WO2014003174A1 - Inverted-f antenna - Google Patents

Inverted-f antenna Download PDF

Info

Publication number
WO2014003174A1
WO2014003174A1 PCT/JP2013/067844 JP2013067844W WO2014003174A1 WO 2014003174 A1 WO2014003174 A1 WO 2014003174A1 JP 2013067844 W JP2013067844 W JP 2013067844W WO 2014003174 A1 WO2014003174 A1 WO 2014003174A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
inverted
plane
radiating element
type antenna
Prior art date
Application number
PCT/JP2013/067844
Other languages
French (fr)
Japanese (ja)
Inventor
官 寧
博育 田山
佑一郎 山口
千葉 洋
武 戸倉
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2014522704A priority Critical patent/JP5663117B2/en
Priority to DE112013003272.4T priority patent/DE112013003272B4/en
Publication of WO2014003174A1 publication Critical patent/WO2014003174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an inverted-F antenna, and more particularly to an inverted-F antenna suitable for mounting on an integrated antenna device.
  • antennas that operate in various frequency bands are required.
  • terrestrial digital broadcasting such as FM / AM broadcasting, DAB (Digital Audio Broadcast), 3G (3rd generation mobile phone), LTE (Long Term Evolution), GPS (Global Positioning System):
  • VICS registered trademark
  • ETC Electronic Toll Collection
  • antennas that operate in different frequency bands are often realized as separate antenna devices.
  • an FM / AM broadcast antenna is realized as a whip antenna placed on a roof top
  • a digital terrestrial broadcast antenna is realized as a film antenna attached to a windshield.
  • the integrated antenna device refers to an antenna device including a plurality of antennas that operate in different frequency bands.
  • Examples of such an integrated antenna device include those described in Patent Documents 1 to 5.
  • the integrated antenna device described in Patent Document 1 includes GPS and ETC antennas.
  • the integrated antenna device described in Patent Document 2 includes antennas for 3G and GPS.
  • the integrated antenna device described in Patent Document 3 includes antennas for ETC, GPS, VICS (registered trademark), telephone main, and telephone sub.
  • the integrated antenna device described in Patent Document 4 includes antennas for GPS, ETC, first phone, and second phone.
  • the integrated antenna device described in Patent Document 5 includes an antenna that operates in a band of 100 kHz to 1 GHz (FM / AM broadcasting, terrestrial digital broadcasting such as DAB, VICS, etc.) and a band of 1 GHz or more (GPS, satellite DAB, etc.) It is equipped with the antenna which operate
  • JP 2007-158957 (released June 21, 2007) Japanese Published Patent Publication “JP 2009-17116” (released January 22, 2009) Japanese Patent Publication “JP 2009-267765 A” (published on November 12, 2009) Japanese Published Patent Publication “JP 2010-81500” (published April 8, 2010) US Pat. No. 6,396,447 (registered on May 28, 2002)
  • An inverted F-type antenna is promising as a telephone antenna such as a 3G / LTE antenna mounted on such an integrated antenna.
  • a planar inverted F-type antenna in which a ground plane, a radiating element, and a short-circuit portion are formed in the same plane can be realized as a pattern on a substrate and is suitable for mounting on an integrated antenna.
  • the conventional planar inverted F-type antenna has a problem that a large space is required to arrange the ground plane, the radiating element, and the short-circuit portion.
  • the electromagnetic field formed by the induced current flowing through the ground plane cancels the electromagnetic field formed by the current flowing through the radiating element, there is a problem that it is difficult to obtain a high gain.
  • the present invention has been made in view of the above problems, and its object is to solve the above-mentioned problems of conventional planar inverted-F antennas and to realize an inverted-F antenna that can be easily mounted on an integrated antenna. There is to do.
  • an inverted F-type antenna includes at least a ground plane disposed on a first plane and a second plane that intersects (for example, is orthogonal to) the first plane.
  • a radiating element partially disposed; and a short-circuit portion that short-circuits the ground plane and the radiating element, wherein the radiating element is a grounding portion extending from a root portion of the short-circuiting portion, and is grounded with a tip grounded And an arm portion extending in a direction intersecting (for example, orthogonal to) the ground plane from a root portion of the short-circuit portion, and having an open end.
  • an inverted F-type antenna that can be arranged in a narrower space than a planar inverted F-type antenna and that can obtain a higher gain than a planar inverted F-type antenna.
  • FIG. 3 is a development view showing a first specific example of the inverted F-type antenna shown in FIG. 1. It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG.
  • FIG. 6 is a development view showing a second specific example of the inverted F-type antenna shown in FIG. 1. It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG.
  • FIG. 6 is a development view showing a third specific example of the inverted F-type antenna shown in FIG. 1. It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG. FIG.
  • FIG. 6 is a development view showing a fourth specific example of the inverted F-type antenna shown in FIG. 1. It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG. It is a graph which shows the radiation pattern in the low frequency side request
  • FIG. 7 is a development view showing a fifth specific example of the inverted F-type antenna shown in FIG. 1.
  • FIG. 7 is a development view illustrating a sixth specific example of the inverted F-type antenna illustrated in FIG. 1.
  • A) is a top view which shows the structure of the loop antenna 2 which can be arrange
  • B) is an equivalent circuit of a parasitic element group included in the loop antenna. It is a graph which shows the radiation pattern of the loop antenna shown in FIG.
  • FIG. 20 is a three-view diagram illustrating a configuration of a base portion included in the integrated antenna device illustrated in FIG. 19. It is a perspective view which shows the additional structure which the integrated antenna apparatus shown in FIG. 19 may be equipped with.
  • A is a perspective view of a radome
  • (b) is a perspective view of a spacer
  • (c) is a perspective view of a rubber base.
  • An antenna including a ground plane that is a grounded planar conductor and a radiating element that is a non-grounded linear or strip-like conductor that is separated from the ground plane is referred to as a “monopole antenna”.
  • the monopole antenna further including a short-circuit portion, and the ground plate and the radiating element are short-circuited by the short-circuit portion is referred to as an “inverted F antenna”.
  • the antenna according to the present embodiment is similar to the inverted F antenna in that it includes a ground plane, a radiating element, and a short-circuit portion as will be described later. For this reason, the antenna according to this embodiment is hereinafter referred to as an “inverted F-type antenna”. However, the antenna according to the present embodiment is different from the inverted F antenna in that the radiating element is grounded as described later. It is in view of this point that the antenna according to the present embodiment is described as an “inverted F“ type ”antenna” without being described as an “inverted F antenna”.
  • FIG. 1 is a perspective view showing a basic configuration of an inverted F-type antenna 1.
  • the inverted F-type antenna 1 is a two-dimensional antenna that can be deployed on a single plane, but is designed on the assumption that it is used in a folded state as shown in FIG.
  • the inverted F-type antenna 1 includes a ground plane 11, a radiating element 12, and a short-circuit portion 13.
  • the ground plane 11, the radiating element 12, and the short-circuit portion 13 are integrally formed of one conductor foil (for example, copper foil), and are mounted on a printed board together with the other loop antenna 2, for example.
  • the three-dimensional structure of the inverted F-type antenna 1 shown in FIG. 1 is realized by bending the printed circuit board on which the inverted F-type antenna 1 is mounted.
  • the inverted F-type antenna 1 is a dual frequency antenna that operates in at least two frequency bands. Specifically, it is a 3G / LTE antenna that operates in one of the 3G frequency bands and one of the LTE frequency bands. More specifically, 3G that operates in a frequency band of 761 MHz to 960 MHz (hereinafter referred to as “low frequency side required band”) and a frequency band of 1710 MHz to 2130 MHz (hereinafter referred to as “high frequency side required band”). / LTE antenna.
  • the ground plane 11 is composed of a planar conductor.
  • a rectangular conductor foil is disposed on the first plane S ⁇ b> 1 (a plane parallel to the zx plane in FIG. 1), and this is used as the ground plane 11.
  • the orientation of the ground plane 11 is determined so that the longitudinal direction thereof is parallel to the x axis.
  • the posture of the inverted F-type antenna 1 is reduced (the size in the z-axis direction is reduced).
  • a notable point in the base plate 11 is that two notches 11a to 11b extending in the z-axis negative direction from the longer side on the z-axis positive direction side are formed, and the z-axis is formed between these two notches 11a to 11b.
  • the feed point P is provided at the tip of the rectangular portion 11c extending in the positive direction.
  • the longitudinal direction of the rectangular portion 11c of the ground plane 11 is the main portion of the radiating element 12. It will be orthogonal to the longitudinal direction of the portion 12a.
  • the direction of the current flowing through the ground plane 11 in the vicinity of the feeding point P is restricted to the z-axis direction.
  • the electromagnetic field generated by the current flowing through the radiating element 12 is generated by the current flowing through the ground plane 11. It is possible to suppress a decrease in gain due to cancellation by the field.
  • the radiating element 12 is constituted by a linear or strip conductor.
  • the strip-shaped conductor foil is disposed on a second plane S2 (a plane parallel to the xy plane in FIG. 1) orthogonal to the first plane S1, and this is disposed on the main portion 12a of the radiating element 12.
  • the main direction of the radiating element 12 is set so that its longitudinal direction is parallel to the x-axis. The direction of the portion 12a is determined.
  • a configuration in which a part of the radiating element 12 is arranged on the first plane S1 together with the ground plane 11 by bending the radiating element 12 and a feeding point Q is provided in the part is adopted.
  • the radiating element 12 includes an arm portion 12b and a grounding portion 12c described below.
  • the main portion 12a, the arm portion 12b, and the grounding portion 12c are integrally formed from one conductor foil, but the present invention is not limited to this. That is, the radiation element 12 may be realized by connecting the main part 12a, the arm part 12b, and the grounding part 12c that are individually formed.
  • the arm portion 12b is a linear or strip-like conductor extending from the main portion 12a, and has an open end opposite to the main portion 12a side.
  • the strip-shaped conductor that linearly extends in the y-axis positive direction from the end on the x-axis negative direction side of the main portion 12a is orthogonal to both the first plane S1 and the second plane S2.
  • the plane S3 a plane parallel to the yz plane in FIG. 1 and used as the arm portion 12b.
  • the inverted F-type antenna 1 by providing such an arm portion 12b, a resonance point is provided in the low frequency side required band.
  • the first point to be noted regarding the arm portion 12b is that the arm portion 12b extends linearly in a direction orthogonal to the first plane S1 on which the ground plane 11 is disposed. Thereby, the resonance frequency band produced by the arm part 12b becomes wide.
  • the second point to be noted regarding the arm portion 12b is that it is arranged not on the second plane S2 but on the third plane S3. Thereby, it is not necessary to reduce the space for arranging another loop antenna 2 on the second plane S2 in order to avoid interference with the arm portion 12b.
  • the grounding part 12c is a linear or strip-like conductor extending from the main part 12a, and has an end opposite to the main part 12a side grounded (connected to the ground).
  • a strip-like conductor extending in the negative z-axis direction from the end on the negative x-axis side of the main portion 12a (the root of the short-circuit portion 13 described later) is disposed on the third surface S3 and grounded. Used as part 12c.
  • the short-circuit portion 13 is a portion for short-circuiting the ground plane 11 and the radiating element 12 in the inverted F-type antenna 1 and is constituted by a linear or strip-shaped conductor.
  • the strip-shaped conductor foil that extends from the end portion of the main portion 12a on the negative x-axis side (the root of the grounding portion 12c described above) to the end portion of the ground plane 11 on the negative x-axis direction is the first.
  • On the plane S ⁇ b> 1 On the plane S ⁇ b> 1, and this is used as the short-circuit portion 13.
  • the inverted F-type antenna 1 by providing such a short-circuit portion 13, the potential of the end portion on the x-axis negative direction side of the main portion 12 a is controlled to 0V.
  • the position of the feeding point Q in the radiating element 12 is determined according to a standard inverse F antenna design method. That is, the input impedance of the inverted F-type antenna 1 is coaxial under the assumption that the potential of the root of the short-circuit portion 13 (in this embodiment, the end of the main portion 12a on the x-axis negative direction side) is controlled to 0V. It is determined to match the output impedance of the cable. However, simply connecting the short-circuit portion 13 to the end portion of the main portion 12a on the x-axis direction side cannot sufficiently suppress the variation in reactance at the end portion. For this reason, impedance matching with a coaxial cable cannot be guaranteed.
  • FIG. 2 is a development view showing a first specific example of the inverted F-type antenna 1.
  • the three-dimensional shape shown in FIG. 1 is realized by bending the straight line L and the straight line M so as to have ridgelines.
  • the features of the ground plane 11, the radiating element 12, and the short-circuit portion 13 constituting the inverted F-type antenna 1 are as already described with reference to FIG.
  • a rectangular conductor foil having a long side of 35 mm and a short side of 11 mm formed with notches 11a to 11b having a width of 5 mm and a length of 9 mm is used as the ground plane 11.
  • the interval between the two notches 11a to 11b is determined so that the width of the rectangular portion 11c is 4 mm.
  • the length of the main portion 12a is 55 mm
  • the length of the arm portion 12b is 63 mm.
  • the inverted F-type antenna 1 is bent so that the straight line L is the ridgeline
  • a configuration in which the inverted F-type antenna 1 is bent so that the straight line L ′ is the ridgeline may be employed.
  • the main portion 12a of the radiating element 12 is disposed on both the first plane S1 (see FIG. 1) and the second plane S2 (see FIG. 1), whereas the latter is the latter.
  • the main part 12a of the radiating element 12 is arranged only on the second plane S2.
  • the inverted F-type antenna 1 is bent so that the straight line M is the ridgeline
  • a configuration in which the inverted F-type antenna 1 is bent so that the straight line M ′ is the ridgeline may be employed.
  • the arm portion 12b of the radiating element 12 is arranged on the third plane S3 (see FIG. 1), whereas when the latter configuration is adopted, the arm portion 12b of the radiating element 12 is arranged. Is arranged on the second plane S2.
  • FIG. 3 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. From the graph shown in FIG. 3, a resonance point is formed in the low frequency side required band, and a region where VSWR is 4 or less is formed in both the low frequency side required band and the high frequency side required band. I can read that
  • the reason why the resonance point is formed in the low frequency side required band is that the radiating element 12 is provided with the arm portion 12b.
  • the region where the VSWR is 4 or less is formed in both the low-frequency side required band and the high-frequency side required band because the radiating element 12 is provided with the grounding portion 12c, thereby achieving impedance matching in the region. This is because the.
  • FIG. 4 is a development view showing a second specific example of the inverted F-type antenna 1.
  • the change from the inverted F-type antenna 1 according to the first specific example is that an arm portion 12d is added to the radiating element 12 as shown in FIG.
  • the arm portion 12d is a linear or strip-like conductor extending from the main portion 12a, and has an open end opposite to the main portion 12a side.
  • a strip-like conductor extending linearly in the y-axis positive direction from the end on the x-axis positive direction side of the main portion 12a is disposed on the second plane S2 (see FIG. 1), and this is disposed on the arm. Used as part 12d.
  • FIG. 5 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. As shown in FIG. 5, by adding the arm portion 12d to the radiating element 12, a new resonance point is generated in the low frequency side required band. Thereby, the operation band in the low frequency side request band is expanded.
  • FIG. 6 is a development view showing a third specific example of the inverted F-type antenna 1.
  • the change from the inverted F-type antenna 1 according to the second specific example is that a part of the arm portion 12d is meandered as shown in FIG.
  • a part of the arm portion 12d is bent into a U shape, and this is used as a meander portion 12d1.
  • the meander part 12d1 is formed on the x-axis negative direction side of the arm part 12d so that it is not necessary to enlarge the space required for the arrangement of the arm part 12d.
  • FIG. 7 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. As shown in FIG. 7, a new resonance point is generated in the high frequency side required band by making a part of the arm portion 12d meander. Thereby, the operation band in the high frequency request band is expanded.
  • FIG. 8 is a development view showing a fourth specific example of the inverted F-type antenna 1.
  • the change from the inverted F-type antenna 1 according to the third specific example is that a short-circuit portion 12e for short-circuiting the intermediate portion of the main portion 12a and the intermediate portion of the arm portion 12d is added.
  • the short-circuit portion 12e in this specific example includes a first straight portion 12e1 extending in the y-axis positive direction from the intermediate portion of the main portion 12a, and an arm portion 12d extending from the tip of the first straight portion 12e1 in the x-axis positive direction. And a second straight line portion 12e2 that reaches the middle portion.
  • a new current path that passes through these linear portions 12e1 to 12e2 is added to the current path from the feeding point Q to the tip of the arm portion 12d.
  • the short-circuit portion 12e extends from the intermediate portion of the first straight portion 12e1 in the x-axis positive direction, and extends from the intermediate portion of the third straight portion 12e3 in the y-axis negative direction.
  • a fourth straight part 12e4 reaching the part 12a As a result, a new current path that passes through these linear portions 12e3 to 12e4 is added to the current path from the feeding point Q to the tip of the arm portion 12d.
  • FIG. 9 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. As shown in FIG. 9, by adding a short-circuit portion 12 e to the radiating element 12, a new resonance point is generated in the high frequency side required band. Thereby, the operation band in the high frequency request band is further expanded.
  • FIG. 10 is a graph showing a radiation pattern of the inverted F antenna 1 according to this specific example in the low frequency side required band (specifically, 850 MHz).
  • A shows the azimuth angle ( ⁇ ) dependence of the gain in the xy plane
  • (b) shows the elevation angle ( ⁇ ) dependence of the gain in the zx plane
  • (c) shows the gain in the yz plane.
  • the elevation angle ( ⁇ ) dependence is shown.
  • the inverted F-type antenna 1 according to this specific example can obtain a high gain in the upper half space regardless of the azimuth angle in the low frequency side required band.
  • FIG. 11 is a graph showing a radiation pattern of the inverted F-type antenna 1 according to this example in the high frequency side required band (specifically, 1800 MHz).
  • A shows the azimuth angle ( ⁇ ) dependence of the gain in the xy plane
  • (b) shows the elevation angle ( ⁇ ) dependence of the gain in the zx plane
  • (c) shows the gain in the yz plane.
  • the elevation angle ( ⁇ ) dependence is shown.
  • the inverted F-type antenna 1 according to this specific example can obtain a high gain in the upper half space regardless of the azimuth angle even in the high frequency side required band.
  • the characteristics of the inverted F-type antenna 1 according to this specific example shown in FIGS. 10 to 11 are extremely advantageous in a 3G / LTE antenna mounted on a car whose direction changes every moment.
  • inverted F-type antenna 1 can be modified to the form shown in FIG. 12, the form shown in FIG.
  • the fifth specific example shown in FIG. 12 is similar to the first specific example shown in FIG. 4 in that the short-circuit portion 12f1 that short-circuits the intermediate portion of the main portion 12a and the intermediate portion of the arm portion 12d and the intermediate portion of the arm portion 12d. And a second branch 12f3 extending from the middle part of the main part 12a.
  • the sixth specific example shown in FIG. 13 is similar to the first specific example shown in FIG. 4 in that the short-circuit portion 12f1 that short-circuits the intermediate portion of the main portion 12a and the intermediate portion of the arm portion 12d, and the intermediate portion of the main portion 12a. And a second branch 12f3 extending from.
  • inverted F-type antenna 1 In the inverted F-type antenna 1 according to the fifth to sixth specific examples, as with the inverted F-type antenna 1 according to the first to fourth specific examples, good characteristics as a 3G / LTE antenna can be obtained.
  • loop antenna A loop antenna 2 that can be arranged on the same plane as the inverted F-type antenna 1 according to the present embodiment will be described with reference to FIGS.
  • FIG. 14A is a plan view showing the configuration of the loop antenna 2.
  • FIG. 14B is a circuit diagram showing an equivalent circuit of the parasitic elements 24 to 25 included in the loop antenna 2.
  • the loop antenna 2 includes a radiating element 21, a pair of feeding portions 22a to 22b, a pair of short-circuiting portions 23a to 23b, a first parasitic element 24, and a second parasitic element. And a power feeding element 25.
  • the radiating element 21, the power feeding portions 22a to 22b, and the short-circuit portions 23a to 23b are integrally formed from a single conductor foil (for example, copper foil).
  • the first parasitic element 24 is composed of another conductor foil that is isolated from the conductor foil constituting the radiating element 21 and the like.
  • the second parasitic element 25 is composed of another conductive foil that is isolated from the conductive foil that forms the radiating element 21 and the conductive foil that forms the first parasitic element 24.
  • the radiating element 21 is composed of a linear or strip conductor arranged on a closed curve.
  • a strip-shaped conductor foil for example, a copper foil
  • One end portion 21a of the radiating element 21 faces the other end portion 21b of the radiating element 21 through a straight line extending in the 0 o'clock direction from the center of the ellipse.
  • the power feeding part 22a is a linear or strip-like conductor arranged on a line segment extending from one end 21a of the radiating element 21 to the vicinity of the center of the ellipse.
  • a strip-shaped conductor foil having a width of 1 mm is used as the power feeding portion 22a.
  • a feeding point P to which the outer conductor of the coaxial cable is connected is provided at the tip of the feeding part 22a. Therefore, one end portion 21a of the radiating element 21 is connected to the outer conductor of the coaxial cable via the power feeding portion 22a.
  • the feeding part 22b is a linear or strip-like conductor arranged on a line segment from the other end 21b of the radiating element 21 to the vicinity of the center of the ellipse.
  • a strip-shaped conductor foil having a width of 1 mm is used as the power feeding portion 22b.
  • a feeding point Q to which the inner conductor of the coaxial cable is connected is provided at the tip of the feeding part 22b. Therefore, the other end portion 21b of the radiating element 21 is connected to the inner conductor of the coaxial cable via the feeding portion 22b.
  • the short-circuit portion 23a is configured to short-circuit the point 21c on the radiating element 21 located in the 9 o'clock direction as viewed from the center of the ellipse and the feeding point P.
  • a strip-shaped conductor foil having a width of 1 mm which is disposed on a line segment from the point 21c on the radiating element 21 to the vicinity of the center of the ellipse, is used as the short-circuit portion 23a.
  • the short-circuit portion 23b is configured to short-circuit the point 21d on the radiating element 21 located in the 3 o'clock direction as viewed from the center of the ellipse and the feeding point P.
  • a strip-shaped conductor foil having a width of 1 mm arranged on a straight line extending from the point 21d on the radiating element 21 to the vicinity of the center of the ellipse is used as the short-circuit portion 23b.
  • the protrusion part which protruded in the electric power feeding part 22a side is provided in the front-end
  • the tip of the power feeding portion 22a located above the center of the ellipse and the tip of the short-circuit portion 23a located to the left of the center are connected to a strip-like conductor (width 2 mm) arranged on the quadrant arc. Are connected to each other.
  • the tip of the power feeding part 22b located above the center of the ellipse and the tip of the short-circuiting part 23b located to the right of the center are connected via a strip-shaped conductor (width 2 mm) arranged on the quadrant. Are connected to each other.
  • a strip-shaped conductor width 2 mm
  • the first parasitic element 24 includes a main part 24b, a first extension part 24a, and a second extension part 24c.
  • the main portion 24b is a substantially L-shaped planar conductor having an outer edge along the outer periphery of the radiating element 21 from the 6 o'clock direction to the 9 o'clock direction when viewed from the center of the ellipse.
  • the first extension 24a is a strip-like conductor that extends linearly in the 0 o'clock direction from the end of the main portion 24b located in the 9 o'clock direction when viewed from the center of the ellipse.
  • the second extension 24c is a strip-like conductor that extends linearly in the 3 o'clock direction from the end of the main portion 24b located in the 6 o'clock direction when viewed from the center of the ellipse.
  • the second extension 24 c of the first parasitic element 24 changes the slope of the direction in which the gain of the right-handed circularly polarized wave is maximum (hereinafter referred to as “maximum gain direction”). It has a function. That is, when the length of the second extension 24c is shortened, the inclination of the right-handed circularly polarized wave in the maximum gain direction is reduced, and when the length of the second extension 24c is lengthened, the maximum of the right-handed circularly polarized wave is increased. The slope in the gain direction increases.
  • the second parasitic element 25 includes a main part 25b, a first extension part 25a, and a second extension part 25c.
  • the main portion 25b is a substantially L-shaped planar conductor having an outer edge along the outer periphery of the radiating element 21 from the 0 o'clock direction to the 3 o'clock direction when viewed from the center of the ellipse.
  • the first extension portion 25a is a strip-like conductor that linearly extends in the 9 o'clock direction from the end of the main portion 25b located in the 0 o'clock direction when viewed from the center of the ellipse.
  • the second extension 25c is a strip-like conductor that extends linearly in the 6 o'clock direction from the end of the main portion 25b located in the 3 o'clock direction when viewed from the center of the ellipse.
  • the second extension 25c of the second parasitic element 25 has a function of changing the resonance frequency. That is, when the length of the second extension portion 25c is shortened, the resonance frequency is shifted to the high frequency side, and when the length of the second extension portion 25c is lengthened, the resonance frequency is shifted to the low frequency side. Further, when the length of the second extension portion 25c is changed, the phase angle of the loop antenna 2 is changed.
  • the tip of the first extension 24 a of the first parasitic element 24 and the tip of the first extension 25 a of the second parasitic element 25 are capacitively coupled. That is, the gap 26 between the tip of the first extension 24a of the first parasitic element 24 and the tip of the first extension 25a of the second parasitic element 25 has a capacitance. .
  • the parasitic element group composed of the first parasitic element 24 and the second parasitic element 25 is equivalent to the LC circuit shown in FIG.
  • L1 represents the self inductance of the first parasitic element 24, and L2 represents the self inductance of the second parasitic element 25.
  • C1 represents the capacitance between the first parasitic element 24 and the ground plane, and C2 represents the capacitance between the second parasitic element 25 and the ground plane.
  • C3 represents the capacitance of the gap 26 described above.
  • a parasitic element group including the first parasitic element 24 and the second parasitic element 25 has a resonance frequency as the LC circuit shown in FIG.
  • the electromagnetic wave radiated from the loop antenna 2 is a superposition of the electromagnetic wave radiated from the radiating element 21 and the electromagnetic wave radiated from the parasitic element group.
  • the intensity of the electromagnetic wave radiated from the loop antenna 2 at the resonance frequency is changed to the radiating element at the same frequency. It can be made stronger than the intensity of the electromagnetic waves emitted by 21 (single).
  • the VSWR value of the loop antenna 2 in the band including the resonance frequency is radiated in the same band. It can be made smaller than the VSWR value of the element 21 (single unit).
  • the second extension 24c of the first parasitic element 24 has a function of changing the maximum gain direction of the right-handed circularly polarized wave. This point will be described with reference to FIG.
  • FIG. 15 is a graph showing a radiation pattern of the loop antenna 2.
  • (A) shows the radiation pattern when the extension 24c is not added, and
  • (b) shows the radiation pattern when the extension 24c is added.
  • RHCP represents a radiation pattern of right-handed circular polarization
  • LHCP represents a radiation pattern of left-handed circular polarization.
  • the maximum gain direction of the right-handed circularly polarized wave is a direction (z plane in FIG. 14) orthogonal to the antenna forming plane (xy plane in FIG. 14). Axial direction).
  • the maximum gain direction of the right-handed circularly polarized wave is inclined by about 30 degrees as shown in FIG.
  • the inclination in the maximum gain direction is changed by changing the length of the extension 24c. Specifically, when the length of the extension 24c is shortened, the gradient in the maximum gain direction is reduced, and when the length of the extension 24c is increased, the gradient in the maximum gain direction is increased. Therefore, by including the step of adjusting the length of the extension 24c while measuring the maximum gain direction of right-handed circularly polarized wave, the loop antenna 2 in which the slope of the maximum gain direction of right-handed circularly polarized wave becomes a desired value. Can be manufactured.
  • the VSWR value can be lowered by appropriately adjusting the gap 26 between the first parasitic element 24 and the second parasitic element 25. it can. This point will be described with reference to FIG.
  • FIG. 16 is a graph showing the VSWR characteristics of the loop antenna 2 near 1.575 GHz.
  • VSWR0 represents the VSWR characteristic when both the first parasitic element 24 and the second parasitic element 25 are removed
  • VSWR1 represents the first parasitic element 24 and the second parasitic element.
  • the VSWR characteristic after adding both of the elements 25 is shown
  • VSWR2 adds both the first parasitic element 24 and the second parasitic element 25, and further minimizes the VSWR value of 1.575 GHz.
  • the VSWR characteristic after adjusting the gap interval of the gap 26 is shown.
  • the VSWR value decreases in a band of 1.5 GHz or less, and the gap interval of the gap 26 By adjusting the VSWR value at 1.575 GHz decreases.
  • the VSWR value at a desired frequency can be changed. Therefore, by including the step of adjusting the gap interval of the gap 26 while measuring the VSWR value at a desired frequency, the loop antenna 2 having a low VSWR value at the desired frequency can be manufactured.
  • the radiating element 21 is arranged on the circumference of an ellipse, but is not limited to this.
  • the radiating element 21 may be meandered as shown in FIG. 17, or may be arranged on a rectangular circumference as shown in FIG.
  • the short-circuit portions 23a to 23b may be omitted as shown in FIG.
  • FIG. 1 An antenna device 100 on which the inverted F-type antenna 1 according to this embodiment is mounted will be described with reference to FIGS. 19 to 21.
  • FIG. The antenna device 100 is an integrated antenna device equipped with a plurality of antennas. For this reason, the antenna device 100 is hereinafter referred to as an “integrated antenna device”.
  • FIG. 19A is an exploded perspective view showing the main configuration of the integrated antenna apparatus 100
  • FIG. 19B is a perspective view showing the main configuration of the integrated antenna apparatus 100
  • FIG. 20 is a three-view diagram of the base unit 110 included in the integrated antenna device 100.
  • the integrated antenna device 100 is a vehicle-mounted antenna device suitable for mounting on the roof of an automobile. As shown in FIG. 19, the base unit 110, the circuit board 120, the first antenna board 130, and the second antenna apparatus are provided. And an antenna substrate 140.
  • This integrated antenna device 100 is equipped with three antennas.
  • the first antenna is an inverted F-type antenna 1 for 3G (3rd generation) / LTE (long term evolution).
  • the second antenna is a GPS (Global Positioning System) loop antenna 2. Both of these antennas 1 and 2 are mounted on the second antenna substrate 140.
  • the third antenna is a dipole antenna 3 for DAB (Digital Audio Broadcast).
  • the dipole antenna 3 is mounted on the first antenna substrate 130.
  • the dipole antenna 3 and the first antenna substrate 130 are additional configurations adopted in the present embodiment, and can be omitted.
  • the base part 110 is a plate-like member made of a conductor.
  • a plate-shaped member made of metal (specifically, aluminum), and having a substantially rectangular (specifically, rounded rectangular shape) main surface, Used as the base part 110.
  • a protruding portion 111 protruding in a direction orthogonal to the surface is formed.
  • the region in which the protruding portion 111 is formed on the upper surface of the base portion 110 is referred to as a “projecting portion forming region”.
  • a wall-shaped protrusion that surrounds a rectangular protrusion forming region is used as the protrusion 111.
  • the circuit board 120 is a printed circuit board (specifically, a rigid board) on which the GPS amplifier circuit 121, the DAB amplifier circuit 122, and the DAB matching pattern 123 are mounted. Placed. On the upper surface of the circuit board 120, a wiring pattern for connecting elements (coils, capacitors, etc.) constituting each of the GPS amplifier circuit 121 and the DAB amplifier circuit 122 and a DAB matching pattern 123 are formed. Yes. On the other hand, on the lower surface of the circuit board 120, a ground plate constituting a microstrip line is formed together with the wiring pattern. The grounding of the circuit board 120 is realized by bringing the ground plate into surface contact with the upper end surface of the protruding portion 111.
  • the first antenna board 130 is a printed board (specifically, a flexible board) on which a conductor pattern that functions as the dipole antenna 3 is formed.
  • the first antenna substrate 130 may be configured by (1) one dielectric sheet and the dipole antenna 3 formed on the upper surface or the lower surface of the dielectric sheet. You may be comprised by the dielectric sheet
  • the first antenna substrate 130 is arranged in parallel with the upper surface of the base portion 110. At this time, the position of the first antenna substrate 130 in the horizontal direction is determined so that the dipole antenna 3 faces the protruding portion formation region. Thereby, the dipole antenna 3 approaches the upper surface of the base part 110 (specifically, the upper end surface of the protrusion part 111) compared with the case where the protrusion part 111 is not formed. Further, when the circuit board 120 is placed on the protruding portion 111 as in the present embodiment, the dipole antenna 3 approaches the DAB matching pattern 123 and the ground plate of the circuit board 120. Become.
  • the second antenna substrate 140 is a printed circuit board (specifically, a flexible substrate) on which a conductor pattern that functions as the inverted F-type antenna 1 and a conductor pattern that functions as the loop antenna 2 are formed.
  • the second antenna substrate 140 may be configured by (1) one dielectric sheet and the inverted F-type antenna 1 and the loop antenna 2 formed on the upper surface or the lower surface of the dielectric sheet. (2) Two dielectric sheets, and an inverted F-type antenna 1 and a loop antenna 2 sandwiched between the two dielectric sheets may be used.
  • the second antenna substrate 140 is mounted on the integrated antenna device 100 in a state of being bent so as to constitute three planes S1 to S3. Specifically, the first plane S1, the second plane S2 orthogonal to the first plane S1, and the third plane S3 orthogonal to both the first plane S1 and the second plane S2
  • the integrated antenna device 100 is mounted in a state of being bent so as to be configured.
  • the loop antenna 2 is entirely arranged on the first plane S1
  • the inverted F-type antenna 1 has a certain part (all or part of the radiating element 12) of the second plane.
  • the other parts (the entire ground plane 11 or the entire ground plane 11 and a part of the radiating element 12) are disposed on the first plane S1.
  • still another portion (a part of the radiating element 12) is disposed on the third plane S3.
  • FIG. 1 should also be referred to regarding the arrangement of the inverted F-type antenna 1.
  • the second antenna substrate 140 is arranged so that the second plane S2 is parallel to the upper surface of the base portion 110. At this time, the horizontal position of the second antenna substrate 140 is determined so that the loop antenna 2 faces the protruding portion formation region. Thereby, the loop antenna 2 approaches the upper surface of the base part 110 (specifically, the upper end surface of the protrusion part 111) compared with the case where the protrusion part 111 is not formed. Further, when the circuit board 120 is placed on the protrusion 111 as in the present embodiment, only the loop antenna 2 approaches the ground plate of the circuit board 120. This is because the circuit board 120 is arranged so as to face the loop antenna 2 without facing the inverted F-type antenna 1 (so as to overlap the loop antenna 2 without protruding to the inverted F-type antenna 1 side).
  • the distance between the inverted F-type antenna 1 and the upper surface of the base portion 110 does not change depending on the presence or absence of the protruding portion 111. That is, by forming the protruding portion 111 on the upper surface of the base portion 110, the distance between the loop antenna 2 and the upper surface of the base portion 110 is reduced while keeping the distance between the inverted F-type antenna 1 and the upper surface of the base portion 110. can do. The effect obtained by this will be described later with reference to different drawings.
  • FIG. 20 is a three-side view of the base portion 110.
  • the base part 110 is a plate-like member made of a conductor as described above.
  • the weight of the integrated antenna device 100 is reduced by using aluminum as the material of the base portion 110.
  • the upper surface shape of the base portion 110 is substantially rectangular (specifically, a rounded rectangular shape), so that the air resistance of the integrated antenna device 100 (particularly, the long side of the base portion 110 is made longer than that of the automobile). (Air resistance when placed parallel to the direction of travel) is reduced.
  • a protruding portion 111 is formed on the upper surface of the base portion 110.
  • the protruding portion 111 is a structure that protrudes in a direction orthogonal to the upper surface of the base portion 110.
  • a wall-like protrusion surrounding the rectangular protruding portion forming region is formed on the upper surface of the base portion 110, and this is used as the protruding portion 111.
  • the height of the protrusion 111 is uniform. This is to support the circuit board 120 placed on the protruding portion 111 in parallel with the upper surface of the base portion 110. Moreover, the upper end surface of the protrusion part 111 is flat. This is because the lower surface of the circuit board 120 placed on the protruding portion 111 is in surface contact with the upper end surface of the protruding portion 111. In addition, the four corners of the protrusion 111 are thickened. This is to increase the area where the lower surface of the circuit board 120 placed on the protruding portion 111 is in contact with the upper end surface of the protruding portion 111. By adopting these configurations, the support and grounding of the circuit board 120 are ensured.
  • d is the height of the protrusion 111.
  • the radiating element 21 of the loop antenna 2 and the base are maintained while maintaining the distance D between the radiating element 12 of the inverted F-type antenna 1 and the upper surface of the base portion 110.
  • the distance D ′ from the upper surface of the portion 110 can be reduced.
  • the inverted F-type antenna 1 is provided with a ground plane 11 that is its own ground, and is designed to exhibit the desired performance when there is no ground plane facing the radiating element 12 in the vicinity.
  • the loop antenna 2 does not have its own ground, and is designed to exhibit the expected performance when a ground surface facing the radiating element 21 exists in the vicinity. Therefore, the distance D between the upper surface of the base part 110 and the inverted F-type antenna 1 is required to be larger than a predetermined value, and the distance D ′ between the upper surface of the base part 110 and the loop antenna 2 is a predetermined value. Is required to be smaller.
  • the radiation element 12 of the inverted F type antenna 1 and the radiation element 21 of the loop antenna 2 will be arrange
  • the radiating element 12 of the inverted F-type antenna 1 and the radiating element 21 of the loop antenna 2 are arranged on the same plane (second plane).
  • S2 By disposing the antenna on the integrated antenna device 100, the integrated antenna device 100 can be lowered, and both the inverted F-type antenna 1 and the loop antenna 2 can exhibit their intended performance.
  • the integrated antenna device 100 may include additional configurations such as a radome 150, a spacer 160, a rubber base 170, and the like.
  • FIG. 21A is a perspective view of the radome 150
  • FIG. 21B is a perspective view of the spacer 160
  • FIG. 21C is a perspective view of the rubber base 170.
  • the rubber base 170 is a plate-like member placed on the base portion 110 (see FIG. 19) as shown in FIG. 21C, and the material thereof is rubber. A skirt portion protruding downward is provided on the outer edge of the rubber base 170. The base portion 110 is fitted into a space below the rubber base 170 surrounded by the skirt portion.
  • the circuit board 120 placed on the base part 110 with the rubber base 170, the circuit board 120 can be prevented from being exposed to rainwater.
  • the dipole antenna 3 and the like formed on the first antenna substrate 130 from being short-circuited with the circuit substrate 120.
  • the spacer 160 is a plate-like member interposed between the first antenna substrate 130 and the second antenna substrate 140, and the material thereof is a molded resin.
  • the spacer 160 separates the first antenna substrate 130 and the second antenna substrate 140 according to the thickness thereof.
  • the thickness of the spacer 160 is set to 5 mm.
  • the second antenna substrate 140 is separated from the first antenna substrate 130 by 5 mm.
  • the radome 150 is a ship-shaped dome-shaped member, and the material thereof is resin.
  • the material thereof is resin.
  • the inverted F-type antenna includes a ground plane disposed on the first plane and a radiation at least partially disposed on the second plane orthogonal to the first plane.
  • An inverted F-type antenna comprising an element and a short-circuit portion that short-circuits the ground plane and the radiating element, wherein the radiating element is a grounding portion extending from a root portion of the short-circuiting portion, and a tip is grounded
  • a grounding portion and an arm portion extending from a root portion of the short-circuit portion in a direction orthogonal to the ground plane and having an open end.
  • the ground plane has two cutouts extending in a direction away from the second plane, and a rectangular portion extending between the two cutouts in a direction approaching the second plane. And it is preferable that one feeding point is provided in the rectangular part whose longitudinal direction is orthogonal to the second plane.
  • the inverted F-type antenna it is preferable that a part of the radiating element is arranged on the first plane, and the other feeding point is provided in the part.
  • the radiating element includes a main portion whose longitudinal direction is parallel to a line of intersection between the first plane and the second plane, and the arm portion is one of the main portions. It is preferable that it extends in the direction orthogonal to the said ground plane from the edge part of this.
  • the radiating element includes another arm portion that extends from the other end portion of the main portion in a direction orthogonal to the ground plane and that has an open end. Is preferable.
  • the inverted F-type antenna it is preferable that at least a part of the other arm portion is meandered.
  • the radiating element preferably includes a short-circuit portion that short-circuits the intermediate portion of the other arm portion and the intermediate portion of the asserting portion.
  • the present invention can be suitably used, for example, as a 3G / LTE antenna mounted on an integrated antenna device.

Abstract

A ground plate (11) is positioned on a first plane (S1), and at least a portion of a radiating element (12) is positioned on a second plane (S2). The radiating element (12) is provided with: a grounding section (12c) that extends from a base portion of a short-circuit part (13); and an arm (12b) that extends from the base portion of the short-circuit part (13) in a direction perpendicular to the ground plate (11).

Description

逆F型アンテナInverted F type antenna
 本発明は、逆F型アンテナ、特に、統合アンテナ装置への搭載に適した逆F型アンテナに関する。 The present invention relates to an inverted-F antenna, and more particularly to an inverted-F antenna suitable for mounting on an integrated antenna device.
 無線通信の用途拡大に伴い、種々の周波数帯域で動作するアンテナが求められている。例えば、車載用アンテナとしては、FM/AM放送、DAB(Digital Audio Broadcast)等の地上デジタル放送、3G(3rd Generation:第3世代携帯電話)、LTE(Long Term Evolution)、GPS(Global Positioning System:全地球測位システム)、VICS(登録商標)(Vehicle Information and Communication System:道路交通情報通信システム)、ETC(Electronic Toll Collection:電子料金徴収システム)等の周波数帯域で動作するアンテナ等が求められている。 With the expansion of wireless communication applications, antennas that operate in various frequency bands are required. For example, as an in-vehicle antenna, terrestrial digital broadcasting such as FM / AM broadcasting, DAB (Digital Audio Broadcast), 3G (3rd generation mobile phone), LTE (Long Term Evolution), GPS (Global Positioning System): There is a need for antennas that operate in frequency bands such as the Global Positioning System, VICS (registered trademark) (Vehicle Information and Communication System), and ETC (Electronic Toll Collection). .
 従来、相異なる周波数帯域で動作するアンテナは、別体のアンテナ装置として実現されることが多かった。例えば、FM/AM放送用のアンテナは、ルーフトップに載せ置くホイップアンテナとして実現され、地上デジタル放送用のアンテナは、フロントガラスに貼り付けるフィルムアンテナとして実現されるといった具合である。 Conventionally, antennas that operate in different frequency bands are often realized as separate antenna devices. For example, an FM / AM broadcast antenna is realized as a whip antenna placed on a roof top, and a digital terrestrial broadcast antenna is realized as a film antenna attached to a windshield.
 しかし、自動車においてアンテナ装置を取り付け可能な部位は限られている。また、取り付けるアンテナ装置の個数が増えると、意匠が損なわれたり、取り付けコストが増大したりするといった問題を生じる。このような問題を回避するためには、統合アンテナ装置の使用が効果的である。ここで、統合アンテナ装置とは、相異なる周波数帯域で動作する複数のアンテナを備えたアンテナ装置のことを指す。 However, there are only a limited number of parts where an antenna device can be attached in an automobile. Further, when the number of antenna devices to be attached is increased, there arises a problem that the design is impaired or the attachment cost is increased. In order to avoid such a problem, it is effective to use an integrated antenna device. Here, the integrated antenna device refers to an antenna device including a plurality of antennas that operate in different frequency bands.
 このような統合アンテナ装置としては、例えば、特許文献1~5に記載のものなどが挙げられる。特許文献1に記載の統合アンテナ装置は、GPS用及びETC用の各アンテナを備えたものである。特許文献2に記載の統合アンテナ装置は、3G用及びGPS用の各アンテナを備えたものである。特許文献3に記載の統合アンテナ装置は、ETC用、GPS用、VICS(登録商標)用、電話用メイン、及び電話用サブの各アンテナを備えたものである。特許文献4に記載の統合アンテナ装置は、GPS用、ETC用、第1電話用、及び第2電話用の各アンテナを備えたものである。特許文献5に記載の統合アンテナ装置は、100kHz以上1GHz以下の帯域(FM/AM放送、DAB等の地上デジタル放送、VICS等)で動作するアンテナと、1GHz以上の帯域(GPS、衛星DAB等)で動作するアンテナとを備えたものである。 Examples of such an integrated antenna device include those described in Patent Documents 1 to 5. The integrated antenna device described in Patent Document 1 includes GPS and ETC antennas. The integrated antenna device described in Patent Document 2 includes antennas for 3G and GPS. The integrated antenna device described in Patent Document 3 includes antennas for ETC, GPS, VICS (registered trademark), telephone main, and telephone sub. The integrated antenna device described in Patent Document 4 includes antennas for GPS, ETC, first phone, and second phone. The integrated antenna device described in Patent Document 5 includes an antenna that operates in a band of 100 kHz to 1 GHz (FM / AM broadcasting, terrestrial digital broadcasting such as DAB, VICS, etc.) and a band of 1 GHz or more (GPS, satellite DAB, etc.) It is equipped with the antenna which operate | moves.
日本国公開特許公報「特開2007-158957号」(2007年 6月21日公開)Japanese Published Patent Publication “JP 2007-158957” (released June 21, 2007) 日本国公開特許公報「特開2009- 17116号」(2009年 1月22日公開)Japanese Published Patent Publication “JP 2009-17116” (released January 22, 2009) 日本国公開特許公報「特開2009-267765号」(2009年11月12日公開)Japanese Patent Publication “JP 2009-267765 A” (published on November 12, 2009) 日本国公開特許公報「特開2010- 81500号」(2010年 4月 8日公開)Japanese Published Patent Publication “JP 2010-81500” (published April 8, 2010) 米国特許6、396、447号明細書(2002年 5月28日登録)US Pat. No. 6,396,447 (registered on May 28, 2002)
 このような統合アンテナに搭載する3G/LTE用アンテナなどの電話用アンテナとしては、逆F型アンテナが有望である。特に、地板、放射素子、及び短絡部が同一の平面内に形成された平面逆F型アンテナは、基板上のパターンとして実現することが可能であり、統合アンテナへの搭載に適している。 An inverted F-type antenna is promising as a telephone antenna such as a 3G / LTE antenna mounted on such an integrated antenna. In particular, a planar inverted F-type antenna in which a ground plane, a radiating element, and a short-circuit portion are formed in the same plane can be realized as a pattern on a substrate and is suitable for mounting on an integrated antenna.
 しかしながら、従来の平面逆F型アンテナにおいては、地板、放射素子、及び短絡部を配置するために広いスペースを要するという問題があった。また、地板を流れる誘導電流によって形成される電磁界が放射素子を流れる電流により形成される電磁界を打ち消してしまうため、高い利得が得にくいという問題があった。 However, the conventional planar inverted F-type antenna has a problem that a large space is required to arrange the ground plane, the radiating element, and the short-circuit portion. In addition, since the electromagnetic field formed by the induced current flowing through the ground plane cancels the electromagnetic field formed by the current flowing through the radiating element, there is a problem that it is difficult to obtain a high gain.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、従来の平面逆F型アンテナが有している上記の問題を解消し、統合アンテナに搭載し易い逆F型アンテナを実現することにある。 The present invention has been made in view of the above problems, and its object is to solve the above-mentioned problems of conventional planar inverted-F antennas and to realize an inverted-F antenna that can be easily mounted on an integrated antenna. There is to do.
 上記課題を解決するために、本発明に係る逆F型アンテナは、第1の平面上に配置された地板と、上記第1の平面と交わる(例えば、直交する)第2の平面上に少なくとも一部分が配置された放射素子と、上記地板と上記放射素子とを短絡する短絡部とを備え、上記放射素子は、上記短絡部の付根部分から伸びる接地部であって、先端が接地された接地部と、上記短絡部の付根部分から上記地板と交わる(例えば、直交する)方向に伸びるアーム部であって、先端が開放されたアーム部とを備えている、ことを特徴とする。 In order to solve the above-described problem, an inverted F-type antenna according to the present invention includes at least a ground plane disposed on a first plane and a second plane that intersects (for example, is orthogonal to) the first plane. A radiating element partially disposed; and a short-circuit portion that short-circuits the ground plane and the radiating element, wherein the radiating element is a grounding portion extending from a root portion of the short-circuiting portion, and is grounded with a tip grounded And an arm portion extending in a direction intersecting (for example, orthogonal to) the ground plane from a root portion of the short-circuit portion, and having an open end.
 本発明に拠れば、平面逆F型アンテナより狭いスペースに配置することが可能であり、かつ、平面逆F型アンテナより高い利得が得られる逆F型アンテナを実現することができる。 According to the present invention, it is possible to realize an inverted F-type antenna that can be arranged in a narrower space than a planar inverted F-type antenna and that can obtain a higher gain than a planar inverted F-type antenna.
本発明の一実施形態に係る逆F型アンテナの基本構造を示す斜視図である。It is a perspective view which shows the basic structure of the inverted F type antenna which concerns on one Embodiment of this invention. 図1に示す逆F型アンテナの第1の具体例を示す展開図である。FIG. 3 is a development view showing a first specific example of the inverted F-type antenna shown in FIG. 1. 図2に示す逆F型アンテナのVSWR特性を示すグラフである。It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG. 図1に示す逆F型アンテナの第2の具体例を示す展開図である。FIG. 6 is a development view showing a second specific example of the inverted F-type antenna shown in FIG. 1. 図4に示す逆F型アンテナのVSWR特性を示すグラフである。It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG. 図1に示す逆F型アンテナの第3の具体例を示す展開図である。FIG. 6 is a development view showing a third specific example of the inverted F-type antenna shown in FIG. 1. 図6に示す逆F型アンテナのVSWR特性を示すグラフである。It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG. 図1に示す逆F型アンテナの第4の具体例を示す展開図である。FIG. 6 is a development view showing a fourth specific example of the inverted F-type antenna shown in FIG. 1. 図8に示す逆F型アンテナのVSWR特性を示すグラフである。It is a graph which shows the VSWR characteristic of the inverted F type antenna shown in FIG. 図8に示す逆F型アンテナの低周波側要求帯域における放射パターンを示すグラフである。(a)は、xy平面における利得の方位角依存性を示し、(b)は、zx平面における利得の仰俯角依存性を示し、(c)は、yz平面における利得の仰俯角依存性を示す。It is a graph which shows the radiation pattern in the low frequency side request | requirement band | band of the inverted F type antenna shown in FIG. (A) shows the azimuth angle dependence of the gain in the xy plane, (b) shows the elevation angle dependence of the gain in the zx plane, and (c) shows the elevation angle dependence of the gain in the yz plane. . 図8に示す逆F型アンテナの高周波側要求帯域における放射パターンを示すグラフである。(a)は、xy平面における利得の方位角依存性を示し、(b)は、zx平面における利得の仰俯角依存性を示し、(c)は、yz平面における利得の仰俯角依存性を示す。It is a graph which shows the radiation pattern in the high frequency side required zone | band of the inverted F type antenna shown in FIG. (A) shows the azimuth angle dependence of the gain in the xy plane, (b) shows the elevation angle dependence of the gain in the zx plane, and (c) shows the elevation angle dependence of the gain in the yz plane. . 図1に示す逆F型アンテナの第5の具体例を示す展開図である。FIG. 7 is a development view showing a fifth specific example of the inverted F-type antenna shown in FIG. 1. 図1に示す逆F型アンテナの第6の具体例を示す展開図である。FIG. 7 is a development view illustrating a sixth specific example of the inverted F-type antenna illustrated in FIG. 1. (a)は、図1に示す逆F型アンテナと同一の平面上に配置可能なループアンテナ2の構成を示す平面図である。(b)は、そのループアンテナが備える無給電素子群の等価回路である。(A) is a top view which shows the structure of the loop antenna 2 which can be arrange | positioned on the same plane as the inverted F type antenna shown in FIG. (B) is an equivalent circuit of a parasitic element group included in the loop antenna. 図14に示すループアンテナの放射パターンを示すグラフである。It is a graph which shows the radiation pattern of the loop antenna shown in FIG. 図14に示すループアンテナのVSWR特性を示すグラフである。It is a graph which shows the VSWR characteristic of the loop antenna shown in FIG. 図14に示すループアンテナの第1の変形例を示す平面図である。It is a top view which shows the 1st modification of the loop antenna shown in FIG. 図14に示すループアンテナの第2の変形例を示す平面図である。It is a top view which shows the 2nd modification of the loop antenna shown in FIG. 図1に示す逆F型アンテナを搭載した統合アンテナ装置の要部構成を示す分解斜視図及び斜視図である。It is the disassembled perspective view and perspective view which show the principal part structure of the integrated antenna apparatus carrying the inverted F type antenna shown in FIG. 図19に示す統合アンテナ装置が備えているベース部の構成を示す三面図である。FIG. 20 is a three-view diagram illustrating a configuration of a base portion included in the integrated antenna device illustrated in FIG. 19. 図19に示す統合アンテナ装置が備え得る付加的構成を示す斜視図である。(a)は、レドームの斜視図であり、(b)は、スペーサの斜視図であり、(c)は、ゴムベースの斜視図である。It is a perspective view which shows the additional structure which the integrated antenna apparatus shown in FIG. 19 may be equipped with. (A) is a perspective view of a radome, (b) is a perspective view of a spacer, (c) is a perspective view of a rubber base.
 〔逆F型アンテナ〕
 本発明の一実施形態に係る逆F型アンテナについて、図1~図13を参照して説明する。
[Inverted F type antenna]
An inverted F antenna according to an embodiment of the present invention will be described with reference to FIGS.
 なお、接地された面状導体である地板と、上記地板から離間した接地されていない線状又は帯状導体である放射素子とを備えたアンテナのことを、「モノポールアンテナ」という。また、上記モノポールアンテナにおいて、短絡部を更に備え、上記短絡部によって上記地板と上記放射素子とが短絡されているもののことを、「逆Fアンテナ」という。 An antenna including a ground plane that is a grounded planar conductor and a radiating element that is a non-grounded linear or strip-like conductor that is separated from the ground plane is referred to as a “monopole antenna”. The monopole antenna further including a short-circuit portion, and the ground plate and the radiating element are short-circuited by the short-circuit portion is referred to as an “inverted F antenna”.
 本実施形態に係るアンテナは、後述するように地板、放射素子、及び短絡部を備えている点で上記逆Fアンテナと類似する。このため、本実施形態に係るアンテナのことを、以下、「逆F型アンテナ」と記載する。ただし、本実施形態に係るアンテナは、後述するように放射素子が接地されている点で上記逆Fアンテナと相違する。本実施形態に係るアンテナのことを「逆Fアンテナ」と記載せずに、「逆F『型』アンテナ」と記載しているのは、この点に鑑みてのことである。 The antenna according to the present embodiment is similar to the inverted F antenna in that it includes a ground plane, a radiating element, and a short-circuit portion as will be described later. For this reason, the antenna according to this embodiment is hereinafter referred to as an “inverted F-type antenna”. However, the antenna according to the present embodiment is different from the inverted F antenna in that the radiating element is grounded as described later. It is in view of this point that the antenna according to the present embodiment is described as an “inverted F“ type ”antenna” without being described as an “inverted F antenna”.
 《逆F型アンテナの基本構成》
 まず、本実施形態に係る逆F型アンテナ1の基本構成について、図1を参照して説明する。
<< Basic configuration of inverted F antenna >>
First, the basic configuration of the inverted F-type antenna 1 according to the present embodiment will be described with reference to FIG.
 図1は、逆F型アンテナ1の基本構成を示す斜視図である。なお、逆F型アンテナ1は、単一の平面上に展開可能な2次元アンテナであるが、図1に示すように折り曲げた状態での使用を前提に設計されたものである。 FIG. 1 is a perspective view showing a basic configuration of an inverted F-type antenna 1. The inverted F-type antenna 1 is a two-dimensional antenna that can be deployed on a single plane, but is designed on the assumption that it is used in a folded state as shown in FIG.
 逆F型アンテナ1は、図1に示すように、地板11、放射素子12、及び短絡部13を備えている。本実施形態において、地板11、放射素子12、及び短絡部13は、1枚の導体箔(例えば、銅箔)により一体成形されており、例えば、他のループアンテナ2と共にプリント基板上に実装される。この場合、逆F型アンテナ1が実装されたプリント基板を折り曲げることによって、図1に示す逆F型アンテナ1の立体構造が実現される。 As shown in FIG. 1, the inverted F-type antenna 1 includes a ground plane 11, a radiating element 12, and a short-circuit portion 13. In the present embodiment, the ground plane 11, the radiating element 12, and the short-circuit portion 13 are integrally formed of one conductor foil (for example, copper foil), and are mounted on a printed board together with the other loop antenna 2, for example. The In this case, the three-dimensional structure of the inverted F-type antenna 1 shown in FIG. 1 is realized by bending the printed circuit board on which the inverted F-type antenna 1 is mounted.
 また、逆F型アンテナ1は、少なくとも2つの周波数帯域において動作する2周波アンテナである。具体的には、3G向け周波数帯域の何れかと、LTE向け周波数帯域の何れかとにおいて動作する3G/LTE用アンテナである。より具体的には、761MHz以上960MHz以下の周波数帯域(以下「低周波側要求帯域」と記載)と、1710MHz以上2130MHz以下の周波数帯域(以下「高周波側要求帯域」と記載)とにおいて動作する3G/LTE用アンテナである。 The inverted F-type antenna 1 is a dual frequency antenna that operates in at least two frequency bands. Specifically, it is a 3G / LTE antenna that operates in one of the 3G frequency bands and one of the LTE frequency bands. More specifically, 3G that operates in a frequency band of 761 MHz to 960 MHz (hereinafter referred to as “low frequency side required band”) and a frequency band of 1710 MHz to 2130 MHz (hereinafter referred to as “high frequency side required band”). / LTE antenna.
 以下、逆F型アンテナ1の各部の特徴について、図1を参照しながら説明する。 Hereinafter, characteristics of each part of the inverted F-type antenna 1 will be described with reference to FIG.
 地板11は、面状導体により構成される。本実施形態においては、長方形状の導体箔を第1の平面S1(図1においてzx面に平行な平面)上に配置し、これを地板11として用いる。なお、本実施形態においては、地板11を第1の平面S1上に配置する際に、その長手方向がx軸と平行になるように地板11の向きを定めている。これにより、逆F型アンテナ1の低姿勢化(z軸方向のサイズの縮小)が図られる。 The ground plane 11 is composed of a planar conductor. In the present embodiment, a rectangular conductor foil is disposed on the first plane S <b> 1 (a plane parallel to the zx plane in FIG. 1), and this is used as the ground plane 11. In the present embodiment, when the ground plane 11 is arranged on the first plane S1, the orientation of the ground plane 11 is determined so that the longitudinal direction thereof is parallel to the x axis. As a result, the posture of the inverted F-type antenna 1 is reduced (the size in the z-axis direction is reduced).
 地板11において特筆すべき点は、z軸正方向側の長辺からz軸負方向に向かって伸びる2つの切欠11a~11bが形成されており、これら2つの切欠11a~11bの間をz軸正方向に向かって伸びる矩形部11cの先端に給電点Pが設けられていることである。後述するように、放射素子12の主要部12aは、その長手方向がx軸と平行になるように向きが定められているので、地板11の矩形部11cの長手方向は、放射素子12の主要部12aの長手方向と直交することになる。 A notable point in the base plate 11 is that two notches 11a to 11b extending in the z-axis negative direction from the longer side on the z-axis positive direction side are formed, and the z-axis is formed between these two notches 11a to 11b. The feed point P is provided at the tip of the rectangular portion 11c extending in the positive direction. As will be described later, since the main portion 12a of the radiating element 12 is oriented so that its longitudinal direction is parallel to the x-axis, the longitudinal direction of the rectangular portion 11c of the ground plane 11 is the main portion of the radiating element 12. It will be orthogonal to the longitudinal direction of the portion 12a.
 このように、長手方向がz軸と平行になる矩形部11cに給電点Pを設けることによって、給電点Pの近傍において地板11を流れる電流の方向がz軸方向に規制される。このように、給電点Pの近傍において地板11を流れる電流の方向をz軸方向に規制することによって、放射素子12を流れる電流により生成される電磁界が地板11を流れる電流により生成される電磁界に打ち消されることに起因する利得の低下を抑制することができる。 Thus, by providing the feeding point P to the rectangular portion 11c whose longitudinal direction is parallel to the z-axis, the direction of the current flowing through the ground plane 11 in the vicinity of the feeding point P is restricted to the z-axis direction. Thus, by restricting the direction of the current flowing through the ground plane 11 in the vicinity of the feeding point P to the z-axis direction, the electromagnetic field generated by the current flowing through the radiating element 12 is generated by the current flowing through the ground plane 11. It is possible to suppress a decrease in gain due to cancellation by the field.
 放射素子12は、線状又は帯状導体により構成される。本実施形態においては、帯状の導体箔を、第1の平面S1と直交する第2の平面S2(図1においてxy面に平行な平面)上に配置し、これを放射素子12の主要部12aとして用いる。なお、本実施形態においては、上述したように、放射素子12の主要部12aを第2の平面S2上に配置する際に、その長手方向がx軸と平行になるように放射素子12の主要部12aの向きを定めている。 The radiating element 12 is constituted by a linear or strip conductor. In the present embodiment, the strip-shaped conductor foil is disposed on a second plane S2 (a plane parallel to the xy plane in FIG. 1) orthogonal to the first plane S1, and this is disposed on the main portion 12a of the radiating element 12. Used as In the present embodiment, as described above, when the main portion 12a of the radiating element 12 is arranged on the second plane S2, the main direction of the radiating element 12 is set so that its longitudinal direction is parallel to the x-axis. The direction of the portion 12a is determined.
 なお、本実施形態においては、放射素子12を折り曲げることによって、放射素子12の一部分を地板11と共に第1の平面S1上に配置し、当該部分に給電点Qを設ける構成を採用している。このように、同軸ケーブルの内側導体が接続される給電点Qを、同軸ケーブルの外側導体が接続される給電点Pと同一の平面上に配置することによって、同軸ケーブルに掛かるストレスが軽減される。 In the present embodiment, a configuration in which a part of the radiating element 12 is arranged on the first plane S1 together with the ground plane 11 by bending the radiating element 12 and a feeding point Q is provided in the part is adopted. Thus, by placing the feeding point Q to which the inner conductor of the coaxial cable is connected on the same plane as the feeding point P to which the outer conductor of the coaxial cable is connected, the stress applied to the coaxial cable is reduced. .
 放射素子12において特筆すべき点は、以下に説明するアーム部12bと接地部12cとを備えていることである。なお、本実施形態においては、主要部12a、アーム部12b、及び接地部12cを1枚の導体箔により一体成形しているが、これに限定されるものではない。すなわち、個別に形成された主要部12a、アーム部12b、及び接地部12cを互いに接続することによって、放射素子12を実現しても構わない。 The point which should be noted in the radiating element 12 is that it includes an arm portion 12b and a grounding portion 12c described below. In the present embodiment, the main portion 12a, the arm portion 12b, and the grounding portion 12c are integrally formed from one conductor foil, but the present invention is not limited to this. That is, the radiation element 12 may be realized by connecting the main part 12a, the arm part 12b, and the grounding part 12c that are individually formed.
 アーム部12bは、主要部12aから伸びる線状又は帯状の導体であり、主要部12a側と反対側の端部が開放されたものである。本実施形態においては、主要部12aのx軸負方向側の端部からy軸正方向に直線的に伸びる帯状導体を、第1の平面S1及び第2の平面S2の双方と直交する第3の平面S3(図1においてyz面と平行な平面)上に配置し、これをアーム部12bとして用いる。逆F型アンテナ1においては、このようなアーム部12bを設けることによって、低周波側要求帯域内に共振点を持たせている。 The arm portion 12b is a linear or strip-like conductor extending from the main portion 12a, and has an open end opposite to the main portion 12a side. In the present embodiment, the strip-shaped conductor that linearly extends in the y-axis positive direction from the end on the x-axis negative direction side of the main portion 12a is orthogonal to both the first plane S1 and the second plane S2. On the plane S3 (a plane parallel to the yz plane in FIG. 1) and used as the arm portion 12b. In the inverted F-type antenna 1, by providing such an arm portion 12b, a resonance point is provided in the low frequency side required band.
 アーム部12bに関して注目すべき第1の点は、地板11が配置される第1の平面S1と直交する方向に直線的に伸びていることである。これにより、アーム部12bによって作り出される共振周波数帯域が広くなる。 The first point to be noted regarding the arm portion 12b is that the arm portion 12b extends linearly in a direction orthogonal to the first plane S1 on which the ground plane 11 is disposed. Thereby, the resonance frequency band produced by the arm part 12b becomes wide.
 アーム部12bに関して注目すべき第2の点は、第2の平面S2上にではなく第3の平面S3上に配置されていることである。これにより、第2の平面S2において他のループアンテナ2を配置するためのスペースを、アーム部12bとの干渉を避けるために縮小する必要がなくなる。 The second point to be noted regarding the arm portion 12b is that it is arranged not on the second plane S2 but on the third plane S3. Thereby, it is not necessary to reduce the space for arranging another loop antenna 2 on the second plane S2 in order to avoid interference with the arm portion 12b.
 接地部12cは、主要部12aから伸びる線状又は帯状の導体であり、主要部12a側と反対側の端部が接地された(グランドに接続された)ものである。本実施形態においては、主要部12aのx軸負方向側の端部(後述する短絡部13の付根)からz軸負方向に伸びる帯状導体を第3の面S3上に配置し、これを接地部12cとして用いる。このような接地部12cを設けることによって、低姿勢化(z軸方向のサイズの縮小)が図られた逆F型アンテナ1であっても、十分な強度の電磁波を放射することが可能になる。 The grounding part 12c is a linear or strip-like conductor extending from the main part 12a, and has an end opposite to the main part 12a side grounded (connected to the ground). In the present embodiment, a strip-like conductor extending in the negative z-axis direction from the end on the negative x-axis side of the main portion 12a (the root of the short-circuit portion 13 described later) is disposed on the third surface S3 and grounded. Used as part 12c. By providing such a grounding portion 12c, it becomes possible to radiate electromagnetic waves with sufficient strength even with the inverted F-type antenna 1 in which the posture is lowered (reduction in size in the z-axis direction). .
 短絡部13は、逆F型アンテナ1において地板11と放射素子12とを短絡するための部位であり、線状又は帯状の導体により構成される。本実施形態においては、主要部12aのx軸負方向側の端部(上述した接地部12cの付根)から地板11のx軸負方向側の端部へと到る帯状の導体箔を第1の平面S1上に配置し、これを短絡部13として用いる。逆F型アンテナ1においては、このような短絡部13を設けることによって、主要部12aのx軸負方向側の端部の電位を0Vに制御している。 The short-circuit portion 13 is a portion for short-circuiting the ground plane 11 and the radiating element 12 in the inverted F-type antenna 1 and is constituted by a linear or strip-shaped conductor. In the present embodiment, the strip-shaped conductor foil that extends from the end portion of the main portion 12a on the negative x-axis side (the root of the grounding portion 12c described above) to the end portion of the ground plane 11 on the negative x-axis direction is the first. On the plane S <b> 1, and this is used as the short-circuit portion 13. In the inverted F-type antenna 1, by providing such a short-circuit portion 13, the potential of the end portion on the x-axis negative direction side of the main portion 12 a is controlled to 0V.
 放射素子12における給電点Qの位置は、標準的な逆Fアンテナの設計手法に従って定められている。すなわち、短絡部13の付根(本実施形態においては主要部12aのx軸負方向側の端部)の電位が0Vに制御されるという仮定の下で、逆F型アンテナ1の入力インピーダンスが同軸ケーブルの出力インピーダンスと整合するように定められている。しかしながら、主要部12aのx軸方向側の端部に短絡部13を接続するだけでは、当該端部におけるリアクタンスの変動を十分に抑え込むことができない。このため、同軸ケーブルとのインピーダンス整合を保証することができない。そこで、本実施形態においては、主要部12aのx軸負方向側の端部に接地部12cを接続する構成を採用している。これにより、放射素子12全体の共振周波数帯域を拡大させることができるので、同軸ケーブルとのインピーダンス整合が保証されることになる。 The position of the feeding point Q in the radiating element 12 is determined according to a standard inverse F antenna design method. That is, the input impedance of the inverted F-type antenna 1 is coaxial under the assumption that the potential of the root of the short-circuit portion 13 (in this embodiment, the end of the main portion 12a on the x-axis negative direction side) is controlled to 0V. It is determined to match the output impedance of the cable. However, simply connecting the short-circuit portion 13 to the end portion of the main portion 12a on the x-axis direction side cannot sufficiently suppress the variation in reactance at the end portion. For this reason, impedance matching with a coaxial cable cannot be guaranteed. Therefore, in this embodiment, a configuration in which the grounding portion 12c is connected to the end portion of the main portion 12a on the x-axis negative direction side is adopted. Thereby, since the resonance frequency band of the whole radiation element 12 can be expanded, impedance matching with a coaxial cable is guaranteed.
 《第1の具体例》
 本実施形態に係る逆F型アンテナ1の第1の具体例について、図2~図3を参照して説明する。
First specific example
A first specific example of the inverted F-type antenna 1 according to the present embodiment will be described with reference to FIGS.
 図2は、逆F型アンテナ1の第1の具体例を示す展開図である。本具体例に係る逆F型アンテナ1においては、直線L及び直線Mを稜線とするように折り曲げることによって、図1に示す3次元形状が実現される。逆F型アンテナ1を構成する地板11、放射素子12、及び短絡部13の特徴については、図1を参照して既に説明したとおりである。 FIG. 2 is a development view showing a first specific example of the inverted F-type antenna 1. In the inverted F-type antenna 1 according to this example, the three-dimensional shape shown in FIG. 1 is realized by bending the straight line L and the straight line M so as to have ridgelines. The features of the ground plane 11, the radiating element 12, and the short-circuit portion 13 constituting the inverted F-type antenna 1 are as already described with reference to FIG.
 なお、地板11としては、長辺35mm、短辺11mmの長方形の導体箔に、幅5mm、長さ9mmの切欠11a~11bを形成したものを利用する。2つの切欠11a~11bの間隔は、矩形部11cの幅が4mmとなるように決められる。また、放射素子12に関して、主要部12aの長さは55mmとし、アーム部12bの長さは63mmとする。 As the ground plane 11, a rectangular conductor foil having a long side of 35 mm and a short side of 11 mm formed with notches 11a to 11b having a width of 5 mm and a length of 9 mm is used. The interval between the two notches 11a to 11b is determined so that the width of the rectangular portion 11c is 4 mm. Regarding the radiating element 12, the length of the main portion 12a is 55 mm, and the length of the arm portion 12b is 63 mm.
 なお、直線Lを稜線とするように逆F型アンテナ1を折り曲げる構成に代えて、直線L’を稜線とするように逆F型アンテナ1を折り曲げる構成を採用してもよい。前者の構成を採用した場合、放射素子12の主要部12aが第1の平面S1(図1参照)及び第2の平面S2(図1参照)の双方に配置されるのに対して、後者の構成を採用した場合、放射素子12の主要部12aが第2の平面S2のみに配置される。 In addition, instead of the configuration in which the inverted F-type antenna 1 is bent so that the straight line L is the ridgeline, a configuration in which the inverted F-type antenna 1 is bent so that the straight line L ′ is the ridgeline may be employed. When the former configuration is adopted, the main portion 12a of the radiating element 12 is disposed on both the first plane S1 (see FIG. 1) and the second plane S2 (see FIG. 1), whereas the latter is the latter. When the configuration is adopted, the main part 12a of the radiating element 12 is arranged only on the second plane S2.
 また、直線Mを稜線とするように逆F型アンテナ1を折り曲げる構成に代えて、直線M’を稜線とするように逆F型アンテナ1を折り曲げる構成を採用してもよい。前者の構成を採用した場合、放射素子12のアーム部12bが第3の平面S3(図1参照)に配置されるのに対して、後者の構成を採用した場合、放射素子12のアーム部12bが第2の平面S2に配置される。 Further, instead of the configuration in which the inverted F-type antenna 1 is bent so that the straight line M is the ridgeline, a configuration in which the inverted F-type antenna 1 is bent so that the straight line M ′ is the ridgeline may be employed. When the former configuration is adopted, the arm portion 12b of the radiating element 12 is arranged on the third plane S3 (see FIG. 1), whereas when the latter configuration is adopted, the arm portion 12b of the radiating element 12 is arranged. Is arranged on the second plane S2.
 図3は、本具体例に係る逆F型アンテナ1のVSWR特性を示すグラフである。図3に示すグラフからは、低周波側要求帯域内に共振点が形成されていること、及び、低周波側要求帯域及び高周波側要求帯域の双方においてVSWRが4以下となる領域が形成されていることが読み取れる。 FIG. 3 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. From the graph shown in FIG. 3, a resonance point is formed in the low frequency side required band, and a region where VSWR is 4 or less is formed in both the low frequency side required band and the high frequency side required band. I can read that
 このように、低周波側要求帯域内に共振点が形成されるのは、放射素子12にアーム部12bを設けたからである。また、低周波側要求帯域及び高周波側要求帯域の双方においてVSWRが4以下となる領域が形成されるのは、放射素子12に接地部12cを設けたことによって、当該領域におけるインピーダンス整合が図られたからである。 The reason why the resonance point is formed in the low frequency side required band is that the radiating element 12 is provided with the arm portion 12b. In addition, the region where the VSWR is 4 or less is formed in both the low-frequency side required band and the high-frequency side required band because the radiating element 12 is provided with the grounding portion 12c, thereby achieving impedance matching in the region. This is because the.
 《第2の具体例》
 本実施形態に係る逆F型アンテナ1の第2の具体例について、図4~図5を参照して説明する。
<< Second Example >>
A second specific example of the inverted F-type antenna 1 according to the present embodiment will be described with reference to FIGS.
 図4は、逆F型アンテナ1の第2の具体例を示す展開図である。第1の具体例に係る逆F型アンテナ1からの変更点は、図4に示すように、放射素子12にアーム部12dを付加した点である。 FIG. 4 is a development view showing a second specific example of the inverted F-type antenna 1. The change from the inverted F-type antenna 1 according to the first specific example is that an arm portion 12d is added to the radiating element 12 as shown in FIG.
 ここで、アーム部12dは、主要部12aから伸びる線状又は帯状の導体であり、主要部12a側と反対側の端部が開放されたものである。本具体例においては、主要部12aのx軸正方向側の端部からy軸正方向に直線的に伸びる帯状導体を、第2の平面S2(図1参照)上に配置し、これをアーム部12dとして用いる。 Here, the arm portion 12d is a linear or strip-like conductor extending from the main portion 12a, and has an open end opposite to the main portion 12a side. In this specific example, a strip-like conductor extending linearly in the y-axis positive direction from the end on the x-axis positive direction side of the main portion 12a is disposed on the second plane S2 (see FIG. 1), and this is disposed on the arm. Used as part 12d.
 図5は、本具体例に係る逆F型アンテナ1のVSWR特性を示すグラフである。図5に示されているように、放射素子12にアーム部12dを付加することによって、低周波側要求帯域に新たな共振点が生じる。これにより、低周波側要求帯域における動作帯域が拡大する。 FIG. 5 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. As shown in FIG. 5, by adding the arm portion 12d to the radiating element 12, a new resonance point is generated in the low frequency side required band. Thereby, the operation band in the low frequency side request band is expanded.
 《第3の具体例》
 本実施形態に係る逆F型アンテナ1の第3の具体例について、図6~図7を参照して説明する。
<Third example>
A third specific example of the inverted-F antenna 1 according to this embodiment will be described with reference to FIGS.
 図6は、逆F型アンテナ1の第3の具体例を示す展開図である。第2の具体例に係る逆F型アンテナ1からの変更点は、図6に示すように、アーム部12dの一部をメアンダ化した点である。 FIG. 6 is a development view showing a third specific example of the inverted F-type antenna 1. The change from the inverted F-type antenna 1 according to the second specific example is that a part of the arm portion 12d is meandered as shown in FIG.
 本具体例においては、アーム部12dの一部をコの字型に折り曲げ、これをメアンダ部12d1としている。アーム部12dの配置に要するスペースを拡大する必要が生じないよう、メアンダ部12d1は、アーム部12dのx軸負方向側に形成される。 In this specific example, a part of the arm portion 12d is bent into a U shape, and this is used as a meander portion 12d1. The meander part 12d1 is formed on the x-axis negative direction side of the arm part 12d so that it is not necessary to enlarge the space required for the arrangement of the arm part 12d.
 図7は、本具体例に係る逆F型アンテナ1のVSWR特性を示すグラフである。図7に示されているように、アーム部12dの一部をメアンダ化することによって、高周波側要求帯域に新たな共振点が生じる。これにより、高周波要求帯域における動作帯域が拡大する。 FIG. 7 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. As shown in FIG. 7, a new resonance point is generated in the high frequency side required band by making a part of the arm portion 12d meander. Thereby, the operation band in the high frequency request band is expanded.
 《第4の具体例》
 本実施形態に係る逆F型アンテナ1の第4の具体例について、図8~図11を参照して説明する。
<< Fourth Example >>
A fourth specific example of the inverted F-type antenna 1 according to this embodiment will be described with reference to FIGS.
 図8は、逆F型アンテナ1の第4の具体例を示す展開図である。第3の具体例に係る逆F型アンテナ1からの変更点は、主要部12aの中間部とアーム部12dの中間部とを短絡する短絡部12eを付加した点である。 FIG. 8 is a development view showing a fourth specific example of the inverted F-type antenna 1. The change from the inverted F-type antenna 1 according to the third specific example is that a short-circuit portion 12e for short-circuiting the intermediate portion of the main portion 12a and the intermediate portion of the arm portion 12d is added.
 本具体例における短絡部12eは、主要部12aの中間部からy軸正方向に伸びる第1の直線部12e1と、この第1の直線部12e1の先端からx軸正方向に伸び、アーム部12dの中間部に到る第2の直線部12e2とを備えている。これにより、給電点Qからアーム部12dの先端に到る電流路に、これらの直線部12e1~12e2を通る新たな電流路が追加される。また、短絡部12eは、第1の直線部12e1の中間部からx軸正方向に伸びる第3の直線部12e3と、この第3の直線部12e3の中間部からy軸負方向に伸び、主要部12aに到る第4の直線部12e4とを更に備えている。これにより、給電点Qからアーム部12dの先端に到る電流路に、これらの直線部12e3~12e4を通る新たな電流路が追加される。 The short-circuit portion 12e in this specific example includes a first straight portion 12e1 extending in the y-axis positive direction from the intermediate portion of the main portion 12a, and an arm portion 12d extending from the tip of the first straight portion 12e1 in the x-axis positive direction. And a second straight line portion 12e2 that reaches the middle portion. As a result, a new current path that passes through these linear portions 12e1 to 12e2 is added to the current path from the feeding point Q to the tip of the arm portion 12d. Further, the short-circuit portion 12e extends from the intermediate portion of the first straight portion 12e1 in the x-axis positive direction, and extends from the intermediate portion of the third straight portion 12e3 in the y-axis negative direction. And a fourth straight part 12e4 reaching the part 12a. As a result, a new current path that passes through these linear portions 12e3 to 12e4 is added to the current path from the feeding point Q to the tip of the arm portion 12d.
 図9は、本具体例に係る逆F型アンテナ1のVSWR特性を示すグラフである。図9に示されているように、放射素子12に短絡部12eを付加することによって、高周波側要求帯域に新たな共振点が生じる。これにより、高周波要求帯域における動作帯域が更に拡大する。 FIG. 9 is a graph showing the VSWR characteristics of the inverted F-type antenna 1 according to this example. As shown in FIG. 9, by adding a short-circuit portion 12 e to the radiating element 12, a new resonance point is generated in the high frequency side required band. Thereby, the operation band in the high frequency request band is further expanded.
 図10は、低周波側要求帯域(具体的には850MHz)における本具体例に係る逆F型アンテナ1の放射パターンを示すグラフである。(a)は、xy平面における利得の方位角(φ)依存性を示し、(b)は、zx平面における利得の仰俯角(θ)依存性を示し、(c)は、yz平面における利得の仰俯角(θ)依存性を示す。図10に示されたとおり、本具体例に係る逆F型アンテナ1は、低周波側要求帯域において方位角に拠らず上半空間において高い利得が得られる。 FIG. 10 is a graph showing a radiation pattern of the inverted F antenna 1 according to this specific example in the low frequency side required band (specifically, 850 MHz). (A) shows the azimuth angle (φ) dependence of the gain in the xy plane, (b) shows the elevation angle (θ) dependence of the gain in the zx plane, and (c) shows the gain in the yz plane. The elevation angle (θ) dependence is shown. As shown in FIG. 10, the inverted F-type antenna 1 according to this specific example can obtain a high gain in the upper half space regardless of the azimuth angle in the low frequency side required band.
 図11は、高周波側要求帯域(具体的には1800MHz)における本具体例に係る逆F型アンテナ1の放射パターンを示すグラフである。(a)は、xy平面における利得の方位角(φ)依存性を示し、(b)は、zx平面における利得の仰俯角(θ)依存性を示し、(c)は、yz平面における利得の仰俯角(θ)依存性を示す。図11に示されたとおり、本具体例に係る逆F型アンテナ1は、高周波側要求帯域においても方位角に拠らず上半空間において高い利得が得られる。 FIG. 11 is a graph showing a radiation pattern of the inverted F-type antenna 1 according to this example in the high frequency side required band (specifically, 1800 MHz). (A) shows the azimuth angle (φ) dependence of the gain in the xy plane, (b) shows the elevation angle (θ) dependence of the gain in the zx plane, and (c) shows the gain in the yz plane. The elevation angle (θ) dependence is shown. As shown in FIG. 11, the inverted F-type antenna 1 according to this specific example can obtain a high gain in the upper half space regardless of the azimuth angle even in the high frequency side required band.
 図10~図11に示された本具体例に係る逆F型アンテナ1の特性は、その向きが時々刻々変化する自動車に搭載する3G/LTE用アンテナにおいて、極めて有利なものである。 The characteristics of the inverted F-type antenna 1 according to this specific example shown in FIGS. 10 to 11 are extremely advantageous in a 3G / LTE antenna mounted on a car whose direction changes every moment.
 《その他の具体例》
 なお、本実施形態に係る逆F型アンテナ1は、図12に示す形態や図13に示す形態などに変形することも可能である。
《Other examples》
Note that the inverted F-type antenna 1 according to this embodiment can be modified to the form shown in FIG. 12, the form shown in FIG.
 図12に示す第5の具体例は、図4に示す第1の具体例に、主要部12aの中間部とアーム部12dの中間部とを短絡する短絡部12f1と、アーム部12dの中間部から伸びる第1の分枝12f2と、主要部12aの中間部から伸びる第2の分枝12f3とを付加したものである。 The fifth specific example shown in FIG. 12 is similar to the first specific example shown in FIG. 4 in that the short-circuit portion 12f1 that short-circuits the intermediate portion of the main portion 12a and the intermediate portion of the arm portion 12d and the intermediate portion of the arm portion 12d. And a second branch 12f3 extending from the middle part of the main part 12a.
 図13に示す第6の具体例は、図4に示す第1の具体例に、主要部12aの中間部とアーム部12dの中間部とを短絡する短絡部12f1と、主要部12aの中間部から伸びる第2の分枝12f3とを付加したものである。 The sixth specific example shown in FIG. 13 is similar to the first specific example shown in FIG. 4 in that the short-circuit portion 12f1 that short-circuits the intermediate portion of the main portion 12a and the intermediate portion of the arm portion 12d, and the intermediate portion of the main portion 12a. And a second branch 12f3 extending from.
 第5~第6の具体例に係る逆F型アンテナ1においても、第1~第4の具体例に係る逆F型アンテナ1と同様、3G/LTE用アンテナとして良好な特性が得られる。 In the inverted F-type antenna 1 according to the fifth to sixth specific examples, as with the inverted F-type antenna 1 according to the first to fourth specific examples, good characteristics as a 3G / LTE antenna can be obtained.
 〔ループアンテナ〕
 本実施形態に係る逆F型アンテナ1と同一の平面上に配置することが可能なループアンテナ2について、図14~図18を参照して説明する。
[Loop antenna]
A loop antenna 2 that can be arranged on the same plane as the inverted F-type antenna 1 according to the present embodiment will be described with reference to FIGS.
 《ループアンテナの構成》
 まず、ループアンテナ2の構成について、図14を参照して説明する。図14(a)は、ループアンテナ2の構成を示す平面図である。図14(b)は、ループアンテナ2が備えている無給電素子24~25の等価回路を示す回路図である。
<Configuration of loop antenna>
First, the configuration of the loop antenna 2 will be described with reference to FIG. FIG. 14A is a plan view showing the configuration of the loop antenna 2. FIG. 14B is a circuit diagram showing an equivalent circuit of the parasitic elements 24 to 25 included in the loop antenna 2.
 ループアンテナ2は、図14に示すように、放射素子21と、1対の給電部22a~22bと、1対の短絡部23a~23bと、第1の無給電素子24と、第2の無給電素子25とを備えている。本実施形態において、放射素子21、給電部22a~22b、及び短絡部23a~23bは、1枚の導体箔(例えば、銅箔)により一体成形されている。また、第1の無給電素子24は、放射素子21等を構成する導体箔から孤立した他の導体箔により構成されている。また、第2の無給電素子25は、放射素子21等を構成する導体箔からも第1の無給電素子24を構成する導体箔からも孤立した更に他の導体箔により構成されている。 As shown in FIG. 14, the loop antenna 2 includes a radiating element 21, a pair of feeding portions 22a to 22b, a pair of short-circuiting portions 23a to 23b, a first parasitic element 24, and a second parasitic element. And a power feeding element 25. In the present embodiment, the radiating element 21, the power feeding portions 22a to 22b, and the short-circuit portions 23a to 23b are integrally formed from a single conductor foil (for example, copper foil). The first parasitic element 24 is composed of another conductor foil that is isolated from the conductor foil constituting the radiating element 21 and the like. Further, the second parasitic element 25 is composed of another conductive foil that is isolated from the conductive foil that forms the radiating element 21 and the conductive foil that forms the first parasitic element 24.
 放射素子21は、閉曲線上に配置された線状又は帯状導体により構成される。本実施形態においては、短軸45mm、長軸52mmの楕円上に配置された幅1mmの帯状の導体箔(例えば、銅箔)を放射素子21として用いる。放射素子21の一方の端部21aは、上記楕円の中心から0時方向に伸びる直線を介して、放射素子21の他方の端部21bと対向している。 The radiating element 21 is composed of a linear or strip conductor arranged on a closed curve. In the present embodiment, a strip-shaped conductor foil (for example, a copper foil) having a width of 1 mm arranged on an ellipse having a minor axis of 45 mm and a major axis of 52 mm is used as the radiating element 21. One end portion 21a of the radiating element 21 faces the other end portion 21b of the radiating element 21 through a straight line extending in the 0 o'clock direction from the center of the ellipse.
 給電部22aは、放射素子21の一方の端部21aから上記楕円の中心付近に至る線分上に配置された線状又は帯状導体である。本実施形態においては、幅1mmの帯状の導体箔を給電部22aとして用いる。給電部22aの先端には、同軸ケーブルの外側導体が接続される給電点Pが設けられる。したがって、放射素子21の一方の端部21aは、この給電部22aを介して同軸ケーブルの外側導体と接続されることになる。 The power feeding part 22a is a linear or strip-like conductor arranged on a line segment extending from one end 21a of the radiating element 21 to the vicinity of the center of the ellipse. In the present embodiment, a strip-shaped conductor foil having a width of 1 mm is used as the power feeding portion 22a. A feeding point P to which the outer conductor of the coaxial cable is connected is provided at the tip of the feeding part 22a. Therefore, one end portion 21a of the radiating element 21 is connected to the outer conductor of the coaxial cable via the power feeding portion 22a.
 給電部22bは、放射素子21の他方の端部21bから上記楕円の中心付近に至る線分上に配置された線状又は帯状導体である。本実施形態においては、幅1mmの帯状の導体箔を給電部22bとして用いる。給電部22bの先端には、同軸ケーブルの内側導体が接続される給電点Qが設けられる。したがって、放射素子21の他方の端部21bは、この給電部22bを介して同軸ケーブルの内側導体と接続されることになる。 The feeding part 22b is a linear or strip-like conductor arranged on a line segment from the other end 21b of the radiating element 21 to the vicinity of the center of the ellipse. In the present embodiment, a strip-shaped conductor foil having a width of 1 mm is used as the power feeding portion 22b. A feeding point Q to which the inner conductor of the coaxial cable is connected is provided at the tip of the feeding part 22b. Therefore, the other end portion 21b of the radiating element 21 is connected to the inner conductor of the coaxial cable via the feeding portion 22b.
 短絡部23aは、上記楕円の中心から見て9時方向に位置する放射素子21上の点21cと、給電点Pとを短絡するための構成である。本実施形態においては、放射素子21上の点21cから上記楕円の中心付近に至る線分上に配置された、幅1mmの帯状の導体箔を短絡部23aとして用いる。 The short-circuit portion 23a is configured to short-circuit the point 21c on the radiating element 21 located in the 9 o'clock direction as viewed from the center of the ellipse and the feeding point P. In the present embodiment, a strip-shaped conductor foil having a width of 1 mm, which is disposed on a line segment from the point 21c on the radiating element 21 to the vicinity of the center of the ellipse, is used as the short-circuit portion 23a.
 短絡部23bは、上記楕円の中心から見て3時方向に位置する放射素子21上の点21dと、給電点Pとを短絡するための構成である。本実施形態においては、放射素子21上の点21dから上記楕円の中心付近に至る直線上に配置された、幅1mmの帯状の導体箔を短絡部23bとして用いる。 The short-circuit portion 23b is configured to short-circuit the point 21d on the radiating element 21 located in the 3 o'clock direction as viewed from the center of the ellipse and the feeding point P. In the present embodiment, a strip-shaped conductor foil having a width of 1 mm arranged on a straight line extending from the point 21d on the radiating element 21 to the vicinity of the center of the ellipse is used as the short-circuit portion 23b.
 なお、給電部22bの先端には、給電部22a側に突出した突出部が設けられている。そして、給電部22aの先端は、この突出部に沿うように屈曲している。また、上記楕円の中心の上方に位置する給電部22aの先端と、該中心の左方に位置する短絡部23aの先端とは、四分円弧上に配置された帯状導体(幅2mm)を介して互いに接続されている。そして、上記楕円の中心の上方に位置する給電部22bの先端と、該中心の右方に位置する短絡部23bの先端とは、四分円弧上に配置された帯状導体(幅2mm)を介して互いに接続されている。本実施形態においては、このような構成を採用することによって、上記楕円の中心から0時方向に伸びる直線上に給電点P及び給電点Qの双方を配置することを可能ならしてめている。これにより、給電点P及び給電点Qから同直線に沿って引き出された同軸ケーブルに掛かるストレスが軽減される。 In addition, the protrusion part which protruded in the electric power feeding part 22a side is provided in the front-end | tip of the electric power feeding part 22b. And the front-end | tip of the electric power feeding part 22a is bent so that this protrusion part may be followed. In addition, the tip of the power feeding portion 22a located above the center of the ellipse and the tip of the short-circuit portion 23a located to the left of the center are connected to a strip-like conductor (width 2 mm) arranged on the quadrant arc. Are connected to each other. The tip of the power feeding part 22b located above the center of the ellipse and the tip of the short-circuiting part 23b located to the right of the center are connected via a strip-shaped conductor (width 2 mm) arranged on the quadrant. Are connected to each other. In the present embodiment, by adopting such a configuration, it is possible to arrange both the feeding point P and the feeding point Q on a straight line extending from the center of the ellipse in the 0 o'clock direction. . Thereby, the stress applied to the coaxial cable drawn along the straight line from the feeding point P and the feeding point Q is reduced.
 第1の無給電素子24は、主要部24bと、第1の延長部24aと、第2の延長部24cとにより構成されている。主要部24bは、上記楕円の中心から見て6時方向から9時方向に亘って放射素子21の外周に沿う外縁を有する略L字型の面状導体である。第1の延長部24aは、上記楕円の中心から見て9時方向に位置する主要部24bの端部から0時方向に直線的に伸びる帯状導体である。第2の延長部24cは、上記楕円の中心から見て6時方向に位置する主要部24bの端部から3時方向に直線的に伸びる帯状導体である。 The first parasitic element 24 includes a main part 24b, a first extension part 24a, and a second extension part 24c. The main portion 24b is a substantially L-shaped planar conductor having an outer edge along the outer periphery of the radiating element 21 from the 6 o'clock direction to the 9 o'clock direction when viewed from the center of the ellipse. The first extension 24a is a strip-like conductor that extends linearly in the 0 o'clock direction from the end of the main portion 24b located in the 9 o'clock direction when viewed from the center of the ellipse. The second extension 24c is a strip-like conductor that extends linearly in the 3 o'clock direction from the end of the main portion 24b located in the 6 o'clock direction when viewed from the center of the ellipse.
 ループアンテナ2において、第1の無給電素子24の第2の延長部24cは、右旋円偏波の利得が最大となる方向(以下、「最大利得方向」と記載)の傾きを変化させるという機能を有する。すなわち、第2の延長部24cの長さを短くすると、右旋円偏波の最大利得方向の傾きが小さくなり、第2の延長部24cの長さを長くすると、右旋円偏波の最大利得方向の傾きが大きくなる。 In the loop antenna 2, the second extension 24 c of the first parasitic element 24 changes the slope of the direction in which the gain of the right-handed circularly polarized wave is maximum (hereinafter referred to as “maximum gain direction”). It has a function. That is, when the length of the second extension 24c is shortened, the inclination of the right-handed circularly polarized wave in the maximum gain direction is reduced, and when the length of the second extension 24c is lengthened, the maximum of the right-handed circularly polarized wave is increased. The slope in the gain direction increases.
 第2の無給電素子25は、主要部25bと、第1の延長部25aと、第2の延長部25cとにより構成されている。主要部25bは、上記楕円の中心から見て0時方向から3時方向に亘って放射素子21の外周に沿う外縁を有する略L字型の面状導体である。第1の延長部25aは、上記楕円の中心から見て0時方向に位置する主要部25bの端部から9時方向に直線的に伸びる帯状導体である。第2の延長部25cは、上記楕円の中心から見て3時方向に位置する主要部25bの端部から6時方向に直線的に伸びる帯状導体である。 The second parasitic element 25 includes a main part 25b, a first extension part 25a, and a second extension part 25c. The main portion 25b is a substantially L-shaped planar conductor having an outer edge along the outer periphery of the radiating element 21 from the 0 o'clock direction to the 3 o'clock direction when viewed from the center of the ellipse. The first extension portion 25a is a strip-like conductor that linearly extends in the 9 o'clock direction from the end of the main portion 25b located in the 0 o'clock direction when viewed from the center of the ellipse. The second extension 25c is a strip-like conductor that extends linearly in the 6 o'clock direction from the end of the main portion 25b located in the 3 o'clock direction when viewed from the center of the ellipse.
 ループアンテナ2において、第2の無給電素子25の第2の延長部25cは、共振周波数を変化させるという機能を有する。すなわち、第2の延長部25cの長さを短くすると、共振周波数が高周波側にシフトし、第2の延長部25cの長さを長くすると、共振周波数が低周波側にシフトする。また、第2の延長部25cの長さを変化させると、ループアンテナ2の位相角が変化する。 In the loop antenna 2, the second extension 25c of the second parasitic element 25 has a function of changing the resonance frequency. That is, when the length of the second extension portion 25c is shortened, the resonance frequency is shifted to the high frequency side, and when the length of the second extension portion 25c is lengthened, the resonance frequency is shifted to the low frequency side. Further, when the length of the second extension portion 25c is changed, the phase angle of the loop antenna 2 is changed.
 第1の無給電素子24の第1の延長部24aの先端と、第2の無給電素子25の第1の延長部25aの先端とは、容量結合している。すなわち、第1の無給電素子24の第1の延長部24aの先端と、第2の無給電素子25の第1の延長部25aの先端との間のギャップ26は、キャパシタンスを有している。 The tip of the first extension 24 a of the first parasitic element 24 and the tip of the first extension 25 a of the second parasitic element 25 are capacitively coupled. That is, the gap 26 between the tip of the first extension 24a of the first parasitic element 24 and the tip of the first extension 25a of the second parasitic element 25 has a capacitance. .
 第1の無給電素子24と第2の無給電素子25とからなる無給電素子群は、図14(b)に示すLC回路と等価である。図14(b)に示すLC回路において、L1は、第1の無給電素子24の自己インダクタンスを表し、L2は、第2の無給電素子25の自己インダクタンスを表す。また、C1は、第1の無給電素子24とグランド面との間のキャパシタンスを表し、C2は、第2の無給電素子25とグランド面との間のキャパシタンスを表す。また、C3は、上述したギャップ26のキャパシタンスを表す。第1の無給電素子24と第2の無給電素子25とからなる無給電素子群は、図14(b)に示すLC回路としての共振周波数を有している。 The parasitic element group composed of the first parasitic element 24 and the second parasitic element 25 is equivalent to the LC circuit shown in FIG. In the LC circuit shown in FIG. 14B, L1 represents the self inductance of the first parasitic element 24, and L2 represents the self inductance of the second parasitic element 25. C1 represents the capacitance between the first parasitic element 24 and the ground plane, and C2 represents the capacitance between the second parasitic element 25 and the ground plane. C3 represents the capacitance of the gap 26 described above. A parasitic element group including the first parasitic element 24 and the second parasitic element 25 has a resonance frequency as the LC circuit shown in FIG.
 放射素子21に電流が流れると、無給電素子群にも誘導電流が流れる。従って、ループアンテナ2の放射する電磁波は、放射素子21から放射される電磁波と無給電素子群から放射される電磁波とを重ね合わせたものとなる。ギャップ26の間隔を適宜変更し、無給電素子群の共振周波数を放射素子12の共振周波数と一致させることによって、当該共振周波数においてループアンテナ2から放射される電磁波の強度を、同周波数において放射素子21(単体)が放射する電磁波の強度よりも強くすることができる。すなわち、ギャップ26の間隔を適宜変更し、無給電素子群の共振周波数を放射素子12の共振周波数と一致させることによって、当該共振周波数を含む帯域におけるループアンテナ2のVSWR値を、同帯域における放射素子21(単体)のVSWR値よりも小さくすることができる。 When a current flows through the radiating element 21, an induced current also flows through the parasitic element group. Therefore, the electromagnetic wave radiated from the loop antenna 2 is a superposition of the electromagnetic wave radiated from the radiating element 21 and the electromagnetic wave radiated from the parasitic element group. By appropriately changing the interval of the gap 26 and making the resonance frequency of the parasitic element group coincide with the resonance frequency of the radiating element 12, the intensity of the electromagnetic wave radiated from the loop antenna 2 at the resonance frequency is changed to the radiating element at the same frequency. It can be made stronger than the intensity of the electromagnetic waves emitted by 21 (single). That is, by appropriately changing the gap 26 and matching the resonance frequency of the parasitic element group with the resonance frequency of the radiating element 12, the VSWR value of the loop antenna 2 in the band including the resonance frequency is radiated in the same band. It can be made smaller than the VSWR value of the element 21 (single unit).
 上述したように、ループアンテナ2において、第1の無給電素子24の第2の延長部24cは、右旋円偏波の最大利得方向を変化させるという機能を有する。この点について、図15を参照して説明する。 As described above, in the loop antenna 2, the second extension 24c of the first parasitic element 24 has a function of changing the maximum gain direction of the right-handed circularly polarized wave. This point will be described with reference to FIG.
 図15は、ループアンテナ2の放射パターンを示すグラフである。(a)は、延長部24cが付加されていない場合の放射パターンを示し、(b)は、延長部24cが付加されている場合の放射パターンを示す。各グラフにおいて、RHCPは、右旋円偏波の放射パターンを表し、LHCPは、左旋円偏波の放射パターンを表す。 FIG. 15 is a graph showing a radiation pattern of the loop antenna 2. (A) shows the radiation pattern when the extension 24c is not added, and (b) shows the radiation pattern when the extension 24c is added. In each graph, RHCP represents a radiation pattern of right-handed circular polarization, and LHCP represents a radiation pattern of left-handed circular polarization.
 延長部24cが付加されていない場合、図15(a)に示すように、右旋円偏波の最大利得方向は、アンテナ形成面(図14におけるxy面)と直交する方向(図14におけるz軸方向)である。これに対して、延長部24cを付加した場合、図15(b)に示すように、右旋円偏波の最大利得方向が約30度傾く。 When the extension 24c is not added, as shown in FIG. 15A, the maximum gain direction of the right-handed circularly polarized wave is a direction (z plane in FIG. 14) orthogonal to the antenna forming plane (xy plane in FIG. 14). Axial direction). On the other hand, when the extension portion 24c is added, the maximum gain direction of the right-handed circularly polarized wave is inclined by about 30 degrees as shown in FIG.
 この最大利得方向の傾きは、延長部24cの長さを変化させることによって変化する。具体的には、延長部24cの長さを短くすると、最大利得方向の傾きが小さくなり、延長部24cの長さを長くすると、最大利得方向の傾きが大きくなる。したがって、右旋円偏波の最大利得方向を測定しながら延長部24cの長さを調整する工程を含めることによって、右旋円偏波の最大利得方向の傾きが所望の値となるループアンテナ2を製造することが可能になる。 The inclination in the maximum gain direction is changed by changing the length of the extension 24c. Specifically, when the length of the extension 24c is shortened, the gradient in the maximum gain direction is reduced, and when the length of the extension 24c is increased, the gradient in the maximum gain direction is increased. Therefore, by including the step of adjusting the length of the extension 24c while measuring the maximum gain direction of right-handed circularly polarized wave, the loop antenna 2 in which the slope of the maximum gain direction of right-handed circularly polarized wave becomes a desired value. Can be manufactured.
 上述したように、ループアンテナ2においては、第1の無給電素子24と第2の無給電素子25との間のギャップ26について、その間隔を適宜調整することによって、VSWR値を低下させることができる。この点について、図16を参照して説明する。 As described above, in the loop antenna 2, the VSWR value can be lowered by appropriately adjusting the gap 26 between the first parasitic element 24 and the second parasitic element 25. it can. This point will be described with reference to FIG.
 図16は、1.575GHz近傍におけるループアンテナ2のVSWR特性を示すグラフである。図16において、VSWR0は、第1の無給電素子24及び第2の無給電素子25の双方を取り去った場合のVSWR特性を表し、VSWR1は、第1の無給電素子24及び第2の無給電素子25の双方を付加した後のVSWR特性を表し、VSWR2は、第1の無給電素子24及び第2の無給電素子25の双方を付加し、更に、1.575GHzのVSWR値を最小化するようギャップ26のギャップ間隔を調整した後のVSWR特性を示す。 FIG. 16 is a graph showing the VSWR characteristics of the loop antenna 2 near 1.575 GHz. In FIG. 16, VSWR0 represents the VSWR characteristic when both the first parasitic element 24 and the second parasitic element 25 are removed, and VSWR1 represents the first parasitic element 24 and the second parasitic element. The VSWR characteristic after adding both of the elements 25 is shown, and VSWR2 adds both the first parasitic element 24 and the second parasitic element 25, and further minimizes the VSWR value of 1.575 GHz. The VSWR characteristic after adjusting the gap interval of the gap 26 is shown.
 図16に示すように、第1の無給電素子24及び第2の無給電素子25の双方を付加することによって、1.5GHz以下の帯域においてVSWR値が低下し、更に、ギャップ26のギャップ間隔を調整することによって、1.575GHzにおけるVSWR値が低下する。 As shown in FIG. 16, by adding both the first parasitic element 24 and the second parasitic element 25, the VSWR value decreases in a band of 1.5 GHz or less, and the gap interval of the gap 26 By adjusting the VSWR value at 1.575 GHz decreases.
 このように、ギャップ26のギャップ間隔を調整することによって、所望の周波数におけるVSWR値を変化させることができる。したがって、所望の周波数におけるVSWR値を測定しながらギャップ26のギャップ間隔を調整する工程を含めることによって、所望の周波数において低いVSWR値を有するループアンテナ2を製造することが可能になる。 Thus, by adjusting the gap interval of the gap 26, the VSWR value at a desired frequency can be changed. Therefore, by including the step of adjusting the gap interval of the gap 26 while measuring the VSWR value at a desired frequency, the loop antenna 2 having a low VSWR value at the desired frequency can be manufactured.
 ループアンテナ2において、放射素子21は楕円の周上に配置されるものとしたが、これに限定されるものではない。例えば、放射素子21は、図17に示すようにメアンダ化されていてもよいし、図18に示すように長方形の周上に配置されていてもよい。また、ループアンテナ2において、短絡部23a~23bは、図18に示すように省略してもよい。 In the loop antenna 2, the radiating element 21 is arranged on the circumference of an ellipse, but is not limited to this. For example, the radiating element 21 may be meandered as shown in FIG. 17, or may be arranged on a rectangular circumference as shown in FIG. Further, in the loop antenna 2, the short-circuit portions 23a to 23b may be omitted as shown in FIG.
 〔統合アンテナ装置〕
 本実施形態に係る逆F型アンテナ1が搭載されたアンテナ装置100について、図19~図21を参照して説明する。なお、アンテナ装置100は、複数のアンテナを搭載した統合アンテナ装置である。このため、アンテナ装置100のことを、以下、「統合アンテナ装置」と記載する。
[Integrated antenna device]
An antenna device 100 on which the inverted F-type antenna 1 according to this embodiment is mounted will be described with reference to FIGS. 19 to 21. FIG. The antenna device 100 is an integrated antenna device equipped with a plurality of antennas. For this reason, the antenna device 100 is hereinafter referred to as an “integrated antenna device”.
 《要部構成》
 統合アンテナ装置100の要部構成について、図19を参照して説明する。図19(a)は、統合アンテナ装置100の要部構成を示す分解斜視図であり、図19(b)は、統合アンテナ装置100の要部構成を示す斜視図である。図20は、統合アンテナ装置100が備えるベース部110の三面図である。
《Main part configuration》
The principal part structure of the integrated antenna apparatus 100 is demonstrated with reference to FIG. FIG. 19A is an exploded perspective view showing the main configuration of the integrated antenna apparatus 100, and FIG. 19B is a perspective view showing the main configuration of the integrated antenna apparatus 100. FIG. 20 is a three-view diagram of the base unit 110 included in the integrated antenna device 100.
 統合アンテナ装置100は、自動車のルーフへの搭載に適した車載用アンテナ装置であり、図19に示すように、ベース部110と、回路基板120と、第1のアンテナ基板130と、第2のアンテナ基板140とを備えている。 The integrated antenna device 100 is a vehicle-mounted antenna device suitable for mounting on the roof of an automobile. As shown in FIG. 19, the base unit 110, the circuit board 120, the first antenna board 130, and the second antenna apparatus are provided. And an antenna substrate 140.
 この統合アンテナ装置100には、3つのアンテナが搭載される。1つ目のアンテナは、3G(3rd Generation)/LTE(Long Term Evolution)用の逆F型アンテナ1である。2つ目のアンテナは、GPS(Global Positioning System)用のループアンテナ2である。これらのアンテナ1~2は、共に、第2のアンテナ基板140に搭載される。3つ目のアンテナは、DAB(Digital Audio Broadcast)用のダイポールアンテナ3である。このダイポールアンテナ3は、第1のアンテナ基板130に搭載される。なお、ダイポールアンテナ3及び第1のアンテナ基板130は、本実施形態において採用した付加的な構成であり、省略することも可能である。 This integrated antenna device 100 is equipped with three antennas. The first antenna is an inverted F-type antenna 1 for 3G (3rd generation) / LTE (long term evolution). The second antenna is a GPS (Global Positioning System) loop antenna 2. Both of these antennas 1 and 2 are mounted on the second antenna substrate 140. The third antenna is a dipole antenna 3 for DAB (Digital Audio Broadcast). The dipole antenna 3 is mounted on the first antenna substrate 130. The dipole antenna 3 and the first antenna substrate 130 are additional configurations adopted in the present embodiment, and can be omitted.
 ベース部110は、導体により構成された板状部材である。本実施形態においては、金属(具体的には、アルミニウム)により構成された板状部材であって、略矩形状(具体的には、角丸矩形状)の主面を有する板状部材を、ベース部110として用いる。ベース部110の上面には、該面と直交する方向に突出した突出部111が形成されている。ベース部110の上面において、突出部111が形成される領域のことを、以下、「突出部形成領域」と記載する。本実施形態においては、矩形状の突出部形成領域を取り囲む壁状の突起を、突出部111として用いる。なお、ベース部110の詳細については、参照する図面を代えて後述する。 The base part 110 is a plate-like member made of a conductor. In the present embodiment, a plate-shaped member made of metal (specifically, aluminum), and having a substantially rectangular (specifically, rounded rectangular shape) main surface, Used as the base part 110. On the upper surface of the base portion 110, a protruding portion 111 protruding in a direction orthogonal to the surface is formed. Hereinafter, the region in which the protruding portion 111 is formed on the upper surface of the base portion 110 is referred to as a “projecting portion forming region”. In the present embodiment, a wall-shaped protrusion that surrounds a rectangular protrusion forming region is used as the protrusion 111. The details of the base unit 110 will be described later with reference to different drawings.
 回路基板120は、GPS用増幅回路121、DAB用増幅回路122、及びDAB用整合パターン123が実装されたプリント基板(具体的には、リジッド基板)であり、ベース部110の突出部111上に載置される。回路基板120の上面には、GPS用増幅回路121及びDAB用増幅回路122の各々を構成する素子(コイルやコンデンサなど)を接続するための配線パターンと、DAB用整合パターン123とが形成されている。一方、回路基板120の下面には、上記配線パターンと共にマイクロストリップラインを構成するグランド板が形成されている。回路基板120の接地は、このグランド板を突出部111の上端面と面接触させることによって実現される。 The circuit board 120 is a printed circuit board (specifically, a rigid board) on which the GPS amplifier circuit 121, the DAB amplifier circuit 122, and the DAB matching pattern 123 are mounted. Placed. On the upper surface of the circuit board 120, a wiring pattern for connecting elements (coils, capacitors, etc.) constituting each of the GPS amplifier circuit 121 and the DAB amplifier circuit 122 and a DAB matching pattern 123 are formed. Yes. On the other hand, on the lower surface of the circuit board 120, a ground plate constituting a microstrip line is formed together with the wiring pattern. The grounding of the circuit board 120 is realized by bringing the ground plate into surface contact with the upper end surface of the protruding portion 111.
 第1のアンテナ基板130は、ダイポールアンテナ3として機能する導体パターンが形成されたプリント基板(具体的には、フレキシブル基板)である。第1のアンテナ基板130は、(1)1枚の誘電体シート、及び、その誘電体シートの上面又は下面に形成されたダイポールアンテナ3により構成されていてもよいし、(2)2枚の誘電体シート、及び、それらの誘電体シートに挟持されたダイポールアンテナ3により構成されていてもよい。 The first antenna board 130 is a printed board (specifically, a flexible board) on which a conductor pattern that functions as the dipole antenna 3 is formed. The first antenna substrate 130 may be configured by (1) one dielectric sheet and the dipole antenna 3 formed on the upper surface or the lower surface of the dielectric sheet. You may be comprised by the dielectric sheet | seat and the dipole antenna 3 pinched | interposed into those dielectric sheet | seats.
 統合アンテナ装置100において、第1のアンテナ基板130は、ベース部110の上面と平行に配置される。この際、第1のアンテナ基板130の水平方向の位置は、ダイポールアンテナ3が突出部形成領域と対向するように定められる。これにより、ダイポールアンテナ3は、突出部111が形成されていない場合と比べて、ベース部110の上面(具体的には、突出部111の上端面)に接近することになる。また、本実施形態のように、突出部111上に回路基板120が載置されている場合には、ダイポールアンテナ3が、回路基板120のDAB用整合パターン123及びグランド板にも接近することになる。 In the integrated antenna device 100, the first antenna substrate 130 is arranged in parallel with the upper surface of the base portion 110. At this time, the position of the first antenna substrate 130 in the horizontal direction is determined so that the dipole antenna 3 faces the protruding portion formation region. Thereby, the dipole antenna 3 approaches the upper surface of the base part 110 (specifically, the upper end surface of the protrusion part 111) compared with the case where the protrusion part 111 is not formed. Further, when the circuit board 120 is placed on the protruding portion 111 as in the present embodiment, the dipole antenna 3 approaches the DAB matching pattern 123 and the ground plate of the circuit board 120. Become.
 第2のアンテナ基板140は、逆F型アンテナ1として機能する導体パターンとループアンテナ2として機能する導体パターンとが形成されたプリント基板(具体的には、フレキシブル基板)である。第2のアンテナ基板140は、(1)1枚の誘電体シート、並びに、その誘電体シートの上面又は下面に形成された逆F型アンテナ1及びループアンテナ2により構成されていてもよいし、(2)2枚の誘電体シート、並びに、それら2枚の誘電体シートに挟持された逆F型アンテナ1及びループアンテナ2により構成されていてもよい。 The second antenna substrate 140 is a printed circuit board (specifically, a flexible substrate) on which a conductor pattern that functions as the inverted F-type antenna 1 and a conductor pattern that functions as the loop antenna 2 are formed. The second antenna substrate 140 may be configured by (1) one dielectric sheet and the inverted F-type antenna 1 and the loop antenna 2 formed on the upper surface or the lower surface of the dielectric sheet. (2) Two dielectric sheets, and an inverted F-type antenna 1 and a loop antenna 2 sandwiched between the two dielectric sheets may be used.
 第2のアンテナ基板140は、3つの平面S1~S3を構成するように折り曲げられた状態で統合アンテナ装置100に実装される。具体的には、第1の平面S1と、第1の平面S1に直交する第2の平面S2と、第1の平面S1及び第2の平面S2の双方に直交する第3の平面S3とを構成するように折り曲げられた状態で統合アンテナ装置100に実装される。この際、ループアンテナ2は、全体が第1の平面S1上に配置されるのに対して、逆F型アンテナ1は、或る部分(放射素子12の全部又は一部)が第2の平面S2上に配置され、他の部分(地板11の全部、又は、地板11の全部及び放射素子12の一部)が第1の平面S1上に配置される。本実施形態においては、更に他の部分(放射素子12の一部)が第3の平面S3上に配置される。なお、逆F型アンテナ1の配置に関しては、図1も併せて参照されたい。 The second antenna substrate 140 is mounted on the integrated antenna device 100 in a state of being bent so as to constitute three planes S1 to S3. Specifically, the first plane S1, the second plane S2 orthogonal to the first plane S1, and the third plane S3 orthogonal to both the first plane S1 and the second plane S2 The integrated antenna device 100 is mounted in a state of being bent so as to be configured. At this time, the loop antenna 2 is entirely arranged on the first plane S1, whereas the inverted F-type antenna 1 has a certain part (all or part of the radiating element 12) of the second plane. The other parts (the entire ground plane 11 or the entire ground plane 11 and a part of the radiating element 12) are disposed on the first plane S1. In the present embodiment, still another portion (a part of the radiating element 12) is disposed on the third plane S3. Note that FIG. 1 should also be referred to regarding the arrangement of the inverted F-type antenna 1.
 統合アンテナ装置100において、第2のアンテナ基板140は、第2の平面S2がベース部110の上面と平行になるように配置される。この際、第2のアンテナ基板140の水平方向の位置は、ループアンテナ2が突出部形成領域と対向するように定められる。これにより、ループアンテナ2は、突出部111が形成されていない場合と比べて、ベース部110の上面(具体的には、突出部111の上端面)に接近することになる。また、本実施形態のように、突出部111上に回路基板120が載置されている場合には、ループアンテナ2のみが、回路基板120のグランド板にも接近することになる。回路基板120が、逆F型アンテナ1と対向することなくループアンテナ2と対向するように(逆F型アンテナ1側にはみだすことなくループアンテナ2と重なるように)配置されているためである。 In the integrated antenna device 100, the second antenna substrate 140 is arranged so that the second plane S2 is parallel to the upper surface of the base portion 110. At this time, the horizontal position of the second antenna substrate 140 is determined so that the loop antenna 2 faces the protruding portion formation region. Thereby, the loop antenna 2 approaches the upper surface of the base part 110 (specifically, the upper end surface of the protrusion part 111) compared with the case where the protrusion part 111 is not formed. Further, when the circuit board 120 is placed on the protrusion 111 as in the present embodiment, only the loop antenna 2 approaches the ground plate of the circuit board 120. This is because the circuit board 120 is arranged so as to face the loop antenna 2 without facing the inverted F-type antenna 1 (so as to overlap the loop antenna 2 without protruding to the inverted F-type antenna 1 side).
 なお、逆F型アンテナ1とベース部110の上面との間隔は、突出部111の有無によって変わらない。すなわち、ベース部110の上面に突出部111を形成することによって、逆F型アンテナ1とベース部110の上面との間隔を保ったまま、ループアンテナ2とベース部110の上面との間隔を小さくすることができる。このことによって得られる効果については、参照する図面を代えて後述する。 Note that the distance between the inverted F-type antenna 1 and the upper surface of the base portion 110 does not change depending on the presence or absence of the protruding portion 111. That is, by forming the protruding portion 111 on the upper surface of the base portion 110, the distance between the loop antenna 2 and the upper surface of the base portion 110 is reduced while keeping the distance between the inverted F-type antenna 1 and the upper surface of the base portion 110. can do. The effect obtained by this will be described later with reference to different drawings.
 《ベース部の詳細》
 次に、統合アンテナ装置100が備えるベース部110の詳細について、図20を参照して説明する。図20は、ベース部110の三面図である。
<Details of base section>
Next, the detail of the base part 110 with which the integrated antenna apparatus 100 is provided is demonstrated with reference to FIG. FIG. 20 is a three-side view of the base portion 110.
 ベース部110は、上述したとおり、導体により構成された板状部材である。本実施形態においては、ベース部110の材料をアルミニウムとすることによって、統合アンテナ装置100の軽量化を図っている。また、本実施形態においては、ベース部110の上面形状を略矩形(具体的には、角丸矩形)とすることによって、統合アンテナ装置100の空気抵抗(特にベース部110の長辺を自動車の進行方向と平行に配置したときの空気抵抗)を低減している。 The base part 110 is a plate-like member made of a conductor as described above. In the present embodiment, the weight of the integrated antenna device 100 is reduced by using aluminum as the material of the base portion 110. Further, in the present embodiment, the upper surface shape of the base portion 110 is substantially rectangular (specifically, a rounded rectangular shape), so that the air resistance of the integrated antenna device 100 (particularly, the long side of the base portion 110 is made longer than that of the automobile). (Air resistance when placed parallel to the direction of travel) is reduced.
 ベース部110の上面には、突出部111が形成されている。突出部111は、ベース部110の上面と直交する方向に突出した構造体である。本実施形態においては、矩形状の突出部形成領域を取り囲む壁状の突起をベース部110の上面に形成し、これを突出部111として用いている。 A protruding portion 111 is formed on the upper surface of the base portion 110. The protruding portion 111 is a structure that protrudes in a direction orthogonal to the upper surface of the base portion 110. In the present embodiment, a wall-like protrusion surrounding the rectangular protruding portion forming region is formed on the upper surface of the base portion 110, and this is used as the protruding portion 111.
 突出部111の高さは一様である。これは、突出部111上に載置される回路基板120を、ベース部110の上面と平行に支持するためである。また、突出部111の上端面は平坦である。これは、突出部111上に載置される回路基板120の下面を、突出部111の上端面と面接触させるためである。また、突出部111の四隅は厚肉化されている。これは、突出部111上に載置される回路基板120の下面が突出部111の上端面と接触する面積を広げるためである。これらの構成を採用することによって、回路基板120の支持及び接地が確実になる。 The height of the protrusion 111 is uniform. This is to support the circuit board 120 placed on the protruding portion 111 in parallel with the upper surface of the base portion 110. Moreover, the upper end surface of the protrusion part 111 is flat. This is because the lower surface of the circuit board 120 placed on the protruding portion 111 is in surface contact with the upper end surface of the protruding portion 111. In addition, the four corners of the protrusion 111 are thickened. This is to increase the area where the lower surface of the circuit board 120 placed on the protruding portion 111 is in contact with the upper end surface of the protruding portion 111. By adopting these configurations, the support and grounding of the circuit board 120 are ensured.
 突出部111は、図21の側面図に示すように、ベース部110の上面においてループアンテナ2の放射素子21と対向する位置に形成される。このため、ベース部110の上面と逆F型アンテナ1の放射素子12との間隔をDとすると、ベース部110の上面とループアンテナ2の放射素子21との間隔D’はD’=D-dとなる。ここで、dは突出部111の高さである。すなわち、ベース部110の上面に突出部111を形成することによって、逆F型アンテナ1の放射素子12とベース部110の上面との間隔Dを保ったまま、ループアンテナ2の放射素子21とベース部110の上面との間隔D’を小さくすることができる。 As shown in the side view of FIG. 21, the protruding portion 111 is formed at a position facing the radiating element 21 of the loop antenna 2 on the upper surface of the base portion 110. Therefore, if the distance between the upper surface of the base portion 110 and the radiating element 12 of the inverted F antenna 1 is D, the distance D ′ between the upper surface of the base portion 110 and the radiating element 21 of the loop antenna 2 is D ′ = D−. d. Here, d is the height of the protrusion 111. That is, by forming the protrusion 111 on the upper surface of the base portion 110, the radiating element 21 of the loop antenna 2 and the base are maintained while maintaining the distance D between the radiating element 12 of the inverted F-type antenna 1 and the upper surface of the base portion 110. The distance D ′ from the upper surface of the portion 110 can be reduced.
 ここで、逆F型アンテナ1は、自前のグランドである地板11を備えており、放射素子12と対向するグランド面が近傍に存在しないときに所期の性能を発揮するように設計されている。一方、ループアンテナ2は、自前のグランドを備えておらず、放射素子21と対向するグランド面が近傍に存在するときに所期の性能を発揮するように設計されている。したがって、ベース部110の上面と逆F型アンテナ1との間隔Dは、所定の値よりも大きくすることが求められ、ベース部110の上面とループアンテナ2との間隔D’は、所定の値よりも小さくすることが求められる。 Here, the inverted F-type antenna 1 is provided with a ground plane 11 that is its own ground, and is designed to exhibit the desired performance when there is no ground plane facing the radiating element 12 in the vicinity. . On the other hand, the loop antenna 2 does not have its own ground, and is designed to exhibit the expected performance when a ground surface facing the radiating element 21 exists in the vicinity. Therefore, the distance D between the upper surface of the base part 110 and the inverted F-type antenna 1 is required to be larger than a predetermined value, and the distance D ′ between the upper surface of the base part 110 and the loop antenna 2 is a predetermined value. Is required to be smaller.
 ベース部110の上面に突出部111を形成する構成を採用すれば、逆F型アンテナ1の放射素子12とループアンテナ2の放射素子21とが同一の平面(第2の平面S2)上に配置される場合であっても、この要求に応えることができる。ベース部110の上面が上述したグランド面として機能する場合であっても、突出部111上に載置された回路基板120のグランド板が上述したグランド面として機能する場合であっても、この点に変わりはない。 If the structure which forms the protrusion part 111 in the upper surface of the base part 110 is employ | adopted, the radiation element 12 of the inverted F type antenna 1 and the radiation element 21 of the loop antenna 2 will be arrange | positioned on the same plane (2nd plane S2). Even in such a case, this requirement can be met. Even when the upper surface of the base portion 110 functions as the above-described ground surface, even when the ground plate of the circuit board 120 placed on the protruding portion 111 functions as the above-described ground surface. There is no change.
 以上のように、ベース部110の上面に突出部111を形成する構成を採用すれば、逆F型アンテナ1の放射素子12とループアンテナ2の放射素子21とを同一の平面(第2の平面S2)上に配置することによって統合アンテナ装置100の低姿勢化を図ると共に、逆F型アンテナ1及びループアンテナ2の双方に所期の性能を発揮させることができる。 As described above, if the configuration in which the protruding portion 111 is formed on the upper surface of the base portion 110 is adopted, the radiating element 12 of the inverted F-type antenna 1 and the radiating element 21 of the loop antenna 2 are arranged on the same plane (second plane). S2) By disposing the antenna on the integrated antenna device 100, the integrated antenna device 100 can be lowered, and both the inverted F-type antenna 1 and the loop antenna 2 can exhibit their intended performance.
 《付加的構成》
 次に、統合アンテナ装置100が備え得る付加的な構成について、図21を参照して説明する。統合アンテナ装置100は、レドーム150、スペーサ160、ゴムベース170等の付加的な構成を備え得る。図21(a)は、レドーム150の斜視図であり、図21(b)は、スペーサ160の斜視図であり、図21(c)は、ゴムベース170の斜視図である。
《Additional configuration》
Next, an additional configuration that the integrated antenna device 100 may have will be described with reference to FIG. The integrated antenna device 100 may include additional configurations such as a radome 150, a spacer 160, a rubber base 170, and the like. FIG. 21A is a perspective view of the radome 150, FIG. 21B is a perspective view of the spacer 160, and FIG. 21C is a perspective view of the rubber base 170.
 ゴムベース170は、図21(c)に示すように、ベース部110(図19参照)上に載置される板状部材であり、その材質はゴムである。ゴムベース170の外縁には、下方に迫り出したスカート部が設けられている。ベース部110は、このスカート部に囲まれたゴムベース170の下側の空間に嵌め込まれる。 The rubber base 170 is a plate-like member placed on the base portion 110 (see FIG. 19) as shown in FIG. 21C, and the material thereof is rubber. A skirt portion protruding downward is provided on the outer edge of the rubber base 170. The base portion 110 is fitted into a space below the rubber base 170 surrounded by the skirt portion.
 このように、ベース部110上に載置された回路基板120をゴムベース170で覆い隠すことによって、回路基板120が雨水に晒されることを防止できる。また、第1のアンテナ基板130上に形成されたダイポールアンテナ3などが、回路基板120と短絡することを防止できる。 Thus, by covering the circuit board 120 placed on the base part 110 with the rubber base 170, the circuit board 120 can be prevented from being exposed to rainwater. In addition, it is possible to prevent the dipole antenna 3 and the like formed on the first antenna substrate 130 from being short-circuited with the circuit substrate 120.
 スペーサ160は、図21(b)に示すように、第1のアンテナ基板130と第2のアンテナ基板140との間に介在する板状部材であり、その材質はモールド成形された樹脂である。スペーサ160は、その厚みによって、第1のアンテナ基板130と第2のアンテナ基板140とを離隔させる。本実施形態において、スペーサ160の厚みは、5mmに設定される。これにより、第2のアンテナ基板140は、第1のアンテナ基板130から5mm離隔される。 As shown in FIG. 21B, the spacer 160 is a plate-like member interposed between the first antenna substrate 130 and the second antenna substrate 140, and the material thereof is a molded resin. The spacer 160 separates the first antenna substrate 130 and the second antenna substrate 140 according to the thickness thereof. In the present embodiment, the thickness of the spacer 160 is set to 5 mm. Thus, the second antenna substrate 140 is separated from the first antenna substrate 130 by 5 mm.
 レドーム150は、図21(a)に示すように、船底形のドーム状部材であり、その材質は樹脂である。レドーム150の外縁をゴムベース170の外縁に接合することによって、レドーム150とゴムベース170との間に、第1のアンテナ基板130及び第2のアンテナ基板140を収容する密閉された空間ができる。この密閉が保たれている限り、第1のアンテナ基板130及び第2のアンテナ基板140が雨水に晒される虞はない。また、レドーム150の材質が樹脂であることから、統合アンテナ装置100に到来した電磁波がレドーム150によって減衰する虞もない。 As shown in FIG. 21A, the radome 150 is a ship-shaped dome-shaped member, and the material thereof is resin. By joining the outer edge of the radome 150 to the outer edge of the rubber base 170, a sealed space for accommodating the first antenna substrate 130 and the second antenna substrate 140 is formed between the radome 150 and the rubber base 170. As long as this sealing is maintained, there is no possibility that the first antenna substrate 130 and the second antenna substrate 140 are exposed to rainwater. Further, since the material of the radome 150 is resin, there is no possibility that the electromagnetic wave that has arrived at the integrated antenna device 100 is attenuated by the radome 150.
 〔まとめ〕
 以上のように、上記各実施形態に係る逆F型アンテナは、第1の平面上に配置された地板と、上記第1の平面と直交する第2の平面上に少なくとも一部分が配置された放射素子と、上記地板と上記放射素子とを短絡する短絡部とを備えた逆F型アンテナであって、上記放射素子は、上記短絡部の付根部分から伸びる接地部であって、先端が接地された接地部と、上記短絡部の付根部分から上記地板と直交する方向に伸びるアーム部であって、先端が開放されたアーム部とを備えている、ことを特徴とする。
[Summary]
As described above, the inverted F-type antenna according to each of the embodiments described above includes a ground plane disposed on the first plane and a radiation at least partially disposed on the second plane orthogonal to the first plane. An inverted F-type antenna comprising an element and a short-circuit portion that short-circuits the ground plane and the radiating element, wherein the radiating element is a grounding portion extending from a root portion of the short-circuiting portion, and a tip is grounded A grounding portion and an arm portion extending from a root portion of the short-circuit portion in a direction orthogonal to the ground plane and having an open end.
 上記逆F型アンテナにおいて、上記地板には、上記第2の平面から遠ざかる方向に伸びる2つの切欠が形成されており、上記2つの切欠の間を上記第2の平面に近づく方向に伸びる矩形部であって、長手方向が上記第2の平面と直交する矩形部に一方の給電点が設けられている、ことが好ましい。 In the inverted F-type antenna, the ground plane has two cutouts extending in a direction away from the second plane, and a rectangular portion extending between the two cutouts in a direction approaching the second plane. And it is preferable that one feeding point is provided in the rectangular part whose longitudinal direction is orthogonal to the second plane.
 上記逆F型アンテナにおいて、上記放射素子は、一部分が上記第1の平面上に配置されており、当該部分に他方の給電点が設けられている、ことが好ましい。 In the inverted F-type antenna, it is preferable that a part of the radiating element is arranged on the first plane, and the other feeding point is provided in the part.
 上記逆F型アンテナにおいて、上記放射素子は、長手方向が上記第1の平面と上記第2の平面との交線に平行な主要部を備えており、上記アーム部は、上記主要部の一方の端部から上記地板と直交する方向に伸びている、ことが好ましい。 In the inverted F-type antenna, the radiating element includes a main portion whose longitudinal direction is parallel to a line of intersection between the first plane and the second plane, and the arm portion is one of the main portions. It is preferable that it extends in the direction orthogonal to the said ground plane from the edge part of this.
 上記逆F型アンテナにおいて、上記放射素子は、上記主要部の他方の端部から上記地板と直交する方向に伸びる他のアーム部であって、先端が開放された他のアーム部を備えている、ことが好ましい。 In the inverted F-type antenna, the radiating element includes another arm portion that extends from the other end portion of the main portion in a direction orthogonal to the ground plane and that has an open end. Is preferable.
 上記逆F型アンテナにおいて、上記他のアーム部は、少なくとも一部分がメアンダ化されている、ことが好ましい。 In the inverted F-type antenna, it is preferable that at least a part of the other arm portion is meandered.
 上記逆F型アンテナにおいて、上記放射素子は、上記他のアーム部の中間部と上記主張部の中間部とを短絡する短絡部を備えている、ことが好ましい。 In the inverted F-type antenna, the radiating element preferably includes a short-circuit portion that short-circuits the intermediate portion of the other arm portion and the intermediate portion of the asserting portion.
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 本発明は、例えば、統合アンテナ装置に搭載される3G/LTE用アンテナとして好適に利用することができる。 The present invention can be suitably used, for example, as a 3G / LTE antenna mounted on an integrated antenna device.
1       逆F型アンテナ
11      地板
12      放射素子
13      短絡部
2       ループアンテナ
21      放射素子
22a~22b 1対の給電部
23a~23b 1対の短絡部
24      第1の無給電素子
25      第2の無給電素子
100     統合アンテナ装置
110     ベース部
120     回路基板
130     第1のアンテナ基板
140     第2のアンテナ基板
DESCRIPTION OF SYMBOLS 1 Inverted F type antenna 11 Ground plate 12 Radiation element 13 Short circuit part 2 Loop antenna 21 Radiation element 22a-22b One pair of electric power feeding parts 23a-23b One pair of short circuit part 24 1st parasitic element 25 2nd parasitic element 100 Integrated antenna device 110 Base portion 120 Circuit board 130 First antenna board 140 Second antenna board

Claims (7)

  1.  第1の平面上に配置された地板と、
     上記第1の平面と交わる第2の平面上に少なくとも一部分が配置された放射素子と、
     上記地板と上記放射素子とを短絡する短絡部とを備え、
     上記放射素子は、上記短絡部の付根部分から伸びる接地部であって、先端が接地された接地部と、上記短絡部の付根部分から上記地板と交わる方向に伸びるアーム部であって、先端が開放されたアーム部とを備えている、
    ことを特徴とする逆F型アンテナ。
    A ground plane disposed on the first plane;
    A radiating element at least partially disposed on a second plane intersecting the first plane;
    Comprising a short-circuit portion for short-circuiting the ground plane and the radiating element;
    The radiating element is a grounding portion extending from a root portion of the short-circuit portion, a grounding portion having a grounded tip, and an arm portion extending from the root portion of the short-circuiting portion in a direction intersecting the ground plane, the tip of which is An open arm part,
    An inverted F-type antenna characterized by the above.
  2.  上記地板には、上記第2の平面から遠ざかる方向に伸びる2つの切欠が形成されており、上記2つの切欠の間を上記第2の平面に近づく方向に伸びる矩形部に一方の給電点が設けられている、
    ことを特徴とする請求項1に記載の逆F型アンテナ。
    Two cutouts extending in a direction away from the second plane are formed in the ground plane, and one feeding point is provided in a rectangular portion extending in a direction approaching the second plane between the two cutouts. Being
    The inverted F-type antenna according to claim 1.
  3.  上記放射素子は、一部分が上記第1の平面上に配置されており、当該部分に他方の給電点が設けられている、
    ことを特徴とする請求項2に記載の逆F型アンテナ。
    A part of the radiating element is disposed on the first plane, and the other feeding point is provided in the part.
    The inverted F-type antenna according to claim 2.
  4.  上記放射素子は、長手方向が上記第1の平面と上記第2の平面との交線に平行な主要部を備えており、
     上記アーム部は、上記主要部の一方の端部から上記地板と直交する方向に伸びている、ことを特徴とする請求項1~3の何れか1項に記載の逆F型アンテナ。
    The radiating element includes a main portion whose longitudinal direction is parallel to a line of intersection of the first plane and the second plane,
    The inverted F-type antenna according to any one of claims 1 to 3, wherein the arm portion extends from one end portion of the main portion in a direction orthogonal to the ground plane.
  5.  上記放射素子は、上記主要部の他方の端部から上記地板と直交する方向に伸びる他のアーム部であって、先端が開放された他のアーム部を備えている、
    ことを特徴とする請求項4に記載の逆F型アンテナ。
    The radiating element is another arm portion extending in a direction orthogonal to the ground plane from the other end portion of the main portion, and includes another arm portion whose tip is open.
    The inverted F-type antenna according to claim 4.
  6.  上記他のアーム部は、少なくとも一部分がメアンダ化されている、
    ことを特徴とする請求項5に記載の逆F型アンテナ。
    The other arm part is at least partially meandered,
    The inverted F-type antenna according to claim 5.
  7.  上記放射素子は、上記他のアーム部の中間部と上記主要部の中間部とを短絡する短絡部を備えている、
    ことを特徴とする請求項5又は6に記載の逆F型アンテナ。
    The radiating element includes a short-circuit portion that short-circuits the intermediate portion of the other arm portion and the intermediate portion of the main portion.
    The inverted F-type antenna according to claim 5 or 6, wherein the antenna is an inverted-F antenna.
PCT/JP2013/067844 2012-06-29 2013-06-28 Inverted-f antenna WO2014003174A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014522704A JP5663117B2 (en) 2012-06-29 2013-06-28 Inverted F type antenna
DE112013003272.4T DE112013003272B4 (en) 2012-06-29 2013-06-28 Inverted F-type antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147986 2012-06-29
JP2012147986 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014003174A1 true WO2014003174A1 (en) 2014-01-03

Family

ID=49783308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067844 WO2014003174A1 (en) 2012-06-29 2013-06-28 Inverted-f antenna

Country Status (3)

Country Link
JP (1) JP5663117B2 (en)
DE (1) DE112013003272B4 (en)
WO (1) WO2014003174A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290522A (en) * 2008-05-29 2009-12-10 Casio Comput Co Ltd Planar antenna and electronic device
WO2011059088A1 (en) * 2009-11-13 2011-05-19 日立金属株式会社 Frequency variable antenna circuit, antenna component constituting the same, and wireless communication device using those
JP3175058U (en) * 2011-11-11 2012-04-19 欣技資訊股▲分▼有限公司 Dual polarization antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290522A (en) * 2008-05-29 2009-12-10 Casio Comput Co Ltd Planar antenna and electronic device
WO2011059088A1 (en) * 2009-11-13 2011-05-19 日立金属株式会社 Frequency variable antenna circuit, antenna component constituting the same, and wireless communication device using those
JP3175058U (en) * 2011-11-11 2012-04-19 欣技資訊股▲分▼有限公司 Dual polarization antenna

Also Published As

Publication number Publication date
DE112013003272B4 (en) 2017-08-10
JP5663117B2 (en) 2015-02-04
JPWO2014003174A1 (en) 2016-06-02
DE112013003272T5 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2017084979A1 (en) Ultra compact ultra broad band dual polarized base station antenna
JP5628453B2 (en) antenna
WO2012077389A1 (en) Antenna device
US9728845B2 (en) Dual antenna structure having circular polarisation characteristics
JP5997360B2 (en) Integrated antenna and manufacturing method thereof
JP2004088198A (en) Monopole antenna system and communication system employing the same
JP2013198090A (en) Antenna device
JP5891359B2 (en) Double resonance antenna device
JP6004180B2 (en) Antenna device
JP6027872B2 (en) Inverted F antenna
JP5663117B2 (en) Inverted F type antenna
JP2013197987A (en) Antenna device
JP2014011692A (en) Integrated antenna device
JP2014082547A (en) Antenna device, antenna structure, and installation method
WO2022102771A1 (en) Antenna
JP7038634B2 (en) Antenna device and railroad vehicle
JP2014022782A (en) Antenna circuit board and antenna device
JP4024634B2 (en) Glass antenna for vehicles
WO2023181978A1 (en) Low-profile composite antenna device
JP2010171507A (en) In-vehicle composite antenna
JP2011019038A (en) Planar antenna
CN116636088A (en) Patch antenna and vehicle-mounted antenna device
JP2013201652A (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522704

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013003272

Country of ref document: DE

Ref document number: 1120130032724

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809778

Country of ref document: EP

Kind code of ref document: A1