WO2014007226A1 - パイプ埋設構造体及びその製造方法 - Google Patents

パイプ埋設構造体及びその製造方法 Download PDF

Info

Publication number
WO2014007226A1
WO2014007226A1 PCT/JP2013/068077 JP2013068077W WO2014007226A1 WO 2014007226 A1 WO2014007226 A1 WO 2014007226A1 JP 2013068077 W JP2013068077 W JP 2013068077W WO 2014007226 A1 WO2014007226 A1 WO 2014007226A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
base material
alloy
metal
powder
Prior art date
Application number
PCT/JP2013/068077
Other languages
English (en)
French (fr)
Inventor
省吾 森
雄一郎 山内
優 赤林
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to US14/409,725 priority Critical patent/US20150198387A1/en
Priority to KR20147036856A priority patent/KR20150015533A/ko
Priority to CN201380033889.7A priority patent/CN104395501A/zh
Priority to EP13813481.2A priority patent/EP2871262A4/en
Publication of WO2014007226A1 publication Critical patent/WO2014007226A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/20Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/146Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded overmolded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials

Definitions

  • the present invention relates to a pipe embedded structure in which a pipe for circulating a temperature control medium such as a cooling gas and cooling water is embedded in a metal member, and a manufacturing method thereof.
  • a structure in which a pipe that circulates fluid inside a metal member (hereinafter referred to as a pipe embedded structure) is used for various applications in manufacturing processes of products such as semiconductors, liquid crystal display devices, and optical disks.
  • a pipe-embedded structure in which a heat medium (refrigerant) is circulated in a pipe is used as a temperature adjustment device (such as a cold plate) that adjusts (cools or heats) the temperature of the substrate (see, for example, Patent Document 1).
  • the pipe embedded structure in which a gas containing a predetermined component is circulated in the flow path may be used as a shower plate that supplies gas to the substrate.
  • such a pipe-embedded structure is produced by separately producing a pipe for circulating fluid and a metal member having a recess corresponding to the pipe formed by excavation or the like, and fitting the pipe into the recess of the metal member. It was manufactured by.
  • a dense metal film can be deposited around the pipe, so that a structure having excellent thermal conductivity can be produced.
  • a local gap may be generated around the pipe, resulting in the metal on the pipe. It is also conceivable that the adhesion of the film is lowered.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a pipe embedded structure with improved adhesion between a pipe forming a flow path and a metal member, and a method for manufacturing the same.
  • a pipe-embedded structure includes a metal or alloy pipe having a circular outer periphery in cross section, and an inner wall that makes a part of the outer periphery contact each other.
  • the ratio h / R to the curvature R of is 0.3 or more and 0.7 or less.
  • the pipe embedded structure is characterized in that a clearance between the recess and the pipe is 0 mm or more and 0.05 mm or less in a cross section of the pipe.
  • the pipe is made of SUS steel, copper alloy, nickel alloy, tantalum, niobium, titanium, aluminum, or aluminum alloy.
  • the base material is made of copper, a copper alloy, aluminum, or an aluminum alloy.
  • the powder is made of copper or aluminum.
  • the pipe embedded structure manufacturing method has an inner wall that abuts a part of the outer periphery of a metal or alloy pipe having a circular outer periphery in a cross section with respect to a metal or alloy base material.
  • h / R is 0.3 or more and 0.7 or less.
  • the base material forming step includes a clearance of 0 mm or more and 0.05 mm or less between the recess and the pipe in a cross section of the pipe.
  • the concave portion whose ratio h / R between the projecting amount h of the pipe forming the flow path from the base material and the curvature R of the outer periphery of the pipe is 0.3 or more and 0.7 or less is used as the base material. Since the deposited layer is formed on the surface of the pipe and the base material by the so-called cold spray method by fitting the pipe into the concave portion, it is possible to form a dense deposited layer around the pipe protruding from the base material. The adhesion between the pipe and the metal member can be improved.
  • FIG. 1 is a cross-sectional view showing the structure of a pipe embedded structure according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a manufacturing method of the pipe embedded structure shown in FIG.
  • FIG. 3A is a schematic diagram for explaining step S1 shown in FIG.
  • FIG. 3B is a schematic diagram for explaining step S2 shown in FIG.
  • FIG. 3C is a schematic diagram for explaining step S3 shown in FIG.
  • FIG. 4 is a schematic diagram showing an outline of the cold spray apparatus.
  • FIG. 5 is an SEM image showing the deposited layer in Example 1.
  • FIG. 6 is an SEM image showing the deposited layer in Example 2.
  • FIG. 7A is an SEM image showing the deposited layer in Comparative Example 1.
  • FIG. 7B is a schematic diagram illustrating a positional relationship between the pipe and the base material in Comparative Example 1.
  • 8A is an SEM image showing the deposited layer in Comparative Example 2.
  • FIG. 8B is a schematic diagram illustrating a positional relationship between the pipe and the base material in Comparative Example 2.
  • FIG. 9 is an optical photograph showing the deposited layer in Example 3.
  • FIG. 10 is an optical photograph showing the deposited layer in Example 4.
  • FIG. 11 is an optical photograph showing the deposited layer in Comparative Example 3.
  • FIG. 1 is a cross-sectional view showing the structure of a pipe embedded structure according to an embodiment of the present invention.
  • a pipe embedded structure 1 according to the present embodiment is formed with a metal or alloy pipe 10 having a circular outer periphery in a cross section, and a recess 11 a into which the pipe 10 is fitted.
  • a base 11 made of metal or alloy, and a pipe 10 and a deposited layer 12 of metal or alloy formed on the base 11 are provided.
  • Such a pipe-embedded structure 1 is used as a temperature control device (for example, a cold plate), a fluid supply device (for example, a shower plate), or the like by circulating a desired fluid (liquid or gas) through the pipe 10.
  • the pipe 10 is a pipe having an outer diameter of ⁇ , an outer peripheral curvature of R, and a circular cross section.
  • the thickness of the pipe 10 is appropriately determined according to the material and application.
  • the shape of the pipe 10 in the length direction is not particularly limited, and the planar shape of the pipe 10 viewed from above the pipe embedded structure 1 can be various shapes such as a straight shape, a spiral shape, and a meander shape. can do.
  • the material of the pipe 10 is selected according to the fluid to be circulated in the pipe 10 and the use of the pipe embedded structure 1.
  • a corrosion-resistant metal or alloy such as SUS steel, copper alloy, nickel alloy, tantalum, niobium, or titanium is used.
  • a material having good thermal conductivity such as SUS steel is used.
  • PCW process cooling water
  • an organic solvent, an inert gas or the like is circulated, corrosion resistance is not essential, and aluminum or aluminum alloy having excellent thermal conductivity can be used.
  • the base material 11 is a bulk material formed of a metal or alloy having good thermal conductivity, such as copper, copper alloy, aluminum, or aluminum alloy.
  • the concave portion 11a is formed by excavating the upper surface 11b of the base material 11 into a groove shape. Note that the planar shape of the upper surface 11 b of the recess 11 a corresponds to the planar shape of the pipe 10.
  • the recess 11a has an inner wall with which a part of the outer periphery of the pipe 10 comes into contact.
  • the cross-sectional shape of the inner wall of the recess 11 a is an arc shape along the outer periphery of the pipe 10.
  • the depth d of the recess 11a is such that the ratio h / R of the height h (hereinafter referred to as the protruding amount) h at which the pipe 10 protrudes from the upper surface 11b and the curvature R of the outer periphery of the pipe 10 is 0.3 or more and 0.7 or less. It is prescribed to be.
  • the width of the concave portion 11a is a maximum value w (w ⁇ ) at the height corresponding to the curvature R when the deepest portion of the concave portion 11a is used as a reference, and the upper portion is opened while maintaining the maximum value w from there. ing. Further, the clearance w ⁇ between the recess 11a and the pipe 10 is in the range of 0 mm to 0.05 mm.
  • the deposited layer 12 is formed by a so-called cold spray method.
  • the cold spray method is a method of accelerating a powder made of a metal or an alloy together with a gas and spraying the powder on the surface of the base (in this embodiment, the pipe 10 and the base 11) in a solid state to deposit the powder.
  • This is a film forming method.
  • the deposited layer 12 formed by the cold spray method has high thermal conductivity because there is no phase transformation and oxidation is suppressed.
  • a plastic deformation occurs between the powder and the substrate, and an anchor effect is obtained.
  • each oxide film is destroyed and metal bonds are formed by new surfaces. Therefore, the adhesion strength with the substrate is increased, and a film with reduced thermal resistance can be formed.
  • the deposited layer 12 is formed of a metal or alloy having good thermal conductivity, such as copper or aluminum.
  • FIG. 2 is a flowchart showing a method for manufacturing the pipe embedded structure 1.
  • 3A to 3C are schematic views for explaining a method for manufacturing the pipe embedded structure 1.
  • FIG. 2 is a flowchart showing a method for manufacturing the pipe embedded structure 1.
  • step S1 as shown in FIG. 3A, a groove-like recess 11a is formed on the surface of a metal or alloy bulk material 13 by excavation to produce a substrate 11.
  • a deposited layer 12 is formed on the surfaces of the pipe 10 and the base material 11 by a cold spray method.
  • FIG. 4 is a schematic diagram showing an outline of the cold spray apparatus used in step S3.
  • the cold spray device 20 accommodates a gas heater 21 that heats compressed gas and a powder 28 (hereinafter also simply referred to as powder) of the material of the deposition layer 12, and supplies it to the spray gun 23.
  • the cold spray device 20 accommodates a gas heater 21 that heats compressed gas and a powder 28 (hereinafter also simply referred to as powder) of the material of the deposition layer 12, and supplies it to the spray gun 23.
  • the powder supply device 22, the gas nozzle 24 that injects the heated compressed gas and the powder 28 supplied thereto onto the base 27, and the valve 25 that adjusts the supply amount of the compressed gas to the gas heater 21 and the powder supply device 22.
  • the valve 25 that adjusts the supply amount of the compressed
  • the compressed gas helium, nitrogen, air or the like is used.
  • the compressed gas supplied to the gas heater 21 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the powder 28, and then supplied to the spray gun 23.
  • the heating temperature of the compressed gas is preferably 300 to 900 ° C.
  • the compressed gas supplied to the powder supply device 22 supplies the powder 28 in the powder supply device 22 to the spray gun 23 so that a predetermined discharge amount is obtained.
  • the heated compressed gas is made a supersonic flow (about 340 m / s or more) by the gas nozzle 24 having a divergent shape.
  • the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because the adhesion strength of the powder (film) to the substrate 27 can be improved by adjusting the pressure of the compressed gas to this level. More preferably, the treatment is performed at a pressure of about 2 to 4 MPa.
  • the powder 28 supplied to the spray gun 23 is accelerated by charging the compressed gas into the supersonic flow, and collides with the substrate 27 at a high speed and deposits in the solid state. Note that the apparatus is not limited to the cold spray apparatus 20 shown in FIG. 4 as long as the apparatus can form a film by colliding with the base body 27 in a solid state.
  • the base material 11 in which the pipe 10 is fitted in the recess 11 a is disposed as the base body 27, and a film is formed on the surfaces of the pipe 10 and the base material 11.
  • the powder 28 also enters the region 14 between the upper end of the recess 11a and the pipe 10 to form a film.
  • the pipe buried structure 1 shown in FIG. 1 is completed by forming the deposited layer 12 to a desired thickness.
  • the deposited layer 12 since a part of the pipe 10 is raised above the upper surface 11 b of the base material, the deposited layer 12 also has a shape raised above the pipe 10. For this reason, after forming the deposited layer 12 to be thick, it is preferable to remove unnecessary portions by cutting or the like to flatten the surface.
  • the relationship between the cross section of the pipe 10 and the recess 11a provided in the base material 11 will be described.
  • a coating film is formed by causing powder 28 injected in one direction from a gas nozzle 24 to collide with a base 27. For this reason, a film cannot be formed in a portion that is shaded with respect to the injection direction of the powder 28.
  • the inventors of the present application provide the recess 11a that satisfies the following conditions (1) and (2). It has been found that by providing the base material 11, it is possible to form a dense and homogeneous deposited layer 12 in close contact with the pipe 10 and the base material 11. (1) The ratio h / R between the protrusion amount h from which the pipe 10 protrudes from the surface of the base material 11 and the curvature R of the outer periphery of the pipe 10 is 0.3 or more and 0.7 or less. (2) The clearance ⁇ between the recess 11a and the pipe 10 is set to 0 mm or more and 0.05 mm or less.
  • the concave portion defined by the above-described conditions is formed on the base material, the pipe is fitted into the concave portion, and the deposited layer is formed by the cold spray method, thereby closely contacting the pipe and the base material. It is possible to form a dense and uniform deposited layer around the pipe. Therefore, when the pipe embedded structure with improved adhesion is used as a temperature control device or a shower plate, it is possible to improve temperature control efficiency due to good thermal conductivity and heat uniformity. . In this case, it is preferable to use the deposition layer 12 side as a heat conduction surface.
  • FIGS. 7B and 8B are schematic diagrams illustrating the positional relationship between the pipe 10 and the base material 11 in Comparative Examples 1 and 2.
  • FIGS. 7B and 8B are schematic diagrams illustrating the positional relationship between the pipe 10 and the base material 11 in Comparative Examples 1 and 2.
  • Example 1 The ratio h / R was 0.67. As a result, as shown in FIG. 5, a dense and uniform deposited layer 12 having a sufficient thickness could be formed also on the side of the pipe 10.
  • Example 2 The ratio h / R was 0.33. As a result, as shown in FIG. 6, a dense and uniform deposited layer 12 having a sufficient thickness could be formed also on the side of the pipe 10.
  • the side end portion of the pipe 10 protruding from the upper surface 11b of the base material 11 is substantially parallel to the powder injection direction, and the powder can adhere to this portion. There wasn't. Therefore, as shown in FIG. 7A, the deposited layer 12 cannot be formed on the side of the pipe 10, and the deposited layer 12 formed on the pipe 10 and the deposited layer 12 formed on the base material 11 There was a crack in between.
  • 9 to 11 are optical photographs showing the deposited layer 12 when the clearance ⁇ between the recess 11a and the pipe 10 is changed. These optical photographs show that after the deposition layer 12 is sufficiently formed on the pipe 10 (to a height exceeding 1 mm from the upper end surface of the pipe 10), the deposition layer 12 is milled to 1 mm from the upper end surface of the pipe 10. An image of the polished surface cut by height and further polished is taken from the upper surface side.
  • Example 3 The clearance ⁇ was set to 0 mm. As a result, as shown in FIG. 9, it was possible to form a dense and uniform deposited layer 12 smoothly and continuously in the region on the pipe 10 and the region on the substrate 11.
  • Example 4 The clearance ⁇ was set to 0.05 mm. As a result, as shown in FIG. 10, although a boundary line of the surface is observed between the region on the pipe 10 and the region on the base material 11, a dense and uniform deposited layer 12 that is continuous between both regions is formed. could be formed.
  • Pipe embedding structure 10 Pipe 11 Base material 11a Recessed part 11b Upper surface 12 Deposited layer 13 Bulk material 14 Area

Abstract

 流路をなすパイプと金属部材との間の密着性を向上させたパイプ埋設構造体及びその製造方法を提供する。パイプ埋設構造体1は、横断面における外周が円形をなす金属又は合金製のパイプ10と、パイプ10を嵌合させる凹部11aであって、上記外周の一部を当接させる内壁を有し、上面11bからパイプ10が突出する突出量hと上記外周の曲率Rとの比率h/Rが0.3以上0.7以下となる凹部11aが形成された金属又は合金製の基材11と、凹部11aにパイプ10を嵌合させた状態で、金属又は合金からなる粉末をガスと共に加速し、パイプ10及び基材11の表面に固相状態のままで吹き付けて粉末を堆積させることにより形成された堆積層12とを備える。

Description

パイプ埋設構造体及びその製造方法
 本発明は、冷却ガスや冷却水等の温度調節媒体を流通させるパイプを金属部材に埋設させたパイプ埋設構造体及びその製造方法に関する。
 金属部材の内部に流体を流通させるパイプを埋設させた構造体(以下、パイプ埋設構造体という)は、半導体や液晶表示装置や光ディスクといった製品の製造プロセス等において様々な用途に用いられている。例えば、パイプに熱媒体(冷媒)を流通させたパイプ埋設構造体は、基板の温度を調節(冷却又は加熱)する温度調節装置(コールドプレート等)として用いられる(例えば、特許文献1参照)。また、流路に所定の成分を含むガスを流通させたパイプ埋設構造体は、基板にガスを供給するシャワープレートとして用いられることもある。
 このようなパイプ埋設構造体は、従来、流体を流通させるパイプと、掘削加工等によりパイプに対応する形状の凹部を形成した金属部材とを別々に作製し、パイプを金属部材の凹部に嵌め込むことにより製造されていた。
 また、近年では、金属の粉末を固相状態のまま基材に吹き付け、基材に金属を堆積させることにより構造物を形成する所謂コールドスプレー法により、パイプを金属部材に埋設させる技術も提案されている(例えば、特許文献2参照)。
特開2009-13497号公報 特開2011-238705号公報
 パイプ埋設構造体においては、パイプと金属部材との間に隙間が存在すると、熱抵抗が大きくなって、パイプ内を流通する流体と金属部材との間の熱伝導性や均熱性が低下してしまう。また、両者の隙間に異物が混入したり、隙間により凹部の中でパイプがガタついてしまうおそれもある。しかしながら、金属部材に設けた凹部に単にパイプを嵌め込むだけの方法では、凹部の内壁とパイプの外壁との間に隙間が生じないように、両者を密着させて接合することは困難であった。
 この点について、コールドスプレー法によれば、パイプの周囲に緻密な金属皮膜を堆積させることができるので、熱伝導性に優れた構造体を作製することができる。しかしながら、この場合であっても、パイプの形状や、パイプ及び基材に対して金属の粉末を吹き付ける角度等の条件によっては、パイプの周囲に局所的な隙間が生じるなどして、パイプに対する金属皮膜の密着性が低下してしまうことも考えられる。
 本発明は、上記に鑑みてなされたものであって、流路をなすパイプと金属部材との間の密着性を向上させたパイプ埋設構造体及びその製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るパイプ埋設構造体は、横断面における外周が円形をなす金属又は合金製のパイプと、前記外周の一部を当接させる内壁を有し、前記パイプを嵌合させる凹部が形成された金属又は合金製の基材と、前記凹部に前記パイプを嵌合させた状態で、金属又は合金からなる粉末をガスと共に加速し、前記パイプ及び前記基材の表面に固相状態のままで吹き付けて前記粉末を堆積させることにより形成された堆積層と、を備え、前記基材の表面から前記パイプが突出する突出量hと前記外周の曲率Rとの比率h/Rが0.3以上0.7以下であることを特徴とする。
 上記パイプ埋設構造体は、前記パイプの横断面において、前記凹部と前記パイプとのクリアランスが0mm以上0.05mm以下であることを特徴とする。
 上記パイプ埋設構造体において、前記パイプは、SUS鋼、銅合金、ニッケル合金、タンタル、ニオブ、チタン、アルミニウム、又はアルミニウム合金からなることを特徴とする。
 上記パイプ埋設構造体において、前記基材は、銅、銅合金、アルミニウム、又はアルミニウム合金からなることを特徴とする。
 上記パイプ埋設構造体において、前記粉末は、銅又はアルミニウムからなることを特徴とする。
 本発明に係るパイプ埋設構造体の製造方法は、金属又は合金製の基材に対し、横断面における外周が円形をなす金属又は合金製のパイプの前記外周の一部を当接させる内壁を有する凹部を形成する基材形成工程と、前記凹部に前記パイプを嵌合させ、金属又は合金からなる粉末をガスと共に加速し、前記パイプ及び前記基材の表面に固相状態のままで吹き付けて前記粉末を堆積させることにより堆積層を形成する堆積層形成工程と、を含み、前記基材形成工程は、前記基材の表面から前記パイプが突出する突出量hと前記外周の曲率Rとの比率h/Rを0.3以上0.7以下にすることを特徴とする。
 上記パイプ埋設構造体の製造方法において、前記基材形成工程は、前記パイプの横断面において、前記凹部と前記パイプとのクリアランスを0mm以上0.05mm以下にすることを含むことを特徴とする。
 本発明によれば、流路をなすパイプの基材からの突出量hとパイプの外周の曲率Rとの比率h/Rが0.3以上0.7以下となるような凹部を基材に形成し、該凹部にパイプを嵌合させて所謂コールドスプレー法によりパイプ及び基材の表面に堆積層を形成するので、基材から突出するパイプの周囲に緻密な堆積層を形成することができ、パイプと金属部材との間の密着性を向上させることが可能となる。
図1は、本発明の実施の形態に係るパイプ埋設構造体の構造を示す断面図である。 図2は、図1に示すパイプ埋設構造体の製造方法を示すフローチャートである。 図3Aは、図2に示す工程S1を説明するための模式図である。 図3Bは、図2に示す工程S2を説明するための模式図である。 図3Cは、図2に示す工程S3を説明するための模式図である。 図4は、コールドスプレー装置の概要を示す模式図である。 図5は、実施例1における堆積層を示すSEM画像である。 図6は、実施例2における堆積層を示すSEM画像である。 図7Aは、比較例1における堆積層を示すSEM画像である。 図7Bは、比較例1におけるパイプと基材との位置関係を示す模式図である。 図8Aは、比較例2における堆積層を示すSEM画像である。 図8Bは、比較例2におけるパイプと基材との位置関係を示す模式図である。 図9は、実施例3における堆積層を示す光学写真である。 図10は、実施例4における堆積層を示す光学写真である。 図11は、比較例3における堆積層を示す光学写真である。
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。
(実施の形態)
 図1は、本発明の実施の形態に係るパイプ埋設構造体の構造を示す断面図である。図1に示すように、本実施の形態に係るパイプ埋設構造体1は、横断面における外周が円形をなす金属又は合金製のパイプ10と、該パイプ10を嵌合させる凹部11aが形成された金属又は合金製の基材11と、パイプ10及び基材11上に形成された金属又は合金の堆積層12とを備える。このようなパイプ埋設構造体1は、パイプ10内に所望の流体(液体又は気体)を流通させて、温度調節装置(例えばコールドプレート)や流体供給装置(例えばシャワープレート)等として用いられる。
 パイプ10は、外径がφ、外周の曲率がRの、断面が円管状をなすパイプである。なお、パイプ10の厚みは、材料や用途に応じて適宜決定される。
 パイプ10の長さ方向(流体を流通させる方向)の形状は特に限定されず、パイプ埋設構造体1の上方からみたパイプ10の平面形状は直線状、うずまき状、蛇行形状等、様々な形状にすることができる。
 パイプ10の材料は、パイプ10内に流通させる流体やパイプ埋設構造体1の用途に応じて選択される。例えば、腐食性を有する液体又は気体を流通させる場合には、SUS鋼、銅合金、ニッケル合金、タンタル、ニオブ、又はチタン等の耐食性を有する金属又は合金が用いられる。また、冷却水として市水や海水を流通させる場合には、上述した材料のうち、SUS鋼のように良好な熱伝導性を有する材料が用いられる。一方、PCW(process cooling water)、有機溶剤、不活性ガス等を流通させる場合には、耐食性は必須ではなく、熱伝導性に優れたアルミニウム又はアルミニウム合金を用いることもできる。
 基材11は、例えば、銅、銅合金、アルミニウム、又はアルミニウム合金のように、良好な熱伝導性を有する金属又は合金により形成されたバルク材である。凹部11aは、基材11の上面11bを溝状に掘削することにより形成されている。なお、凹部11aの上面11bにおける平面形状は、パイプ10の平面形状に対応している。
 凹部11aは、パイプ10の外周の一部を当接させる内壁を有している。この凹部11aの内壁の横断面形状は、パイプ10の外周に沿った円弧状をなしている。凹部11aの深さdは、パイプ10が上面11bから突出する高さ(以下、突出量という)hとパイプ10の外周の曲率Rとの比率h/Rが0.3以上0.7以下となるように規定されている。また、凹部11aの幅は、凹部11aの最深部を基準とすると、曲率Rに対応する高さにおいて最大値w(w≒φ)となり、そこから上部においては最大値wを維持したまま開口している。さらに、凹部11aとパイプ10とのクリアランスw-φは、0mm以上0.05mm以下の範囲に収められている。
 堆積層12は、所謂コールドスプレー法により形成されている。ここで、コールドスプレー法とは、金属又は合金からなる粉末をガスと共に加速し、基体(本実施の形態においてはパイプ10及び基材11)の表面に固相状態のままで吹き付けて粉末を堆積させる皮膜形成法である。コールドスプレー法により形成された堆積層12は、相変態がなく酸化も抑制されているため、高い熱伝導性を有する。また、基体や基体上に先に堆積した皮膜に衝突した際に、粉末と基体との間で塑性変形が生じてアンカー効果が得られると共に、互いの酸化皮膜が破壊されて新生面同士による金属結合が生じるので、基体との密着強度が強くなり、熱抵抗が抑制された皮膜を形成することができる。
 このような堆積層12は、例えば銅やアルミニウムのように、良好な熱伝導性を有する金属又は合金により形成されている。
 次に、パイプ埋設構造体1の製造方法を説明する。図2は、パイプ埋設構造体1の製造方法を示すフローチャートである。また、図3A~図3Cは、パイプ埋設構造体1の製造方法を説明する模式図である。
 まず、工程S1において、図3Aに示すように、金属又は合金のバルク材13の表面に、掘削加工により溝状の凹部11aを形成して、基材11を作製する。
 続く工程S2において、図3Bに示すように、凹部11aにパイプ10を嵌合させる。
 さらに、工程S3において、図3Cに示すように、コールドスプレー法により、パイプ10及び基材11の表面に堆積層12を形成する。
 図4は、工程S3において用いられるコールドスプレー装置の概要を示す模式図である。図4に示すように、コールドスプレー装置20は、圧縮ガスを加熱するガス加熱器21と、堆積層12の材料の粉末(以下、単に粉末ともいう)28を収容し、スプレーガン23に供給する粉末供給装置22と、加熱された圧縮ガス及びそこに供給された粉末28を基体27に噴射するガスノズル24と、ガス加熱器21及び粉末供給装置22に対する圧縮ガスの供給量をそれぞれ調節するバルブ25及び26とを備える。
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。ガス加熱器21に供給された圧縮ガスは、例えば50℃以上であって、粉末28の融点よりも低い範囲の温度に加熱された後、スプレーガン23に供給される。圧縮ガスの加熱温度は、好ましくは300~900℃である。一方、粉末供給装置22に供給された圧縮ガスは、粉末供給装置22内の粉末28をスプレーガン23に所定の吐出量となるように供給する。
 加熱された圧縮ガスは末広形状をなすガスノズル24により超音速流(約340m/s以上)にされる。この際の圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力をこの程度に調整することにより、基体27に対する粉末(皮膜)の密着強度の向上を図ることができるからである。より好ましくは、2~4MPa程度の圧力で処理すると良い。スプレーガン23に供給された粉末28は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま基体27に高速で衝突して堆積する。なお、基体27に向けて固相状態のまま衝突させて皮膜を形成できる装置であれば、図4に示すコールドスプレー装置20に限定されるものではない。
 このようなコールドスプレー装置20において、基体27として凹部11aにパイプ10を嵌合させた基材11を配置し、パイプ10及び基材11の表面に皮膜を形成する。この際、凹部11aの上端近傍のパイプ10との間の領域14にも粉末28が入り込んで皮膜が形成される。
 このようにして堆積層12を所望の厚さまで形成することにより、図1に示すパイプ埋設構造体1が完成する。なお、図3Cに示すように、基材の上面11bよりもパイプ10の一部が盛り上がっているので、堆積層12もパイプ10の上部で盛り上がった形状となる。このため、堆積層12を厚めに形成した後で不要な部分を切削等により除去して、表面を平坦にすると良い。
 次に、パイプ10の横断面と基材11に設ける凹部11aとの関係について説明する。
 コールドスプレー法においては、一般に、ガスノズル24から一方向に向けて噴射した粉末28を基体27に衝突させることにより皮膜を形成する。このため、粉末28の噴射方向に対して影になる部分には皮膜を形成することができない。また、粉末28の噴射方向に対して皮膜の形成面が平行に近づくほど、皮膜の形成が困難になる。そこで、本願発明者らは、コールドスプレー法により堆積層12を形成する際に、パイプ10の側方、即ち、基材11との境界近傍にも緻密で均質な堆積層12を形成するための条件を求めるべく、鋭意実験を重ねた。
 その結果、本願発明者らは、横断面における外周が円形をなすパイプ10を埋設させたパイプ埋設構造体1を製造する場合に、以下の条件(1)及び(2)に適合する凹部11aを基材11に設けることにより、パイプ10及び基材11に密着した緻密で均質な堆積層12が形成可能となることを見出した。
(1)基材11の表面からパイプ10が突出する突出量hとパイプ10の外周の曲率Rとの比率h/Rを、0.3以上0.7以下とする。
(2)凹部11aとパイプ10とのクリアランスΔを、0mm以上0.05mm以下とする。
 本実施の形態によれば、上述した条件で規定される凹部を基材に形成し、該凹部にパイプを嵌合させてコールドスプレー法により堆積層を形成することにより、パイプ及び基材に密着した緻密で均質な堆積層をパイプの周囲に形成することが可能となる。従って、このように密着性を向上させたパイプ埋設構造体を温度調節装置やシャワープレートとして用いる場合には、良好な熱伝導性及び均熱性により、温度調節効率の向上を図ることが可能となる。なお、この場合、堆積層12側を熱伝導面として使用すると良い。
 以下、図5~図11を参照しながら、実施例及び比較例を説明する。
 まず、実施例1、2及び比較例1、2を説明する。図5、図6、図7A、図8Aは、比率h/Rを変化させて堆積層12を形成した場合のパイプ10、基材11、及び堆積層12を、パイプ10の横断面と直交する方向から撮像したSEM画像である。なお、図5、図6、図7A、図8Aにおいては、基材11の側面と上面との境界を一点鎖線で示している。また、パイプ10の外径の一部を破線で補足している。図7B、図8Bは、比較例1及び2におけるパイプ10と基材11との位置関係を示す模式図である。
 実施例1、2及び比較例1、2においては、以下の材料及び条件で試料を作製した。
   基材:40mm×40mm、厚さ10mmの銅合金板
   パイプ:外径φ=6mm、外周の曲率R=3mmの銅合金
   堆積層の材料:平均粒径26.18μmの銅粉末
   基材に設けた凹部とパイプとのクリアランス:Δ=0mm
(実施例1)
 比率h/Rを0.67とした。その結果、図5に示すように、パイプ10の側方にも十分な厚さの緻密で均質な堆積層12を形成することができた。
(実施例2)
 比率h/Rを0.33とした。その結果、図6に示すように、パイプ10の側方にも十分な厚さの緻密で均質な堆積層12を形成することができた。
(比較例1)
 比率h/Rを1(突出量h=曲率R)、即ち、基材11に対し、パイプ10の外径φの半分に相当する深さの凹部11aを形成し、パイプ10のちょうど半分を凹部11a内に収納した。この場合、図7Bに示すように、基材11の上面11bから突出するパイプ10の側方の端部は、粉末の噴射方向に対してほぼ平行となり、この部分に粉末を付着させることができなかった。そのため、図7Aに示すように、パイプ10の側方に堆積層12を形成することができず、パイプ10上に形成された堆積層12と基材11上に形成された堆積層12との間に割れが生じてしまった。
(比較例2)
 比率h/Rを0(突出量h=0)、即ち、基材11に対し、パイプ10の外径φに相当する深さの凹部11aを形成し、パイプ10全体を凹部11a内に収納した。この場合、図8Bに示すように、凹部11aの内壁とパイプ10との間に深い隙間が生じ、粉末を十分に充填することができなかった。そのため、図8Aに示すように、パイプ10の側方に十分な堆積層12を形成することができず、パイプ10上に形成された堆積層12と基材11上に形成された堆積層12との間に割れが生じてしまった。
 次に、実施例3、4、及び比較例3を説明する。図9~図11は、凹部11aとパイプ10とのクリアランスΔを変化させた場合の堆積層12を示す光学写真である。これらの光学写真は、パイプ10上に堆積層12を十分に(パイプ10の上端面から1mmを越える高さまで)形成した後、該堆積層12をフライス加工により、パイプ10の上端面から1mmの高さで切削し、さらに研磨した研磨面を上面側から撮像したものである。
 実施例3、4、及び比較例3においては、以下の材料及び条件で試料を作製した。
   基材:40mm×40mm、厚さ10mmの銅合金板
   パイプ:外径φ=6mm、外周の曲率R=3mmの銅合金
   堆積層の材料:平均粒径26.18μmの銅粉末
   比率h/R=0.5
(実施例3)
 クリアランスΔを0mmとした。その結果、図9に示すように、パイプ10上の領域と基材11上の領域とで滑らかに連続する緻密で均質な堆積層12を形成することができた。
(実施例4)
 クリアランスΔを0.05mmとした。その結果、図10に示すように、パイプ10上の領域と基材11上の領域との間に面の境界線は観察されるものの、両領域間で連続する緻密で均質な堆積層12を形成することができた。
(比較例3)
 クリアランスΔを0.10mmとした。この場合、図11に示すように、パイプ10上の領域と基材11上の間に割れが観察された。
 1 パイプ埋設構造体
 10 パイプ
 11 基材
 11a 凹部
 11b 上面
 12 堆積層
 13 バルク材
 14 領域
 20 コールドスプレー装置
 21 ガス加熱器
 22 粉末供給装置
 23 スプレーガン
 24 ガスノズル
 25、26 バルブ
 27 基体
 28 粉末

Claims (7)

  1.  横断面における外周が円形をなす金属又は合金製のパイプと、
     前記外周の一部を当接させる内壁を有し、前記パイプを嵌合させる凹部が形成された金属又は合金製の基材と、
     前記凹部に前記パイプを嵌合させた状態で、金属又は合金からなる粉末をガスと共に加速し、前記パイプ及び前記基材の表面に固相状態のままで吹き付けて前記粉末を堆積させることにより形成された堆積層と、
    を備え、
     前記基材の表面から前記パイプが突出する突出量hと前記外周の曲率Rとの比率h/Rが0.3以上0.7以下であることを特徴とするパイプ埋設構造体。
  2.  前記パイプの横断面において、前記凹部と前記パイプとのクリアランスが0mm以上0.05mm以下であることを特徴とする請求項1に記載のパイプ埋設構造体。
  3.  前記パイプは、SUS鋼、銅合金、ニッケル合金、タンタル、ニオブ、チタン、アルミニウム、又はアルミニウム合金からなることを特徴とする請求項1又は2に記載のパイプ埋設構造体。
  4.  前記基材は、銅、銅合金、アルミニウム、又はアルミニウム合金からなることを特徴とする請求項1~3のいずれか1項に記載のパイプ埋設構造体。
  5.  前記粉末は、銅又はアルミニウムからなることを特徴とする請求項4に記載のパイプ埋設構造体。
  6.  金属又は合金製の基材に対し、横断面における外周が円形をなす金属又は合金製のパイプの前記外周の一部を当接させる内壁を有する凹部を形成する基材形成工程と、
     前記凹部に前記パイプを嵌合させ、金属又は合金からなる粉末をガスと共に加速し、前記パイプ及び前記基材の表面に固相状態のままで吹き付けて前記粉末を堆積させることにより堆積層を形成する堆積層形成工程と、
    を含み、
     前記基材形成工程は、前記基材の表面から前記パイプが突出する突出量hと前記外周の曲率Rとの比率h/Rを0.3以上0.7以下にすることを特徴とするパイプ埋設構造体の製造方法。
  7.  前記基材形成工程は、前記パイプの横断面における前記凹部の幅と前記パイプの外径とのクリアランスを0mm以上0.05mm以下にすることを特徴とする請求項6に記載のパイプ埋設構造体の製造方法。
PCT/JP2013/068077 2012-07-03 2013-07-01 パイプ埋設構造体及びその製造方法 WO2014007226A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/409,725 US20150198387A1 (en) 2012-07-03 2013-07-01 Pipe embedded structure and method of manufacturing the same
KR20147036856A KR20150015533A (ko) 2012-07-03 2013-07-01 파이프 매설 구조체 및 그 제조 방법
CN201380033889.7A CN104395501A (zh) 2012-07-03 2013-07-01 管埋设构造体及其制造方法
EP13813481.2A EP2871262A4 (en) 2012-07-03 2013-07-01 STRUCTURE WITH EMBEDDED TUBE AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-149972 2012-07-03
JP2012149972A JP5386615B1 (ja) 2012-07-03 2012-07-03 パイプ埋設構造体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014007226A1 true WO2014007226A1 (ja) 2014-01-09

Family

ID=49881982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068077 WO2014007226A1 (ja) 2012-07-03 2013-07-01 パイプ埋設構造体及びその製造方法

Country Status (6)

Country Link
US (1) US20150198387A1 (ja)
EP (1) EP2871262A4 (ja)
JP (1) JP5386615B1 (ja)
KR (1) KR20150015533A (ja)
CN (1) CN104395501A (ja)
WO (1) WO2014007226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094016A (ja) * 2013-11-13 2015-05-18 株式会社東芝 伝熱管の取り付け構造および取り付け方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437365B2 (ja) * 2015-03-30 2018-12-12 タツタ電線株式会社 固定方法、被覆導線固定構造
EP3381874A1 (en) * 2017-03-31 2018-10-03 Arkema B.V. Feeding device for coating apparatus, coating apparatus comprising it and process using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510599A (ja) * 2000-05-24 2004-04-08 モールド‐マスターズ、リミテッド 溶融材料処理装置、この溶融材料処理装置の製造方法および製造装置
JP2009013497A (ja) 2007-06-29 2009-01-22 Tts:Kk 半導体製造装置
JP2009083429A (ja) * 2007-10-02 2009-04-23 Kanto Auto Works Ltd 温度調節部材を有する金型殻の製造方法
JP2011238705A (ja) 2010-05-07 2011-11-24 Nhk Spring Co Ltd 温度調節装置、冷却装置、及び温度調節装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180254A (en) * 1989-04-10 1993-01-19 Marcel Matiere Fluid-conveying conduit
JPH05134067A (ja) * 1991-11-14 1993-05-28 Toshiba Corp 冷却構造を有する受熱板の製造方法
ATE208090T1 (de) * 1997-02-20 2001-11-15 Ccs Technology Inc Verfahren zum einbringen eines optischen oder elektrischen kabels in einen festen verlegegrund und vorrichtung zum verlegen des kabels
US6405785B1 (en) * 2000-01-28 2002-06-18 Mold-Masters Limited Injection molding component with heating element and method of making
US7730908B2 (en) * 2006-03-24 2010-06-08 Babcock & Wilcox Power Generation Group, Inc. Self supporting reinforced header
AU2009312245C1 (en) * 2008-11-04 2013-04-18 Daikin Industries, Ltd. Cooling member, and method and device for manufacturing same
US20100170937A1 (en) * 2009-01-07 2010-07-08 General Electric Company System and Method of Joining Metallic Parts Using Cold Spray Technique
US8087431B2 (en) * 2009-05-24 2012-01-03 Pipe Wrap, LLC Wear pad
DE102009049479A1 (de) * 2009-06-08 2010-12-09 Sms Siemag Ag Einbindung eines Lichtwellenleiters eines Messsensors in ein Bauteil
CN201907053U (zh) * 2010-12-11 2011-07-27 昆明台兴精密机械有限责任公司 晶片单面抛光机主轴磨盘冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510599A (ja) * 2000-05-24 2004-04-08 モールド‐マスターズ、リミテッド 溶融材料処理装置、この溶融材料処理装置の製造方法および製造装置
JP2009013497A (ja) 2007-06-29 2009-01-22 Tts:Kk 半導体製造装置
JP2009083429A (ja) * 2007-10-02 2009-04-23 Kanto Auto Works Ltd 温度調節部材を有する金型殻の製造方法
JP2011238705A (ja) 2010-05-07 2011-11-24 Nhk Spring Co Ltd 温度調節装置、冷却装置、及び温度調節装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871262A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094016A (ja) * 2013-11-13 2015-05-18 株式会社東芝 伝熱管の取り付け構造および取り付け方法

Also Published As

Publication number Publication date
KR20150015533A (ko) 2015-02-10
EP2871262A4 (en) 2016-03-23
JP2014012865A (ja) 2014-01-23
JP5386615B1 (ja) 2014-01-15
US20150198387A1 (en) 2015-07-16
CN104395501A (zh) 2015-03-04
EP2871262A1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5162621B2 (ja) 温度調節装置、冷却装置、及び温度調節装置の製造方法
EP2592647B1 (en) Manufacturing method for plate
WO2014007226A1 (ja) パイプ埋設構造体及びその製造方法
JP2017008379A (ja) クラッドパイプ及びクラッドパイプの製造方法
JP2009006294A (ja) 有機皮膜の形成方法
KR20140005350A (ko) 샤프트 부착 히터 유닛 및 샤프트 부착 히터 유닛의 제조 방법
JP5386616B1 (ja) パイプ埋設構造体及びその製造方法
JP5734129B2 (ja) 流路付き部材及びその製造方法
TWI484557B (zh) 附有流路之構件及該構件之製造方法
US11313041B2 (en) Manufactured metal objects with hollow channels and method for fabrication thereof
US20240084457A1 (en) Expansive coatings for anchoring to composite substrates
JP5628231B2 (ja) 積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409725

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013813481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013813481

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147036856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE