the walls of the building 1400.
  • the outer wall module 1300 is installed on the outer surface of the building 1400 of the installed area.
  • the outer wall module 1300 is connected to the first communication device 520 through the UTP cable 1301.
  • the inner wall module 1200 is connected to the second communication device 510 through the UTP cable 1201.
  • the first communication device and the second communication device may be any device having a communication function.
  • the second communication device may be a CCTV screen receiver, and the first communication device may be a camera 520, but the present invention is not limited to these devices. If you grow up, you can easily understand.
  • the inner wall module 1200 includes an inner wall antenna 1202, an inner wall access point (Access Point or WiFi Access Point) 1203, a powered device (PD) 1204 of Power over Ethernet (PoE), a wireless power transmitter 1205, and A wireless power transmit antenna 1206 may be included.
  • an inner wall antenna 1202 an inner wall access point (Access Point or WiFi Access Point) 1203, a powered device (PD) 1204 of Power over Ethernet (PoE), a wireless power transmitter 1205, and A wireless power transmit antenna 1206 may be included.
  • PD Power over Ethernet
  • a wireless power transmit antenna 1206 may be included.
  • the outer wall module 1300 may include an outer wall antenna 1302, an outer wall access point 1303, a power sourcing equipment (PSE) 1304, a wireless power receiver 1305, and a wireless power receiving antenna 1306.
  • PSE power sourcing equipment
  • the wired signal including the predetermined data that the first communication device 520 wants to transmit to the second communication device 510 is transmitted to the outer wall access point 1303 through the UTP cable 1301. Then, the outer wall access point 1303 converts the data into a wireless LAN (WLAN or WiFi, but also wireless communication methods such as Zigbee, Bluetooth.) Signals. Alternatively, in consideration of the path loss in advance, the outer wall access point 1303 may perform a preprocessing process for amplifying the WLAN signal. Next, the outer wall access point 1303 transmits the WLAN signal to the outer wall antenna 1302, and the outer wall antenna 1302 radiates it.
  • WLAN wireless LAN
  • WiFi wireless local area network
  • the radiated WLAN signal is received by the inner wall antenna 1202 and transmitted to the inner wall access point 1202. Then, the inner wall access point 1202 converts the WLAN signal back into a wired signal. In this case, optionally, the inner wall access point 1202 may perform a post-processing process that amplifies the converted wired signal in consideration of the path loss and compensates for the path loss. Next, the inner wall access point 1202 transmits a wired signal to the second communication device 510 through the UTP cable 1201. Then, the second communication device 510 can extract the data from the wired signal and use it for its purpose.
  • the third embodiment of the present invention in order to supply power (driving power) for driving the first communication device 520 other than the equipment (outer wall access point 1303) installed outside the inner wall.
  • Power over Ethernet (POE) for supplying power may be implemented.
  • the POE power transmitted from the first communication device 510 to the UTP cable 1201 is branched at the inner wall access point 1203 and connected to the PD 1204.
  • the PD 1204 then supplies power to the inner wall access point 1203 and the wireless power transmitter 1205.
  • the wireless power transmitter 1205 converts the supplied power into a wireless power signal and provides the converted wireless power signal to the wireless power transmission antenna 1206.
  • the wireless power transmit antenna 1206 then radiates a wireless power signal.
  • the wireless power receiving antenna 1306 receives the wireless power signal and delivers it to the wireless power receiver 1305.
  • the wireless power receiver 1305 then supplies power to drive the outer wall access point 1303.
  • the wireless power receiver 1305 supplies power to the PSE 1304.
  • the PSE 1304 may also provide power to the outer wall access point to power the first communication device. Then, the outer wall access point 1303 supplies power to the first communication device 520 through the UTP cable to be driven. Accordingly, the first communication device 520 may receive power and operate.
  • the relay system configured as a pair of the inner wall module 1200 and the outer wall module 1300 for transmitting the wired signal according to the third embodiment of the present invention may be external equipment (ie, the first communication device 520). Can supply POE power.
  • the outer wall module 1300 and the external device (first communication device 520) connected to the outer wall module 1300 have been described as being separated into their respective configurations, they may be implemented as one device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

중계 시스템에 있어서, 건물의 내부에 위치하며 건물의 내부에 위치하는 단말기와의 무선 연결을 위한 서비스 안테나; 상기 서비스 안테나와 동축 케이블로 연결되는 중계기; 상기 중계기와 동축 케이블로 연결되며 상기 건물의 벽 내부 면에 설치되는 내벽 모듈; 상기 내벽 모듈이 설치된 영역에 대응하는 영역의 상기 건물의 벽의 외부 면에 설치되어, 상기 건물의 벽을 사이에 두고 상기 내벽 모듈과 무선으로 무선 통신 신호를 송수신하는 외벽 모듈; 상기 외벽 모듈과 동축 케이블로 연결되는 링크 모듈; 및 상기 링크 모듈과 동축 케이블로 연결되며, 기지국과의 무선 연결을 위한 링크 안테나;를 포함하는 중계 시스템이 개시된다.

Description

건물 보호를 위한 통신 신호 중계 시스템
본 발명은 통신 신호 중계 기술에 관한 것으로, 보다 상세하게는, 건물 내부 및 외부에 걸쳐 설치되는 통신 장치의 설치 시, 건물을 손상시키지 않고 보호하기 위한 통신 신호 중계 시스템에 관한 것이다.
일반적으로, 주택이나 사무실 또는 지하 공간 등의 건물 내부에 발생하는 무선통신 음영지역을 해소하기 위해서 무선통신 중계기를 설치한다. 일반적으로 건물 외부에 기지국과의 연결을 위한 안테나(이하, "링크 안테나"라 함)를, 건물 내부에는 단말기와의 연결을 위한 안테나(이하 "서비스 안테나"라 함)를 설치하고 중계기는 링크 안테나 및 서비스 안테나를 동축 케이블을 통해 연결하고 양방향 신호를 증폭하게 된다. 기지국에서 단말기 방향으로 송신되는 신호(이하 "순방향 신호"이라 함)는 링크 안테나로 수신된 후, 동축 케이블을 거쳐 중계기에 전달된다. 이 신호는 중계기에서 증폭되어 동축 케이블을 통해서 서비스 안테나로 보내지고, 서비스 안테나에서 방사되어 단말기로 전달된다. 반대로 단말기에서 기지국 방향으로 송신되는 신호(이하 "역방향 신호"이라 함)는 서비스 안테나로 수신된 후 동축 케이블을 거쳐 중계기에 전달된다. 이 신호는 중계기에서 증폭되어 동축 케이블을 통해서 링크 안테나로 보내지고, 링크 안테나에서 방사되어 기지국으로 전달된다.
이와 같이, 건물 외부와 내부를 연결하기 위하여 동축 케이블이 필요하며 일반적으로 건물 외부와 내부를 통과해서 설치한다. 이러한 동축 케이블의 설치는 다음과 같은 문제를 야기한다. 첫 번째, 동축 케이블이 통과할 공간이 없는 경우에는 건물의 일부에 구멍을 뚫어야 한다. 건물의 벽이나 창문에 구멍을 내는 것은 공사비용의 상승 및 건물에 손상을 입히게 된다. 특히나 건물의 임차인의 경우에는 건물주의 동의 없이는 중계기 설치가 불가능하게 되거나 건물 손상에 대한 사후 금전적 배상을 하여야 만 한다. 또한 구멍을 뚫을 때 발생하는 소음 등으로 인해서 많은 불편함을 초래한다. 두 번째, 다행히도 통과가 가능한 공간이 있을 경우(예컨대, 에어컨 실외기 배선 등)에도 그 공간이 중계기 설치에 적합하지 않을 수가 있고 크기의 제약이 있을 수도 있다. 그러므로 중계기는 그러한 제약을 줄이기 위해서 가능하면 케이블 굵기가 얇고 허용 길이가 최대한 길게 설계되어야 한다. 동축 케이블로 RF 신호를 전송할 때, 동축 케이블의 굵기가 얇고 긴 경우, 가장 감쇄가 크기 때문에 이러한 불리함을 상쇄하기 위해서는 중계기의 설계가 보다 어려워진다. 즉, 가격이 상승하는 것이다. 그러므로 상술한 동축 케이블 설치 시, 건물 내부와 외부를 관통해야 하기 때문에 발생하는 문제를 해결할 수 있는 연구가 필요하다.
본 발명의 일 실시예에 따르면, 무선통신 중계기 등의 통신 장비를 설치함에 있어, 동축 케이블의 건물 외부와 내부 사이에 연결 시, 벽 등의 건물 손상 없이 건물 내부와 외부를 연결할 수 있는 기술을 적용한 통신 신호 중계 시스템이 제공될 수 있다.
본 발명의 일 실시예에 따른 통신 신호 중계 시스템은 건물 내부에 위치하며 건물 내부에 위치하는 단말기와의 무선 연결을 위한 서비스 안테나; 상기 서비스 안테나와 동축 케이블로 연결되는 중계기; 상기 중계기와 동축 케이블로 연결되며 상기 건물의 벽 내부 면에 설치되는 내벽 모듈; 상기 내벽 모듈이 설치된 영역에 대응하는 영역의 상기 건물의 벽의 외부 면에 설치되어, 상기 건물 벽을 사이에 두고 상기 내벽 모듈과 무선으로 무선 통신 신호를 송수신하는 외벽 모듈; 상기 외벽 모듈과 동축 케이블로 연결되는 링크 모듈; 및 상기 링크 모듈과 동축 케이블로 연결되며, 기지국과의 무선 연결을 위한 링크 안테나;를 포함한다.
상기 내벽 모듈은, 상기 무선 통신 신호를 송수신하는 내벽 안테나, 상기 중계기로부터 동축 케이블을 통해 DC 전압이 인가되면, 인가된 DC 전압을 무선전력 신호로 변환하는 무선 전력 송신기, 및 상기 무선전력 신호를 방사하는 무선 전력 송신 안테나를 포함하는 것을 특징으로 한다.
상기 외벽 모듈은 상기 무선통신 신호를 송수신하는 외벽 안테나, 상기 방사된 무선전력 신호를 수신하는 무선전력 수신 안테나, 및 상기 수신된 무선전력 신호를 DC 전압으로 변환하여 동축 케이블을 통해 상기 링크 모듈에 인가하는 무선전력 수신기를 포함하는 것을 특징으로 한다.
상기 기지국으로부터의 순방향 신호가 수신되면, 상기 링크 안테나, 상기 링크 모듈, 상기 외벽 모듈의 외벽 안테나, 상기 내벽 모듈의 내벽 안테나, 상기 중계기 및 상기 서비스 안테나는 순차로 상기 순방향 신호를 중계하여 상기 단말기에 전달하는 것을 특징으로 한다.
상기 단말기로부터 역방향 신호가 수신되면, 상기 서비스 안테나, 상기 중계기, 상기 내벽 모듈의 내벽 안테나, 상기 외벽 모듈의 외벽 안테나 및 상기 링크 안테나는 순차로 상기 역방향 신호를 중계하여 상기 기지국으로 전달하는 것을 특징으로 한다.
상기 링크 안테나는 상기 기지국으로부터의 순방향 신호를 수신하면, 수신된 순방향 신호를 상기 링크 모듈로 전달하며, 상기 링크 모듈은 전달된 순방향 신호를 증폭한 후, 증폭된 순방향 신호를 상기 외벽 모듈의 외벽 안테나로 전송하며, 상기 외벽 안테나는 상기 전송된 순방향 신호를 방사하고, 상기 내벽 모듈의 내벽 안테나는 방사된 순방향 신호를 상기 중계기로 제공하며, 상기 중계기는 제공된 순방향 신호를 증폭하고, 상기 서비스 안테나에 증폭된 순방향 신호를 전송하며, 상기 서비스 안테나는 전송된 순방향 신호를 상기 단말에 전송하는 하는 것을 특징으로 한다.
상기 서비스 안테나는 상기 단말로부터 역방향 신호를 수신하여, 중계기로 전달하며, 상기 중계기는 상기 역방향 신호를 증폭하여, 상기 내벽 모듈의 내벽 안테나에 제공하고, 상기 내벽 안테나는 상기 역방향 신호를 방사하고, 상기 외벽 모듈의 외벽 안테나는 상기 역방향 신호를 수신하여 상기 링크 모듈로 전달하고, 상기 링크 모듈은 상기 역방향 신호를 링크 안테나로 전달하고, 상기 링크 안테나는 상기 역방향 신호를 상기 기지국에 전달하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 통신 신호 중계 시스템은, 건물 외부에 위치하는 제1통신장치; 상기 제1통신장치와 UTP(unshielded twisted pair) 케이블로 연결되며 상기 건물의 벽 외부 면에 설치되는 외벽 모듈; 상기 외벽 모듈이 설치된 영역에 대응하는 영역의 상기 건물의 벽의 내부면 에 설치되어, 상기 건물 벽을 사이에 두고 상기 외벽 모듈과 무선으로 무선랜 신호를 송수신하는 내벽 모듈; 및 상기 건물 내부에 위치하여 상기 내벽 모듈과 UTP 케이블로 연결되는 제2통신장치;를 포함한다.
상기 외벽 모듈은 상기 제1통신장치로부터 상기 제1통신장치가 촬영한 화면 데이터를 포함하는 유선 신호를 수신하면, 수신된 유선 신호를 무선랜 신호로 변환하는 외벽 액세스 포인트와, 상기 무선랜 신호를 방사하는 외벽 안테나를 포함하며, 상기 내벽 모듈은 상기 무선랜 신호를 수신하는 내벽 안테나와, 상기 수신된 무선랜 신호를 유선 신호로 변환하여 상기 제2통신장치에 전달하는 내벽 액세스 포인트를 포함한다.
상기 내벽 액세스 포인트는 상기 화상 수신기로부터 UTP 케이블을 통해 전력을 수신하는 것을 특징으로 한다. 여기서, 상기 내벽 모듈은 상기 내벽 액세스 포인트로부터 전력을 수신하는 파워 장치; 상기 파워 장치로부터 전력을 수신하여 무선전력 신호로 변환하는 무선 전력 송신기; 상기 무선전력 신호를 방사하는 무선 전력 송신 안테나;를 포함한다.
그리고 상기 외벽 모듈은 상기 무선전력 신호를 수신하는 무선 전력 수신 안테나; 무선 전력 수신 안테나로부터 상기 무선전력 신호를 수신하여, 상기 외벽 액세스 포인트가 구동되도록 상기 외벽 액세스 포인트에 전력을 공급하며, PSE에 전력을 공급하는 무선 전력 수신기; 및 상기 제1통신장치가 구동될 수 있도록 되도록 상기 외벽 액세스 포인트에 전력을 공급에 전력을 공급하도는 상기 PSE;를 포함한다. 이에 따라, 상기 외벽 액세스 포인트는 상기 PSE로부터 수신된 전력을 상기 제1통신장치에 공급하는 것을 특징으로 한다.
본 발명의 하나 이상의 실시예에 따르면, 건물에 동축 케이블 연결을 위한 구멍을 뚫지 않고, 통신 신호 중계 시스템을 설치할 수 있음으로, 건물을 보호할 수 있는 이점이 있다. 또한, 원하는 경로로 배선을 연결할 수 있어, 비용을 절감할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 중계 시스템의 구조를 설명하기 위한 블록도이다.
도 2는 경로 손실에 대해 설명하기 위한 도면이다.
도 3 및 도 4는 본 발명의 제2 실시예에 따른 중계 시스템의 구조를 설명하기 위한 도면이다.
도 5 및 도 6은 본 발명의 제3 실시예에 따른 중계 시스템을 설명하기 위한 도면이다.
1: 단말 2: 기지국
3: 건물 벽
101, 103, 105, 107: 동축 케이블
110: 서비스 안테나 120: 중계기
130: 링크 모듈 140: 링크 안테나
180: 내벽 안테나 190: 외벽 안테나
200: 내벽 모듈 202: 내벽 안테나
203: 무선 전력 송신기 204: 무선 전력 송신 안테나
300: 외벽 모듈 302: 외벽 안테나
303: 무선 전력 수신기 304: 무선 전력 수신 안테나
510: 제2통신장치 520: 제1통신장치
1200: 내벽 모듈 1202: 내벽 안테나
1203: 내벽 액세스 포인트 1204: PD(Powered Device)
1205: 무선 전력 송신기 1206: 무선 전력 송신 안테나
1300: 외벽 모듈 1302: 외벽 안테나
1303: 외벽 액세스 포인트 1304: PSE(Power sourcing equipment)
1305: 무선 전력 수신기 1306: 무선 전력 수신 안테나
본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음을 유의해야 한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지의 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다.
도 1은 본 발명의 제1 실시예에 따른 중계 시스템의 구조를 설명하기 위한 블록도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 중계 시스템은 건물 내에 단말기(1)과 기지국(2)간의 무선통신 신호를 중계하기 위한 것이다. 이러한 중계 시스템이기는 건물(3)의 내부에 설치되는, 서비스 안테나(110), 중계기(120) 및 내벽 안테나(180)와, 건물(3)의 외부에 설치되는, 링크 안테나(140) 및 외벽 안테나(190)를 포함한다. 내벽 안테나(180)와 외벽 안테나(190) 간의 무선 연결을 제외하고, 나머지 구성 요소간의 연결은 동축 케이블(101, 103, 105)을 통해 이루어진다.
링크 안테나(140)는 건물 외부에 위치하며, 기지국(2)과의 무선 연결을 위한 안테나이다. 서비스 안테나(110)는 건물(3)의 내부에 위치하며, 단말기(1)와의 무선 연결을 위한 안테나이다. 중계기(120)는 링크 안테나(140) 및 서비스 안테나(110) 사이에서 링크 안테나(140) 및 서비스 안테나(110)와 각각 연결되어, 기지국(2)에서 단말기(1) 방향으로 송신되는 순방향 신호와, 단말기(1)에서 기지국(2) 방향으로 송신되는 역방향 신호를 증폭시킨다. 이러한 링크 안테나(140) 및 서비스 안테나(110) 각각과의 중계기(120) 사이에서 연결은, 동축 케이블(101, 103, 105) 및 내벽 안테나(180)와 외벽 안테나(190)를 통해 이루어진다.
중계 시스템이기의 각 구성들 간의 연결에 대해서 설명하면 다음과 같다. 서비스 안테나(110)는 동축 케이블(101)을 통해 중계기(120)와 연결되며, 중계기(120)는 동축 케이블(103)을 통해 내벽 안테나(180)와 연결된다. 여기서, 내벽 안테나(180)는 건물(3)의 벽의 내부에 설치된다. 또한, 내벽 안테나(180)가 설치된 영역과 대응하는 영역에 외벽 안테나(190)가 설치된다. 내벽 안테나(180) 및 외벽 안테나(190) 사이의 연결은 건물(3)의 벽을 사이에 두고 무선을 통해 연결된다. 또한, 외벽 안테나(190)는 링크 안테나(140)와 동축 케이블(105)을 통해 연결된다.
상술한 바와 같은 구조에 따라, 기지국(2)이 단말(1)로 전송하는 순방향 신호는, 기지국(2)이 순방향 신호를 전송하면, 링크 안테나(140), 외벽 안테나(190), 내벽 안테나(180), 중계기(120), 서비스 안테나(110)를 거쳐, 단말기(1)에 전달된다. 이러한 순방향 신호 중계 과정에 대해서 보다 상세히 설명하면 다음과 같다.
기지국(2)이 순방향 신호를 송신하면, 링크 안테나(140)는 이를 수신하고, 수신된 순방향 신호는 동축 케이블(105)을 거쳐 외벽 안테나(190)에 전달된다. 이 순방향 신호는 다시 외벽 안테나(190)에 의해 내벽 안테나(180)로 방사되며, 방사된 순방향 신호는 내벽 안테나(180)에 의해 수신된다. 내벽 안테나(180)에서 수신된 신호는 중계기(120)에 전달되고, 중계기(120)에서 증폭되어 동축 케이블(101)을 통해서 서비스 안테나(110)로 전달되며, 서비스 안테나(110)는 이 순방향 신호를 방사하며, 이 방사된 순방향 신호는 단말기(1)에 전달된다.
상술한 바와 같은 구조에 따라, 단말기(1)가 기지국(2)으로 전송하는 역방향 신호는, 단말기(1)가 역방향 신호를 전송하면, 서비스 안테나(110), 중계기(120), 내벽 안테나(180), 외벽 안테나(190), 및 링크 안테나(140)를 거쳐 기지국(2)에 전달된다. 이러한 역방향 신호 중계 과정에 대해서 보다 상세히 설명하면 다음과 같다.
단말기(1)가 역방향 신호를 송신하면, 서비스 안테나(110)는 이를 수신한 후, 동축 케이블(101)을 통해 중계기(120)로 전달하고, 중계기(120)는 이를 증폭한 후, 동축 케이블(103)을 통해서 내벽 안테나(180)로 전달한다. 내벽 안테나(180)는 이 역방향 신호를 방사한다. 그러면, 외벽 안테나(190)는 이 방사된 역방향 신호를 수신하고, 수신된 역방향 신호는 동축 케이블(105)을 통해서 링크 안테나(140)로 보내진다. 링크 안테나(140)는 이 역방향 신호를 방사하고, 방사된 역방향 신호는 기지국(2)으로 전달된다.
상술한 바와 같이, 건물(3)의 안과 밖에 각각 안테나를 부착 설치하여 순방향 및 역방향 신호를 전달하면, 동축 케이블만을 이용하여 신호를 전달하는 경우에 발생하는 문제점을 해결할 수 있다. 즉, 건물에 손상이 없으므로 최적의 위치에 아무런 제약 없이 중계기를 설치할 수 있게 된다.
한편, 상술한 방법은 내벽 안테나(180)와 외벽 안테나(190)간의 경로 손실(path loss)이 발생할 수 있다. 따라서, 내벽 안테나(180)와 외벽 안테나(190)는 벽면에 밀착되어 있으므로 두 안테나(180, 190)간의 경로 손실은 건물(3) 벽의 재질과 두께에 따라서 결정될 수 있다. 예컨대, 유리와 같은 소재보다 콘크리트가 경로 손실이 크고 같은 재질이더라도 두께가 두꺼울수록 경로 손실이 클 수 있다. 따라서, 경로 손실이 성능에 문제가 발생할 정도로 큰 경우(예컨대, 두꺼운 콘크리트 벽체일 경우)에는 링크 안테나(140)와 중계기(120) 사이의 경로 손실로 인해 중계기의 성능이 열화 될 수 있다.
도 2는 경로 손실에 대해 설명하기 위한 도면이다.
도 2에서는, 안테나를 통해서 건물 외벽을 통과하는 본 발명의 제1 실시예의 경우(B)에 경로 손실이 중계기 성능에 영향을 미치는 것을 알아보기 위해서 기존 방식(A)과 비교하여 설명한다.
기존 방식(A)의 전체 이득(Gs), 순방향 출력(D out_pwr)은 다음의 <수학식 1>과 같다.
[수학식 1]
전체 이득(Gs) = 중계기 이득(Gr) - 링크 안테나 케이블 손실(L_loss) - 서비스 안테나 케이블 손실(S_loss)
순방향 출력(D out_pwr) = 전체 이득(Gs) + 링크 안테나 입력(Din_pwr) = 중계기 이득(Gr) - 링크 안테나 케이블 손실(L_loss) - 서비스 안테나 케이블 손실(S_loss) + 링크 안테나 입력(Din_pwr)
역방향 출력(Uout_pwr) = 전체 이득(Gs) + 서비스 안테나 입력(Uin_pwr) = 중계기 이득(Gr) - 링크 안테나 케이블 손실(L_loss) - 서비스 안테나 케이블 손실(S_loss) + 서비스 안테나 입력(Uin_pwr)
본 발명의 제1 실시예(B)의 전체 이득(Gs), 순방향 출력(D out_pwr)은 다음의 <수학식 2>와 같다.
[수학식 2]
전체 이득(Gs) = 중계기 이득(Gr) - 링크 안테나 케이블 손실(L_loss) - 서비스 안테나 케이블 손실(S_loss) - 벽 통과 손실(W_loss)
순방향 출력(D out_pwr) = 전체 이득(Gs) + 링크 안테나 입력(Din_pwr) = 중계기 이득(Gr) - 링크 안테나 케이블 손실(L_loss) - 서비스 안테나 케이블 손실(S_loss) + 링크 안테나 입력(Din_pwr) - 벽 통과 손실(W_loss)
역방향 출력(Uout_pwr) = 전체 이득(Gs) + 서비스 안테나 입력(Uin_pwr) = 중계기 이득(Gr) - 링크 안테나 케이블 손실(L_loss) - 서비스 안테나 케이블 손실(S_loss) + 서비스 안테나 입력(Uin_pwr) - 벽 통과 손실(W_loss)
도시된 바와 같이, 안테나와 중계 시스템의 특성이 동일하고 설치 위치와 케이블 길이가 동일할 경우, 기존 방식과의 차이는 내벽 안테나(180)와 외벽 안테나(190)를 통과할 때의 경로 손실(W_loss, 이하, "벽 통과 손실"로 칭함)이다.
내벽 안테나(180) 및 외벽 안테나(190)를 통해 벽을 통과할 경우 전체 이득과 양방향 출력이 각각 감소한다. 만약 벽 통과 손실이 크지 않을 경우에는 문제가 없지만 많을 경우에는 전체 성능이 크게 열화 될 수 있다. 1cm 정도 두께의 유리를 통과할 경우에는 손실이 수 dB에 불과하지만, 5cm 이상 두께의 합판 재질 벽을 통과하는 경우 수십 dB 이상의 손실이 발생할 수 있다. 벽 통과 손실이 수십 dB 이상 발생하면 전체 성능이 심각하게 나빠져서 중계 시스템의 사용이 불가능할 경우까지 발생할 수 있다.
상술한 문제를 해결하기 위해 본 발명의 제2 실시예에 따르면, 링크 안테나(140) 쪽에 손실 보상용 증폭기능을 구비한 링크 모듈(130)을 추가하여 벽 통과 손실을 보상한다. 즉, 링크 안테나(140) 쪽에 손실 보상용 증폭기능을 가진 링크 모듈(130)을 설치하면 이 손실 보상용 증폭기의 이득이 벽 통과 손실을 상쇄하기 때문에 전체 이득과 양방향 출력이 감소하지 않는다. 또한, 손실 보상용 증폭기능을 가진 링크 모듈(130)은 동축 케이블의 손실까지도 보상해 주기 때문에 동축 케이블의 길이가 긴 경우에도 이득과 출력 손실을 보상할 수 있다.
한편, 이렇게 손실 보상용 증폭 기능을 가진 링크 모듈을 추가할 경우 링크 모듈에 공급할 전원이 필요하다. 이러한 경우 건물 내부에서 전력선을 끌어와야 하는데, 이것은 처음에 제기했던 동축 케이블의 관통 문제와 동일한 문제(벽 손상, 등)가 발생할 수 있다. 그러므로, 전원도 무선통신 신호와 마찬가지로 벽을 통과하여야 하는데 본 발명의 제2 실시예에서는 무선전력 전송 기술을 이용하여 전원도 벽에 구멍을 뚫지 않고 통과하는 방안을 안출하였다. 즉, 무선전력 송신기를 건물 내부에 설치하고, 건물 외부에 무선전력 수신기를 설치하여, 중계기로부터 전원을 공급 받아, 무선전력 송신기를 통해 무선전력 수신기에 전달한다. 이와 같이, 무선으로 벽을 통과하여 전력을 공급하도록 한다. 그러면, 이러한 본 발명의 제2 실시예에 대해서 설명하기로 한다.
도 3 및 도 4는 본 발명의 제2 실시예에 따른 중계 시스템의 구조를 설명하기 위한 도면이다.
도 3 및 도 4를 참조하면, 본 발명의 실시예에 따른 중계 시스템은 건물 내에 단말(1)과 기지국(2)간의 무선통신 신호를 중계하기 위한 것이다. 이러한 중계 시스템은 건물(3)의 내부에 설치되는 서비스 안테나(110), 중계기(120), 및 내벽 모듈(200)과, 건물(3)의 외부에 설치되는 외벽 모듈(300), 링크 모듈(130) 및 링크 안테나(140)를 포함한다. 내벽 모듈(200)과 외벽 모듈(300)의 무선 연결을 제외하고, 각 구성간의 연결은 동축 케이블(101, 103, 105, 107)로 이루어진다.
도 4를 참조하면, 내벽 모듈(200)은 내벽 안테나(202), 무선 전력 송신기(203) 및 무선 전력 송신 안테나(204)를 포함한다. 그리고, 외벽 모듈(300)은 외벽 안테나(302), 무선 전력 수신기(303) 및 무선 전력 수신 안테나(304)를 포함한다.
서비스 안테나(110)는 건물(3)의 내부에 위치하여, 건물(3)의 내부에 위치한 단말기(1)와 무선 통신을 한다. 중계기(120)는 동축 케이블(101)을 통해 서비스 안테나(110)와 연결된다. 그리고, 중계기(120)는 동축 케이블(103)을 통해 내벽 모듈(200)과 연결된다.
도 4에 도시된 실시 예처럼, 내벽 모듈(200)은 건물(3)의 내부 벽에 설치될 수 있다. 외벽 모듈(300)은 내벽 모듈(200)이 설치된 영역에 대응하여, 건물(3)의 외부 벽에 설치될 수 있다. 내벽 모듈(200)과 외벽 모듈(300)은 무선으로 연결되어 통신하며, 내벽 모듈(200)은 중계기(120)로부터 전력을 공급 받으며, 공급 받은 전력을 무선 전력 송신 기법을 이용하여 외벽 모듈(300)에 제공할 수 있다.
외벽 모듈(300)은 동축 케이블(105)로 링크 모듈(130)과 연결되며, 링크 모듈(130)은 동축 케이블(107)로 링크 안테나(140)와 연결된다. 그리고 링크 안테나(140)는 기지국(2)과 무선 연결된다.
기지국(2)에서 송신된 순방향 신호는 링크 안테나(140)가 수신하며,이후 동축 케이블(107)을 거쳐 링크 모듈(130)에 전달될 수 있다. 링크 모듈(130)은 순방향 신호를 증폭하며, 증폭된 순방향 신호는 다시 외벽 모듈(300)에 전달된다. 증폭된 순방향 신호는 외벽 모듈(300)의 외벽 안테나(302)에서 내벽 안테나(202)로 방사된 후 내벽 모듈(200)의 내벽 안테나(202)에게 전달된다. 내벽 안테나(202)에서 수신된 순방향 신호는 중계기(120)에 전달되고, 그 순방향 신호는 중계기(120)에서 증폭되어 동축 케이블(101)을 통해서 서비스 안테나(110)로 전달된다. 그러면, 그 순방향 신호는 서비스 안테나(110)에서 방사되어 단말기(1)로 전달된다.
역으로, 단말기(1)에서 송신된 역방향 신호는 서비스 안테나(110)로 수신된 후 동축 케이블(101)을 통해 중계기(120)에 전달되고, 중계기(120)에서 증폭되어 동축 케이블(103)을 통해서 내벽 모듈(200)의 내벽 안테나(202)에 전달된다. 이 역방향 신호는 다시 내벽 안테나(202)에서 외벽 안테나(302)로 방사되어, 외벽 안테나(302)에서 수신된다. 외벽 안테나(302)에서 수신된 역방향 신호는 동축 케이블(105)을 통해서 링크 모듈(130)로 보내지고, 링크 모듈(130)은 이 역방향 신호를 증폭한다. 증폭된 역방향 신호는 다시 링크 안테나(140)로 보내지고, 보내진 역방향 신호는 링크 안테나(140)에서 방사되어 기지국(2)으로 전달된다.
상술한 바와 같이, 본 발명에 따르면, 링크 모듈(130)을 통해 순방향 신호 및 역방향 신호를 증폭함으로써, 경로 손실을 보상할 수 있어, 원활한 통신이 가능할 수 있다.
한편, 이러한 링크 모듈(130)이 역방향 및 순방향 신호를 증폭하기 위해서는, 링크 모듈(130)에 전원이 공급되어야 한다. 이를 위한 본 발명의 일 실시예에 따른 전원 공급 방법에 대해서 설명한다. 중계기(120)에서 DC 전압이 내벽 모듈(200)로 연결된 동축 케이블(103)에 인가되고 내벽 모듈(200)에서 내부의 무선 전력 송신기(203)로 연결된다. DC 전압은 무선 전력 송신기(203)에서 무선전력 신호로 변형되어 무선 전력 송신기(203)의 무선 전력 송신 안테나(204)에서 외벽 모듈(300)의 무선 전력 수신 안테나(303)로 방사된다. 외벽 모듈(300)의 무선전력 수신기 안테나(303)에서 수신된 무선전력 신호는 무선전력 수신기(303)에 입력되고 다시 DC 전압으로 변경된다. 이 DC 전압은 다시 링크 모듈에 연결된 동축 케이블(105)에 인가되어, 링크 모듈(130)에 공급된다.
한편, 상술한 바와 같이 본 발명을 구성하는 요소를 각 기능을 수행하는 모듈별로 분리하여 동축 케이블을 통해서 연결하였으나 설치 및 사용 편리성을 위하여 인접한 모듈을 일체화할 수도 있다. 예를 들어, 중계기(120)에 서비스 안테나(110)를 내장하거나 링크 모듈(130)에 링크 안테나(140)를 내장할 수 있다. 또한, 링크 모듈(130)과 외벽 모듈(300)을 일체화하거나, 중계기(120)와 내벽 모듈(200)을 일체화 할 수도 있다. 또한, 실시예에서는 하나의 벽에 대해서만 설명하였지만, 복수의 벽으로 이루어진 건물의 경우, 복수의 벽 각각에 내부 모듈(200) 및 외부 모듈(300) 쌍을 설치할 수 있다.
본 발명은 상기와 같이 벽을 통과하여 설치하여야 하는 중계 시스템의 동축 케이블을 벽에 구멍을 뚫지 않고 통과하게 하기 위해, 무선으로 신호와 전력을 전송하는 기술을 사용함으로써 중계 시스템 설치에 따르는 시공상의 여러 문제를 해결할 수 있다.
도 5 및 도 6은 본 발명의 제3 실시예에 따른 통신 신호 중계 시스템을 설명하기 위한 도면이다.
도 5를 참조하면, 본 발명의 제3 실시예에 따르면, 제1통신장치(예를 들면, CCTV(closed circuit television)용 카메라)(520)를 건물 외부에 설치하고, 제2통신장치(예를 들면, CCTV용 화면 수신기)(510)를 건물(14000)의 내부에 설치하는 경우를 상정한다. 종래 기술에 따르면, 제1통신장치 (520)와 화면 제2통신장치 (510)는 UTP(unshielded twisted pair) 케이블(또는 유선신호 전달용 케이블)을 이용하여 화상 데이터를 포함하는 유선 신호(예를 들면, 이더넷(Ethernet) 신호, Serial 통신 신호, Custom 신호)를 통해 송수신할 때, 건물의 벽에 구멍을 내야 한다. 하지만, 본 발명에 제3 실시예에 따르면, 벽을 사이에 두고, 설치되는 내벽 모듈(1200) 및 외벽 모듈(1300) 간에 무선 통신을 통해 유선 신호를 주고받기 때문에 벽에 구멍을 낼 필요가 없다.
그러면, 내벽 모듈 및 외벽 모듈에 대해 더 상세하게 설명하기로 한다.
도 6을 참조하면, 본 발명의 제3 실시예에 따른 중계 시스템은 건물(1400)의 벽을 사이에 두고, 건물(1400)의 내부에 설치되는 내벽 모듈(1200)과 내벽 모듈(1200)이 설치된 영역의 건물(1400)의 외부 면에 설치되는 외벽 모듈(1300)을 포함한다. 외벽 모듈(1300)은 UTP 케이블(1301)을 통해 제1통신장치 (520)와 연결된다. 내벽 모듈(1200)은 UTP 케이블(1201)을 통해 제2통신장치 (510)와 연결된다. 여기서, 제1통신장치와 제2통신장치는 통신 기능을 구비한 임의의 장치일 수 있다. 예를 들면, 제2통신장치는 CCTV용 화면 수신기일 수 있고, 제1통신장치는 카메라(520)일 수 있으나, 본원 발명이 이러한 장치들에만 한정되는 것이 아님을 본원 발명이 속하는 기술분야에 속하는 자라면 용이하게 이해할 수 있을 것이다.
내벽 모듈(1200)은 내벽 안테나(1202), 내벽 액세스 포인트(Access Point 또는 WiFi Access Point)(1203), PoE(Power over Ethernet)의 PD(Powered Device)(1204), 무선 전력 송신기(1205) 및 무선 전력 송신 안테나(1206)를 포함할 수 있다.
외벽 모듈(1300)은 외벽 안테나(1302), 외벽 액세스 포인트(1303), PSE(Power sourcing equipment)(1304), 무선 전력 수신기(1305) 및 무선 전력 수신 안테나(1306)를 포함할 수 있다.
제1통신장치 (520)가 제2통신장치(510)로 전송하고자 하는 소정의 데이터를 포함하는 유선 신호는 UTP 케이블(1301)을 통해 외벽 액세스 포인트(1303)에 전달된다. 그러면, 외벽 액세스 포인트(1303)는 상기 데이터를 무선랜(WLAN 또는 WiFi를 의미하나 Zigbee, Bluetooth 등 무선통신 방식도 사용 가능하다.) 신호로 변환한다. 한편, 선택적으로, 경로 손실을 미리 고려하여, 외벽 액세스 포인트(1303)는 무선랜 신호를 증폭하는 선처리 과정을 수행할 수 있다. 다음으로, 외벽 액세스 포인트(1303)는 무선랜 신호를 외벽 안테나(1302)로 전달하며, 외벽 안테나(1302)는 이를 방사한다.
방사된 무선랜 신호는 내벽 안테나(1202)가 수신하여, 내벽 액세스 포인트(1202)에 전달된다. 그러면, 내벽 액세스 포인트(1202)는 무선랜 신호를 다시 유선 신호로 변환한다. 이때, 선택적으로, 내벽 액세스 포인트(1202)는 경로 손실을 고려하여, 변환된 유선 신호를 증폭하여, 경로 손실을 보상하는 후처리 과정을 수행할 수 있다. 다음으로, 내벽 액세스 포인트(1202)는 UTP 케이블(1201)을 통해 제2통신장치 (510)에 유선 신호를 전달한다. 그러면, 제2통신장치 (510)는 유선 신호로부터 상기 데이터를 추출하여 그 용도에 맞게 사용할 수 있다.
한편, 본 발명의 제3 실시예에 따르면, 내벽 외부에 설치되는 장비(외벽 액세스 포인트(1303)외 제1통신장치 (520)를 구동시키기 위한 전력(구동 전력)을 공급하기 위하여. UTP 케이블을 통해서 전력을 공급하는 POE(Power over Ethernet)가 구현될 수 있다.
먼저, 제1통신장치 (510)로부터 UTP 케이블(1201)로 전송된 POE 전력은 내벽 액세스 포인트(1203)에서 분기되어 PD(1204)에 연결된다. 그러면, PD(1204)는 내벽 액세스 포인트(1203)와 무선 전력 송신기(1205)에 전력을 공급한다.
무선 전력 송신기(1205)는 공급받은 전력을 무선전력 신호로 변환하고, 변환된 무선전력 신호를 무선 전력 송신 안테나(1206)에 제공한다. 그러면, 무선 전력 송신 안테나(1206)는 무선 전력 신호를 방사한다.
그러면, 무선 전력 수신 안테나(1306)는 무선 전력 신호를 수신하여, 무선 전력 수신기(1305)에 전달한다. 그러면, 무선 전력 수신기(1305)는 외벽 액세스 포인트(1303)가 구동되도록 전력을 공급한다. 이와 함께, 무선 전력 수신기(1305)는 PSE(1304)에 전력을 공급한다.
PSE(1304)는 또한 제1통신장치 에 전력을 공급하기 위해, 외벽 액세스 포인트에 전력을 제공할 수 있다. 그러면, 외벽 액세스 포인트(1303)는 UTP 케이블을 통해 제1통신장치 (520)에 전력을 공급하여, 구동되도록 한다. 이에 따라, 제1통신장치 (520)는 전력을 수신하여, 동작할 수 있다. 이와 같이, 본 발명의 제3 실시예에 따른 유선 신호를 전송하기 위한 내벽 모듈(1200)과 외벽 모듈(1300)의 한 쌍으로 구성된 중계 시스템은 외부 장비(즉, 제1통신장치 (520))에 POE 전원을 공급할 수 있다.
상술한 바와 같이 본 발명의 제3 실시예에 따르면, CCTV 용 IP 카메라와 같은 통신 장치에 응용하는 예를 들었지만, 이 기술분야에서 통상의 지식을 가진 자라면, 본 발명의 사상을 벗어남이 없이, 필요한 수정을 가하여, 다양한 유선 신호 전송 장비에 활용이 가능할 것이다. 또한, 외벽 모듈(1300)과 외벽 모듈(1300)에 연결된 외부 장치(제1통신장치 (520))가 각각의 구성으로 분리된 것과 같이 설명하였지만, 하나의 장치로 구현될 수도 있다.
이상 본 발명을 몇 가지 바람직한 실시예를 사용하여 설명하였으나, 이들 실시예는 예시적인 것이며 한정적인 것이 아니다. 이와 같이, 본 발명이 속하는 기술분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 균등론에 따라 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.

Claims (10)

  1. 중계 시스템에 있어서,
    건물의 내부에 위치하며 건물의 내부에 위치하는 단말기와의 무선 연결을 위한 서비스 안테나;
    상기 서비스 안테나와 동축 케이블로 연결되는 중계기;
    상기 중계기와 동축 케이블로 연결되며 상기 건물의 벽 내부 면에 설치되는 내벽 모듈;
    상기 내벽 모듈이 설치된 영역에 대응하는 영역의 상기 건물의 벽의 외부 면에 설치되어, 상기 건물의 벽을 사이에 두고 상기 내벽 모듈과 무선으로 무선 통신 신호를 송수신하는 외벽 모듈;
    상기 외벽 모듈과 동축 케이블로 연결되는 링크 모듈; 및
    상기 링크 모듈과 동축 케이블로 연결되며, 기지국과의 무선 연결을 위한 링크 안테나;를 포함하는 것을 특징으로 하는 중계 시스템.
  2. 제1항에 있어서,
    상기 내벽 모듈은
    상기 무선 통신 신호를 송수신하는 내벽 안테나,
    상기 중계기로부터 동축 케이블을 통해 DC 전압이 인가되면, 인가된 DC 전압을 무선전력 신호로 변환하는 무선 전력 송신기, 및
    상기 무선전력 신호를 방사하는 무선 전력 송신 안테나를 포함하는 것을 특징으로 하는 중계 시스템.
  3. 제2항에 있어서,
    상기 외벽 모듈은
    상기 무선통신 신호를 송수신하는 외벽 안테나,
    상기 방사된 무선전력 신호를 수신하는 무선전력 수신 안테나, 및
    상기 수신된 무선전력 신호를 DC 전압으로 변환하여 동축 케이블을 통해 상기 링크 모듈에 인가하는 무선전력 수신기를 포함하는 것을 특징으로 하는 중계 시스템.
  4. 제1항에 있어서,
    상기 기지국으로부터의 순방향 신호가 수신되면, 상기 링크 안테나, 상기 링크 모듈, 상기 외벽 모듈의 외벽 안테나, 상기 내벽 모듈의 내벽 안테나, 상기 중계기 및 상기 서비스 안테나는 순차로 상기 순방향 신호를 중계하여 상기 단말기에 전달하는 것을 특징으로 하는 중계 시스템.
  5. 제1항에 있어서,
    상기 단말기로부터 역방향 신호가 수신되면,
    상기 서비스 안테나, 상기 중계기, 상기 내벽 모듈의 내벽 안테나, 상기 외벽 모듈의 외벽 안테나 및 상기 링크 안테나는 순차로 상기 역방향 신호를 중계하여 상기 기지국으로 전달하는 것을 특징으로 하는 중계 시스템.
  6. 제1항에 있어서,
    상기 링크 안테나는 상기 기지국으로부터의 순방향 신호를 수신하면, 수신된 순방향 신호를 상기 링크 모듈로 전달하며,
    상기 링크 모듈은 전달된 순방향 신호를 증폭한 후, 증폭된 순방향 신호를 상기 외벽 모듈의 외벽 안테나로 전송하며,
    상기 외벽 안테나는 상기 전송된 순방향 신호를 방사하고,
    상기 내벽 모듈의 내벽 안테나는 방사된 순방향 신호를 상기 중계기로 제공하며,
    상기 중계기는 제공된 순방향 신호를 증폭하고, 상기 서비스 안테나에 증폭된 순방향 신호를 전송하며,
    상기 서비스 안테나는 전송된 순방향 신호를 상기 단말에 전송하는 하는 것을 특징으로 하는 중계 시스템.
  7. 제1항에 있어서,
    상기 서비스 안테나는 상기 단말로부터 역방향 신호를 수신하여, 중계기로 전달하며,
    상기 중계기는 상기 역방향 신호를 증폭하여, 상기 내벽 모듈의 내벽 안테나에 제공하고,
    상기 내벽 안테나는 상기 역방향 신호를 방사하고,
    상기 외벽 모듈의 외벽 안테나는 상기 역방향 신호를 수신하여 상기 링크 모듈로 전달하고,
    상기 링크 모듈은 상기 역방향 신호를 링크 안테나로 전달하고,
    상기 링크 안테나는 상기 역방향 신호를 상기 기지국에 전달하는 것을 특징으로 하는 중계 시스템.
  8. 통신 신호 중계 시스템에 있어서,
    건물 외부에 위치하는 제1통신장치;
    상기 제1통신장치와 UTP(unshielded twisted pair) 케이블로 연결되며 상기 건물의 벽 외부 면에 설치되는 외벽 모듈;
    상기 외벽 모듈이 설치된 영역에 대응하는 영역의 상기 건물의 벽의 내부면 에 설치되어, 상기 건물의 벽을 사이에 두고 상기 외벽 모듈과 무선으로 무선랜 신호를 송수신하는 내벽 모듈; 및
    상기 건물의 내부에 위치하여 상기 내벽 모듈과 UTP 케이블로 연결되는 제2통신장치;를 포함하는 것을 특징으로 하는 통신 신호 중계 시스템.
  9. 제8항에 있어서,
    상기 외벽 모듈은
    상기 제1통신장치로부터 소정의 데이터를 포함하는 유선 신호를 수신하면, 수신된 유선 신호를 무선랜 신호로 변환하는 외벽 액세스 포인트와,
    상기 무선랜 신호를 방사하는 외벽 안테나를 포함하며,
    상기 내벽 모듈은
    상기 무선랜 신호를 수신하는 내벽 안테나와,
    상기 수신된 무선랜 신호를 유선 신호로 변환하여 상기 제2통신장치에 전달하는 내벽 액세스 포인트를 포함하는 것을 특징으로 하는 통신 신호 중계 시스템.
  10. 제8항에 있어서,
    상기 내벽 액세스 포인트는 상기 화상 수신기로부터 UTP 케이블을 통해 전력을 수신하며,
    상기 내벽 모듈은
    상기 내벽 액세스 포인트로부터 전력을 수신하는 파워 장치;
    상기 파워 장치로부터 전력을 수신하여 무선전력 신호로 변환하는 무선 전력 송신기;
    상기 무선전력 신호를 방사하는 무선 전력 송신 안테나;를 포함하며,
    상기 외벽 모듈은
    상기 무선전력 신호를 수신하는 무선 전력 수신 안테나;
    무선 전력 수신 안테나로부터 상기 무선전력 신호를 수신하여, 상기 외벽 액세스 포인트가 구동되도록 상기 외벽 액세스 포인트에 전력을 공급하며, PSE에 전력을 공급하는 무선 전력 수신기; 및
    상기 제1통신장치 가 구동될 수 있도록 되도록 상기 외벽 액세스 포인트에 전력을 공급에 전력을 공급하는 상기 PSE;를 포함하며,
    상기 외벽 액세스 포인트는 상기 PSE로부터 수신된 전력을 상기 제1통신장치에 공급하는 것을 특징으로 하는 통신 신호 중계 시스템.
PCT/KR2013/005711 2012-07-03 2013-06-27 건물 보호를 위한 통신 신호 중계 시스템 WO2014007487A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015520019A JP2015522221A (ja) 2012-07-03 2013-06-27 建物保護のための通信信号中継システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120072094A KR101403978B1 (ko) 2012-07-03 2012-07-03 건물 보호를 위한 통신 신호 중계 장치
KR10-2012-0072094 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014007487A1 true WO2014007487A1 (ko) 2014-01-09

Family

ID=49882203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005711 WO2014007487A1 (ko) 2012-07-03 2013-06-27 건물 보호를 위한 통신 신호 중계 시스템

Country Status (3)

Country Link
JP (1) JP2015522221A (ko)
KR (1) KR101403978B1 (ko)
WO (1) WO2014007487A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615135A (zh) * 2014-11-25 2021-04-06 唯景公司 窗天线

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US10374710B2 (en) 2014-04-04 2019-08-06 Nxgen Partners Ip, Llc Re-generation and re-transmission of millimeter waves for building penetration
US10027173B2 (en) * 2014-07-17 2018-07-17 Flir Systems, Inc. Powered security camera tool-free installation
US9787400B2 (en) 2015-04-08 2017-10-10 Corning Optical Communications LLC Fiber-wireless system and methods for simplified and flexible FTTX deployment and installation
WO2017176746A1 (en) * 2016-04-04 2017-10-12 Nxgen Partners Ip, Llc Re-generation and re-transmission of millimeter waves for building penetration
US10735838B2 (en) 2016-11-14 2020-08-04 Corning Optical Communications LLC Transparent wireless bridges for optical fiber-wireless networks and related methods and systems
KR20190133194A (ko) * 2017-03-22 2019-12-02 넥스젠 파트너스 아이피 엘엘씨 건물 침투를 위한 밀리미터파의 재생성 및 재전송
GB2569981A (en) 2018-01-05 2019-07-10 Airspan Networks Inc An apparatus and method for facilitating communication between a telecommunications network and a user device within a building
JP7076677B2 (ja) * 2018-04-23 2022-05-30 株式会社アサヒ 遮蔽物越し無線通信システム及び遮蔽物越し無線通信具
DE102018120779B3 (de) 2018-08-24 2019-12-12 Phoenix Contact Gmbh & Co. Kg Kontaktloses PoE-Verbindungssystem
KR20210021722A (ko) 2019-08-19 2021-03-02 김종식 안경용 힌지
JP7383934B2 (ja) * 2019-08-22 2023-11-21 ヤマハ株式会社 信号伝送装置及び信号伝送方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153469A (ja) * 2002-10-29 2004-05-27 Doro Tsushin Engineer Kk カメラ併置型屋外用照明器具を利用した画像伝送システム
JP2005012422A (ja) * 2003-06-18 2005-01-13 Victor Co Of Japan Ltd インターホンシステム
KR20090117196A (ko) * 2008-05-09 2009-11-12 알파웨이브(주) 댁내형 무선 중계 시스템
KR20100044538A (ko) * 2008-10-22 2010-04-30 삼성물산 주식회사 가로등용 옥외 비상 호출부를 이용한 위치 확인 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297793A (ja) * 1995-04-25 1996-11-12 Mutsuo Tanaka 監視装置
JP2006134023A (ja) * 2004-11-05 2006-05-25 Sogo Keibi Hosho Co Ltd 警備装置、監視システム
KR100731185B1 (ko) * 2005-05-25 2007-06-27 카시와야마 토요히테 감시용 무선 카메라 장치
JP2007209067A (ja) * 2006-01-31 2007-08-16 Panahome Corp タイル仕上面の電気機器取付構造
EP1986339A1 (fr) * 2007-04-25 2008-10-29 Alcatel Lucent Dispositif repeteur de signaux rf par couplage electromagnetique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153469A (ja) * 2002-10-29 2004-05-27 Doro Tsushin Engineer Kk カメラ併置型屋外用照明器具を利用した画像伝送システム
JP2005012422A (ja) * 2003-06-18 2005-01-13 Victor Co Of Japan Ltd インターホンシステム
KR20090117196A (ko) * 2008-05-09 2009-11-12 알파웨이브(주) 댁내형 무선 중계 시스템
KR20100044538A (ko) * 2008-10-22 2010-04-30 삼성물산 주식회사 가로등용 옥외 비상 호출부를 이용한 위치 확인 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615135A (zh) * 2014-11-25 2021-04-06 唯景公司 窗天线

Also Published As

Publication number Publication date
KR101403978B1 (ko) 2014-06-17
KR20140004455A (ko) 2014-01-13
JP2015522221A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
WO2014007487A1 (ko) 건물 보호를 위한 통신 신호 중계 시스템
US11516030B2 (en) Power management for distributed communication systems, and related components, systems, and methods
US8326156B2 (en) Cell phone/internet communication system for RF isolated areas
US20140192849A1 (en) System, a device and a method for adjusting output power in a distributed amplifier system
WO2016108650A1 (ko) 디지털 맵핑 데이터 전송 방법
WO2017115925A1 (ko) 메인 유닛 및 이를 포함하는 분산 안테나 시스템
US10659156B2 (en) Apparatus and method for facilitating communication between a telecommunications network and a user device within a building
WO2017171120A1 (ko) 기지국 신호 정합 장치, 이를 포함하는 기지국 인터페이스 유닛 및 분산 안테나 시스템
WO2019203424A1 (ko) 전자장치 및 그 제어방법
SE9901085D0 (sv) Förfarande jämte anordning vid sändar- och mottagarenhet i ett mobiltelefonsystem
KR101442594B1 (ko) 공조 덕트를 이용한 무선 전송 시스템
WO2016060294A1 (ko) 분산 안테나 시스템의 헤드엔드 장치 및 그 신호 처리 방법
CN103078654B (zh) 无线信号收发天线系统、耦合放大装置及信号处理方法
WO2015076480A1 (ko) 통신 유닛 간 시각 동기화 방법 및 그 시스템
WO2013176356A1 (ko) 구내 확장성을 갖는 원격 무선 기지국 장치 및 인빌딩 중계 시스템
WO2013032298A2 (en) Gateway module
KR100637551B1 (ko) 빌딩 내부 서비스용 부착식 중계기
WO2021107240A1 (ko) 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크
WO2020022834A1 (ko) 기지국 안테나 장치 및 그 어댑터
WO2015002343A1 (ko) 시간 지연 미세조정 utp 펨토 분산 중계 장치 및 방법
KR100577536B1 (ko) 아울렛을 이용한 인터넷 접속 시스템 및 그 방법
WO2024072073A1 (ko) 하이브리드 통신 디바이스
KR101983015B1 (ko) 아파트용 구내통신망 중계 시스템
JP4249988B2 (ja) 移動体通信の中継装置
KR102298928B1 (ko) 공동주택의 세대별 통신용 케이블 점검 및 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015520019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813318

Country of ref document: EP

Kind code of ref document: A1