WO2021107240A1 - 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크 - Google Patents

통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크 Download PDF

Info

Publication number
WO2021107240A1
WO2021107240A1 PCT/KR2019/016939 KR2019016939W WO2021107240A1 WO 2021107240 A1 WO2021107240 A1 WO 2021107240A1 KR 2019016939 W KR2019016939 W KR 2019016939W WO 2021107240 A1 WO2021107240 A1 WO 2021107240A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication node
synchronization
communication network
source signal
Prior art date
Application number
PCT/KR2019/016939
Other languages
English (en)
French (fr)
Inventor
권동희
홍후표
Original Assignee
주식회사 쏠리드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쏠리드 filed Critical 주식회사 쏠리드
Priority to EP19954301.8A priority Critical patent/EP4068658A4/en
Priority to JP2022532003A priority patent/JP2023504255A/ja
Priority to US17/780,806 priority patent/US20220417882A1/en
Publication of WO2021107240A1 publication Critical patent/WO2021107240A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0679Clock or time synchronisation in a network by determining clock distribution path in a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0644External master-clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a method for synchronizing a clock of a communication network and a communication network using the same, and more particularly, to transmit a reference clock through a second path including at least a partial path that reverses a first path through which a downlink signal is transmitted. It relates to a method for synchronizing clocks in a communication network capable of being used and to a communication network using the same.
  • a distributed antenna system which is currently commercialized, receives external reference clock information from a headend device and transmits the reference clock to other nodes (eg, an expansion device or a remote device).
  • DAS distributed antenna system
  • the headend device is generally disposed in a separate space inside a building where the distributed antenna system is installed, for reasons such as a considerable size and weight, and the need to supply a separate power source.
  • the headend device in order to receive external reference clock information, it has structural inefficiency in that it is necessary to connect a clock source and a headend device located far apart through a cable.
  • the technical problem to be achieved by the present invention is to provide a method for synchronizing a clock of a communication network capable of transmitting a reference clock through a second path including at least a partial path that reverses a first path through which a downlink signal is transmitted, and a communication network using the same will provide
  • a clock synchronization method performed between communication nodes included in a communication network transmits a synchronization source signal through any one communication node among the remaining communication nodes except for the highest communication node included in the communication network.
  • the uppermost communication node may be a communication node that first receives the downlink signal among communication nodes included in the communication network.
  • the communication network includes at least one of a headend device, an extension device, and a remote device, and the remote device may receive the synchronization source signal.
  • the communication network includes at least one of a headend device, an expansion device, and a remote device, and the expansion device may receive the synchronization source signal.
  • the reference clock in the transmitting of the reference clock, may be transmitted from the one communication node to a communication node that is distant from the one communication node from an adjacent communication node.
  • a communication node relatively adjacent from the one communication node is determined as a sync master, and a communication node relatively distant from the one communication node is It is determined as a synchronization slave, and the reference clock may be transmitted from the communication node determined as the synchronization master to the communication node determined as the synchronization slave.
  • the clock synchronization method of the communication network may dynamically determine the synchronization master and the synchronization slave based on a Synchronization Status Message (SSM) protocol.
  • SSM Synchronization Status Message
  • the method for synchronizing clocks in a communication network further comprises selecting one communication node to be used for clock synchronization from among two or more communication nodes each connected to a synchronization source providing a synchronization source signal, , the receiving of the synchronization source signal may include receiving the synchronization source signal through the selected one communication node.
  • the selecting of the one communication node may include selecting the one communication node from among the two or more communication nodes except for a communication node having a failure.
  • the selecting of the one communication node may include selecting the one communication node according to a state of each of the two or more communication nodes and performance of a synchronization source providing a synchronization source signal to each of the two or more communication nodes. You can select a communication node.
  • the synchronization source signal may be a Global Positioning System (GPS) signal.
  • GPS Global Positioning System
  • At least a part of the communication network may be installed in a building.
  • the one communication node receiving the synchronization source signal may be a communication node installed at the highest altitude among a plurality of communication nodes included in the communication network.
  • a communication network is a communication node of any one of the remaining communication nodes except for the highest level communication node included in the communication network, receives a synchronization source signal, and performs clock synchronization from the received synchronization source signal.
  • a first communication node generating a reference clock; and a second communication node receiving the reference clock generated through a second path including at least a partial path that reverses the first path through which the downlink signal is transmitted in the communication network.
  • the second communication node may be located above the first communication node with respect to the transmission direction of the downlink signal.
  • a method and apparatus communicates a synchronization source providing a synchronization signal by transmitting a reference clock through a second path including at least a part of a path opposite to a first path through which a downlink signal is transmitted. Since it can be connected to various locations in the network in various forms, there is an effect that the communication network can be designed in a form suitable for the installation space.
  • FIG. 1 is a conceptual diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the distributed antenna system shown in FIG. 1 according to an embodiment.
  • FIG. 3 is a block diagram according to another embodiment of the distributed antenna system shown in FIG.
  • FIG. 4 is a flowchart of a clock synchronization method of a communication network according to an embodiment of the present invention.
  • a component when referred to as “connected” or “connected” with another component, the component may be directly connected or directly connected to the other component, but in particular It should be understood that, unless there is a description to the contrary, it may be connected or connected through another element in the middle.
  • ⁇ unit means a unit that processes at least one function or operation, which is a processor, a micro Processor (Micro Processor), Micro Controller (Central Processing Unit), GPU (Graphics Processing Unit), APU (Accelerate Processor Unit), DSP (Drive Signal Processor), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), etc.
  • a micro Processor Micro Processor
  • Micro Controller Central Processing Unit
  • GPU Graphics Processing Unit
  • APU Accelerate Processor Unit
  • DSP Drive Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • each constituent unit in the present specification is merely a classification for each main function that each constituent unit is responsible for. That is, two or more components to be described below may be combined into one component, or one component may be divided into two or more for each more subdivided function.
  • each of the constituent units to be described below may additionally perform some or all of the functions of other constituent units in addition to the main function it is responsible for. Of course, it may be carried out by being dedicated to it.
  • FIG. 1 is a conceptual diagram of a communication system according to an embodiment of the present invention.
  • the communication system 10 is a core network 50, a base station (Base Transceiver Station (BTS), 100), a distributed antenna system (DAS, 200) for relaying the communication signal of the base station 100, and It may include a Network Management Server (NMS or Network Management System) 300 for managing and monitoring the distributed antenna system 200 .
  • BTS Base Transceiver Station
  • DAS distributed antenna system
  • NMS Network Management Server
  • the communication system 10 includes a core network 50 , a base station 100 constituting an access network that connects a user terminal to the core network 50 , and a distributed antenna system 200 . can be distinguished.
  • the distributed antenna system 200 is described as an example of a communication network, and may directly perform at least some functions of the base station 100 .
  • the distributed antenna system 200 is communicatively connected with the base station 100 and constitutes a headend device 210 constituting a headend node, a remote node, and is connected to other remote nodes or It includes a plurality of remote devices (220a, 220b, 220c, 220d) disposed at each remote service location and communicatively connected to the user terminal, and extension devices (230a, 230b) constituting an extension node. can do.
  • the distributed antenna system 200 may be implemented as an analog distributed antenna system.
  • the distributed antenna system 200 may be implemented as a digital distributed antenna system, and in some cases, it is a mixed type (eg, some nodes perform analog processing and the remaining nodes perform digital processing). may be implemented.
  • Figure 1 shows an example of the topology of the distributed antenna system 200
  • the distributed antenna system 200 is an installation area and application fields (eg, in-building (In-Building), subway (Subway)) , hospitals, stadiums, etc.), various modifications are possible.
  • application fields eg, in-building (In-Building), subway (Subway)
  • hospitals stadiums, etc.
  • the structure of the distributed antenna system 200 may be implemented in a form including a redundant structure to be described later with reference to FIG. 2 .
  • the expansion devices 230a and 230b in the distributed antenna system 200 may be utilized when the number of branches of the headend device 210 is limited compared to the number of remote devices required to be installed.
  • the headend device 210 may serve as an interface with the base station.
  • the headend device 210 may be connected to a plurality of base stations.
  • the headend device 210 may be implemented as a main headend device and a sub headend device, and may be connected to a base station for each service frequency band or each sector of a specific operator. Coverage may be supplemented by a headend device.
  • the headend device 210 may attenuate such a high power RF signal to a signal of power suitable for processing in each node. have.
  • the headend device 210 may lower the RF signal of high power for each frequency band or each sector to low power.
  • the headend device 210 may combine a low-power RF signal, and may serve to distribute the combined signal to the extension device 230a or the remote device 220a.
  • the headend device 210 is a digital format communication signal from the base station (eg, Common Public Radio Interface (CPRI), Open Radio Interface (ORI), Open Baseband Remote Radiohead Interface (OBSAI), or e-CPRI etc.) may be directly received from the base station 100 .
  • CPRI Common Public Radio Interface
  • ORI Open Radio Interface
  • OBSAI Open Baseband Remote Radiohead Interface
  • e-CPRI e-CPRI etc.
  • Each of the remote devices 220a, 220b, 220c, 220d may separate the received combined signal for each frequency band and perform signal processing such as amplification. Accordingly, each remote device 220a, 220b, 220c, 220d may transmit a base station signal to a user terminal within its service coverage through a service antenna (not shown).
  • the remote device 220a and the remote device 220b may be connected through an RF cable or wireless communication, and if necessary, a plurality of remote devices may be connected in a cascade structure.
  • the expansion device 230a may transmit the received combined signal to the remote device 220c connected to the expansion device 230a.
  • the extension device 230b is connected to one end of the remote device 220a, and may receive a signal transmitted from the headend device 210 in downlink communication through the remote device 220a. At this time, the expansion device 230b may transmit the received signal back to the remote device 220d connected to the rear end of the expansion device 230b.
  • the base station 100 and the headend device 210 are interconnected through an RF cable, an optical cable, or an Ethernet cable (eg, twisted cable, UTP cable), etc., and the lower end of the headend device 210 is remote. Except between the device 220a and the remote device 220b, they may be interconnected through an optical cable or an Ethernet cable (eg, a twisted cable, a UTP cable), etc., and a signal transport medium or communication method between each node. may be capable of various other modifications.
  • the headend device 210, the remote devices 220a, 220b, 220c, 220d, and the expansion devices 230a, 230b are all-optical It may include an optical transceiver module for transmitting and receiving an optical type signal through conversion/photoelectric conversion, and may include a Wavelength Division Multiplexing (WDM) device when connected between nodes using a single optical cable.
  • WDM Wavelength Division Multiplexing
  • the distributed antenna system 200 may be connected to an external management device (not shown) through a network, for example, a Network Management Server (NMS or Network Management System; 300), a Network Operation Center (NOC), or the like, through a network. Accordingly, the administrator can remotely monitor the status and problems of each node of the distributed antenna system, and remotely control the operation of each node.
  • NMS Network Management Server
  • NOC Network Operation Center
  • FIG. 2 is a block diagram of the distributed antenna system shown in FIG. 1 according to an embodiment.
  • the distributed antenna system 200A includes a headend device 210, remote devices 220-1 to 220-4, extension devices 230-1 and 230-2, and small It may include a small cell 400 and a sync source 500 .
  • a communication network for example, the distributed antenna system 200A is a topmost communication node (eg, a plurality of communication nodes 210, 220-1 to 220-4, and 230-1 to 230-2) included in the distributed antenna system 200A. , 210) of the remaining communication nodes (eg, 220-1 ⁇ 220-4, 230-1 ⁇ 230-2) through any one of the communication node (eg, 220-1) can receive the source signal have.
  • the uppermost communication node is a communication network
  • the communication nodes (210, 220-1 ⁇ 220-4, 230-1 ⁇ 230-2) included in the distributed antenna system 200A, 400) may mean a communication node that first receives a downlink signal from the base station 100 side.
  • the communication node receiving the synchronization source signal may be the remote devices 220-1 to 220-4 or the extension devices 230-1 or 230-2.
  • the first remote device 220 - 1 When the first remote device 220 - 1 receives the sync source signal, the first remote device 220 - 1 may be connected to the sync source 500 .
  • the synchronization source 500 may receive or generate a synchronization source signal.
  • the synchronization source 500 may include a Global Positioning System (GPS) antenna, wherein the synchronization source 500 receives a GPS signal from the outside of the distributed antenna system 200A, and receives the received GPS signal.
  • GPS Global Positioning System
  • the signal can be used as a sync source signal.
  • the first remote device 200 - 1 may extract or generate a reference clock for clock synchronization from the synchronization source signal received from the synchronization source 500 .
  • the first remote device 200-1 transmits the extracted or generated reference clock to a second path including at least a partial path that reverses the first path PATH1 through which the downlink signal is transmitted in the distributed antenna system 200A ( PATH2) through other communication nodes (eg, 210, 220-2 to 220-4, and 230-1 to 230-2).
  • PATH2 distributed antenna system 200A
  • the first path PATH1 is a path through which the downlink signal is transmitted in the distributed antenna system 200A, and the downlink signal transmitted from the base station 100 is transmitted through the headend device 210 to the extension devices 230-1, 230-2), and each of the extension devices 230-1 and 230-2 are remote devices 220-1 to 220-4 connected to each of the extension devices 230-1 and 230-2. Each can transmit a downlink signal.
  • a remote device eg, 220-2) connected to the small cell 400 among the remote devices 220-1 to 220-4 transmits the received downlink signal to the small cell 400 through the first path PATH1. can be transmitted
  • the second path PATH2 is a path through which the reference clock is transmitted in the distributed antenna system 200A, and the reference clock extracted or generated by the first remote device 200-1 is transmitted along the second path PATH2.
  • the second path PATH2 may include at least a part of a path that reverses the first path PATH1 .
  • a path from the first remote device 220-1 to the first expansion device 230-1 in the second path PAHT2 and a path from the first expansion device 230-1 to the headend device 210 The path may reverse the first path PATH1 .
  • the second path PATH2 may be formed in a direction of a communication node distant from a communication node adjacent to the remote device (eg, 220 - 1 ) receiving the synchronization source signal.
  • the reference clock may be transmitted from a remote device (eg, 220 - 1 ) receiving the synchronization source signal from an adjacent communication node on the second path PATH2 to a distant communication node on the second path PATH2 .
  • the reference clock is transmitted from the first remote device 220-1 to the second path PATH2 from the adjacent first expansion device 230-1 on the second path PATH2 from the first remote device 220-1. It may be transmitted to each of the distant headend device 210 and the second remote device 220-2.
  • a relatively adjacent communication node (eg, 230-1) on the second path (PATH2) is determined as a sync master, and a relatively distant communication node (eg, on the second path (PATH2)) 210 or 220-2) may be determined as a sync slave.
  • the reference clock may be transferred from the communication node (eg, 230-1) determined as the synchronization master to the communication node (eg, 210 or 220-2) determined as the synchronization slave.
  • determining the synchronization master and the synchronization slave when determining the synchronization master and the synchronization slave, it may be dynamically determined based on a Synchronization Status Message (SSM) protocol.
  • SSM Synchronization Status Message
  • FIG. 3 is a block diagram according to another embodiment of the distributed antenna system shown in FIG.
  • the distributed antenna system 200B includes a headend device 210, remote devices 220-1a to 220-5a, 220-1b to 220-5b, and expansion devices 230- 1a to 230-5a), small cells 400-1a to 400-5a, 400-1b to 400-5b, and synchronization sources 500-1 and 500-2.
  • the distributed antenna system 200B may include two or more communication nodes (eg, 200-5a, 200-5b) connected to synchronization sources 500-1 and 500-2, each of which provides a synchronization source signal.
  • two or more communication nodes eg, 200-5a, 200-5b
  • synchronization sources 500-1 and 500-2 each of which provides a synchronization source signal.
  • the headend device 210 or the NMS 300 synchronizes clocks among the communication nodes (eg, 220-5a, 200-5b) connected to the plurality of synchronization sources 500-1 and 500-2. You can select one communication node to use for
  • a communication failure occurs among communication nodes (eg, 220-5a and 200-5b) connected to the plurality of synchronization sources 500-1 and 500-2. Except for the node, you can select one communication node to use for clock synchronization. In this case, whether the headend device 210 or the NMS 300 has a failure in the communication nodes (eg, 220-1a to 220-5a, 220-1b to 220-5b, 230-1a to 230-5a). can be monitored.
  • the state of each of the communication nodes eg, 220-5a, 200-5b
  • the state of each of the communication nodes eg, 220-5a, 200-5b
  • the performance of each of the plurality of synchronization sources 500-1 and 500-2 grade of the synchronization source, stability of the synchronization source signal, accuracy, etc.
  • At least a part of the distributed antenna system 200B may be installed in a building.
  • each component of the distributed antenna system 200B may be arranged for each floor of a building, and communication between different floors may be performed through the expansion devices 230-1a to 230-5a and the headend device 210.
  • the communication node (eg, 220-5a, 220-5b) receiving the synchronization source signal is a communication installed at the highest altitude (or floor) among a plurality of communication nodes included in the distributed antenna system 200B. It can be a node.
  • the communication nodes (eg, 220-5a, 220-5b) receiving the synchronization source signal are disposed adjacent to the roof of a building advantageous for receiving the synchronization source signal, so that the synchronization source signal can be obtained from a short distance. .
  • FIG. 4 is a flowchart of a clock synchronization method of a communication network according to an embodiment of the present invention.
  • any one communication node eg, A synchronization source signal may be received through 220-1, 220-5a, or 220-5b (S410).
  • the synchronization source signal may be a GPS signal.
  • the communication node (eg, 220-1, 220-5a, or 220-5b) that has received the synchronization source signal may generate a reference clock for clock synchronization from the received synchronization source signal (S420).
  • a communication node (eg, 220-1, 220-5a, or 220-5b) that has received the synchronization source signal transmits a downlink signal to another adjacent communication node (eg, 230-1, 230-5a) through a first path
  • the reference clock generated in step S420 may be transmitted through the second path (eg, PATH2 ) including at least a partial path that runs backward (eg, PATH1 ) ( S430 ).

Abstract

본 발명의 실시 예에 따른 통신 네트워크에 포함된 통신 노드들 간에 수행되는 클럭 동기화 방법은 상기 통신 네트워크에 포함된 최상위 통신 노드를 제외한 나머지 통신 노드들 중의 어느 하나의 통신 노드를 통하여 동기 소스 신호를 수신하는 단계, 수신된 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 생성하는 단계 및 상기 통신 네트워크에서 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여, 생성된 상기 기준 클럭을 전달하는 단계를 포함한다.

Description

통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크
본 발명은 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크에 관한 것으로, 보다 상세하게는 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여 기준 클럭을 전달할 수 있는 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크에 관한 것이다.
현재 상용화되어 있는 분산 안테나 시스템(Distributed Antenna System(DAS))은 헤드엔드 장치(headend device)에서 외부 기준 클럭 정보를 수신하여 다른 노드들(예컨대, 확장 장치, 또는 리모트 장치 등)로 기준 클럭을 전달하는 형태를 가진다.
하지만, 헤드엔드 장치는 크기와 무게가 상당하고, 별도의 전원을 공급해야 하는 등의 이유로 대부분 분산 안테나 시스템이 설치되는 건물 실내의 별도 공간에 배치되는 것이 일반적이다. 이와 같은 구조에서 외부 기준 클럭 정보를 수신하기 위해서는 멀리 떨어져 배치된 클럭 소스와 헤드엔드 장치 간을 케이블을 통하여 연결해야 한다는 점에서 구조적 비효율을 가진다.
본 발명이 이루고자 하는 기술적 과제는 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여 기준 클럭을 전달할 수 있는 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크를 제공하는 것이다.
본 발명의 일 실시 예에 따른 통신 네트워크에 포함된 통신 노드들 간에 수행되는 클럭 동기화 방법은 상기 통신 네트워크에 포함된 최상위 통신 노드를 제외한 나머지 통신 노드들 중의 어느 하나의 통신 노드를 통하여 동기 소스 신호를 수신하는 단계; 수신된 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 생성하는 단계; 및 상기 통신 네트워크에서 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여, 생성된 상기 기준 클럭을 전달하는 단계를 포함할 수 있다.
일부 실시 예에서, 상기 최상위 통신 노드는, 상기 통신 네트워크에 포함된 통신 노드들 중에서, 상기 다운링크 신호를 최초로 수신하는 통신 노드일 수 있다.
일부 실시 예에서, 상기 통신 네트워크는, 헤드엔드 장치, 확장 장치, 및 리모트 장치 중 적어도 어느 하나를 포함하며, 상기 리모트 장치가 상기 동기 소스 신호를 수신할 수 있다.
일부 실시 예에서, 상기 통신 네트워크는, 헤드엔드 장치, 확장 장치, 및 리모트 장치 중 적어도 어느 하나를 포함하며, 상기 확장 장치가 상기 동기 소스 신호를 수신할 수 있다.
일부 실시 예에서, 상기 기준 클럭을 전달하는 단계는, 상기 어느 하나의 통신 노드로부터 인접한 통신 노드로부터 상기 어느 하나의 통신 노드로부터 먼 통신 노드의 방향으로 상기 기준 클럭이 전달될 수 있다.
일부 실시 예에서, 상기 기준 클럭을 전달하는 단계에서, 상기 어느 하나의 통신 노드로부터 상대적으로 인접한 통신 노드가 동기 마스터(sync master)로 결정되고, 상기 어느 하나의 통신 노드로부터 상대적으로 먼 통신 노드가 동기 슬레이브(sync slave)로 결정되며, 상기 동기 마스터로 결정된 통신 노드로부터 상기 동기 슬레이브로 결정된 통신 노드 측으로 상기 기준 클럭이 전달될 수 있다.
일부 실시 예에서, 상기 통신 네트워크의 클럭 동기화 방법은, 상기 동기 마스터와 상기 동기 슬레이브를 결정할 때, SSM (Synchronization Status Message) 프로토콜을 기반으로 동적으로 결정할 수 있다.
일부 실시 예에서, 상기 통신 네트워크의 클럭 동기화 방법은, 각각이, 동기 소스 신호를 제공하는 동기 소스와 연결된 2 이상의 통신 노드들 중에서, 클럭 동기화에 사용할 하나의 통신 노드를 선택하는 단계를 더 포함하고, 상기 동기 소스 신호를 수신하는 단계는, 선택된 상기 하나의 통신 노드를 통하여 상기 동기 소스 신호를 수신할 수 있다.
일부 실시 예에서, 상기 하나의 통신 노드를 선택하는 단계는, 상기 2 이상의 통신 노드들 중에서 장애가 발생한 통신 노드를 제외하고 상기 하나의 통신 노드를 선택할 수 있다.
일부 실시 예에서, 상기 하나의 통신 노드를 선택하는 단계는, 상기 2 이상의 통신 노드들 각각의 상태와 상기 2 이상의 통신 노드들 각각에 동기 소스 신호를 제공하는 동기 소스의 성능에 따라, 상기 하나의 통신 노드를 선택할 수 있다.
일부 실시 예에서, 상기 동기 소스 신호는 GPS(Global Positioning System) 신호일 수 있다.
일부 실시 예에서, 상기 통신 네트워크의 적어도 일부는, 건물 내에 설치될 수 있다.
일부 실시 예에서, 상기 동기 소스 신호를 수신하는 상기 어느 하나의 통신 노드는, 상기 통신 네트워크에 포함된 복수의 통신 노드들 중에서 가장 높은 고도에 설치된 통신 노드일 수 있다.
본 발명의 일 실시 예에 따른 통신 네트워크는 통신 네트워크에 포함된 최상위 통신 노드를 제외한 나머지 통신 노드들 중의 어느 하나의 통신 노드로서, 동기 소스 신호를 수신하고, 수신된 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 생성하는 제1통신 노드; 및 상기 통신 네트워크에서 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여 생성된 상기 기준 클럭을 전달받는 제2통신 노드를 포함할 수 있다.
일부 실시 예에서, 상기 제2통신 노드는, 상기 다운링크 신호의 전송 방향을 기준으로 상기 제1통신 노드의 상위에 위치할 수 있다.
본 발명의 실시 예에 따른 방법과 장치는 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여 기준 클럭을 전달함으로써, 동기 신호를 제공하는 동기 소스를 통신 네트워크 내의 다양한 위치에 다양한 형태로 연결할 수 있기 때문에, 통신 네트워크를 설치 공간에 적합한 형태로 설계할 수 있는 효과가 있다.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 본 발명의 일 실시 예에 따른 통신 시스템의 개념도이다.
도 2는 도 1에 도시된 분산 안테나 시스템의 일 실시 예에 따른 블록도이다.
도 3은 도 1에 도시된 분산 안테나 시스템의 다른 실시 예에 따른 블록도이다.
도 4는 본 발명의 일 실시 예에 따른 통신 네트워크의 클럭 동기화 방법의 플로우차트이다.
본 발명의 기술적 사상은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 이를 상세히 설명하고자 한다. 그러나, 이는 본 발명의 기술적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 기술적 사상의 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명의 기술적 사상을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에 기재된 "~부", "~기", "~자", "~모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 프로세서(Processor), 마이크로 프로세서(Micro Processer), 마이크로 컨트롤러(Micro Controller), CPU(Central Processing Unit), GPU(Graphics Processing Unit), APU(Accelerate Processor Unit), DSP(Drive Signal Processor), ASIC(Application Specific Integrated Circuit), FPGA(Field Programmable Gate Array) 등과 같은 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있으며, 적어도 하나의 기능이나 동작의 처리에 필요한 데이터를 저장하는 메모리(memory)와 결합되는 형태로 구현될 수도 있다.
그리고 본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주기능 별로 구분한 것에 불과함을 명확히 하고자 한다. 즉, 이하에서 설명할 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다. 그리고 이하에서 설명할 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있음은 물론이다.
도 1은 본 발명의 일 실시 예에 따른 통신 시스템의 개념도이다.
도 1을 참조하면, 통신 시스템(10)은 코어 네트워크(50), 기지국(Base Transceiver Station(BTS), 100), 기지국(100)의 통신 신호를 중계하는 분산 안테나 시스템(DAS, 200), 및 분산 안테나 시스템(200)을 관리, 모니터링하는 NMS(Network Management Server 또는 Network Management System; 300)를 포함할 수 있다.
실시 예에 따라, 통신 시스템(10)은 코어 네트워크(50)와, 사용자 단말을 코어 네트워크(50)로 접속시키는 액세스 네트워크(access network)를 구성하는 기지국(100)과 분산 안테나 시스템(200)으로 구분될 수 있다.
분산 안테나 시스템(200)은 통신 네트워크의 일 예시로 설명되며, 기지국(100)의 적어도 일부 기능을 직접 수행할 수도 있다.
분산 안테나 시스템(200)은, 기지국(100)과 통신적으로 연결되며 헤드엔드 노드(headend node)를 구성하는 헤드엔드 장치(210), 리모트 노드(remote node)를 구성하며 타 리모트 노드와 연결되거나 원격의 각 서비스 위치에 배치되어 사용자 단말과 통신적으로 연결되는 복수의 리모트 장치들(220a, 220b, 220c, 220d), 확장 노드(extension node)를 구성하는 확장 장치들(230a, 230b)을 포함할 수 있다.
실시 예에 따라, 분산 안테나 시스템(200)은 아날로그 분산 안테나 시스템으로 구현될 수 있다.
다른 실시 예에 따라, 분산 안테나 시스템(200)은 디지털 분산 안테나 시스템으로 구현될 수 있으며, 경우에 따라서는 혼합형(예를 들어, 일부 노드는 아날로그 처리, 나머지 노드는 디지털 처리를 수행하는 형태)으로 구현될 수도 있다.
한편, 도 1은 분산 안테나 시스템(200)의 토폴로지의 일 예를 도시한 것이며, 분산 안테나 시스템(200)은 설치 영역 및 적용 분야(예를 들어, 인빌딩(In-Building), 지하철(Subway), 병원(Hospital), 경기장(Stadium) 등)의 특수성을 고려하여 다양한 변형이 가능하다.
실시 예에 따라, 분산 안테나 시스템(200)의 구조는 도 2에서 후술하는 이중화 구조를 포함하는 형태로 구현될 수 있다.
분산 안테나 시스템(200)에서 확장 장치(230a, 230b)는 설치 필요한 리모트 장치의 개수에 비해 헤드엔드 장치(210)의 브랜치 수가 제한적인 경우 활용될 수 있다.
분산 안테나 시스템(200) 내의 각 노드 및 그 기능에 대하여 더 상세히 설명하면, 헤드엔드 장치(210)는 기지국과의 인터페이스 역할을 수행할 수 있다.
실시 예에 따라, 헤드엔드 장치(210)는 복수의 기지국들과 연결될 수도 있다.
실시 예에 따라, 헤드엔드 장치(210)는 메인 헤드엔드 장치와 서브 헤드엔드 장치로 구현되어 특정 사업자의 서비스 주파수 대역 별 또는 각 섹터 별 기지국과 연결될 수 있으며, 경우에 따라 메인 헤드엔드 장치는 서브 헤드엔드 장치에 의해 커버리지(coverage)를 보완할 수도 있다.
일반적으로 기지국으로부터 전송되는 RF(Radio Frequency) 신호는 고전력(high power)의 신호이므로, 헤드엔드 장치(210)는 이와 같은 고전력의 RF 신호를 각 노드에서 처리하기에 적합한 전력의 신호로 감쇠시킬 수 있다. 헤드엔드 장치(210)는 각 주파수 대역 별 또는 각 섹터 별 고전력의 RF 신호를 저전력으로 낮출 수 있다. 헤드엔드 장치(210)는 저전력의 RF 신호를 결합할 수 있고, 결합된 신호를 확장 장치(230a) 또는 리모트 장치(220a)로 분배하는 역할을 수행할 수 있다.
실시 예에 따라, 헤드엔드 장치(210)는 기지국으로부터 디지털 포맷의 통신 신호(예컨대, CPRI(Common Public Radio Interface), ORI(Open Radio Interface), OBSAI(Open Baseband Remote Radiohead Interface), 또는 e-CPRI 등)를 기지국(100)으로부터 직접 수신할 수도 있다.
리모트 장치(220a, 220b, 220c, 220d) 각각은 전달받은 결합된 신호를 주파수 대역 별로 분리하고 증폭 등의 신호 처리를 수행할 수 있다. 이에 따라 각 리모트 장치(220a, 220b, 220c, 220d)는 서비스 안테나(도시 생략)를 통해서 자신의 서비스 커버리지 내의 사용자 단말로 기지국 신호를 전송할 수 있다.
리모트 장치(220a)와 리모트 장치(220b) 간은 RF 케이블 또는 무선 통신을 통하여 연결될 수 있으며, 필요에 따라 다수의 리모트 장치들이 캐스케이드(cascade) 구조로 연결될 수 있다.
확장 장치(230a)는 전달받은 결합된 신호를 확장 장치(230a)와 연결된 리모트 장치(220c)로 전달할 수 있다.
확장 장치(230b)는 리모트 장치(220a)의 일단에 연결되며, 다운링크(downlink) 통신에서 헤드엔드 장치(210)로부터 전달된 신호를 리모트 장치(220a)를 통하여 수신할 수 있다. 이 때, 확장 장치(230b)는 수신된 신호를 확장 장치(230b)의 후단에 연결된 리모트 장치(220d)로 다시 전달할 수 있다.
한편, 기지국(100)과 헤드엔드 장치(210)는 서로 RF 케이블, 광케이블, 또는 이더넷 케이블(예컨대, 트위스트 케이블, UTP 케이블) 등을 통해 상호 연결되고, 헤드엔드 장치(210)의 하위단에서는 리모트 장치(220a)와 리모트 장치(220b) 간을 제외하고는 광케이블 또는 이더넷 케이블(예컨대, 트위스트 케이블, UTP 케이블) 등을 통해 상호 연결될 수 있으며, 각 노드 간의 신호 전송 매체(signal transport medium)나 통신 방식은 이와 다른 다양한 변형이 가능할 수 있다.
실시 예에 따라, 분산 안테나 시스템(200) 내부 구성들 간에 광 케이블로 연결되는 경우, 헤드엔드 장치(210), 리모트 장치(220a, 220b, 220c, 220d) 및 확장 장치(230a, 230b)는 전광 변환/광전 변환을 통해 광 타입의 신호를 송수신하기 위한 광 트랜스시버 모듈을 포함할 수 있고, 단일의 광 케이블로 노드 간 연결되는 경우에는 WDM(Wavelength Division Multiplexing) 소자를 포함할 수 있다.
이러한 분산 안테나 시스템(200)은 네트워크를 통해 외부의 관리 장치(도시 생략), 예를 들어 NMS(Network Management Server 또는 Network Management System; 300), NOC(Network Operation Center; 미도시) 등과 연결될 수 있다. 이에 따라 관리자는 원격에서 분산 안테나 시스템의 각 노드의 상태 및 문제를 모니터링하고, 원격에서 각 노드의 동작을 제어할 수 있다.
도 2는 도 1에 도시된 분산 안테나 시스템의 일 실시 예에 따른 블록도이다.
도 1과 도 2를 참조하면, 분산 안테나 시스템(200A)은 헤드엔드 장치(210), 리모트 장치들(220-1~220-4), 확장 장치들(230-1, 230-2), 스몰셀(small cell, 400), 및 동기 소스(sync source, 500)을 포함할 수 있다.
통신 네트워크, 예컨대 분산 안테나 시스템(200A)은 분산 안테나 시스템(200A)에 포함된 복수의 통신 노드들(210, 220-1~220-4, 230-1~230-2) 중에서 최상위 통신 노드(예컨대, 210)를 제외한 나머지 통신 노드들(예컨대, 220-1~220-4, 230-1~230-2) 중에서 어느 하나의 통신 노드(예컨대, 220-1)를 통하여 동기 소스 신호를 수신할 수 있다.
실시 예에 따라, 최상위 통신 노드(예컨대, 210)는 통신 네트워크, 예컨대, 분산 안테나 시스템(200A)에 포함된 통신 노드들(210, 220-1~220-4, 230-1~230-2, 400) 중에서 다운링크 신호를 기지국(100) 측으로부터 최초로 수신하는 통신 노드를 의미할 수 있다.
실시 예에 따라, 동기 소스 신호를 수신하는 통신 노드는 리모트 장치(220-1~220-4) 또는 확장 장치(230-1 또는 230-2)일 수 있다.
제1리모트 장치(220-1)가 동기 소스 신호를 수신하는 경우, 제1리모트 장치(220-1)는 동기 소스(500)와 연결될 수 있다.
동기 소스(500)는 동기 소스 신호를 수신 또는 생성할 수 있다. 실시 예에 따라, 동기 소스(500)는 GPS(Global Positioning System) 안테나를 포함할 수 있으며, 이 때 동기 소스(500)는 분산 안테나 시스템(200A)의 외부로부터 GPS 신호를 수신하여, 수신된 GPS 신호를 동기 소스 신호로 사용할 수 있다.
제1리모트 장치(200-1)는 동기 소스(500)로부터 수신한 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 추출 또는 생성할 수 있다.
제1리모트 장치(200-1)는 추출 또는 생성된 기준 클럭을 분산 안테나 시스템(200A)에서 다운링크 신호가 전송되는 제1경로(PATH1)를 역행하는 적어도 일부의 경로를 포함하는 제2경로(PATH2)를 통하여 타 통신 노드들(예컨대, 210, 220-2~220-4, 및 230-1~230-2)로 전달할 수 있다.
제1경로(PATH1)는 분산 안테나 시스템(200A)에서 다운링크 신호가 전송되는 경로로서, 기지국(100)으로부터 전송된 다운링크 신호는 헤드엔드 장치(210)를 통하여 확장 장치들(230-1, 230-2) 각각으로 전송되며, 확장 장치들(230-1, 230-2) 각각은 확장 장치들(230-1, 230-2) 각각에 연결된 리모트 장치들(220-1~220-4) 각각으로 다운링크 신호를 전송할 수 있다. 리모트 장치들(220-1~220-4) 중 스몰셀(400)과 연결된 리모트 장치(예컨대, 220-2)는 수신된 다운링크 신호를 제1경로(PATH1)를 통하여 스몰셀(400)로 전송할 수 있다.
제2경로(PATH2)는 분산 안테나 시스템(200A)에서 기준 클럭이 전송되는 경로로서, 제1리모트 장치(200-1)에 의해서 추출 또는 생성된 기준 클럭은 제2경로(PATH2)를 따라 전달될 수 있다.
제2경로(PATH2)는 제1경로(PATH1)를 역행하는 적어도 일부의 경로를 포함할 수 있다. 예컨대, 제2경로(PAHT2)에서 제1리모트 장치(220-1)부터 제1확장 장치(230-1)까지의 경로, 제1확장 장치(230-1)부터 헤드엔드 장치(210)까지의 경로는 제1경로(PATH1)를 역행할 수 있다.
제2경로(PATH2)는 동기 소스 신호를 수신하는 리모트 장치(예컨대, 220-1)로부터 인접한 통신 노드부터 먼 통신 노드의 방향으로 형성될 수 있다. 기준 클럭은 동기 소스 신호를 수신하는 리모트 장치(예컨대, 220-1)로부터 제2경로(PATH2) 상에서 인접한 통신 노드부터 제2경로(PATH2) 상에서 먼 통신 노드의 방향으로 전달될 수 있다.
예컨대, 기준 클럭은 제1리모트 장치(220-1)로부터 제2경로(PATH2) 상에서 인접한 제1확장 장치(230-1)로부터 제1리모트 장치(220-1)로부터 제2경로(PATH2) 상에서 먼 헤드엔드 장치(210)와 제2리모트 장치(220-2) 각각으로 전달될 수 있다.
실시 예에 따라, 제2경로(PATH2) 상에서 상대적으로 인접한 통신 노드(예컨대, 230-1)가 동기 마스터(sync master)로 결정되고, 제2경로(PATH2) 상에서 상대적으로 먼 통신 노드(예컨대, 210 또는 220-2)가 동기 슬레이브(sync slave)로 결정될 수 있다. 이 때, 동기 마스터로 결정된 통신 노드(예컨대, 230-1)로부터 동기 슬레이브로 결정된 통신 노드(예컨대, 210 또는 220-2) 측으로 기준 클럭이 전달될 수 있다.
실시 예에 따라, 동기 마스터와 동기 슬레이브를 결정할 때, SSM (Synchronization Status Message) 프로토콜을 기반으로 동적으로 결정할 수 있다.
도 3은 도 1에 도시된 분산 안테나 시스템의 다른 실시 예에 따른 블록도이다.
도 1과 도 3을 참조하면, 분산 안테나 시스템(200B)은 헤드엔드 장치(210), 리모트 장치들(220-1a~220-5a, 220-1b~220-5b), 확장 장치들(230-1a~230-5a), 스몰셀들(400-1a~400-5a, 400-1b~400-5b), 및 동기 소스들(500-1, 500-2)을 포함할 수 있다.
분산 안테나 시스템(200B)은 각각이 동기 소스 신호를 제공하는 동기 소스(500-1, 500-2)와 연결된 2 이상의 통신 노드들(예컨대, 200-5a, 200-5b)을 포함할 수 있다.
실시 예에 따라, 헤드엔드 장치(210) 또는 NMS(300)는 복수의 동기 소스들(500-1, 500-2)과 연결된 통신 노드들(예컨대, 220-5a, 200-5b) 중에서 클럭 동기화에 사용할 하나의 통신 노드를 선택할 수 있다.
실시 예에 따라, 클럭 동기화에 사용할 하나의 통신 노드를 선택할 때 복수의 동기 소스들(500-1, 500-2)과 연결된 통신 노드들(예컨대, 220-5a, 200-5b) 중에서 장애가 발생한 통신 노드를 제외하고 클럭 동기화에 사용할 하나의 통신 노드를 선택할 수 있다. 이 경우, 헤드엔드 장치(210) 또는 NMS(300)는 통신 노드들(예컨대, 220-1a~220-5a, 220-1b~220-5b, 230-1a~230-5a)에 장애가 발생했는지 여부를 모니터링할 수 있다.
실시 예에 따라, 클럭 동기화에 사용할 하나의 통신 노드를 선택할 때 복수의 동기 소스들(500-1, 500-2)에 연결된 통신 노드들(예컨대, 220-5a, 200-5b) 각각의 상태(예컨대, 장애여부, 트래픽(traffic) 등)와 복수의 동기 소스들(500-1, 500-2) 각각의 성능(동기 소스의 등급(grade), 동기 소스 신호의 안정도, 정확도 등)에 따라, 클럭 동기화에 사용할 하나의 통신 노드를 선택할 수 있다.
실시 예에 따라, 분산 안테나 시스템(200B)의 적어도 일부는 건물 내에 설치될 수 있다. 이 경우, 분산 안테나 시스템(200B)의 각 구성은 건물의 층별로 배치될 수 있으며, 서로 다른 층간의 통신은 확장 장치들(230-1a~230-5a)과 헤드엔드 장치(210)를 통하여 이루어질 수 있다.
실시 예에 따라, 동기 소스 신호를 수신하는 통신 노드(예컨대, 220-5a, 220-5b)는 분산 안테나 시스템(200B)에 포함된 복수의 통신 노드들 중에서 가장 높은 고도(또는 층)에 설치된 통신 노드일 수 있다. 이 떄, 동기 소스 신호를 수신하는 통신 노드(예컨대, 220-5a, 220-5b)는 동기 소스 신호를 수신하기에 유리한 건물의 옥상과 인접하게 배치되어 짧은 거리에서 동기 소스 신호를 획들할 수 있다.
도 4는 본 발명의 일 실시 예에 따른 통신 네트워크의 클럭 동기화 방법의 플로우차트이다.
도 1 내지 도 4를 참조하면, 통신 네트워크(예컨대, 200, 200A, 200B)에 포함된 통신 노드들 중에서 최상위 통신 노드(예컨대, 210)를 제외한 나머지 통신 노드들 중에서 어느 하나의 통신 노드(예컨대, 220-1, 220-5a, 또는 220-5b)를 통하여 동기 소스 신호를 수신할 수 있다(S410).
실시 예에 따라, 동기 소스 신호는 GPS 신호일 수 있다.
동기 소스 신호를 수신한 통신 노드(예컨대, 220-1, 220-5a, 또는 220-5b)는 수신된 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 생성할 수 있다(S420).
동기 소스 신호를 수신한 통신 노드(예컨대, 220-1, 220-5a, 또는 220-5b)는 인접한 타 통신 노드(예컨대, 230-1, 230-5a) 측으로 다운링크 신호가 전송되는 제1경로(예컨대, PATH1)를 역행하는 적어도 일부의 경로를 포함하는 제2경로(예컨대, PATH2)를 통하여 S420 단계에서 생성된 기준 클럭을 전달할 수 있다(S430).
이상, 본 발명을 바람직한 실시 예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시 예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.

Claims (15)

  1. 통신 네트워크에 포함된 통신 노드들 간에 수행되는 클럭 동기화 방법에 있어서,
    상기 통신 네트워크에 포함된 최상위 통신 노드를 제외한 나머지 통신 노드들 중의 어느 하나의 통신 노드를 통하여 동기 소스 신호를 수신하는 단계;
    수신된 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 생성하는 단계; 및
    상기 통신 네트워크에서 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여, 생성된 상기 기준 클럭을 전달하는 단계를 포함하는, 통신 네트워크의 클럭 동기화 방법.
  2. 제1항에 있어서,
    상기 최상위 통신 노드는,
    상기 통신 네트워크에 포함된 통신 노드들 중에서, 상기 다운링크 신호를 최초로 수신하는 통신 노드인, 통신 네트워크의 클럭 동기화 방법.
  3. 제1항에 있어서,
    상기 통신 네트워크는,
    헤드엔드 장치, 확장 장치, 및 리모트 장치 중 적어도 어느 하나를 포함하며,
    상기 리모트 장치가 상기 동기 소스 신호를 수신하는, 통신 네트워크의 클럭 동기화 방법.
  4. 제1항에 있어서,
    상기 통신 네트워크는,
    헤드엔드 장치, 확장 장치, 및 리모트 장치 중 적어도 어느 하나를 포함하며,
    상기 확장 장치가 상기 동기 소스 신호를 수신하는, 통신 네트워크의 클럭 동기화 방법.
  5. 제1항에 있어서,
    상기 기준 클럭을 전달하는 단계는,
    상기 어느 하나의 통신 노드로부터 인접한 통신 노드로부터 상기 어느 하나의 통신 노드로부터 먼 통신 노드의 방향으로 상기 기준 클럭이 전달되는, 통신 네트워크의 클럭 동기화 방법.
  6. 제5항에 있어서,
    상기 기준 클럭을 전달하는 단계에서,
    상기 어느 하나의 통신 노드로부터 상대적으로 인접한 통신 노드가 동기 마스터(sync master)로 결정되고, 상기 어느 하나의 통신 노드로부터 상대적으로 먼 통신 노드가 동기 슬레이브(sync slave)로 결정되며,
    상기 동기 마스터로 결정된 통신 노드로부터 상기 동기 슬레이브로 결정된 통신 노드 측으로 상기 기준 클럭이 전달되는, 통신 네트워크의 클럭 동기화 방법.
  7. 제6항에 있어서,
    상기 통신 네트워크의 클럭 동기화 방법은,
    상기 동기 마스터와 상기 동기 슬레이브를 결정할 때, SSM (Synchronization Status Message) 프로토콜을 기반으로 동적으로 결정하는, 통신 네트워크의 클럭 동기화 방법.
  8. 제1항에 있어서,
    상기 통신 네트워크의 클럭 동기화 방법은,
    각각이, 동기 소스 신호를 제공하는 동기 소스와 연결된 2 이상의 통신 노드들 중에서, 클럭 동기화에 사용할 하나의 통신 노드를 선택하는 단계를 더 포함하고,
    상기 동기 소스 신호를 수신하는 단계는,
    선택된 상기 하나의 통신 노드를 통하여 상기 동기 소스 신호를 수신하는, 통신 네트워크의 클럭 동기화 방법.
  9. 제8항에 있어서,
    상기 하나의 통신 노드를 선택하는 단계는,
    상기 2 이상의 통신 노드들 중에서 장애가 발생한 통신 노드를 제외하고 상기 하나의 통신 노드를 선택하는, 통신 네트워크의 클럭 동기화 방법.
  10. 제8항에 있어서,
    상기 하나의 통신 노드를 선택하는 단계는,
    상기 2 이상의 통신 노드들 각각의 상태와 상기 2 이상의 통신 노드들 각각에 동기 소스 신호를 제공하는 동기 소스의 성능에 따라, 상기 하나의 통신 노드를 선택하는, 통신 네트워크의 클럭 동기화 방법.
  11. 제1항에 있어서,
    상기 동기 소스 신호는 GPS(Global Positioning System) 신호인, 통신 네트워크의 클럭 동기화 방법.
  12. 제1항에 있어서,
    상기 통신 네트워크의 적어도 일부는,
    건물 내에 설치되는, 통신 네트워크의 클럭 동기화 방법.
  13. 제12항에 있어서,
    상기 동기 소스 신호를 수신하는 상기 어느 하나의 통신 노드는,
    상기 통신 네트워크에 포함된 복수의 통신 노드들 중에서 가장 높은 고도에 설치된 통신 노드인, 통신 네트워크의 클럭 동기화 방법.
  14. 통신 네트워크에 포함된 최상위 통신 노드를 제외한 나머지 통신 노드들 중의 어느 하나의 통신 노드로서, 동기 소스 신호를 수신하고, 수신된 동기 소스 신호로부터 클럭 동기화를 위한 기준 클럭을 생성하는 제1통신 노드; 및
    상기 통신 네트워크에서 다운링크 신호가 전송되는 제1경로를 역행하는 적어도 일부의 경로를 포함하는 제2경로를 통하여 생성된 상기 기준 클럭을 전달받는 제2통신 노드를 포함하는, 통신 네트워크.
  15. 제14항에 있어서,
    상기 제2통신 노드는,
    상기 다운링크 신호의 전송 방향을 기준으로 상기 제1통신 노드의 상위에 위치하는, 통신 네트워크.
PCT/KR2019/016939 2019-11-29 2019-12-03 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크 WO2021107240A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19954301.8A EP4068658A4 (en) 2019-11-29 2019-12-03 CLOCK SYNCHRONIZATION METHOD FOR COMMUNICATION NETWORK AND COMMUNICATION NETWORK USING SAME
JP2022532003A JP2023504255A (ja) 2019-11-29 2019-12-03 通信ネットワークのクロック同期化方法及びこれを用いる通信ネットワーク
US17/780,806 US20220417882A1 (en) 2019-11-29 2019-12-30 Method for clock synchronization of communication network, and the communication network using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190157696A KR20210067766A (ko) 2019-11-29 2019-11-29 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크
KR10-2019-0157696 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021107240A1 true WO2021107240A1 (ko) 2021-06-03

Family

ID=76128793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016939 WO2021107240A1 (ko) 2019-11-29 2019-12-03 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크

Country Status (5)

Country Link
US (1) US20220417882A1 (ko)
EP (1) EP4068658A4 (ko)
JP (1) JP2023504255A (ko)
KR (1) KR20210067766A (ko)
WO (1) WO2021107240A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517429B1 (ko) * 2021-12-03 2023-04-03 주식회사 에치에프알 수동형 wdm 프론트홀 기반 이동 통신 시스템의 선번장 자동 관리 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070059907A (ko) * 2005-12-07 2007-06-12 한국전자통신연구원 망 관리 시스템에서 레이블 교환 경로 선정 장치 및 방법
US20130107808A1 (en) * 2010-05-31 2013-05-02 Huawei Technologies Co., Ltd. Base Station and Method for Clock Synchronization of Base Station
KR20130085507A (ko) * 2011-12-14 2013-07-30 삼성전자주식회사 무선 통신 시스템 및 무선 통신 시스템에서 시간 동기 방법
KR20170027840A (ko) * 2014-07-10 2017-03-10 지티이 코포레이션 Gps 신호를 취득하는 방법 및 분산 기지국
US20190116568A1 (en) * 2016-07-18 2019-04-18 Phluido, Inc. Synchronization of radio units in radio access networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6763016B1 (en) * 2000-03-31 2004-07-13 Alcatel Method and system for distributing a synchronization signal in a telecommunications network
US8472579B2 (en) * 2010-07-28 2013-06-25 Adc Telecommunications, Inc. Distributed digital reference clock
EP3298834B1 (en) * 2015-05-21 2022-03-09 Andrew Wireless Systems GmbH Synchronizing multiple-input/multiple-output signals in a telecommunication system
EP3651387A4 (en) * 2018-05-25 2021-03-17 SOLiD, INC. COMMUNICATION NODE AND COMMUNICATION SYSTEM FOR PERFORMANCE OF CLOCK SYNCHRONIZATION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070059907A (ko) * 2005-12-07 2007-06-12 한국전자통신연구원 망 관리 시스템에서 레이블 교환 경로 선정 장치 및 방법
US20130107808A1 (en) * 2010-05-31 2013-05-02 Huawei Technologies Co., Ltd. Base Station and Method for Clock Synchronization of Base Station
KR20130085507A (ko) * 2011-12-14 2013-07-30 삼성전자주식회사 무선 통신 시스템 및 무선 통신 시스템에서 시간 동기 방법
KR20170027840A (ko) * 2014-07-10 2017-03-10 지티이 코포레이션 Gps 신호를 취득하는 방법 및 분산 기지국
US20190116568A1 (en) * 2016-07-18 2019-04-18 Phluido, Inc. Synchronization of radio units in radio access networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068658A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517429B1 (ko) * 2021-12-03 2023-04-03 주식회사 에치에프알 수동형 wdm 프론트홀 기반 이동 통신 시스템의 선번장 자동 관리 장치 및 방법
WO2023101074A1 (ko) * 2021-12-03 2023-06-08 주식회사 에치에프알 수동형 wdm 프론트홀 기반 이동 통신 시스템의 선번장 자동 관리 장치 및 방법

Also Published As

Publication number Publication date
EP4068658A1 (en) 2022-10-05
KR20210067766A (ko) 2021-06-08
US20220417882A1 (en) 2022-12-29
JP2023504255A (ja) 2023-02-02
EP4068658A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
RU2364057C2 (ru) Система распределенных базовых станций, способ организации сети, содержащий такую систему, и блок базового диапазона
WO2011093621A2 (en) Method for transmitting and receiving ethernet data between digital unit and rf unit and apparatus thereof
WO2016108650A1 (ko) 디지털 맵핑 데이터 전송 방법
WO2013022166A1 (ko) 상향 링크 신호 처리 방법, 하향 링크 신호 처리 방법 및 이를 수행하는 무선 유닛
WO2012119385A1 (zh) 对pcie设备进行时间同步的方法、装置和系统
WO2011139047A2 (ko) 다양한 유형의 통신 신호를 통합 중계하는 통합 중계기 및 통합 중계 시스템
WO2017115925A1 (ko) 메인 유닛 및 이를 포함하는 분산 안테나 시스템
WO2021107240A1 (ko) 통신 네트워크의 클럭 동기화 방법 및 이를 이용하는 통신 네트워크
WO2016108315A1 (ko) 기지국 신호 정합 장치
WO2014017703A1 (ko) 무선 자원 할당 시스템 및 방법
EP2710761A1 (en) Clustering apparatus and method for controlling timing
WO2019066276A1 (ko) 시분할 이중화 방식을 사용하는 분산 안테나 시스템의 tdd 서브-시스템
CN101554020A (zh) 利用带有utp电缆的因特网提供移动通信服务的系统
WO2011074821A2 (ko) 지능형 인터페이스 모듈을 포함하는 유씨티 조명 관제시스템
WO2020171307A1 (ko) 링 네트워크를 이용한 배전반 관리 시스템
WO2016108312A1 (ko) 딜레이 측정이 가능한 노드 유닛 및 이를 포함하는 분산 안테나 시스템
WO2022131431A1 (ko) 하이브리드 동기화 방법 및 장치
WO2014010794A1 (ko) 셀 재구성에 따른 무선 망 제공 시스템 및 방법
WO2021034147A1 (ko) Tvws(television white space) 대역을 통해 데이터 통신을 제공하는 통신 시스템
WO2014175482A1 (ko) 이더넷 오디오 전송 기능을 이용한 음악 반주 장치 및 음악 반주 시스템
WO2016047884A1 (ko) 중계 확장 기반의 무선 인터컴 시스템의 운영 방법 및 이를 위한 컴퓨터로 판독가능한 기록매체
WO2021107241A1 (ko) 네트워크 관리 시스템 및 통신 네트워크의 동기화 방법
WO2016108313A1 (ko) 이동통신신호 및 서비스 주파수 대역 검출 장치
WO2024072073A1 (ko) 하이브리드 통신 디바이스
US11791921B2 (en) Network management system and method for synchronization of communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019954301

Country of ref document: EP

Effective date: 20220629