WO2014006335A1 - Procede catalytique de production de monoxyde de carbone et reacteur associe - Google Patents

Procede catalytique de production de monoxyde de carbone et reacteur associe Download PDF

Info

Publication number
WO2014006335A1
WO2014006335A1 PCT/FR2013/051586 FR2013051586W WO2014006335A1 WO 2014006335 A1 WO2014006335 A1 WO 2014006335A1 FR 2013051586 W FR2013051586 W FR 2013051586W WO 2014006335 A1 WO2014006335 A1 WO 2014006335A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis gas
catalyst
producing
gas according
iron
Prior art date
Application number
PCT/FR2013/051586
Other languages
English (en)
Inventor
Jean-Marc BORGARD
Phuangphet VIBHATAVATA
Michel Tabarant
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP13747435.9A priority Critical patent/EP2870105A1/fr
Priority to US14/412,812 priority patent/US20150306576A1/en
Publication of WO2014006335A1 publication Critical patent/WO2014006335A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention belongs to the field of synthesis gas production processes comprising carbon monoxide (CO).
  • the invention relates to a process and the associated catalytic reactor for producing a synthesis gas, wherein a gaseous mixture comprising carbon dioxide and hydrogen is contacted with a catalyst to produce carbon monoxide. carbon.
  • Carbon dioxide can be converted under appropriate operating conditions into carbon monoxide by the so-called retroconversion reaction, as follows:
  • the RWGS reaction is recognized as a very promising way to valorise carbon dioxide and is the subject of many studies.
  • the gases it generates, especially carbon monoxide, can synthesize various products, such as for example methanol.
  • the RWGS reaction leads to a balance between the different constituents.
  • a metal catalyst is generally used to shift this equilibrium to carbon monoxide formation in times consistent with acceptable reactor size.
  • US Patent 2003/113244 (reference [3]) therefore proposes to use a catalyst based on zinc oxide and chromium oxide in order to obtain a good reaction rate of the conversion of carbon dioxide to monoxide. of carbon.
  • the absence of iron in the catalyst is indicated as essential, this metal element being presented as having the drawback of favoring the side reactions of production of methane and methanol, or even carbon.
  • One of the aims of the invention is thus to avoid or mitigate one or more of the disadvantages described above, by proposing a process for producing carbon monoxide using a catalyst which has in particular a deactivation which is low or almost nil. over time, for example after a period of use greater than 100 hours.
  • the present invention thus relates to a process for producing a synthesis gas, wherein a gaseous mixture comprising carbon dioxide and hydrogen is contacted with a catalyst to produce carbon monoxide, the process being characterized in that the catalyst comprises iron and silver in a silver mass / iron mass ratio of 0.05 to 0.95.
  • the process of the invention is characterized by the use of a catalyst which comprises iron, despite the contrary incitement of the state of the art, as well as silver.
  • the catalyst comprises iron and silver in a ratio of silver mass to iron mass (to namely the weight ratio of silver to iron) which is from 0.05 to 0.95, preferably from 0.05 to 0.50 in order to further improve the degree of conversion, more preferably from 0.10 to 0. ,30.
  • the optimum proportion of silver tends to increase with the temperature at which the production process of the invention is carried out.
  • the silver mass / iron mass ratio may for example be between 0.07 and 0.40, and at 500 ° C. between 0.1 and 0.5.
  • the catalyst also comprises cerium in a ratio of cerium mass / iron mass (ie the weight ratio of cerium to iron) which is 0.1 to 1, preferably 0.2 to 0.6.
  • the weight ratio of silver to iron remains in the ranges indicated above.
  • cerium further enhances the properties of the catalyst comprising iron and silver, such as the reaction rate of the conversion of carbon dioxide to carbon monoxide, possibly decreasing the catalyst activation time, while avoiding the spurious reactions of methane formation or carbon deposition.
  • the invention also relates to a catalytic reactor that can be used in the production process as defined in the present description, in particular in one or more of the variants described for this process and for the catalyst that it implements, the reactor containing a reaction chamber in which is disposed a catalyst comprising iron and silver in a ratio mass of silver / mass of iron which is 0.05 to 0.95.
  • a verb such as “to understand”, “to include”, “to incorporate”, “to include” and its conjugate forms are open terms and thus do not exclude the presence of element (s) and / or additional step (s) adding to the element (s) and / or initial step (s) set forth after these terms.
  • these open terms also include a particular embodiment in which only the element (s) and / or initial stage (s), to the exclusion of all others, are targeted; in which case the term “open” also refers to the closed term “consisting of", “constituting” and its associated forms.
  • the catalyst used in the production process of the invention is such that iron, silver and, if appropriate, cerium are present independently of one another in native form and / or in oxide form. .
  • the iron oxidizes because of the catalyst preparation process or the presence of water. It forms, for example, an oxide such as magnetite (Fe 3 O 4 ).
  • Cerium is generally in the form of an oxide, for example in the form of cerium dioxide (CeO 2 ).
  • the money is in native form.
  • weight ratios of silver to iron or cerium to iron indicated above are the ratios between the masses of iron, silver or cerium as metallic elements contained in the catalyst, without considering in the calculation of the weight ratio the fact that they are optionally in the form of a compound such as an oxide.
  • the catalyst may contain other chemical species, constituting, for example, inevitable impurities of manufacture, as long as these species do not significantly affect the catalytic properties. Impurities are for example present in the catalyst at a concentration of less than 1%, or even 0.5%. When the impurity is copper, the concentration may be less than 5%.
  • the catalyst can be made by any method known to those skilled in the art.
  • the catalyst is preferably obtained in the usual manner by subjecting a solution comprising an iron nitrate, a silver nitrate and optionally a cerium nitrate, to a precipitation step such as, for example, coprecipitation or oxidation. simultaneous precipitation (known under the term "oxyprecipitation”), followed by a calcination step.
  • a precipitation step such as, for example, coprecipitation or oxidation.
  • a precipitation step is for example carried out at
  • the calcination step may be carried out at a temperature of between 350 ° C. and 450 ° C. for 12 hours and / or in the presence of oxygen, for example in air, a metal oxide may then be formed.
  • the catalyst is generally in the form of a powder more or less agglomerated.
  • the average size of the constitutive grains of the powder is generally between 20 ⁇ m and 500 ⁇ m, or even between 20 ⁇ m and 100 ⁇ m, after optional sieving, in which case the grains of the powder have, for example, a BET specific surface area of 50 m 2 / g at 200 m 2 / g.
  • the catalyst can be used as such in the production process of the invention, or impregnated on a carrier or mixed with a carrier.
  • a support usually used in the field of catalysis is suitable for such an embodiment.
  • Such a carrier is generally inert with respect to physicochemical conditions, reagents and products of the RWGS reaction. It is for example made of alumina, zeolite or silica. It can be shaped, for example as granules or beads.
  • the catalyst may constitute a catalytic bed arranged for example in a fixed-bed or fluidized-bed catalytic reactor, a catalytic bed through which the gaseous mixture passes.
  • the catalyst is, for example, in the form of catalytic particles with a BET surface area of at least 50 m 2 / g, for example from 50 m 2 / g to 200 m 2 / g. It can also be mixed with or impregnated onto particles of the inert carrier described above.
  • the catalyst In the fixed bed reactor, the catalyst is disposed in a generally vertical cylindrical vessel.
  • the bed thus formed is traversed by the flow of the gaseous mixture and the synthesis gas obtained, in order to keep the particles in suspension.
  • the catalyst is generally in the form of a powder, kept in suspension by the upward passage of the gaseous mixture.
  • the catalyst may be pretreated by subjecting it to hydrogen mixed with helium, water vapor, carbon monoxide, or mixtures thereof. This pretreatment activates at best the catalytic phases of iron. It is carried out for example for a period of 1 hour to 5 hours at a temperature between 200 ° C and 350 ° C.
  • the amount of catalyst or the duration of its implementation can vary according to large proportions which may for example depend on the temperature, the reaction volume, the use or not of a continuous regime, the flow rate of the gas mixture, the specific surface of the catalyst. Those skilled in the art can easily adapt the amount or duration of implementation of the catalyst according to the conditions it meets to obtain the catalytic activity or the desired conversion rate.
  • the hourly volumetric velocity of the gaseous mixture entering the catalytic bed is between 10,000 Nm 3 / hour and 30,000 Nm 3 / hour per m 3 of catalyst.
  • 1 Nm 3 represents the volume of one cubic meter under normal conditions of temperature and pressure, namely 25 ° C and 1 bar.
  • the hourly volumetric velocity generally increases with the amount of catalyst.
  • the catalyst can be used continuously or discontinuously, for a duration for example greater than 100 hours, or even 200 hours, for example between 100 hours and 3000 hours, all by preserving a stable or relatively stable rate of carbon dioxide conversion.
  • the production process of the invention is generally carried out under a pressure of 1 bar at 50 bar, and / or all or part of this process at a temperature between 400 ° C and 550 ° C, preferably between 420 ° C and 520 ° C, knowing that the conversion rate generally increases with temperature.
  • the gaseous mixture treated according to the production method of the invention comprises carbon dioxide and hydrogen, generally representing at least 50% by volume of the gaseous mixture, particularly at least 70%, even more particularly at least 90%.
  • the molar ratio in the gaseous mixture of hydrogen and carbon dioxide can vary widely between 0.1 and 100. It is for example between 0.8 and 10, and more particularly between 2 and 4.
  • the initial gas mixture may further comprise at least one chemical species such as water vapor, methane, carbon monoxide or a chemically inert gas (such as for example argon or 1 helium).
  • at least one chemical species such as water vapor, methane, carbon monoxide or a chemically inert gas (such as for example argon or 1 helium).
  • the gaseous mixture can come from reforming hydrocarbons with steam or oxygen. It then contains mainly carbon monoxide, carbon dioxide and hydrogen.
  • Carbon dioxide can also be the tail gas of an ammonia production unit.
  • the synthesis gas obtained at the end of the production process of the invention contains carbon monoxide and water generally in the form of steam, as well as carbon dioxide and unreacted hydrogen, see possibly a small amount of carbon products from parasitic reactions. These carbon products are by methane, the concentration of which is generally less than 1%, more particularly 0.5%, more particularly 0.1%.
  • the production method of the invention comprises a supplementary step during which at least one cycle consisting of i) extracting all or part of the water contained in the synthesis gas and then ii ) repeat the production process. By displacement of the reaction equilibrium, this extraction favors the RWGS reaction and thus the enrichment of the synthesis gas with carbon monoxide by conversion of an additional fraction of carbon dioxide.
  • Extraction of all or part of the water can be carried out by conventional means such as desiccation or preferably condensation.
  • the condensation is for example carried out by bringing the synthesis gas to a temperature between 0 ° C and 70 ° C, preferably between 35 ° C and 55 ° C.
  • the condensation temperature may however vary depending on the pressure of the synthesis gas.
  • the synthesis gas can be used to synthesize a hydrocarbon which is for example methanol, dimethyl ether or paraffin.
  • composition of the synthesis gas obtained is measured by gas chromatography at the outlet of the catalytic bed. This measurement makes it possible to calculate the converted carbon dioxide level: it corresponds to the molar fraction of carbon dioxide converted into carbon monoxide.
  • An aqueous solution comprising an iron (Fe (03) 3) and silver (AgNO 3) metal nitrate and optionally a cerium nitrate (Ce (O 3) 3) is produced.
  • the nitrates present in the solution are coprecipitated at 70 ° C. after addition of sodium hydroxide in order to reach a pH of 10.
  • each metallic element Fe, Ag and Ce is then present at the concentration in which it occurs. will find in the catalyst.
  • the precipitates obtained are washed, filtered, dried at 70 ° C. for 24 hours, and calcined under air at 350 ° C. for 4 hours and then at 450 ° C. for 8 hours.
  • a powder whose average grain size is between 20 ⁇ m and 500 ⁇ m is obtained, and which constitutes the catalyst that can be used in the process of production of the invention. After sieving, only grains with an average size of less than 100 ⁇ m are preserved, such a particle size generally making it possible to obtain a better efficiency of the catalyst.
  • a glass tube is then filled with a variable amount of the catalyst to obtain a fixed bed catalytic reactor which is placed vertically in a temperature controlled oven.
  • the catalyst Before carrying out the conversion of the gaseous mixture, the catalyst is conditioned by sweeping it for 2 hours with a stream of hydrogen mixed with helium.
  • catalysts based on iron and chromium and possibly copper, or iron and cerium are manufactured by coprecipitation of the corresponding nitrates (or chloride in the case of chromium), integrated in the form of a catalytic bed and conditioned by hydrogen sweeping.
  • the composition of the catalysts obtained is expressed as a percentage by weight. Their specific surface is similar. 2. Catalytic conversion of a gaseous mixture at a temperature of 450 ° C.
  • Each catalyst is separately implemented in the form of a fixed catalytic bed in order to carry out catalytic conversions of the gaseous mixture at a temperature of 450 ° C. (+/- 2 ° C.).
  • Catalytic conversion according to the invention. Catalysts comprising iron, silver and, where appropriate, cerium, make it possible to obtain the following conversion kinetics:
  • Each catalyst is separately implemented as a fixed catalyst bed in order to catalytically convert the gaseous mixture to a temperature of 500 ° C (+/- 2 ° C).
  • Catalysts comprising iron, silver and, where appropriate, cerium, make it possible to obtain the following conversion kinetics:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Procédé de production d'un gaz de synthèse, dans lequel un mélange gazeux comprenant du dioxyde de carbone et de l'hydrogène est mis en contact avec un catalyseur afin de produire du monoxyde de carbone, le procédé étant caractérisé en ce que le catalyseur comprend du fer et de l'argent selon un rapport masse d'argent/masse de fer qui est de 0,05 à 0,95. Réacteur catalytique destiné à la mise en œuvre du procédé de production d'un gaz de synthèse.

Description

PROCEDE CATALYTIQUE DE PRODUCTION DE MONOXYDE DE CARBONE ET
REACTEUR ASSOCIE.
DESCRIPTION
DOMAINE TECHNIQUE La présente invention appartient au domaine des procédés de production de gaz de synthèse comprenant du monoxyde de carbone (CO) .
L' invention concerne plus particulièrement un procédé et le réacteur catalytique associé en vue de produire un gaz de synthèse, dans lesquels un mélange gazeux comprenant du dioxyde de carbone et de l'hydrogène est mis en contact avec un catalyseur afin de produire du monoxyde de carbone.
ARRIERE-PLAN TECHNIQUE Le dioxyde de carbone peut être converti dans des conditions opératoires appropriées en monoxyde de carbone par la réaction, dite de rétroconversion, suivante :
C02(g) + H2(g) <t CO(g) + H20(g)
Cette réaction est communément connue sous l'acronyme anglo-saxon RWGS pour « Reverse Water Gas Shift », puisqu'elle est en équilibre avec la réaction inverse dite du gaz à l'eau (« Water Gas Shift ») qui est destinée à former de l'hydrogène mélangé à du dioxyde de carbone.
La réaction RWGS est reconnue comme une voie très prometteuse de valorisation du dioxyde de carbone et fait l'objet de nombreuses études. Les gaz qu'elle génère, notamment le monoxyde de carbone, permettent de synthétiser divers produits, tels que par exemple le méthanol.
La réaction RWGS conduit à un équilibre entre les différents constituants. Un catalyseur métallique est généralement utilisé pour déplacer cet équilibre vers la formation de monoxyde de carbone dans des temps compatibles avec une taille acceptable des réacteurs.
Ainsi, les documents EP 0 737 647 (référence [1]) et EP 0 742 172 (référence [2]) décrivent l'utilisation de catalyseurs à base d'oxyde de cuivre-zinc, ou à base de fer- chrome. Ces catalyseurs ont pour inconvénient de se désactiver au bout d'un certain temps, notamment dans les conditions opératoires favorisant la réaction RWGS, telles que par exemple des températures comprises entre 400 °C et 600 °C et/ou une faible pression partielle d'eau, par exemple moins de 20 % molaire d'eau. Cette désactivation implique le remplacement ou la régénération du catalyseur, ce qui diminue le rendement et la rentabilité économique du procédé catalytique de production de monoxyde de carbone.
Le brevet US 2003/113244 (référence [3]) propose dès lors d'utiliser un catalyseur à base d'oxyde de zinc et d'oxyde de chrome afin d'obtenir une bonne vitesse réactionnelle de la conversion du dioxyde de carbone en monoxyde de carbone. L'absence de fer dans le catalyseur est indiquée comme essentielle, cet élément métallique étant présenté comme ayant pour inconvénient de favoriser les réactions secondaires de production de méthane et de méthanol, voire de carbone.
Néanmoins, un tel catalyseur à base de zinc et de chrome est peu efficace pour des températures inférieures à 550 °C, ou il nécessite d'être mis en œuvre en quantité importante . EXPOSE DE L' INVENTION
Un des buts de l'invention est donc d'éviter ou d'atténuer un ou plusieurs des inconvénients décrits ci-dessus, en proposant un procédé de production de monoxyde de carbone utilisant un catalyseur qui présente notamment une désactivâtion qui est faible voire quasiment nulle au cours du temps, par exemple à l'issue d'une durée d'utilisation supérieure à 100 heures. La présente invention concerne ainsi un procédé de production d'un gaz de synthèse, dans lequel un mélange gazeux comprenant du dioxyde de carbone et de l'hydrogène est mis en contact avec un catalyseur afin de produire du monoxyde de carbone, le procédé étant caractérisé en ce que le catalyseur comprend du fer et de l'argent selon un rapport masse d ' argent/masse de fer qui est de 0,05 à 0,95.
Le procédé de l'invention se caractérise par l'utilisation d'un catalyseur qui comprend du fer, et ce malgré l'incitation contraire de l'état de la technique, ainsi que de l'argent.
La présence simultanée d'argent et de fer dans le catalyseur permet d'obtenir une bonne vitesse réactionnelle de la conversion du dioxyde de carbone en monoxyde de carbone, tout en minimisant voire en évitant les réactions parasites de formation de méthane ou de dépôt de carbone ainsi que la désactivation du catalyseur.
Une proportion trop élevée d' argent dans le catalyseur peut diminuer sensiblement le taux de conversion du dioxyde de carbone. En revanche, une proportion trop faible ne garantit pas une bonne sélectivité du catalyseur vis-à-vis de la conversion en monoxyde de carbone, ce qui favorise le dépôt de carbone sur le catalyseur et donc sa désactivation. Afin d'éviter cela, le catalyseur comprend du fer et de l'argent selon un rapport masse d'argent/masse de fer (à savoir le rapport pondéral de l'argent au fer) qui est de 0,05 à 0,95, préférentiellement de 0,05 à 0,50 afin d'améliorer encore le taux de conversion, encore plus préférentiellement de 0,10 à 0,30.
La proportion optimale d' argent tend généralement à augmenter avec la température à laquelle le procédé de production de l'invention est réalisé. Ainsi, à 450 °C le rapport masse d'argent/masse de fer peut par exemple être compris entre 0,07 et 0,40, et à 500 °C entre 0,1 et 0,5.
Préférentiellement , le catalyseur comprend en outre du cérium selon un rapport masse de cérium/masse de fer (à savoir le rapport pondéral du cérium au fer) qui est de 0,1 à 1, préférentiellement de 0,2 à 0,6. Dans un tel mode de réalisation, le rapport pondéral de l'argent au fer reste dans les gammes indiquées précédemment.
L'ajout de cérium améliore encore les propriétés du catalyseur comprenant du fer et de l'argent, telles que la vitesse réactionnelle de la conversion du dioxyde de carbone en monoxyde de carbone, en diminuant éventuellement le temps d' activation du catalyseur, tout en évitant les réactions parasites de formation de méthane ou de dépôt de carbone.
L' invention concerne également un réacteur catalytique susceptible d'être mis en œuvre dans le procédé de production tel que défini dans la présente description, notamment dans une ou plusieurs des variantes décrites pour ce procédé et pour le catalyseur qu'il met en œuvre, le réacteur contenant une enceinte réactionnelle dans laquelle est disposé un catalyseur comprenant du fer et de l'argent selon un rapport masse d'argent/masse de fer qui est de 0,05 à 0, 95. EXPOSE DETAILLE DE L' INVENTION
Dans la présente description de l'invention, un verbe tel que « comprendre », « comporter », « incorporer », « inclure » et ses formes conjuguées sont des termes ouverts et n'excluent donc pas la présence d'élément (s) et/ou étape (s) additionnels s' ajoutant aux élément (s) et/ou étape (s) initiaux énoncés après ces termes. Toutefois, ces termes ouverts visent en outre un mode de réalisation particulier dans lequel seul (s) le (s) élément (s) et/ou étape (s) initiaux, à l'exclusion de tout autre, sont visés ; auquel cas le terme ouvert vise en outre le terme fermé « consister en », « constituer de » et ses formes conj uguées .
Par ailleurs, sauf indication contraire, les valeurs aux bornes sont incluses dans les gammes de paramètres indiquées .
Généralement, le catalyseur mis en œuvre dans le procédé de production de l'invention est tel que le fer, l'argent et le cas échéant le cérium se présentent indépendamment l'un de l'autre sous forme native et/ou d ' oxyde .
Le plus souvent, le fer s'oxyde à cause du procédé de préparation du catalyseur ou de la présence d'eau. Il forme par exemple un oxyde tel que la magnétite (Fe304) .
Le cérium se présente généralement sous forme d'oxyde, par exemple sous forme de dioxyde de cérium (Ce02) .
Préférentiellement , l'argent se trouve sous forme native .
Les rapports pondéraux de l'argent au fer ou du cérium au fer indiqués ci-dessus s'entendent des rapports entre les masses de fer, d'argent ou de cérium en tant qu'éléments métalliques contenus dans le catalyseur, sans considérer dans le calcul du rapport pondéral le fait qu'ils soient éventuellement sous forme de composé tel qu'un oxyde.
Le cas échéant, le catalyseur peut contenir d'autres espèces chimiques, constituant par exemple des impuretés inévitables de fabrication, tant que ces espèces n'affectent pas notablement les propriétés catalytiques . Des impuretés sont par exemple présentes dans le catalyseur à une concentration inférieure à 1 %, voire à 0,5 %. Lorsque l'impureté est du cuivre, la concentration peut être inférieure à 5 % .
Le catalyseur peut être réalisé par tout procédé connu de l'homme de métier.
Toutefois, on souhaite généralement disposer d'un catalyseur dont la composition est la plus homogène possible afin d'améliorer encore le taux de conversion du dioxyde de carbone. A ce titre, le catalyseur est préférentiellement obtenu de manière usuelle en soumettant une solution comprenant un nitrate de fer, un nitrate d'argent et le cas échéant un nitrate de cérium, à une étape de précipitation telle que par exemple une coprécipitation ou une oxydation- précipitation simultanée (connue sous le terme anglais « oxyprecipitation ») , suivie par une étape de calcination.
Une étape de précipitation est par exemple réalisée à
70 °C et à un pH de 10 obtenu par ajout de soude ou d'ammoniaque, et comprend des étapes finales de lavage, filtration, et séchage pendant 24 heures.
L'étape de calcination peut être effectuée à une température comprise entre 350 °C et 450 °C pendant 12 heures et/ou en présence d'oxygène, par exemple sous air, un oxyde métallique pouvant alors se former.
A l'issue de l'étape de calcination, le catalyseur se présente généralement sous forme d'une poudre plus ou moins agglomérée. La taille moyenne des grains constitutifs de la poudre est généralement comprise entre 20 ym et 500 ym, voire entre 20 ym et 100 ym après tamisage éventuel auquel cas les grains de la poudre présentent par exemple une surface spécifique BET de 50 m2/g à 200 m2/g.
Le catalyseur peut être utilisé tel quel dans le procédé de production de l'invention, ou bien imprégné sur un support ou mélangé avec un support.
Un support utilisé habituellement dans le domaine de la catalyse convient pour un tel mode de réalisation.
Un tel support est généralement inerte par rapport aux conditions physico-chimiques, aux réactifs et aux produits de la réaction RWGS . Il est par exemple constitué d'alumine, de zéolite ou de silice. Il peut être mis en forme, par exemple en tant que granulés ou billes.
Pour réaliser sa mise en contact avec le mélange gazeux, le catalyseur peut constituer un lit catalytique disposé par exemple dans un réacteur catalytique à lit fixe ou à lit fluidisé, lit catalytique que traverse le mélange gazeux. Le catalyseur se présente par exemple sous forme de particules catalytiques de surface spécifique BET d'au moins 50 m2/g, par exemple de 50 m2/g à 200 m2/g. Il peut également être mélangé avec, ou bien imprégné sur, des particules du support inerte décrit précédemment.
Dans le réacteur à lit fixe, le catalyseur est disposé dans un récipient, généralement cylindrique vertical. Le lit ainsi formé est parcouru par le flux du mélange gazeux et du gaz de synthèse obtenu, afin de maintenir les particules en suspension.
Dans le réacteur à lit fluidisé, le catalyseur se présente généralement sous la forme d'une poudre, maintenue en suspension par le passage ascendant du mélange gazeux. Le cas échéant, le catalyseur peut être prétraité en le soumettant à de l'hydrogène mélangé à l'hélium, la vapeur d'eau, le monoxyde de carbone ou leurs mélanges. Ce prétraitement active au mieux les phases catalytiques du fer. Il est réalisé par exemple pendant une durée de 1 heure à 5 heures à une température comprise entre 200 °C et 350 °C.
La quantité de catalyseur ou la durée de sa mise en œuvre peut varier selon de larges proportions qui peuvent par exemple dépendre de la température, du volume réactionnel, de l'utilisation ou non d'un régime continu, du débit du mélange gazeux, de la surface spécifique du catalyseur. L'homme du métier pourra aisément adapter la quantité ou la durée de mise en œuvre du catalyseur selon les conditions qu'il rencontre jusqu'à obtenir l'activité catalytique ou le taux de conversion qu'il souhaite.
A titre d'exemple, la vitesse volumétrique horaire du mélange gazeux entrant dans le lit catalytique est comprise entre 10000 Nm3/heure et 30000 Nm3/heure par m3 de catalyseur. Par convention, 1 Nm3 représente le volume d'un mètre cube dans les conditions normales de température et de pression, à savoir 25 °C et 1 bar. La vitesse volumétrique horaire augmente généralement avec la quantité de catalyseur.
Parce qu'il est peu ou pas sujet à la désactivation, le catalyseur peut être utilisé de façon continue ou discontinue, pendant une durée par exemple supérieure à 100 heures, voire à 200 heures, par exemple comprise entre 100 heures et 3000 heures, tout en préservant un taux stable ou relativement stable de conversion du dioxyde de carbone.
Le procédé de production de 1 ' invention est généralement réalisé sous une pression de 1 bar à 50 bars, et/ou tout ou partie de ce procédé à une température comprise entre 400 °C et 550 °C, préférentiellement entre 420 °C et 520 °C, sachant que le taux de conversion augmente généralement avec la température.
Le mélange gazeux traité selon le procédé de production de 1 ' invention comprend du dioxyde de carbone et de l'hydrogène, représentant généralement au moins 50 % en volume du mélange gazeux, particulièrement au moins 70 %, encore plus particulièrement au moins 90 %.
Le rapport molaire au sein du mélange gazeux de l'hydrogène au dioxyde de carbone peut varier dans de larges proportions entre 0,1 et 100. Il est par exemple compris entre 0,8 et 10, et plus particulièrement entre 2 et 4.
La présence d'au moins une autre espèce chimique supplémentaire dans le mélange gazeux n'est pas exclue. Ainsi, par exemple, le mélange gazeux initial peut comprendre en outre au moins une espèce chimique telle que de la vapeur d'eau, du méthane, du monoxyde de carbone ou un gaz inerte chimiquement (tel que par exemple de l'argon ou de 1 ' hélium) .
Avantageusement, le mélange gazeux peut provenir du reformage d'hydrocarbures à la vapeur ou à l'oxygène. Il contient alors essentiellement du monoxyde de carbone, du dioxyde de carbone et de l'hydrogène.
Le dioxyde de carbone peut également constituer le gaz résiduaire d'une unité de production d'ammoniac.
Le gaz de synthèse obtenu à l'issue du procédé de production de l'invention contient du monoxyde de carbone et de l'eau généralement sous forme de vapeur, ainsi que du dioxyde de carbone et de l'hydrogène n'ayant pas réagi, voir éventuellement une petite quantité de produits carbonés issus de réactions parasites. Ces produits carbonés sont par exemple le méthane, dont la concentration volumique est généralement inférieure à 1 %, plus particulièrement à 0,5 %, encore plus particulièrement à 0,1 %. Selon un mode de réalisation préféré, le procédé de production de 1 ' invention comprend une étape supplémentaire au cours de laquelle on effectue au moins un cycle consistant à i) extraire tout ou partie de l'eau contenue dans le gaz de synthèse puis à ii) répéter le procédé de production. Par déplacement de l'équilibre réactionnel, cette extraction favorise la réaction RWGS et donc l'enrichissement du gaz de synthèse en monoxyde de carbone par conversion d'une fraction supplémentaire de dioxyde de carbone .
L'extraction de tout ou partie de l'eau peut être réalisée par un moyen conventionnel tel qu'une dessiccation ou de préférence une condensation.
La condensation est par exemple réalisée en portant le gaz de synthèse à une température comprise entre 0 °C et 70 °C, de préférence comprise entre 35 °C et 55 °C. La température de condensation peut toutefois varier en fonction de la pression du gaz de synthèse.
Dans une étape ultime du procédé de production de l'invention, on peut utiliser le gaz de synthèse pour synthétiser un hydrocarbure qui est par exemple le méthanol, l'éther diméthylique ou une paraffine.
D'autres objets, caractéristiques et avantages de l'invention vont maintenant être précisés dans la description qui suit de modes de réalisation particuliers du procédé de l'invention et d'exemples comparatifs. EXPOSE DE MODE DE REALISATIONS PARTICULIERS
On réalise la conversion d'un mélange gazeux à une pression de 1 bar contenant en volume 75 % d'hydrogène et 25 % de dioxyde de carbone en le faisant traverser, selon un débit continu de 100 ml/heure, un lit catalytique fixe contenant un catalyseur à base de fer et d'argent, et le cas échéant de cérium, conformément au procédé de production de 1 ' invention .
A titre comparatif, des conversions réalisées dans les mêmes conditions sont également effectuées avec des catalyseurs de composition différente.
La composition du gaz de synthèse obtenu est mesurée par chromatographie gazeuse en sortie du lit catalytique. Cette mesure permet de calculer le taux de dioxyde de carbone converti : il correspond à la fraction molaire de dioxyde de carbone transformée en monoxyde de carbone.
1. Fabrication d'un catalyseur et mise en oeuyre dans un lit catalytique .
On réalise une solution aqueuse comprenant un nitrate métallique de fer (Fe( 03)3) et d'argent (AgNOs) , et le cas échéant un nitrate de cérium (Ce( 03)3) . Les nitrates présents dans la solution sont coprécipités à 70 °C après ajout de soude afin d'atteindre un pH de 10. Après l'étape de précipitation, chaque élément métallique Fe, Ag et Ce est alors présent à la concentration dans laquelle il se trouvera dans le catalyseur. Les précipités obtenus sont lavés, filtrés, séchés à 70 °C pendant 24 heures, et calcinés sous air à 350 °C pendant 4 heures puis à 450 °C pendant 8 heures.
On obtient une poudre dont la taille moyenne des grains est comprise entre 20 ym et 500 ym, et qui constitue le catalyseur pouvant être mis en œuvre dans le procédé de production de l'invention. Après tamisage, seuls les grains d'une taille moyenne inférieure à 100 ym sont préservés, une telle granulométrie permettant généralement d'obtenir une meilleure efficacité du catalyseur.
Un tube de verre est ensuite rempli avec une quantité variable du catalyseur afin d'obtenir un réacteur catalytique à lit fixe qui est placé verticalement dans un four à température contrôlée.
Avant de réaliser la conversion du mélange gazeux, le catalyseur est conditionné en le balayant pendant 2 heures avec un courant d'hydrogène mélangé avec de l'hélium.
A titre comparatif, selon une procédure similaire à celle exposée pour le catalyseur à base de fer, d'argent et le cas échéant de cérium, des catalyseurs à base de fer et de chrome et éventuellement de cuivre, ou de fer et de cérium, sont fabriqués par coprécipitation des nitrates (ou du chlorure dans le cas du chrome) correspondants, intégrés sous forme de lit catalytique et conditionnés par balayage d'hydrogène.
La composition des catalyseurs obtenus est exprimée en pourcentage massique. Leur surface spécifique est similaire. 2. Conversion catalytique d'un mélange gazeux à une température de 450 °C.
Chaque catalyseur est mis séparément en œuvre sous forme d'un lit catalytique fixe afin de réaliser des conversions catalytiques du mélange gazeux à une température de 450 °C (+/- 2 °C) .
2.1. Conversion catalytique selon l'invention. Des catalyseurs comprenant du fer, de l'argent, et le cas échéant du cérium, permettent d'obtenir la cinétique de conversion suivante :
Figure imgf000014_0001
Tableau A
Figure imgf000014_0002
Tableau B
Figure imgf000014_0003
Tableau C Lors de ces conversions, on ne détecte aucun signal caractéristique du méthane, détectable en pratique par chromatographie gazeuse à partir d'une concentration de 0,1 %.
2.2. Conversion catalytique à titre comparatif.
A titre comparatif, divers catalyseurs sont mis en œuvre dans le procédé de conversion catalytique et permettent d'obtenir les cinétiques de conversion suivantes :
Figure imgf000015_0001
Tableau D
Figure imgf000015_0002
Tableau E Fe=92%, Cr=8%
(quantité = 10 mg)
Durée de conversion (heure) Taux de C02 converti
20 0,11
50 0,07
100 0,04
Tableau F 3. Conversion d'un mélange gazeux à une température de 500 °C.
Chaque catalyseur est mis séparément en œuvre sous forme de lit catalytique fixe afin de réaliser des conversions catalytiques du mélange gazeux à une température de 500 °C (+/- 2 °C) .
3.1. Conversion catalytique selon l'invention.
Des catalyseurs comprenant du fer, de l'argent, et le cas échéant du cérium, permettent d'obtenir la cinétique de conversion suivante :
Figure imgf000016_0001
Tableau G Fe=85%, Ag=15%
(quantité = 1 g)
Durée de conversion (heure) Taux de C02 converti
1 0,47
20 0,49
100 0,49
Tableau H
Figure imgf000017_0001
Tableau I
Figure imgf000017_0002
Tableau J
Le taux de conversion après 100 heures du Tableau J montre que la quantité d' argent dans le catalyseur est insuffisante pour stabiliser une conversion efficace pour une durée aussi longue. Un tel phénomène n'est constaté ni dans le Tableau I dans lequel le catalyseur contient une quantité d'argent qui est double, ni dans le tableau B pour lequel la température est de 450 °C. Ceci montre que la proportion d'argent dans le catalyseur doit généralement croître avec la température de mise en œuvre si l'on veut conserver un taux de conversion stable.
La comparaison des Tableaux J et G montre que le cérium augmente l'efficacité du catalyseur, puisque la quantité de catalyseur est alors respectivement de 10 mg au lieu de 40 mg, tout en obtenant un taux de conversion proche .
Figure imgf000018_0001
Tableau K
L'utilisation d'une quantité plus importante du catalyseur Fe/Ag ou Fe/Ag/Ce permet d'améliorer le taux de conversion et le rapprocher de celui de l'équilibre thermodynamique égal à 0,5.
Lors des conversions, on ne détecte aucun signal caractéristique du méthane.
3.2. Conversion catalytique à titre comparatif. Fe=87%, Cr=9%, Cu=4%
(quantité = 10 mg)
Durée de conversion (heure) Taux de C02 converti
10 0,17
20 0,14
50 0,10
Tableau L
Figure imgf000019_0001
Tableau M
4. Conclusion.
Les mesures qui précèdent montrent que le catalyseur Fe/Ag ou Fe/Ag/Ce permet d'obtenir, par rapport à un catalyseur Fe/Cr, Fe/Cr/Cu ou Fe/Cr, un taux de dioxyde de carbone converti supérieur ou similaire, et qui est stable au bout d'une utilisation prolongée. REFERENCES CITEES
[1] EP 0 737 647
[2] EP 0 742 172 [3] US 2003/113244

Claims

REVENDICATIONS
1) Procédé de production d'un gaz de synthèse, dans lequel un mélange gazeux comprenant du dioxyde de carbone et de l'hydrogène est mis en contact avec un catalyseur afin de produire du monoxyde de carbone, ledit procédé étant caractérisé en ce que le catalyseur comprend du fer et de l'argent selon un rapport masse d'argent/masse de fer qui est de 0,05 à 0, 95. 2) Procédé de production d'un gaz de synthèse selon la revendication 1, dans lequel le catalyseur comprend en outre du cérium selon un rapport masse de cérium/masse de fer qui est de 0,1 à 1.
3) Procédé de production d'un gaz de synthèse selon la revendication 1 ou 2, dans lequel le fer, l'argent et le cas échéant le cérium se présentent indépendamment l'un de l'autre sous forme native et/ou d'oxyde.
4) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le catalyseur est obtenu en soumettant une solution comprenant un nitrate de fer, un nitrate d'argent et le cas échéant un nitrate de cérium, à une étape de coprécipitation ou d'oxydation-précipitation simultanée, suivie par une étape de calcination. 5) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le catalyseur est imprégné sur un support ou mélangé avec un support . 6) Procédé de production d'un gaz de synthèse selon la revendication précédente, dans lequel le support est constitué d'alumine, de zéolite ou de silice.
7) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le catalyseur constitue un lit catalytique disposé dans un réacteur catalytique à lit fixe ou à lit fluidisé.
8) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le catalyseur est prétraité en le soumettant à de l'hydrogène mélangé à l'hélium, la vapeur d'eau, le monoxyde de carbone ou leurs mélanges.
9) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel tout ou partie dudit procédé est réalisé à une température comprise entre 400 °C et 550 °C.
10) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le mélange gazeux comprend au moins 50 % en volume de dioxyde de carbone et d'hydrogène.
11) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le mélange gazeux est tel que le rapport molaire hydrogène/dioxyde de carbone est compris entre 0,8 et 10. 12) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le mélange gazeux comprend au moins une espèce chimique telle que de la vapeur d'eau, du méthane, du monoxyde de carbone ou un gaz inerte chimiquement.
13) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel le mélange gazeux provient du reformage d'hydrocarbures à la vapeur ou à 1 ' oxygène .
14) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel on effectue au moins un cycle consistant à i) extraire tout ou partie de l'eau contenue dans le gaz de synthèse puis à ii) répéter ledit procédé de production.
15) Procédé de production d'un gaz de synthèse selon l'une quelconque des revendications précédentes, dans lequel on utilise le gaz de synthèse pour synthétiser un hydrocarbure.
16) Procédé de production d'un gaz de synthèse selon la revendication précédente, dans lequel l'hydrocarbure est le méthanol, l'éther diméthylique ou une paraffine.
17) Réacteur catalytique susceptible d'être mis en œuvre dans le procédé de production tel que défini dans l'une quelconque des revendications précédentes, le réacteur contenant une enceinte réactionnelle dans laquelle est disposé un catalyseur comprenant du fer et de l'argent selon un rapport masse d'argent/masse de fer qui est de 0,05 à 0,95.
PCT/FR2013/051586 2012-07-04 2013-07-04 Procede catalytique de production de monoxyde de carbone et reacteur associe WO2014006335A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13747435.9A EP2870105A1 (fr) 2012-07-04 2013-07-04 Procede catalytique de production de monoxyde de carbone et reacteur associe
US14/412,812 US20150306576A1 (en) 2012-07-04 2013-07-04 Catalytic method for the production of carbon monoxide and associated reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256434A FR2992954B1 (fr) 2012-07-04 2012-07-04 Procede catalytique de production de monoxyde de carbone et reacteur associe.
FR1256434 2012-07-04

Publications (1)

Publication Number Publication Date
WO2014006335A1 true WO2014006335A1 (fr) 2014-01-09

Family

ID=46889257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051586 WO2014006335A1 (fr) 2012-07-04 2013-07-04 Procede catalytique de production de monoxyde de carbone et reacteur associe

Country Status (4)

Country Link
US (1) US20150306576A1 (fr)
EP (1) EP2870105A1 (fr)
FR (1) FR2992954B1 (fr)
WO (1) WO2014006335A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063917B1 (fr) * 2017-03-16 2022-04-01 Commissariat Energie Atomique Catalyseur pour reaction de gaz a l'eau inverse (rwgs), reaction rwgs associee et procede de regeneration in-situ du catalyseur
CN112758932A (zh) * 2020-02-18 2021-05-07 上海电力大学 一种以氢气与二氧化碳为原料制备一氧化碳的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857921A (en) * 1972-09-27 1974-12-31 Asahi Chemical Ind Method for eliminating nitrogen oxides and catalyst composition for use in practicing said method
WO2004058634A2 (fr) * 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Formulations de catalyseur contenant des metaux du groupe 11 pour le production d'hydrogene
JP2005305363A (ja) * 2004-04-23 2005-11-04 Toyota Motor Corp 排ガス浄化用触媒
US20110105630A1 (en) * 2009-11-04 2011-05-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Catalytic Support for use in Carbon Dioxide Hydrogenation Reactions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857921A (en) * 1972-09-27 1974-12-31 Asahi Chemical Ind Method for eliminating nitrogen oxides and catalyst composition for use in practicing said method
WO2004058634A2 (fr) * 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Formulations de catalyseur contenant des metaux du groupe 11 pour le production d'hydrogene
JP2005305363A (ja) * 2004-04-23 2005-11-04 Toyota Motor Corp 排ガス浄化用触媒
US20110105630A1 (en) * 2009-11-04 2011-05-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Catalytic Support for use in Carbon Dioxide Hydrogenation Reactions

Also Published As

Publication number Publication date
EP2870105A1 (fr) 2015-05-13
FR2992954B1 (fr) 2015-05-29
FR2992954A1 (fr) 2014-01-10
US20150306576A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP4436832B2 (ja) フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
EP2598240B1 (fr) Procede de synthese d&#39;hydrocarbures en c5+ en presence d&#39;un catalyseur prepare au moyen d&#39;au moins un oligosaccharide cyclique
WO2008131898A1 (fr) Hydrogénation catalytique du dioxyde de carbone en un mélange de syngaz
WO2009000494A2 (fr) Hydrogénation catalytique de dioxyde de carbone dans un mélange de syngaz
EP0152314A2 (fr) Procédé de fabrication de catalyseurs contenant du cuivre, du zinc et de l&#39;aluminium, utilisables pour la production de méthanol à partir de gaz de synthése
FR2991198A1 (fr) Procede de preparation d&#39;un catalyseur mettant en oeuvre au moins une etape de sechage rapide et au moins une etape de sechage en lit fluidise et son utilisation pour la synthese fischer-tropsch
CN111215084A (zh) 一种用于二氧化碳加氢制甲醇铜基催化剂及制备和应用
CN109718807B (zh) 甲烷干重整催化剂及其制备方法和应用以及甲烷干重整制合成气的方法
CN111111666B (zh) 一种钴基费托催化剂及其制备方法和应用
CN109718788B (zh) 甲烷干重整催化剂及其制备方法和应用以及甲烷干重整制合成气的方法
EP2870105A1 (fr) Procede catalytique de production de monoxyde de carbone et reacteur associe
EP3593900A1 (fr) Composition catalytique à base de cuivre et de fer pour la conversion de gaz de synthèse en alcools supérieurs et procédé utilisant une telle composition catalytique
JP6774411B2 (ja) 還元活性化コバルト触媒を用いるフィッシャー−トロプシュ法
CN106853368B (zh) Co原料气脱氢精制的催化剂、制备方法及用途
CA2549036C (fr) Procede de transformation d&#39;un gaz de synthese en hydrocarbures en presence de sic beta et effluent de ce procede
BE1006539A4 (fr) Procede de synthese d&#39;hydrocarbures a partir de gaz de synthese en presence d&#39;un catalyseur a base de cobalt.
JP6329286B2 (ja) 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法
JP4911974B2 (ja) フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
AU779876B2 (en) Process for the catalytic oxidation of carbonaceous compounds
EP2077306B1 (fr) Procédé amélioré de synthèse Fischer-Tropsch par contrôle de la pression partielle d&#39;eau dans la zone réactionnelle
CA2765016C (fr) Methode pour optimiser le fonctionnement d&#39;une unite de synthese d&#39;hydrocarbures a partir de gaz de synthese par controle de la pression partielle en co
EP2111437A2 (fr) Catalyseur de fischer-tropsch
EP1436360B1 (fr) Procede de synthese d&#39;hydrocarbures dans un reacteur triphasique en presence d&#39;un catalyseur comprenant un metal du groupe viii supporte sur zircone ou sur oxyde mixte zircone-alumine
Parmentier Tuning catalyst stability by surface functionalisation
EP1701791A1 (fr) Procede de traitement des melanges methane/dioxyde de carbone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747435

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013747435

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14412812

Country of ref document: US