WO2014005357A1 - 光伏装置 - Google Patents

光伏装置 Download PDF

Info

Publication number
WO2014005357A1
WO2014005357A1 PCT/CN2012/078716 CN2012078716W WO2014005357A1 WO 2014005357 A1 WO2014005357 A1 WO 2014005357A1 CN 2012078716 W CN2012078716 W CN 2012078716W WO 2014005357 A1 WO2014005357 A1 WO 2014005357A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
photovoltaic device
photovoltaic panel
sheet
photovoltaic
Prior art date
Application number
PCT/CN2012/078716
Other languages
English (en)
French (fr)
Inventor
李权庭
东冠妏
曾煌棊
杨峻鸣
李韦杰
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Publication of WO2014005357A1 publication Critical patent/WO2014005357A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic device, and more particularly to a photovoltaic device having a heat dissipation module. Background technique
  • Photovoltaic Devices are mostly placed outdoors to effectively receive sunlight and convert sunlight into electricity.
  • increasing the overall temperature of the photovoltaic device to a specific temperature will significantly reduce the efficiency of the photovoltaic device to convert electrical energy, thereby reducing the power output power.
  • the frame covered by the photovoltaic device can help the conduction of thermal energy, it still cannot restore the photovoltaic device to the original conversion efficiency.
  • the invention discloses a photovoltaic device for providing heat dissipation performance, maintaining the efficiency of converting electrical energy of the photovoltaic device, and thereby maintaining the original power output power.
  • the present invention provides a photovoltaic device according to an embodiment, comprising a photovoltaic panel and a heat dissipation module.
  • the photovoltaic panel consists of opposite front and back faces with a sunny side on the front.
  • the heat dissipation module includes at least one sheet and a plurality of fin rows. The sheet is placed on the back of the photovoltaic panel.
  • the fin rows are arranged on the wafer at intervals. Each fin row comprises a plurality of spaced fins, and the fins are lifted from the wafer, so that the wafer forms a plurality of openings, and the openings match the shape of the fins. And expose the back of the photovoltaic panel.
  • One side of each fin facing away from the corresponding opening is a wind receiving surface.
  • the fins of any two adjacent fin rows are arranged in a staggered manner.
  • the fins of the fin rows are arranged in an array.
  • the fins and the body are integrally formed. There is a crease between each fin and the sheet. In a variation of this embodiment, the creases extend in a direction parallel or non-parallel to one side of the sheet.
  • the creases of the fins of any two adjacent fin rows extend in parallel or non-parallel to each other.
  • the creases of the fins of any two adjacent fin rows extend in a direction orthogonal to one another.
  • the fins of the fin rows are raised from the height of the sheet.
  • each of the fins is disposed to be orthogonal to a traveling direction of the heat radiating fluid.
  • the photovoltaic device is disposed obliquely on the mounting surface, and has a first angle with the mounting surface, and each of the fins has a second angle with the corresponding opening, wherein the first angle and the second angle The angles are complementary to each other.
  • the photovoltaic device further includes a fixed frame.
  • the fixing frame comprises a first recessed groove for embedding the photovoltaic panel, and a second recessed groove for embedding the sheet body therein.
  • the heat sink module also includes two abutments. The abutting portions are respectively located at two opposite ends of the sheet body and are in different planes from the sheet body. The abutting portions abut against the fixing frame in the direction of the photovoltaic panel in the second recess, so that the sheet body abuts against the back surface of the photovoltaic panel.
  • the heat dissipation module further includes a plurality of sheets arranged at intervals on the back surface of the photovoltaic panel.
  • the wind receiving surfaces of the fins face the short side or the long side of the sheet.
  • the fins of the heat dissipation module of the photovoltaic device of the present invention can also be used as a turbulence generating device to effectively improve convective heat exchange and reduce the overall temperature of the photovoltaic device, thereby maintaining the effective output power of the photovoltaic device.
  • the heat dissipating module of the photovoltaic device of the invention has the characteristics of lightness and thinness, convenient installation, simple structure and low weight.
  • the fin of the heat dissipating module of the photovoltaic device of the invention is easy to process, and can be quickly and mass-produced to reduce the manufacturing cost.
  • FIG. 1 shows an exploded view of a photovoltaic device of the present invention in accordance with an embodiment.
  • FIG. 2 shows a combination of the photovoltaic device of the present invention in accordance with this embodiment.
  • FIG. 3A shows a top view of a heat dissipation module of a photovoltaic device of the present invention in accordance with this embodiment.
  • Fig. 3B shows a partial enlarged view of the area M1 of Fig. 3A.
  • Figure 9A shows a heat profile simulated by a conventional photovoltaic device.
  • Figure 9B shows a heat profile simulated by the photovoltaic device of the present invention in accordance with this embodiment.
  • FIGS. 10A-10B are schematic views showing a photovoltaic device according to another embodiment of the present invention.
  • FIG 11 is a schematic view showing the mounting state of the photovoltaic device of the present invention in accordance with various embodiments.
  • Figure 12 is an exploded view of a photovoltaic device of the present invention in accordance with yet another embodiment.
  • Figure 13 shows a combination of a photovoltaic device according to another embodiment of the present invention.
  • Figure 14 is a cross-sectional view taken along line 14-14 of Figure 13.
  • Figure 15A shows a top view of a photovoltaic device of the present invention in accordance with yet another embodiment.
  • Fig. 15B shows a partial enlarged view of the area M2 of Fig. 15A.
  • Figure 16 shows a cross-sectional view taken along line 16-16 of Figure 15A.
  • Figure 17 is a diagram showing the heat profile of the photovoltaic device of the present invention simulated in accordance with this further embodiment.
  • Figure 18 is an exploded view of a photovoltaic device of the present invention in accordance with still another embodiment.
  • Figure 19 is a cross-sectional view showing a photovoltaic device of the present invention in accordance with still another embodiment.
  • Figure 1 shows an exploded view of a photovoltaic device 100 of the present invention in accordance with an embodiment
  • Figure 2 shows a combined view of a photovoltaic device 100 of the present invention in accordance with this embodiment.
  • the photovoltaic device 100 includes at least a photovoltaic panel 200 and a heat dissipation module 300.
  • the heat dissipation module 300 is connected to the photovoltaic panel 200 to generate heat exchange for the photovoltaic panel 200.
  • the photovoltaic panel 200 is also referred to as a solar cell module, and the type thereof is not limited, and is, for example, a thin film solar cell module, a single or polycrystalline silicon solar cell module, or the like.
  • the photovoltaic panel 200 has a plurality of sides (eg, a first side 201 and a second side 202, FIG. 1), a front side 210, and a back side 220, wherein the first side 201 and the second side 202 are opposite each other
  • the front surface 210 and the back surface 220 are located on the main surfaces of the photovoltaic panel 200 corresponding to each other.
  • the front side 210 is adapted to face the sky to receive sunlight, so is referred to as a "sunward side" and is adjacent between the first side 201 and the second side 202.
  • the back side 220 is, for example, a back sheet of the photovoltaic panel 200 and is adjacent between the first side 201 and the second side 202. It should be noted that the first side 201 and the second side 202 of the photovoltaic panel 200 are not limited to the long side or the short side of the photovoltaic module.
  • Figure 3A shows a top view of a heat dissipation module 300 of a photovoltaic device 100 of the present invention in accordance with this embodiment.
  • Fig. 3B shows a partial enlarged view of the area M1 of Fig. 3A.
  • the heat dissipation module 300 includes a sheet body 310.
  • the sheet 310 is attached to the back surface 220 of the photovoltaic panel 200.
  • the sheet body 310 is light and thin, and even if it is attached to the back surface 220 of the photovoltaic panel 200, the overall weight of the photovoltaic device 100 is not increased, and the photovoltaic module 300 is prevented from being gradually separated from the photovoltaic panel 200 after a long time due to the excessive weight of the heat dissipation module 300, and the heat dissipation module is reduced.
  • the 300 body contacts the area of the photovoltaic panel 200.
  • a bread on sheet 310 opposite photovoltaic panel 200 contains a plurality of fin rows 320.
  • the fin rows 320 are spaced apart from each other on the sheet body 310.
  • Each fin row 320 includes a plurality of fins 321 disposed at intervals.
  • the fins 321 are integrally formed with the sheet body 310, and are respectively lifted from the sheet body 310 to protrude from the sheet body 310.
  • a crease 322 is formed between each of the fins 321 and the body 310, and a plurality of openings 323 are formed in the corresponding portions of the fins 321 and the body 310, and the openings 323 and the corresponding fins 321 are respectively formed.
  • the shape matches the size (same), and each fin 321 has a specific angle with its corresponding opening 323.
  • These openings 323 expose the back side 220 of the photovoltaic panel 200, respectively.
  • These fins 321 can cause a turbulent flow of a heat-dissipating fluid F (a natural gas, such as a natural wind, a power wind, or a liquid stream such as water, oil, or other heat-dissipating liquid), thereby guiding the heat-dissipating fluid F into the corresponding opening 323.
  • a heat-dissipating fluid F a natural gas, such as a natural wind, a power wind, or a liquid stream such as water, oil, or other heat-dissipating liquid
  • the heat radiating fluid F travels to the fins.
  • the heat radiating fluid F not only carries the heat energy on the fins 321, but also the heat radiating fluid F travels to the fins.
  • the fins 321 are bypassed to contact the back surface 220 of the corresponding opening 323 , so that the heat dissipating fluid F can take away some of the thermal energy of the photovoltaic panel 200 on the back surface 220 .
  • Fig. 4 shows a plan view of one of the heat dissipating modules 301 of the photovoltaic device 100 of the present invention in accordance with this embodiment.
  • the fins 321 of the fin rows 320 are arranged in an array, that is, all of the fins 321 in all of the fin rows 320 are linearly arranged in either the lateral direction or the longitudinal direction.
  • the extending direction 322d of the fin rows 320 is parallel to the short side 311 or the long side 312 of the sheet 310.
  • the creases 322 of the fins 321 in each fin row 320 are parallel to each other or parallel to the wafer 310. Short side 311 or long side 312.
  • the fins in any two adjacent fin rows 320 are identical to the fins in any two adjacent fin rows 320.
  • the 321 are arranged in a staggered manner, that is, any two adjacent fins 321 of any one of the fin rows 320 may expose one of the fins 321 in the rear adjacent fin row 320. If the fins 321 are arranged in the extending direction 322d of the creases 322, the creases 322 of the fins 321 are parallel to each other or parallel to the short sides 311 or the long sides 312 of the sheets 310.
  • the fins 321 in any one of the fin rows 320 do not block the fins 321 in the adjacent fin rows 320 without increasing the flow resistance, so that the heat dissipation fluid can be Contacting more fins 321 increases the airflow path (ie, the heat sink area), which in turn carries more of the heat energy on these fins 321 .
  • the designer can deliberately design the arrangement direction of the fins 321 so that the wind receiving faces of the fins 321
  • the 321s just happens to be in the direction of the wind, and more particularly, so that the fins 321 are arranged to be orthogonal to the direction of travel of the heat dissipating fluid.
  • the fins 321 can provide the wind receiving surface 321s of the largest area, which helps to improve the heat dissipation performance of the heat dissipating module 300.
  • Figures 5 and 6 show two top views of the heat dissipation modules 302, 303 of the photovoltaic device 100 of the present invention in accordance with this embodiment.
  • the wind receiving surfaces 321s of the fins 321 in each fin row 320 face in the same direction, for example, one of the short sides 311 facing the sheet 310 or one of the lengths.
  • the arrangement of the fins 321 in each fin row 320 is represented by the extending directions 322d and 322e of the creases 322, that is, the creases 322 of the fins 321 in each fin row 320 are parallel or parallel to each other.
  • the fins 321 in any of the fin rows 320 and the fins 321 in the other adjacent fin row 320 face different directions from each other, such as the fins 321 in any of the fin rows 320.
  • the extending direction 322d of the crease 322 and the extending direction 322e of the crease 322 of the fins 321 in the other adjacent fin row 320 are orthogonal to each other.
  • the wind direction of the photovoltaic device 100 is generally positively directed toward the short side 311 or the long side 312 of the sheet 310, the arrangement of the fins 321 in this variation can be respectively The two wind directions produce heat exchange.
  • variations of Figure 5 also include the fins 321 in any two adjacent fin rows 320 arranged in a staggered manner (as described above).
  • variation of Figure 6 also includes the arrangement of the fins 321 in any two adjacent fin rows 320 in an array (as described above).
  • Figure 7 and Figure 8 show two top views of the heat dissipation modules 304, 305 of the photovoltaic device 100 of the present invention in accordance with this embodiment.
  • the wind receiving faces 321 s of the fins 321 in each fin row 320 face in the same direction, for example, one of the short sides 311 of the positive body 310 or A long side 312.
  • the arrangement of the fins 321 in the respective fin rows 320 is represented by the extending directions 322e, 322f of the creases 322, that is, the creases 322 of the fins 321 in each fin row 320 are parallel to each other.
  • the fins 321 in any of the fin rows 320 and the fins 321 in the other adjacent fin row 320 face different directions from each other, and the fins 321 in any of the fin rows 320
  • the extending direction 322e of the crease 322 and the extending direction 322f of the creases 322 of the fins 321 in the other adjacent fin row 320 are not orthogonal to each other.
  • the fins 321 in any of the fin rows 320 face one of the long sides 312 of the sheet body 310 , but the extending direction 322f of the folds 322 does not match the sheet.
  • This long side 312 of the body 310 is parallel.
  • the fins 321 in the other adjacent fin row 320 face one of the short sides 311 of the wafer 310, and the extending direction 322e of the folds 322 is parallel to the short side 311 of the wafer 310.
  • the fins 321 are varied therein.
  • the arrangement can be heat exchanged with the two wind directions.
  • the variations of FIG. 7 also include that the fins 321 in any two adjacent fin rows 320 are arranged in a staggered manner (as described above).
  • the variations of Figure 8 also include that the fins 321 in any two adjacent finned columns 320 are arranged in an array (as described above).
  • the present invention is not limited thereto, and a designer can make a suitable choice depending on actual needs or limitations.
  • Figure 9A shows a heat profile simulated by a conventional photovoltaic device.
  • Figure 9B shows a heat profile simulated by the photovoltaic device 100 of the present invention in accordance with this embodiment.
  • the conventional photovoltaic device does not have a heat sink
  • the heat energy is concentrated in the central region C of the plane of the conventional photovoltaic device, and the central region C has unevenness.
  • the heat distribution does not help the efficiency of the photovoltaic device to convert electrical energy.
  • the highest temperature of the central region C of the conventional photovoltaic device plane may exceed, for example, 47 degrees Celsius (or even 48.65 degrees Celsius).
  • the photovoltaic device 100 of the present invention is exposed to sunlight under high sunlight conditions according to this embodiment.
  • the central region C of the photovoltaic device 100 of the present invention has a uniform heat distribution, which helps to improve the efficiency of the photovoltaic device to convert electrical energy.
  • the highest temperature in the central region C of the photovoltaic device 100 of the present invention is only about 42 degrees Celsius (e.g., 43.19 degrees Celsius), so that the efficiency of converting the photovoltaic device to convert electrical energy is 2.5% of the overall efficiency.
  • Figure 10A shows a schematic diagram of a photovoltaic device 100 of the present invention in accordance with another embodiment.
  • the heights 321h of the fins 321 of the heat dissipation module 306 are not the same from the height of the sheet 310.
  • the length of the fins 321 is alternated, that is, with the direction D, it is not limited to the direction of travel of the heat dissipation fluid, but with a longer fin.
  • the sheet 321a and the shorter fins 321b are alternately arranged on the sheet body 310. However, all of the longer fins 321a or all of the shorter fins 321b do not have to be equal or unequal length.
  • FIG. 10B shows a schematic diagram of a photovoltaic device 100 of the present invention in accordance with yet another embodiment.
  • the heights 321h of the fins 321 of the heat dissipation module 308 are not the same from the wafer 310.
  • the direction D it is not limited to whether the direction of travel of the heat dissipation fluid, and the fins 321 of the fin rows are self-chip.
  • the height 321h raised by 310 will gradually increase toward this direction D.
  • the fins 321 of the fin rows are gradually increased from the height 321h of the wafer 310 toward the direction D, the fins having a larger height of 321h are compared with the fins 321 having the smaller height 321h.
  • 321 has a greater surface area in contact with the heat sinking fluid to increase the rate at which heat exchange occurs.
  • FIG 11 is a schematic view showing the mounting state of the photovoltaic device 100 of the present invention in accordance with various embodiments.
  • the photovoltaic device 100 is obliquely disposed on a mounting surface G, and the mounting surface G is parallel to the horizontal plane.
  • the photovoltaic device 100 has a first angle ⁇ 1 with the mounting surface G.
  • Each of the fins 321 has a second angle ⁇ 2 between its corresponding opening 323, wherein the first angle ⁇ 1 and the second angle ⁇ 2 are mutually complementary angles.
  • the fins 321 are perpendicular to the mounting surface G, so that when the traveling direction of the heat dissipation fluid is parallel to the mounting surface G and the heat is dissipated When the fluid contacts the wind receiving surface 321s of the fin 321 , each fin 321 can provide the wind receiving surface 321s of the largest area, and the effect of the spoiler 321 turbulence/flow is most significant.
  • the sheet body 310 of the heat dissipation module 300 can be fixed to the back surface 220 of the photovoltaic panel 200 by means of a snapping manner, an adhesive manner, a pressing method or a heat shrinkable film coating.
  • the sheet 310 of the heat dissipation module 300 when the sheet 310 of the heat dissipation module 300 is fixed to the back surface 220 of the photovoltaic panel 200 by snapping or pressing, the sheet 310 of the heat dissipation module 300 directly adheres to the back surface 220 of the photovoltaic panel 200.
  • the sheet body 310 of the heat dissipation module 300 is fixed to the back surface 220 of the photovoltaic panel 200 by adhesive bonding, the heat dissipation module 300 The sheet 310 is bonded to the back surface 220 of the photovoltaic panel 200 by a glue layer (not shown).
  • the sheet 310 of the heat dissipation module 300 can be directly attached to the back surface 220 of the photovoltaic panel 200 by means of a heat shrinkable film.
  • the heat dissipation module 300 is exemplified by a heat shrink film coating.
  • the sheet 310 is fixed to the example of the photovoltaic panel 200, however, the present invention is not limited thereto.
  • Figure 12 shows an exploded view of a photovoltaic device 101 of the present invention in accordance with yet another embodiment.
  • Figure 13 shows a combined view of a photovoltaic device 101 of the present invention in accordance with yet another embodiment.
  • Fig. 14 is a sectional view taken along line 14-14 of Fig. 13.
  • the heat dissipation module 300 also includes a heat shrinkable package 500 having heat shrinkage characteristics.
  • the heat shrinkable package 500 can simultaneously cover the sheet 310 of the heat dissipation module 300 and most of the surface of the photovoltaic panel 200 after being shrunk by heat (such as hot air), that is, the back surface 220 of the photovoltaic panel 200, and all sides are heat-shrinkable type kit 500
  • the coating is such that the photovoltaic panel 200 only exposes its front side 210. In this embodiment, as shown in Fig. 14, even the edge portion of the front surface 210 of the photovoltaic panel 200 is covered by the heat shrinkable package 500 such that the photovoltaic panel 200 exposes only the front portion 210 of the remaining portion.
  • the sheet 310 of the heat dissipation module 300 is interposed between the heat shrinkable package 500 and the back surface 220 of the photovoltaic panel 200, and directly covers the back surface 220 of the photovoltaic panel 200.
  • the heat shrinkable kit 500 includes a body 510, a recess 520, a plurality of flanges 540 (see Figures 13, 14) and a plurality of elongated openings 550.
  • the body 510 is three-dimensional, not limited in appearance, and preferably matches the appearance of the photovoltaic panel 200. However, the present invention is not limited thereto.
  • the recess 520 is located on one side of the body 510, the accommodating space is not less than the volume of the photovoltaic panel 200, and the exterior shape preferably matches the appearance of the photovoltaic panel 200.
  • the notch 530 of the recess 520 exposes the front side 210 of the photovoltaic panel 200.
  • These elongated openings 550 are linear and have a width at least greater than or equal to the thickness of the fins 321 .
  • the slits 550 are located at the bottom of the recess 520 in the same manner as the fins 321 (ie, the array pattern), and the fins 321 are respectively aligned for the fins 321 to extend the heat shrink kit. 500 outside.
  • the designer can adapt the elongated openings 550 to the arrangement of the fins 321 described in one of FIGS. 3A-8 in accordance with actual needs or limitations to match the combinations of the various heat dissipation modules.
  • the fins 321 of the heat sink module 300 are aligned and inserted into the corresponding elongated openings 550, so that the sheet 310 of the heat dissipation module 300 is laid flat in the recess 520; 2) placing the photovoltaic panel 200 in the direction of the back surface 220 downward, placing the photovoltaic panel 200 into the recess 520, on the sheet 310 of the heat dissipation module 300; and then, (3) heating the body 510 of the heat shrinkable package 500 ( For example, applying hot air or utilizing the high temperature remaining after the photovoltaic panel is laminated, the body 510 of the heat shrinkable package 500 begins to shrink after being heated, and the sheet 310 of the heat dissipation module 300 and the photovoltaic panel 200 are tightly covered.
  • the heat shrinkable package 500 directly attaches the sheet 310 of the heat dissipation module 300 to the back surface 220 of the photovoltaic panel 200 such that there is no adhesive medium between the sheet 310 of the heat dissipation module 300 and the back surface 220 of the photovoltaic panel 200. Or intermediate gaps, so the resulting thermal resistance can be avoided.
  • the sheet 310 of the heat dissipation module 300 does not leave the back surface 220 of the photovoltaic panel 200 even after a period of time. To maintain good heat dissipation.
  • the photovoltaic panel 200 since the photovoltaic panel 200 is covered by the heat shrinkable package 500 and has good structural strength, the photovoltaic panel 200 may not even need to be externally fixed to reduce the overall weight of the photovoltaic device; however, the present invention is not limited thereto. According to other considerations, the photovoltaic panel can still be attached with a fixed frame after being covered by the heat shrinkable package.
  • Figure 15A shows a top view of a photovoltaic device 102 of the present invention in accordance with yet another embodiment.
  • Fig. 15B shows a partial enlarged view of the area M2 of Fig. 15A.
  • Figure 16 shows a cross-sectional view taken along line 16-16 of Figure 15A.
  • photovoltaic device 102 also includes a fixed frame 400.
  • the fixed frame 400 includes a first recess 410 and a second recess 420.
  • the first recess 410 surrounds a first layer of space 411.
  • the second recess 420 surrounds a second layer space 421, and the second layer space 421 is overlapped with the first layer space 411.
  • the photovoltaic panel 200 is embedded in the first recess 410 and the first layer space 411.
  • the heat dissipation module 307 is embedded in the second recess 420 and the second layer space 421.
  • the heat dissipation module 307 also includes two abutting portions 330.
  • the two abutting portions 330 are opposite to the opposite ends of the sheet body 310 and are in different planes from the sheet body 310.
  • the two abutting portions 330 are integrally formed on the sheet body 310.
  • Each of the abutting portions 330 includes a resilient connecting piece 331 and an abutting piece 332.
  • the connecting piece 331 is inclined at an end of the body 310 away from the body 310 and the photovoltaic panel 200, and is connected between the body 310 and the abutting piece 332. Abutting the sheet 332 parallel to the wafer 310, it is in a different plane from the sheet 310.
  • the abutting pieces 332 of the two abutting portions 330 respectively extend into the opposite sides of the second fitting groove 420, and respectively abut against the inner wall of the second fitting groove 420 of the fixing frame 400 in the direction away from the photovoltaic panel 200.
  • the sheet 310 is subjected to the interlocking of the abutting piece 332 and the connecting piece 331 against the back surface 220 of the photovoltaic panel 200 in a direction facing the photovoltaic panel 200.
  • the sheet 310 of the heat dissipation module 307 can be fixed to the back surface 220 of the photovoltaic panel 200 by only the configuration of the two abutting portions 330.
  • the photovoltaic device 102 may be bent and deformed, so that the heat dissipation module 307
  • the abutting portion 330 of the abutting portion 310 abuts against the rear surface 220 of the photovoltaic panel 200, so that the heat dissipating module 307 provides a supporting function to the photovoltaic device 102, thereby preventing the photovoltaic device 102 from being broken due to excessive deformation, thereby causing the photovoltaic device 102 to be broken. Affect work performance.
  • the heat dissipation module 307 includes a plurality of sheets 310 spaced apart from each other on the back surface 220 of the photovoltaic panel 200, so that not only heat exchange can be uniformly performed on the photovoltaic panel 200, but also the photovoltaic panel 200 can be uniformly supported. the power of.
  • Each of the sheets 310 in Fig. 15A may also have a plurality of juxtaposed fin rows 320.
  • the fins 321 of the plurality of juxtaposed fin rows 320 of each of the wafers 310 may also be arranged in a staggered or arrayed manner (as described above).
  • Figure 17 shows a heat profile simulated by the photovoltaic device 102 of the present invention in accordance with this further embodiment.
  • the photovoltaic device 102 of the present invention has a side-by-side arrangement on one side of the photovoltaic device 102 of the present invention due to the plurality of heat dissipation modules 307 when the solar device 102 is irradiated with sunlight under high sunlight conditions according to this other embodiment.
  • the heat distribution helps to increase the uniformity of the heat distribution and also helps to increase the efficiency of the photovoltaic device to convert electrical energy.
  • the highest temperature of the photovoltaic device 102 of the present invention is only about 42 degrees Celsius, so that the efficiency of converting the photovoltaic device to convert electrical energy is 2.5% of the overall efficiency.
  • the material of the sheet is, for example, metal or the like, the number of the sheets may be single or plural, and the area of the sheet is substantially equal to the area of the back surface of the photovoltaic panel.
  • the invention also does not limit the method for producing fins and openings on the sheet, and the designer can make suitable choices according to actual needs or limitations, such as stamping or sheet metal.
  • the method of manufacturing the fins and the openings on the sheet is punching.
  • the present invention is also not limited to the shape of the opening, and the designer can make a suitable choice according to actual needs or limitations, such as one of a semicircle, a fish scale, a triangle, a rectangle or other geometric figures.
  • the shape of the opening is semicircular or fish scale.
  • the invention is also not limited to the closure being closed (Fig. 12) or non-closed.
  • Figure 18 shows an exploded view of a photovoltaic device 103 of the present invention in accordance with still another embodiment.
  • Figure 19 is a cross-sectional view showing a photovoltaic device 103 of the present invention in accordance with still another embodiment.
  • the designer in order to effectively reduce the weight of the heat dissipation module, can also omit the sheet of the heat dissipation module according to actual needs or limitations, and directly replace the plurality of fins 600 of the individual individuals.
  • each of the fins 600 is a separate individual having a cross-section of a "T" shape including a transverse body 610 and a straight body 620.
  • One end of the straight body 620 is connected to the transverse body 610 and is perpendicular to the transverse body 610.
  • (1) When assembling, (1) first, the other ends of the straight bodies 620 of the fins 600 are aligned and inserted into the corresponding elongated openings 550, so that the transverse bodies 610 of the fins 600 are respectively placed in the grooves 520.
  • the body 510 of the heat shrinkable package 500 After heating, the body 510 of the heat shrinkable package 500 simultaneously incorporates the transverse body 610 of the fins 600 and the back side 220 of the photovoltaic panel 200.
  • the flanges 540 of the heat shrinkable package 500 surrounding the notch 530 protrude toward the notch 530 and finally cover the edge portion of the front surface 510 of the photovoltaic panel 200 to complete the heat shrinkable package 500 being fixed to the photovoltaic panel 200. The way.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供了一种光伏装置(100),其包含一光伏面板(200)与一散热模块(300)。散热模块(300)固定于光伏面板(200)的一背面(220)。散热模块(300)包含多个鳍片(321),这些鳍片(321)的一面为一受风面(321s)。该光伏装置(100)可提供散热性能,维持光伏装置(100)转换电能的效率,进而维持原有的电能输出效率。

Description

光伏装置 技术领域
本发明涉及一种光伏装置, 尤其涉及一种具有散热模块的光伏装置。 背景技术
一般来说, 光伏装置(Photovoltaic Device)大多设置于户外, 以便有效地接受太阳光 的照射, 进而将太阳光转换为电能。 然而, 当光伏装置在高日照条件下接受太阳光的照射 时, 使得光伏装置的整体温度升高至一特定的温度时, 将明显地降低光伏装置转换电能的 效率, 进而降低电能输出功率, 此时, 若仅依靠户外空气的自然对流以及热传导时, 势必 不足以有效地满足光伏装置所需的散热性能。此外, 光伏装置四周所包覆的框架虽然可帮 助热能的传导, 但仍无法使光伏装置恢复至原有的转换效率。
由此可见, 上述现有的光伏装置显然仍存在不便与缺陷, 而有待加以进一步改良。 因 此, 如何能有效地解决上述不便与缺陷, 实属当前重要研发课题之一, 也成为当前相关领 域急需改进的目标。 发明内容
本发明披露一种光伏装置, 用以提供散热性能, 维持光伏装置转换电能的效率, 进而 保持原有的电能输出功率。
因此, 本发明依据一实施方式提供的一种光伏装置, 包含光伏面板与散热模块。 光伏 面板包含相对的正面与背面,正面为向阳面。散热模块,包含至少一个片体与多个鳍片列。 片体设于光伏面板的背面。这些鳍片列间隔地排列于片体上, 各鳍片列包含多个间隔设置 的鳍片, 这些鳍片自片体掀起, 以致片体形成多个开口, 各开口与鳍片的形状相匹配, 且 露出光伏面板的背面。 各鳍片背对对应的开口的一面为受风面。
本发明的一实施例中, 任二相邻鳍片列的这些鳍片以彼此交错的方式排列。
本发明的一实施例中, 这些鳍片列的这些鳍片以阵列方式排列。
本发明的一实施例中, 这些鳍片与片体为一体成形。 各鳍片与片体之间具有摺痕。 此实施例的一变化中, 摺痕的延伸方向平行或不平行片体的一侧边。
此实施例的另一变化中,任二相邻鳍片列的这些鳍片的摺痕的延伸方向彼此平行或不 平行。
此实施例的又一变化中, 任二相邻鳍片列的这些鳍片的摺痕的延伸方向相互正交。 本发明的另一实施例中, 这些鳍片列的这些鳍片自片体掀起的高度不同。
此另一实施例的一变化中,这些鳍片列的这些鳍片自片体掀起的高度朝一方向逐渐递 增。 本发明的又一实施例中, 各鳍片被设置为与散热流体的行进方向相互正交。
本发明的再一实施例中, 光伏装置倾斜地设置于安装面上, 与安装面具有第一夹角, 各鳍片与其对应的该开口具有第二夹角, 其中第一夹角与第二夹角互为余角。
本发明的再一实施例中, 光伏装置还包含固定框架。 固定框架包含第一嵌槽与第二嵌 槽, 第一嵌槽用以使光伏面板嵌设其中, 第二嵌槽用以使片体嵌设其中。 散热模块还包含 二个抵靠部。 抵靠部分别位于片体的二个相对端, 且与片体处于不同平面。 其中这些抵靠 部于第二嵌槽内朝背对光伏面板的方向分别顶靠固定框架, 以致片体顶靠于光伏面板的背 面。
再一实施例的一变化中, 散热模块还包含多个片体, 间隔地排列于光伏面板的背面。 本发明的一实施例中, 各鳍片的受风面均面向片体的短边或长边。
综上所述, 本发明的技术方案与现有技术相比具有明显的优点和有益效果。借由上述 技术方案, 可达到相当的技术进步性及实用性, 并具有产业上的广泛利用价值, 其至少具 有下列优点:
1.本发明光伏装置的散热模块的这些鳍片除了可增加散热面积外, 也可作为紊流产生 装置, 有效提升对流热交换, 并降低光伏装置整体温度, 进而维持光伏装置的有效输出功 率。
2.本发明光伏装置的散热模块具有轻薄性、安装方便、结构简单且兼具低重量等特性。
3.本发明光伏装置的散热模块的鳍片加工容易, 可配合快速大量制造, 以降低制作的 成本。 附图说明
为让本发明的上述和其他目的、 特征、 优点与实施例能更明显易懂, 所附附图的详细 说明如下:
图 1示出本发明光伏装置依据一实施例的分解图。
图 2示出本发明光伏装置依据此实施例的组合图。
图 3A示出本发明光伏装置的散热模块依据此实施例的俯视图。图 3B示出图 3A的区 域 Ml的局部放大图。
图 4〜图 8示出本发明光伏装置的散热模块依据此实施例的多种其他俯视图。
图 9A示出传统光伏装置所模拟出的热分布图。
图 9B示出本发明光伏装置依据此实施例所模拟出的热分布图。
图 10A〜图 10B示出本发明光伏装置依据另一实施例的示意图。
图 11示出本发明光伏装置依据各实施例的安装状态示意图。
图 12示出本发明光伏装置依据又一实施例的分解图。
图 13示出本发明光伏装置依据又一实施例的组合图。
图 14示出图 13的 14-14剖面图。 图 15A示出本发明光伏装置依据又一实施例的俯视图。
图 15B示出图 15A的区域 M2的一局部放大图。
图 16示出图 15A的 16-16剖面图。
图 17示出本发明光伏装置依据此又一实施例所模拟出的热分布图。 图 18示出本发明光伏装置依据再一实施例的分解图。
图 19示出本发明光伏装置依据此再一实施例的剖示图。
其中, 附图标记说明如下:
100- 103 : 光伏装置
200: 光伏面板
201: 第一侧边
202: 第二侧边
210: 正面
220: 背面
300- ^308: 散热模块
310: 片体
311: 片体的短边
312: 片体的长边
320: 鳍片列
321、 321a~321b: 鳍片
321s: 受风面
321h 高度
322: 摺痕
322d 、 322e: 延伸方向
323: 开口
330: 抵靠部
331: 连接片
332: 抵靠片
400: 固定框架
410: 第一嵌槽
411: 第一层空间
420: 第二嵌槽
421: 第二层空间
500: 热缩型套件
510: 本体
520: 凹槽 530: 槽口
540: 凸缘
550: 狭长开孔
600: 鳍片
610: 横向体
620: 直向体
C: 中央区域
D: 方向
F: 散热流体
G: 安装面
Ml : 区域
M2: 区域
Θ1 : 第一夹角
Θ2: 第二夹角
Figure imgf000005_0001
具体实施方式
以下将以图示及详细说明清楚说明本发明的精神,如本领域普通技术人员在了解本发 明的实施例后, 当可由本发明所教示的技术, 加以改变及修饰, 其并不脱离本发明的精神 与范围。
请参阅图 1、 图 2所示, 图 1示出本发明光伏装置 100依据一实施例的分解图, 图 2 示出本发明光伏装置 100依据此实施例的组合图。
此光伏装置 100至少包含光伏面板 200与散热模块 300。 散热模块 300连接光伏面板 200, 以对光伏面板 200产生热交换。
光伏面板 200又称太阳能电池模块, 其种类不限, 例如为薄膜太阳能电池模块、 单或 多晶硅太阳能电池模块等等。
具体来说, 光伏面板 200具有多个侧边(例如第一侧边 201与第二侧边 202, 图 1 ) 、 正面 210及背面 220, 其中第一侧边 201及第二侧边 202彼此相对应地位于光伏面板 200 的两侧边,正面 210与背面 220彼此相对应地位于光伏面板 200的两主面(main surface)。 正面 210用以面向天际以便接收阳光, 故称 "向阳面", 且邻接于第一侧边 201与第二侧 边 202之间。 背面 220例如为光伏面板 200的一背板 (; Back Sheet), 且邻接于第一侧边 201 与第二侧边 202之间。 需知道的是, 光伏面板 200的第一侧边 201与第二侧边 202并不限 制是光伏模块的长边或短边。
请参阅图 2、 图 3A与图 3B所示。 图 3A示出本发明光伏装置 100的散热模块 300依 据此实施例的俯视图。 图 3B示出图 3A的区域 Ml的局部放大图。
此实施例中, 散热模块 300包含片体 310。 片体 310贴附于光伏面板 200的背面 220。 片体 310具有轻薄性, 即使贴附于光伏面板 200的背面 220, 不致加大光伏装置 100的整 体重量, 避免因散热模块 300过重而于长时间后逐渐地脱离光伏面板 200, 缩小散热模块 300实体接触光伏面板 200的面积。
片体 310上相对光伏面板 200的一面包含有多个鳍片列 320。 这些鳍片列 320间隔地 排列于片体 310上,各鳍片列 320包含多个间隔设置的鳍片 321,这些鳍片 321与片体 310 一体成形, 分别自片体 310掀起而突出于片体 310表面后, 各鳍片 321与片体 310之间具 有一摺痕 322, 且各鳍片 321与片体 310的对应处分别形成多个开口 323, 各开口 323与 对应的鳍片 321的形状与尺寸相匹配(相同) , 且各鳍片 321与其对应的开口 323之间具 有特定角度。
这些开口 323分别露出光伏面板 200的背面 220。这些鳍片 321可使一散热流体 F (气 流, 例如自然风、 动力风, 或液流例如水、 油或其他散热用液体)产生紊流现象, 进而引 导散热流体 F进入对应的开口 323内。
如此, 当此光伏面板 200 的向阳面接受太阳光的照射, 且散热流体 F行进至各鳍片
321的受风面 321s (受风面 321s为鳍片 321背对其对应开口 323的一面)时, 散热流体 F 不仅带走这些鳍片 321上的热能, 同时, 散热流体 F行进至各鳍片 321的受风面 321s而 产生紊流现象后, 便绕过各鳍片 321以接触其对应的开口 323内的背面 220, 如此散热流 体 F又可带走光伏面板 200于背面 220的些许热能。
关于这些鳍片列的排列方式, 参阅图 4所示, 图 4示出本发明光伏装置 100的散热模 块 301依据此实施例的其中一种的俯视图。依据此实施例的一变化中, 这些鳍片列 320中 的这些鳍片 321是以阵列方式排列, 意即, 所有鳍片列 320中的所有鳍片 321无论是于横 向或纵向均呈线性排列, 且这些鳍片列 320的延伸方向 322d平行片体 310的短边 311或 长边 312。若以摺痕 322的延伸方向 322d来表示各鳍片列 320中的这些鳍片 321的排列方 式,各鳍片列 320中的这些鳍片 321的摺痕 322彼此相互平行或均平行片体 310的短边 311 或长边 312。
参阅图 3A所示, 依据此实施例的另一变化中, 任二相邻的鳍片列 320中的这些鳍片
321以彼此交错的方式排列, 意即, 任一个鳍片列 320中的任二相邻的鳍片 321可露出后 方相邻的鳍片列 320中的一鳍片 321。若以摺痕 322的延伸方向 322d来表示这些鳍片 321 的排列方式,这些鳍片 321的摺痕 322彼此相互平行或均平行片体 310的短边 311或长边 312。
如此, 借由此排列方式, 在不增加流阻条件下, 任一个鳍片列 320中的这些鳍片 321 便不会遮住相邻的鳍片列 320中的鳍片 321, 使得散热流体可接触更多的鳍片 321数量, 增加气流通过路径 (也即散热面积), 进而带走更多这些鳍片 321上的热能。
关于这些鳍片的排列方式,现实中,若熟悉此光伏装置 100所设置之处所常吹的风向, 设计人员便可刻意地设计各鳍片 321的排列方向, 使得各鳍片 321的受风面 321s恰好正 向风的流向, 更甚地, 使得各鳍片 321被设置为与散热流体的行进方向相互正交。 当各鳍 片 321被设置为与散热流体的行进方向相互正交时,各鳍片 321便可提供最大面积的受风 面 321s, 有助提升此散热模块 300的散热性能。
参阅图 5、 图 6。 图 5、 图 6示出本发明光伏装置 100的散热模块 302、 303依据此实 施例的其中的二种俯视图。
根据图 5、 图 6所示出的实施例, 各鳍片列 320中的这些鳍片 321的受风面 321s均面 向相同的方向, 例如面向片体 310的其中一短边 311或其中一长边 312。 若以摺痕 322的 延伸方向 322d、 322e来表示各鳍片列 320中的这些鳍片 321的排列方式, 即各鳍片列 320 中的这些鳍片 321的摺痕 322彼此相互平行或均平行片体 310的短边 311或长边 312。
然而,任一鳍片列 320中的这些鳍片 321与另一相邻鳍片列 320中的这些鳍片 321彼 此面向不相同的方向,例如任一鳍片列 320中的这些鳍片 321的摺痕 322的延伸方向 322d 与另一相邻鳍片列 320中的这些鳍片 321的摺痕 322的延伸方向 322e相互正交。 如此, 若此光伏装置 100所设置之处所常吹的风向大致为正向地朝片体 310的短边 311或长边 312时, 这些鳍片 321于此变化中的排列方式便可分别与此二种风向产生热交换。
此外, 图 5的变化中还包含任二相邻的鳍片列 320中的这些鳍片 321以彼此交错的方 式排列(如上所述) 。 图 6的变化中还包含任二相邻的鳍片列 320中的这些鳍片 321以阵 列方式排列 (如上所述) 。
参阅图 7、 图 8所示, 图 7、 图 8示出本发明光伏装置 100的散热模块 304、 305依据 此实施例的其中二种俯视图。
根据图 7、 图 8所示出的实施例, 各鳍片列 320中的这些鳍片 321的受风面 321s均面 向相同的方向, 例如恰正向片体 310的其中一短边 311或其中一长边 312。 若以摺痕 322 的延伸方向 322e、 322f来表示各别鳍片列 320中的这些鳍片 321 的排列方式, 即每一鳍 片列 320中的这些鳍片 321的摺痕 322彼此相互平行。
然而,任一鳍片列 320中的这些鳍片 321与另一相邻鳍片列 320中的这些鳍片 321彼 此面向不相同的方向,而且任一鳍片列 320中的这些鳍片 321的摺痕 322的延伸方向 322e 与另一相邻鳍片列 320中的这些鳍片 321的摺痕 322的延伸方向 322f不相互正交。
此外, 根据图 7、 图 8所示出的实施例, 任一鳍片列 320中的这些鳍片 321面向片体 310的其中一长边 312, 但其摺痕 322的延伸方向 322f不与片体 310的此长边 312平行。 另一相邻鳍片列 320中的这些鳍片 321面向片体 310的其中一短边 311, 且其摺痕 322的 延伸方向 322e与片体 310的此短边 311平行。
如此,若此光伏装置 100所设置之处所常吹的风向大致为正向地朝片体 310的短边 311 或倾斜地朝片体 310的长边 312时,这些鳍片 321于此变化中的排列方式便可分别与此二 种风向产生热交换。
此外, 图 7的变化中还包含任二相邻的鳍片列 320中的这些鳍片 321以彼此交错的方 式排列(如上所述) 。 图 8的变化中还包含任二相邻的鳍片列 320中的这些鳍片 321以阵 列方式排列 (如上所述) 。 然而, 本发明不限于此, 设计人员可依据实际的需求或限制做出适合的选择。
参阅图 9A、 图 9B所示。 图 9A示出传统光伏装置所模拟出的热分布图。 图 9B示出 本发明光伏装置 100依据此实施例所模拟出的热分布图。
由图 9A可知, 传统光伏装置不具有散热装置的情况下, 在高日照条件下接受太阳光 的照射时, 其热能都集中于传统光伏装置平面的中央区域 C, 且其中央区域 C具有不均匀 的热分布,无助光伏装置转换电能的效率。传统光伏装置平面的中央区域 C最高温例如可 超过摄氏 47度 (甚至到摄氏 48.65度) ; 反观, 由图 9B可知, 本发明光伏装置 100依据 此实施例在高日照条件下接受太阳光的照射时, 因为散热模块 300的缘故, 使得本发明光 伏装置 100的中央区域 C具有均匀的热分布, 有助提升光伏装置转换电能的效率。 由图 9B可知,本发明光伏装置 100的中央区域 C的最高温仅为摄氏 42度上下(例如摄氏 43.19 度) , 使其提升光伏装置转换电能的效率为整体效率的 2.5 %。
参阅图 10A所示。 图 10A示出本发明光伏装置 100依据另一实施例的示意图。
此散热模块 306的这些鳍片 321 自片体 310掀起的高度 321h并不相同, 例如采长短 交替的方式, 即随着方向 D, 不限是否为散热流体的行进方向, 而以一较长鳍片 321a与 一较短鳍片 321b交替排列的方式设置于片体 310上, 然而, 所有较长鳍片 321a或所有较 短鳍片 321b并非必须等长或不等长。
此外, 参阅图 10B所示。 图 10B示出本发明光伏装置 100依据又一实施例的示意图。 此散热模块 308的这些鳍片 321 自片体 310掀起的高度 321h并不相同, 尤其是, 随 着方向 D, 不限是否为散热流体的行进方向, 这些鳍片列的鳍片 321 自片体 310掀起的高 度 321h将朝此方向 D逐渐递增。 如此, 由于这些鳍片列的鳍片 321 自片体 310掀起的高 度 321h朝此方向 D逐渐递增, 因此, 相较于这些具较小高度 321h的鳍片 321, 具较大高 度 321h的鳍片 321具有更多与散热流体接触的表面积, 以便提升产生热交换的速率。
参阅图 11所示。 图 11示出本发明光伏装置 100依据各实施例的安装状态示意图。 上述各实施例中, 光伏装置 100倾斜地设置于一安装面 G上, 安装面 G与水平面平 行。光伏装置 100与此安装面 G之间具有一第一夹角 Θ1。各鳍片 321与其对应的开口 323 之间具有一第二夹角 Θ2, 其中第一夹角 Θ1与第二夹角 Θ2互为余角。 (图 11 )
举例来说, 若第一夹角 Θ1为 30度, 则第二夹角 Θ2应为 60度, 因此, 鳍片 321垂直 安装面 G,如此, 当散热流体的行进方向平行安装面 G且此散热流体接触到鳍片 321的受 风面 321s时, 各鳍片 321便可提供最大面积的受风面 321s, 鳍片 321扰流 /导流效果将会 最显着。
关于散热模块 300与光伏面板 200的连接方式,散热模块 300的片体 310可借由卡合 方式、 黏着方式、 压合方式或热缩膜包覆的方式固定于光伏面板 200的背面 220。
举例来说, 当散热模块 300的片体 310借由卡合或压合的方式固定于光伏面板 200的 背面 220时, 散热模块 300的片体 310直接贴合于光伏面板 200的背面 220。 另外, 当散 热模块 300的片体 310借由胶黏着的方式固定于光伏面板 200的背面 220时,散热模块 300 的片体 310借由一胶层 (图中未示) 结合于光伏面板 200的背面 220。 又, 借由热缩膜包 覆的方式, 使得散热模块 300的片体 310可直接贴合于光伏面板 200的背面 220, 以下将 举例说明借由热缩膜包覆的方式使散热模块 300的片体 310固定于光伏面板 200的例子, 然而, 本发明不仅限于此。
参阅图 12至图 14所示。 图 12示出本发明光伏装置 101依据又一实施例的分解图。 图 13示出本发明光伏装置 101依据又一实施例的组合图。 图 14示出图 13的 14-14剖面 图。
散热模块 300还包含具有受热收缩特性的热缩型套件 500。 热缩型套件 500受热 (如 热风)收缩后便可同时包覆散热模块 300的片体 310与光伏面板 200的大部分表面, 意即 光伏面板 200的背面 220、 所有侧面被热缩型套件 500所包覆, 使得光伏面板 200仅露出 其正面 210。此实施例中, 如图 14所示, 甚至光伏面板 200正面 210的边缘部分也被热缩 型套件 500所包覆, 使得光伏面板 200仅露出其余部分的正面 210。 此时, 散热模块 300 的片体 310介于热缩型套件 500与光伏面板 200的背面 220之间,且直接贴覆光伏面板 200 的背面 220。
参阅图 12, 具体来说, 热缩型套件 500包含本体 510、 凹槽 520、 多个凸缘 540 (见 图 13、 图 14) 与多个狭长开孔 550。 本体 510呈立体状, 不限外型, 较佳地与光伏面板 200的外型相匹配, 然而, 本发明不仅限于此。 凹槽 520位于本体 510的一面, 其容纳空 间不小于光伏面板 200的体积, 且外型较佳地与光伏面板 200的外型相匹配。 凹槽 520的 槽口 530露出光伏面板 200的正面 210。 这些狭长开孔 550, 呈线性状, 其宽度至少大于 或等于鳍片 321的厚度。这些狭长开孔 550位于凹槽 520的底部, 其排列方式与上述鳍片 321的排列方式 (即阵列方式) 相同, 分别对齐这些鳍片 321, 以供这些鳍片 321—一伸 出热缩型套件 500外。
如此, 设计人员可依据实际的需求或限制, 使得这些狭长开孔 550配合上述鳍片 321 于图 3A〜图 8其中之一所述的排列方式, 以便匹配各种散热模块的组合。
组装时, (1 ) 首先将散热模块 300的片体 310的这些鳍片 321—一对准并插入对应 的狭长开孔 550, 使得散热模块 300的片体 310平放于凹槽 520内; (2)将光伏面板 200 以背面 220朝下的方向, 将光伏面板 200放入凹槽 520内、 散热模块 300的片体 310上; 接着, (3 ) 对热缩型套件 500的本体 510加热 (例如施以热风或利用光伏面板先前被层 压后所存留的高温) , 使得热缩型套件 500的本体 510受热后开始收缩, 而紧实地将散热 模块 300的片体 310与光伏面板 200包覆于凹槽 520内。 加热后, 此时的热缩型套件 500 上围绕槽口 530的这些凸缘 540朝槽口 530伸出, 最终便披覆于光伏面板 200的正面 510 边缘部分, 以完成热缩型套件 500固定于光伏面板 200的方式。
如此, 由于热缩型套件 500将散热模块 300的片体 310直接地贴覆于光伏面板 200的 背面 220, 使得散热模块 300的片体 310与光伏面板 200的背面 220之间因无黏贴介质或 中间空隙, 故可避免产生的热阻。 此外, 无论散热模块 300的片体 310的重量为何, 由于热缩型套件 500紧密地固定于 光伏面板 200上, 尽管一段时间下, 散热模块 300的片体 310仍不致脱离光伏面板 200的 背面 220, 以维持良好的散热性能。
需了解到, 由于光伏面板 200被热缩型套件 500包覆后所具有不错的结构强度, 光伏 面板 200甚至可以不需外加固定框架, 以减轻光伏装置的整体重量; 然而, 本发明不仅限 于此, 其他考虑下, 光伏面板被热缩型套件包覆后仍是可外加固定框架。
参阅图 15A、 图 15B与图 16所示。 图 15A示出本发明光伏装置 102依据又一实施例 的俯视图。 图 15B示出图 15A的区域 M2的一局部放大图。 图 16示出图 15A的 16-16剖 面图。
此又一实施例中,光伏装置 102还包含固定框架 400。固定框架 400包含第一嵌槽 410 与一第二嵌槽 420。 此第一嵌槽 410围绕出一第一层空间 411。 此第二嵌槽 420围绕出一 第二层空间 421, 第二层空间 421与第一层空间 411相叠设。 光伏面板 200嵌设于第一嵌 槽 410与第一层空间 411内。 散热模块 307嵌设于第二嵌槽 420与第二层空间 421内。
散热模块 307还包含二抵靠部 330。 此二抵靠部 330相对地位于此片体 310的二相对 端, 且与此片体 310处于不同平面。 较佳地, 此二抵靠部 330为一体成型地位于片体 310 上。 各抵靠部 330包含具弹性的连接片 331与抵靠片 332。 连接片 331于片体 310的一端 朝远离片体 310与光伏面板 200的方向倾斜, 并连接于片体 310与抵靠片 332之间。抵靠 片 332平行片体 310, 与片体 310处于不同平面。
当此二抵靠部 330的抵靠片 332分别伸入第二嵌槽 420的二相对侧内,且均朝背对光 伏面板 200的方向分别顶靠固定框架 400的第二嵌槽 420的内壁时,片体 310受到抵靠片 332与连接片 331的连动而朝面向光伏面板 200的方向顶靠光伏面板 200的背面 220。 如 此, 散热模块 307的片体 310便可仅借由此二抵靠部 330的配置而被固定于光伏面板 200 的背面 220。
此外, 由于光伏装置 102本身的重量或安装于户外时外在环境所带来的压力 (如风压 或积雪的荷重),会导致光伏装置 102产生弯曲变形,故,借由散热模块 307的抵靠部 330 连动片体 310顶靠光伏面板 200的背面 220, 使得散热模块 307对光伏装置 102提供支撑 功能, 进而避免光伏装置 102因过大的变形发生、 导致光伏装置 102产生破裂, 而影响工 作性能。
如图 15A所示, 散热模块 307包含多个片体 310间隔地配置于光伏面板 200的背面 220, 不仅可均匀地对光伏面板 200产生热交换, 同时, 也可均匀地对光伏面板 200提供 支持的力量。图 15A内每个片体 310也可具有多个并列的鳍片列 320。此外,每个片体 310 的多个并列的鳍片列 320的这些鳍片 321也可以彼此交错的方式或阵列方式排列(如上所 述) 。
参阅图 15A与图 17所示。图 17示出本发明光伏装置 102依据此又一实施例所模拟出 的热分布图。 由图 17可知, 本发明光伏装置 102依据此另一实施例在高日照条件下接受太阳光的 照射时, 因为多个散热模块 307的缘故, 使得本发明光伏装置 102的一面上具有并列状的 热分布, 有助提升热分布的均匀度, 也有助提升光伏装置转换电能的效率。 由图 17可知, 本发明光伏装置 102的最高温仅为摄氏 42度上下, 使其提升光伏装置转换电能的效率为 整体效率的 2.5 %。
本发明不限上述片体的材质、数量及面积, 设计人员可依据实际的需求或限制做出适 合的选择。 此实施例中, 片体的材质例如为金属等、 片体的数量可为单一或多个, 以及片 体的面积大致等于光伏面板的背面的面积。
本发明也不限片体上鳍片与开口的制出方法,设计人员可依据实际的需求或限制做出 适合的选择, 例如为冲压方式或钣金方式。 此实施例中, 片体上鳍片与开口的制出方法为 冲压方式 (punching) 。
本发明也不限其开口的形状, 设计人员可依据实际的需求或限制做出适合的选择, 例 如半圆形、 鱼鳞形、 三角形、 矩形或其他几何图形其中之一。 此实施例中, 开口的形状为 半圆形或鱼鳞形。 本发明也不限其开口为封闭式 (如图 12 ) 或非封闭式。
此外, 参阅图 18与图 19所示。 图 18示出本发明光伏装置 103依据再一实施例的分 解图。 图 19示出本发明光伏装置 103依据此再一实施例的剖示图。
再一实施例中,为了有效减轻散热模块的重量,设计人员也可依据实际的需求或限制, 省略散热模块的片体, 直接以独立个体的多个鳍片 600代替。
举例来说, 各鳍片 600各自为独立个体, 其横切面呈 "T"字型, 包含一横向体 610 与一直向体 620。 直向体 620的一端连接横向体 610, 并与横向体 610相互垂直。
组装时, (1 ) 首先将这些鳍片 600的直向体 620的另端一一对准并插入对应的狭长 开孔 550, 使得这些鳍片 600的横向体 610分别平放于凹槽 520内; (2)将光伏面板 200 以背面 220朝下的方向, 将光伏面板 200放入凹槽 520内、这些鳍片 600的横向体 610的 上; 接着, (3 ) 对热缩型套件 500的本体 510加热 (例如施以热风或利用光伏面板先前 被层压后所存留的高温) , 使得热缩型套件 500的本体 510受热后开始收缩, 而紧实地将 散热模块 300的这些鳍片 600的横向体 610与光伏面板 200包覆于凹槽 520内。 加热后, 此时热缩型套件 500的本体 510同时结合这些鳍片 600的横向体 610与光伏面板 200的背 面 220。 此外, 热缩型套件 500上围绕槽口 530的这些凸缘 540朝槽口 530伸出, 最终便 披覆于光伏面板 200的正面 510边缘部分, 以完成热缩型套件 500固定于光伏面板 200的 方式。
本发明所披露如上的各实施例中, 并非用以限定本发明, 任何本领域普通技术人员, 在不脱离本发明的精神和范围内, 当可作各种的更动与润饰, 因此本发明的保护范围当视 所附的权利要求所界定的范围为准。

Claims

权利要求
1.一种光伏装置, 包含:
一光伏面板, 包含相对的一正面与一背面, 该正面为一向阳面; 以及
一散热模块, 固定于该光伏面板的该背面, 包含多个鳍片, 所述多个鳍片彼此间隔地 排列, 每一所述多个鳍片的一面为一受风面。
2.如权利要求 1所述的光伏装置, 其中该散热模块还包含至少一片体, 该片体贴设于 该光伏面板的该背面, 所述多个鳍片于该片体上排成多个鳍片列,
其中所述多个鳍片自该片体掀起, 以致该片体形成多个开口,所述多个开口与所述多 个鳍片的形状相匹配, 且露出该光伏面板的该背面, 该受风面背对对应的该开口。
3.如权利要求 2所述的光伏装置,其中任二相邻的所述多个鳍片列的所述多个鳍片以 彼此交错的方式排列。
4.如权利要求 2所述的光伏装置,其中所述多个鳍片列的所述多个鳍片以一阵列方式 排列。
5.如权利要求 2所述的光伏装置, 其中任一所述多个鳍片与该片体之间具有一摺痕, 该摺痕的一延伸方向平行或不平行该片体的一侧边。
6.如权利要求 2所述的光伏装置, 其中任一所述多个鳍片与该片体之间具有一摺痕, 任二相邻的所述多个鳍片列的所述多个鳍片的所述多个摺痕的延伸方向彼此平行或不平 行。
7.如权利要求 6所述的光伏装置,其中任二相邻的所述多个鳍片列的所述多个鳍片的 所述多个摺痕的延伸方向相互正交。
8.如权利要求 2所述的光伏装置,其中所述多个鳍片列的所述多个鳍片自该片体掀起 的高度不同。
9.如权利要求 2所述的光伏装置,其中所述多个鳍片列的所述多个鳍片自该片体掀起 的高度采长短交替的方式。
10.如权利要求 2所述的光伏装置, 其中所述多个鳍片列的所述多个鳍片自该片体掀 起的高度朝一方向逐渐递增。
11.如权利要求 2所述的光伏装置, 其中每一所述多个鳍片被设置为与一散热流体的 行进方向相互正交。
12.如权利要求 2所述的光伏装置, 其中该光伏装置倾斜地设置于一安装面上, 与该 安装面具有一第一夹角,每一所述多个鳍片与其对应的该开口具有一第二夹角,其中该第 一夹角与该第二夹角互为余角。
13.如权利要求 2所述的光伏装置, 还包含:
一热缩型套件, 受热收缩后包覆该片体与该光伏面板, 仅露出该光伏面板的该正面, 其中该片体位于该热缩型套件与该光伏面板的该背面之间,且直接贴覆该光伏面板的该背 面。
14.如权利要求 13所述的光伏装置, 其中该热缩型套件包含:
一本体;
一凹槽, 位于该本体内, 用以容纳该片体与该光伏面板;
一槽口, 位于该本体的一面, 并接通该凹槽, 用以露出该光伏面板的该正面; 以及 多个狭长开孔,位于该凹槽的底部,分别对齐所述多个鳍片,并供所述多个鳍片伸出。
15.如权利要求 2所述的光伏装置, 还包含:
一固定框架,包含一第一嵌槽与一第二嵌槽,该第一嵌槽用以使该光伏面板嵌设其中, 该第二嵌槽用以使该片体嵌设其中。
16.如权利要求 15所述的光伏装置, 其中该散热模块还包含:
二抵靠部, 分别位于该片体的二相对端, 且与该片体处于不同平面,
其中所述多个抵靠部于该第二嵌槽内朝背对该光伏面板的方向分别顶靠该固定框架, 以致该片体顶靠于该光伏面板的该背面。
17.如权利要求 16所述的光伏装置, 其中该散热模块还包含:
多个该至少一片体, 间隔地排列于该光伏面板的该背面。
18.如权利要求 2所述的光伏装置, 其中, 每一所述多个鳍片的该受风面均面向该片 体的一短边或一长边。
19.如权利要求 1所述的光伏装置, 还包含:
一热缩型套件, 受热收缩后包覆该光伏面板, 仅露出该光伏面板的该正面。
20.如权利要求 19所述的光伏装置, 其中该热缩型套件包含:
一本体;
一凹槽, 位于该本体的一面, 用以容纳所述多个鳍片与该光伏面板;
一槽口, 接通该凹槽, 并露出该光伏面板的该正面;
多个狭长开孔,位于该凹槽的底部,分别对齐所述多个鳍片,并供所述多个鳍片伸出。
21.如权利要求 20所述的光伏装置, 其中每一所述多个鳍片为独立个体, 其横切面呈 "T"字型, 其包含:
一横向体,位于该热缩型套件与该光伏面板的该背面之间,且该横向体的一面直接贴 覆该光伏面板的该背面; 以及
一直向体, 与该横向体相互垂直, 其一端连接该横向体, 另端伸出所述多个狭长开孔 其中之一。
PCT/CN2012/078716 2012-07-05 2012-07-16 光伏装置 WO2014005357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210231656.5A CN102751363B (zh) 2012-07-05 2012-07-05 光伏装置
CN201210231656.5 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014005357A1 true WO2014005357A1 (zh) 2014-01-09

Family

ID=47031390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078716 WO2014005357A1 (zh) 2012-07-05 2012-07-16 光伏装置

Country Status (4)

Country Link
US (1) US20140007922A1 (zh)
CN (1) CN102751363B (zh)
TW (1) TWI476939B (zh)
WO (1) WO2014005357A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464894B (zh) * 2014-02-12 2014-12-11 Nexpower Technology Corp Thin film solar panels for the prevention and treatment of thermal damage
CN105226215A (zh) * 2015-10-27 2016-01-06 上海工程技术大学 带类鱼鳞式翅片的导热环带及带该导热环带的复合散热装置
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
NL2019040B1 (en) * 2017-06-09 2018-12-17 Optixolar Holding B V Heat sink panel for a photovoltaic panel
CN108449047B (zh) * 2018-03-23 2023-11-03 山东大学 一种光伏光热综合利用系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135092A1 (en) * 2006-12-11 2008-06-12 Sunmodular, Inc. Solar roof tiles with heat exchange
CN101783370A (zh) * 2009-01-21 2010-07-21 三菱电机株式会社 太阳能电池模块
CN101840948A (zh) * 2010-03-18 2010-09-22 吉林大学 具有微流控结构的太阳能光伏电池
CN101866972A (zh) * 2010-05-18 2010-10-20 扬州旭博光伏科技有限公司 太阳能电池与散热器一体化组件
CN101997049A (zh) * 2009-08-20 2011-03-30 启耀光电股份有限公司 太阳能电池模块

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM413976U (en) * 2011-02-22 2011-10-11 Wander Plastic Co Light concentrating solar cell package with heat-dissipating structure
TWM421597U (en) * 2011-08-31 2012-01-21 Apollo Solar Energy Co Ltd Solar energy conversion plate structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135092A1 (en) * 2006-12-11 2008-06-12 Sunmodular, Inc. Solar roof tiles with heat exchange
CN101783370A (zh) * 2009-01-21 2010-07-21 三菱电机株式会社 太阳能电池模块
CN101997049A (zh) * 2009-08-20 2011-03-30 启耀光电股份有限公司 太阳能电池模块
CN101840948A (zh) * 2010-03-18 2010-09-22 吉林大学 具有微流控结构的太阳能光伏电池
CN101866972A (zh) * 2010-05-18 2010-10-20 扬州旭博光伏科技有限公司 太阳能电池与散热器一体化组件

Also Published As

Publication number Publication date
US20140007922A1 (en) 2014-01-09
CN102751363B (zh) 2015-01-21
CN102751363A (zh) 2012-10-24
TWI476939B (zh) 2015-03-11
TW201403838A (zh) 2014-01-16

Similar Documents

Publication Publication Date Title
TWI476939B (zh) 光伏裝置
US8975506B2 (en) Solar cell module and photovoltaic power generator using the same
US20100126554A1 (en) Staggered light collectors for concentrator solar panels
US7728219B2 (en) Photovoltaic cells, modules and methods of making same
JP5873801B2 (ja) ソーラーモジュール構造
WO2006031798A2 (en) Solar photovoltaic mirror modules
KR100922887B1 (ko) 광집속형 태양전지 모듈
AU2018281682A1 (en) Heat sink panel for a photovoltaic panel
WO2018107999A1 (zh) 光伏组件
US9171983B2 (en) Heat dissipation structure
JP3602721B2 (ja) 太陽電池モジュール
RU2395136C1 (ru) Фотоэлектрический модуль
KR102290847B1 (ko) 태양에너지 수집장치
US20110272001A1 (en) Photovoltaic panel assembly with heat dissipation function
JP2011119394A (ja) 太陽光発電集熱ユニット
JP2009182103A (ja) ソーラ発電用ヒートシンクおよびソーラ発電用システム
KR102390195B1 (ko) 태양광·태양열 복합발전시스템 및 발전방법
JP2009182051A (ja) ソーラ発電用ヒートシンクおよびソーラシステム
JPS61292970A (ja) 太陽電池の放熱板
CN212810315U (zh) 一种基于石墨烯强化散热的光伏组件
CN207252123U (zh) 一种高性能光模块
US20220216355A1 (en) Three-dimensional solar cell and method
CN212323011U (zh) 一种光伏组件及光伏发电系统
US20230402557A1 (en) High-concentrating photovoltaic (hcpv) system
JP2006156581A (ja) 光電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (17.04.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12880700

Country of ref document: EP

Kind code of ref document: A1