WO2012077389A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2012077389A1
WO2012077389A1 PCT/JP2011/069516 JP2011069516W WO2012077389A1 WO 2012077389 A1 WO2012077389 A1 WO 2012077389A1 JP 2011069516 W JP2011069516 W JP 2011069516W WO 2012077389 A1 WO2012077389 A1 WO 2012077389A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
gain
elevation angle
mhz
dbi
Prior art date
Application number
PCT/JP2011/069516
Other languages
French (fr)
Japanese (ja)
Inventor
清水 浩
岳史 中山
Original Assignee
日本アンテナ株式会社
泉井 将史
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アンテナ株式会社, 泉井 将史 filed Critical 日本アンテナ株式会社
Priority to CN2011800035560A priority Critical patent/CN102893456A/en
Publication of WO2012077389A1 publication Critical patent/WO2012077389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array

Definitions

  • the present invention relates to an antenna device capable of supporting a plurality of small and low-profile media that can be mounted on an automobile.
  • an antenna device has been proposed that obtains good electrical characteristics even when an antenna is further incorporated into an antenna device that includes an antenna cover that has only a limited space, such as a vehicle antenna device.
  • the configuration of this conventional antenna device 100 is shown in FIG.
  • the conventional antenna apparatus 100 shown in this figure includes an antenna cover 110, an antenna base 120 fitted to the lower end of the antenna cover 110, an antenna substrate 130 attached to the antenna base 120, and an amplifier substrate 134.
  • the planar antenna unit 135 is configured.
  • the length of the antenna cover 110 in the longitudinal direction is about 200 mm, and the lateral width is about 75 mm.
  • the antenna cover 110 is made of a radio wave-transmitting synthetic resin and has a streamlined outer shape that becomes thinner toward the tip and has a curved surface with the side surface narrowed inward.
  • the antenna cover 110 there are formed a space in which the antenna substrate 130 can be stood and stored, and a space in which the amplifier substrate 134 is stored in parallel with the antenna base 120.
  • a metal antenna base 120 is attached to the lower surface of the antenna cover 110.
  • An antenna substrate 130 is erected and fixed to the antenna base 120, and an amplifier substrate 134 is fixed to the antenna base 120 so as to be positioned in front of the antenna substrate 130.
  • a rectangular notch 130a is formed at the center of the lower edge of the antenna substrate 130, and the planar antenna unit 135 is attached to the antenna base 120 so as to be positioned in the notch 130a.
  • a bolt part 121 for attaching the antenna device 100 to the vehicle is formed so as to protrude from the lower surface of the antenna base 120.
  • a through hole is formed in the bolt part 121, and a plurality of cables are led out from the antenna device 100 through the bolt part 121.
  • the antenna substrate 130 is a printed circuit board such as a glass epoxy substrate having good high frequency characteristics, and a pattern of an antenna element 131 that constitutes an antenna capable of receiving AM broadcast and FM broadcast is formed on the top.
  • the height of the antenna substrate 130 from the antenna base 120 is h1, and the length is p.
  • the length of the antenna element 131 is the same as that of the antenna substrate 130, and the width (height) is h2.
  • the distance between the lower edge of the antenna element 131 and the upper surface of the planar antenna unit 135 is d.
  • the size of the antenna element 131 is set such that the height h1 is about 75 mm and the length p is about 90 mm due to restrictions on the internal space of the antenna cover 110.
  • the dimension of about 75 mm is about 0.025 ⁇ a
  • the dimension of about 90 mm is about 0.03 ⁇ a
  • the antenna element 131 is an ultra-small antenna with respect to the wavelength ⁇ a. It becomes.
  • an antenna coil of about 1 ⁇ H to 3 ⁇ H is inserted in series between the feeding point of the antenna element 131 and the input of the amplifier in the amplifier board 134, and the antenna portion composed of the antenna element 131 and the antenna coil 132 is connected to the FM wave. Resonates near the band.
  • the amplifier provided on the amplifier board 134 amplifies and outputs the FM broadcast signal and the AM broadcast signal received by the antenna element 131.
  • a planar antenna unit 135 that receives satellite radio broadcasts is disposed immediately below the antenna element 131.
  • the planar antenna unit 135 includes a patch element that includes a perturbation element and can receive circularly polarized waves.
  • the planar antenna unit 135 is an antenna for receiving SDARS (Satellite Digital Audio Radio Service), and has a center frequency of 2338.75 MHz.
  • SDARS Synchrolite Digital Audio Radio Service
  • the distance between the upper surface of the planar antenna unit 135 and the lower end of the antenna element 131 is about 0.25 ⁇ s or more.
  • the conventional antenna device has an antenna unit that receives satellite radio broadcasts.
  • the antenna cover has a limited space.
  • an object of the present invention is to provide an antenna device that can be mounted with a plurality of antenna devices corresponding to a plurality of media so as not to affect each other in a limited space.
  • an antenna device of the present invention is an antenna device in which a lower end of an antenna cover is fitted into an antenna base and a storage space is formed therein, and is erected on the antenna base.
  • the first pattern formed along the side edge from the lower feeding point to the upper part, the second pattern formed on the upper part connected to the first pattern by the connection line, and the choke connected in series
  • An antenna substrate having a third pattern formed on an upper portion connected to the second pattern via a coil and a loading coil; and a side edge of the first pattern spaced apart by a predetermined distance La on the antenna base.
  • the antenna unit is disposed, and an elevation angle ⁇ a connecting the oblique side on the side edge side of the second pattern and the substantially center of the antenna unit is about 30 °.
  • the main feature is that the predetermined interval La is about ⁇ / 4 or more when the wavelength of the center frequency of the use frequency band of the antenna unit is ⁇ .
  • the elevation angle ⁇ a connecting the hypotenuse on the side edge side of the second pattern and the approximate center of the antenna unit is about
  • the predetermined interval La is set to about ⁇ / 4 or more when the wavelength of the center frequency of the use frequency band of the antenna unit is ⁇ .
  • the first pattern operates as a 2 GHz band telephone antenna
  • the first pattern and the second pattern operate as a 900 MHz band telephone antenna
  • the choke coil moves the third pattern from the second pattern above the 900 MHz band.
  • FIG. 1 is a plan view showing the configuration of the antenna device 1 according to the present invention
  • FIG. 2 is a side view showing the configuration of the antenna device 1 according to the present invention
  • FIG. 3 is the antenna device 1 according to the present invention
  • 4 is a side view showing the internal configuration of the antenna device 1 according to the present invention
  • FIG. 5 is a side view showing the dimensions of each part of the antenna device 1 according to the present invention.
  • the antenna device 1 according to the embodiments of the present invention shown in these drawings is an antenna device attached to the roof of a vehicle, and has a longitudinal length L1 of about 210 mm and a lateral width L3 of about 66 mm.
  • the height L2 protruding from the vehicle is about 67 mm, which is small and has a low posture.
  • the antenna device 1 has a streamlined shape that becomes thinner toward the tip, and can be freely determined within a certain range so as not to impair the aesthetics and design of the vehicle.
  • a flexible base pad made of rubber or elastomer is fitted on the lower surface of the antenna device 1 so that it can be attached to the vehicle in a watertight manner.
  • An antenna apparatus 1 includes an AM radio band, an FM radio band of 76 to 90 MHz or 88 to 108 MHz, an AMPS (Digital Advanced Mobile Phone System) of 824 to 894 MHz, or a GSM (Global System of 880 to 960 MHz).
  • System for Mobile Communications 900 MHz band, 1850 to 1990 MHz PCS (Personal Communication Services) or 1710 to 1880 MHz GSM1800 2 GHz band, 1.57542 GHz GPS band, and 2.320 to It has an antenna capable of receiving 2.3325 GHz Sirius radio or 2.3325-2.345 GHz XM radio SDARS (Satellite Digital Audio Radio) band.
  • the antenna device 1 supports six media of AM / FM / TEL (dual frequency) / GPS / SDARS.
  • An antenna device 1 is attached to a resin antenna cover 11, a metal antenna base 10 fitted to the lower end of the antenna cover 11, and the antenna base 10 substantially vertically.
  • Antenna board 12, SDARS antenna 13 and GPS antenna 14 mounted side by side on antenna base 10, and circuit board 15 arranged in a portion of antenna board 12 with the lower part cut away.
  • the antenna cover 11 is made of a radio wave permeable synthetic resin and has a streamlined outer shape that becomes thinner toward the tip.
  • an antenna board 12 a storage space for storing the SDARS antenna 13 and the GPS antenna 14, and a space for storing the circuit board 15 in the lateral direction are formed.
  • a metal antenna base 10 is fitted to the lower end of the antenna cover 11.
  • An antenna substrate 12 is erected and fixed to the antenna base 10.
  • a first pattern 12a, a second pattern 12b, and a third pattern 12e made of, for example, copper foil are formed by printing.
  • the first pattern 12a is formed in a substantially rectangular shape in the vertical direction from the lower part to the upper part along the front side edge of the antenna substrate 12, and the lower part is formed in a tapered shape so that the lower part gradually becomes thin, and the lower end is the feeding point. 12g.
  • This feeding point 12g is connected to an input of a branching circuit incorporated in the circuit board 15.
  • the second pattern 12 b is formed in the lateral direction on the antenna substrate 12 and has a substantially rectangular shape with a hypotenuse formed on the front side edge of the antenna substrate 12.
  • the elevation angle connecting this hypotenuse and the almost center of the SDARS antenna 13 arranged at the foremost is ⁇ a, and the SDARS antenna 13 is arranged so that the elevation angle ⁇ a is about 30 degrees or less.
  • a predetermined portion at the front of the second pattern 12b and a predetermined portion at the bottom of the first pattern 12a are connected by a connection line 12f.
  • the third pattern 12e is formed in an approximately rectangular shape elongated in the lateral direction on the upper portion of the antenna substrate 12, and a lower portion on the front is partially cut off.
  • the cut portion of the third pattern 12e and the rear end of the second pattern 12b are connected via a series circuit of the first coil 12c and the second coil 12d.
  • the first coil 12c and the second coil 12d are arranged so that their center axes are orthogonal to each other, and the first coil 12c and the second coil 12d function independently of each other.
  • the first coil 12c functions as a choke coil that separates the third pattern 12e from the second pattern 12b in a high frequency manner in a telephone band of 900 MHz band and 2 GHz band.
  • the second coil 12d acts as a loading coil for an AM / FM antenna, which will be described later.
  • the first coil 12c and the second coil 12d perform different operations, they are independent coils and their central axes are arranged orthogonally so as not to interfere with each other. .
  • the first coil 12c resonates at 800 MHz to 900 MHz, and this resonance is caused by the line capacitance of the first coil 12c, the stray capacitance between the antenna bases 10, and the inductance of the first coil 12c.
  • the reason why the first coil 12c is connected to the rear end of the second pattern 12b is that the loading coil is connected to the position where the high-frequency current is small at the rear end of the second pattern 12b so that the radiation efficiency is not lowered as much as possible. is there.
  • a first pattern 12a formed on the antenna substrate 12 surrounded by a rectangular broken line indicated by C operates as a TEL_PCS antenna of a 2 GHz band telephone band, and is surrounded by a rectangular broken line indicated by B.
  • the pattern 12a and the second pattern 12b are connected by a connection line 12f and operate as a TEL_AMPS antenna in a 900 MHz telephone band.
  • the connection line 12f functions as a choke coil in the PCS band so that the first pattern 12a operates independently in the PCS band.
  • the first pattern 12a, the second pattern 12b, the first coil 12c, the second coil 12d, and the third pattern 12e connected in series surrounded by a broken rectangular broken line indicated by A are all FM radio.
  • the second coil 12d acts as a loading coil for resonating the AM / FM antenna with the FM radio band.
  • the AM / FM antenna operates as a non-resonant antenna in the AM radio band. For this reason, reception signals from the TEL_PCS antenna, the TEL_AMPS antenna, and the AM / FM antenna are output from the feeding point 12g and input to the branching circuit incorporated in the circuit board 15. In this demultiplexing circuit, the reception signal of the telephone band and the reception signal of the AM / FM radio are demultiplexed, and the reception signal of the AM / FM radio band is amplified by an amplifier and output through a cable.
  • the height from the antenna base 10 in the lower surface of the 1st coil 12c and the 2nd coil 12d is set to H, and the height H is about 38 mm.
  • the SDARS antenna 13 disposed at the forefront of the antenna base 10 is a microstrip planar antenna, the rear end thereof is separated from the front side edge of the first pattern 12a by La, and the interval La is about It is set to 32 mm.
  • the interval La is about ⁇ / 4 or more.
  • a GPS antenna 14 is disposed between the SDRAS antenna 13 and the antenna substrate 12. The GPS antenna 14 is a microstrip planar antenna.
  • a bolt portion 10 a for attaching the antenna device 1 to the vehicle is formed so as to protrude from the lower surface of the antenna base 10.
  • a through hole is formed in the bolt portion 10a, and a plurality of cables are led out from the antenna device 1 through the bolt portion 10a.
  • holes through which the bolt portions 10a are inserted are formed in the vehicle roof, and the antenna device 1 is placed on the roof so that the bolt portions 10a are inserted through these holes.
  • the antenna device 1 can be fixed to the roof of the vehicle by fastening a nut to the bolt portion 10a protruding into the vehicle. At this time, the cable drawn from the bolt part 10a is guided into the vehicle.
  • a cable inserted through the through hole of the bolt portion 10a and drawn to the outside includes a cable for transmitting a transmission / reception signal of a telephone band, a cable for deriving a reception signal of an AM / FM radio, and an SDARS antenna 13.
  • the derived cable and the cable derived from the GPS antenna 14 are used.
  • an AM / FM out terminal, TEL in / out terminal, SDARS out terminal, and GPS out terminal are connected to the input terminals of the corresponding receivers.
  • the longitudinal length D1 of the first pattern 12a is about 39 mm and the width W1 is about 20 mm.
  • the length D2 of the second pattern 12b is about 20 mm and the width W2 is about 15 mm
  • the length D3 of the third pattern 12e is about 69 mm
  • the width W3 is about 27.5 mm.
  • the electrical characteristics of the antenna device 1 according to the embodiment of the present invention are shown in FIGS.
  • the dimensions of the first pattern 12a to the third pattern 12e are as described above, the interval La between the rear end of the SDARS antenna 13 and the front side edge of the first pattern 12a is about 32 mm, and the second pattern 12b
  • the elevation angle ⁇ a connecting the hypotenuse and the approximate center of the SDARS antenna 13 is about 30 degrees
  • the height H from the antenna base 10 on the lower surfaces of the first coil 12c and the second coil 12d is about 38 mm
  • the wire diameter of the first coil 12c is about ⁇ 0.55 mm
  • winding diameter is about ⁇ 3 mm
  • winding number is about 12.5 turns
  • second coil 12d has a wire diameter of about ⁇ 0.55 mm
  • winding diameter is about ⁇ 5.8 mm
  • winding number is about 13.5 turns.
  • the antenna device 1 is installed on a ground plate having a diameter of about 1 m.
  • FIG. 6 shows gain characteristics of an average value with respect to the elevation angle of the TEL_AMPS antenna at the lower limit frequency 824 MHz and the upper limit frequency 894 MHz of the AMPS band in the antenna device 1 of the present invention.
  • This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 6, an average gain of about ⁇ 2.4 dBi is obtained at an elevation angle of 0 deg and 824 MHz and about ⁇ 3.0 dBi at 894 MHz, and the elevation angle is increased to 5, 10, 15, 20, 25, and 30 deg. As the average gain increases. A good average gain of about 2.6 dBi is obtained at an elevation angle of 30 deg at 824 MHz and about 3.2 dBi at 894 MHz.
  • the average gain for the elevation angle of 0 to 30 deg in the entire AMPS band of the TEL_AMPS antenna has almost the same characteristics as the average gain for the elevation angle of the TEL_AMPS antenna at the lower limit frequency 824 MHz and the upper limit frequency 894 MHz.
  • the average gain decreases as the elevation angle decreases. That is, in the TEL_AMPS antenna, the average gain of about ⁇ 3.0 dBi at 894 MHz at an elevation angle of 0 deg is the minimum average gain.
  • the TEL_AMPS antenna shows good gain characteristics in the AMPS band.
  • FIG. 7 shows the gain characteristics of the average value with respect to the elevation angle of the TEL_PCS antenna at the lower limit frequency 1850 MHz of the PCS band and the upper limit frequency 1990 MHz in the antenna device 1 of the present invention.
  • This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 7, an average gain of about ⁇ 0.8 dBi is obtained at an elevation angle of 0 deg and 1850 MHz and about ⁇ 0.2 dBi at 1990 MHz, and the average gain increases as the elevation angle increases to 5, 10, 15, and 20 deg. Although it increases, the average gain decreases as it becomes saturated at about 20 deg and reaches 25, 30 deg.
  • a good average gain of approximately 4.1 dBi at 1850 MHz at an elevation angle of 20 deg and approximately 4.9 dBi at 1990 MHz is obtained. It has been confirmed that the average gain of the TEL_PCS antenna with respect to the elevation angle of 0 to 30 deg in the entire PCS band has substantially the same characteristics as the average gain with respect to the elevation angle of the TEL_PCS antenna at the lower limit frequency of 1850 MHz and the upper limit frequency of 1990 MHz. The average gain of about -1.0 dBi with an elevation angle of 0 deg becomes the minimum average gain. Thus, the TEL_PCS antenna shows a good gain characteristic in the PCS band.
  • FIG. 8 to FIG. 27 in the antenna device 1 of the present invention, the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the elevation angles of 0, 5, 10, 20, and 30 deg at the AMPS lower limit frequency 824 MHz and the upper limit frequency 894 MHz,
  • directional characteristics in the horizontal plane of the TEL_PCS antenna at the elevation angles of 0, 5, 10, 20, and 30 deg at the lower limit frequency 1850 MHz and the upper limit frequency 1990 MHz of the PCS band are shown.
  • FIG. 8 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 0 deg.
  • the maximum gain is about -1.2 dBi, the minimum gain is about -3.6 dBi, and the ripple is about 2 A good directivity characteristic of approximately 4 dB is obtained.
  • FIG. 9 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at an upper limit frequency of 894 MHz in the AMPS band and an elevation angle of 0 deg.
  • the maximum gain is about ⁇ 2.2 dBi, the minimum gain is about ⁇ 3.8 dBi, and the ripple is about 1 A good directivity characteristic of approximately 6 dB is obtained.
  • FIG. 10 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 0 deg.
  • the maximum gain is about 1.5 dBi
  • the minimum gain is about -4.9 dBi
  • the ripple is about 6.
  • the gain in the direction of about ⁇ 120 ° is reduced at 4 dB, and a slightly elliptical directivity is obtained.
  • FIG. 11 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band and an elevation angle of 0 deg.
  • the maximum gain is about 1.3 dBi
  • the minimum gain is about -4.9 dBi
  • the ripple is about 7.
  • the gain in the direction of about ⁇ 105 ° is reduced at 3 dB, and a slightly elliptical directivity is obtained.
  • FIG. 12 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 5 deg.
  • the maximum gain is about ⁇ 0.9 dBi
  • the minimum gain is about ⁇ 2.4 dBi
  • the ripple is about 1 A good directivity characteristic of about 5 dB is obtained.
  • the gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 13 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 5 deg.
  • the maximum gain is about ⁇ 0.3 dBi
  • the minimum gain is about ⁇ 2.0 dBi
  • the ripple is about 1 A good directivity characteristic of approximately 7 dB is obtained.
  • the gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 14 shows the directional characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 5 deg.
  • the maximum gain is about 3.2 dBi
  • the minimum gain is about ⁇ 2.5 dBi
  • the ripple is about 5.
  • the gain in the direction of about ⁇ 120 ° is reduced at 7 dB, a slightly elliptical directivity characteristic obtained when the elevation angle is 0 deg is obtained.
  • the gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 15 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 5 deg.
  • the maximum gain is about 4.1 dBi
  • the minimum gain is about -3.6 dBi
  • the ripple is about 7.
  • the gain in the direction of about ⁇ 105 ° is reduced at 7 dB, and a slightly elliptical directional characteristic is obtained.
  • FIG. 16 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and the elevation angle of 10 deg.
  • the maximum gain is about 0.5 dBi
  • the minimum gain is about -0.9 dBi
  • the ripple is about 1.
  • a good directivity characteristic of almost 4 dBm is obtained.
  • the gain is improved compared to when the elevation angle is 5 deg.
  • FIG. 17 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 10 deg.
  • the maximum gain is about 1.2 dBi
  • the minimum gain is about -0.3 dBi
  • the ripple is about 1.
  • a good directivity characteristic of almost 5 dB is obtained.
  • the gain is improved compared to when the elevation angle is 5 deg.
  • FIG. 18 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 10 deg.
  • the maximum gain is about 4.5 dBi
  • the minimum gain is about -1.4 dBi
  • the ripple is about 5.
  • the gain in the direction of about ⁇ 105 ° is reduced at 9 dB, and a slightly elliptical directivity is obtained. The gain is improved compared to when the elevation angle is 5 deg.
  • FIG. 19 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band at an elevation angle of 10 deg.
  • the maximum gain is about 5.5 dBi, the minimum gain is about -2.2 dBi, and the ripple is about 7.
  • the gain in the direction of about ⁇ 105 ° is reduced at 7 dB, and a slightly elliptical directional characteristic is obtained.
  • the gain is improved compared to when the elevation angle is 5 deg.
  • FIG. 20 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and an elevation angle of 20 deg.
  • the maximum gain is about 1.8 dBi
  • the minimum gain is about 1.1 dBi
  • the ripple is about 0.7 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 21 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at an upper frequency of 894 MHz in the AMPS band and an elevation angle of 20 deg.
  • the maximum gain is about 3.0 dBi
  • the minimum gain is about 2.0 dBi
  • the ripple is about 1.0 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 22 shows the directional characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 20 deg.
  • the maximum gain is about 6.2 dBi
  • the minimum gain is about 0.3 dBi
  • the ripple is about 5.9 dB.
  • the gain in the direction of about ⁇ 105 ° is reduced, and a slightly elliptical directivity characteristic is obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 23 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 20 deg.
  • the maximum gain is about 7.3 dBi, the minimum gain is about -0.1 dBi, and the ripple is about 7.
  • the gain in the direction of about ⁇ 105 ° is reduced at 4 dB, and a slightly elliptical directivity is obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 24 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 30 deg.
  • the maximum gain is about 2.9 dBi
  • the minimum gain is about 2.2 dBi
  • the ripple is about 0.7 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved compared to when the elevation angle is 20 degrees.
  • FIG. 25 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 30 deg.
  • the maximum gain is about 3.8 dBi
  • the minimum gain is about 2.9 dBi
  • the ripple is about 0.9 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved compared to when the elevation angle is 20 degrees.
  • FIG. 26 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 30 deg.
  • the maximum gain is about 4.4 dBi
  • the minimum gain is about ⁇ 2.4 dBi
  • the ripple is about 6.
  • the gain in the direction of about ⁇ 105 ° is reduced at 8 dB, and a slightly elliptical directional characteristic is obtained.
  • the gain is lower than when the elevation angle is 20 deg.
  • FIG. 27 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band at an elevation angle of 30 deg.
  • the maximum gain is about 5.2 dBi
  • the minimum gain is about -1.5 dBi
  • the ripple is about 6.
  • the gain in the direction of about ⁇ 120 ° is reduced at 7 dB, and a slightly elliptical directional characteristic is obtained.
  • the gain is lower than when the elevation angle is 20 deg.
  • the directional characteristics in the horizontal plane in the entire AMPS band of the TEL_AMPS antenna are almost omnidirectional and have good directivity characteristics at elevation angles of 0 to 30 degrees.
  • the directivity characteristic in the horizontal plane in the entire PCS band of the TEL_PCS antenna is an elliptical directivity characteristic at an elevation angle of 0 to 30 degrees, but a sufficient directivity characteristic is practically obtained.
  • the gain characteristic of the average value with respect to the elevation angle of the GPS antenna 14 at the GPS band frequency 1575.42 MHz in the antenna device 1 of the present invention is shown.
  • This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 28, an average gain of about ⁇ 2.7 dBi is obtained at an elevation angle of 10 deg. Even if the elevation angle is increased to 20, 30, 40, 50, 60, 70, 80, and 90 deg, the average gain is about It changes only between 0 dBi and about 2 dBi and changes only in a small range, and a stable average gain is obtained. A maximum value of about 1.6 dBi is obtained at 80 deg. Thus, the GPS antenna 14 shows a good gain characteristic in the GPS band.
  • This average value is an average value of gains in the horizontal plane directivity.
  • an average gain of about 2.4 dBi is obtained at an elevation angle of 20 deg at 2332.5 MHz and about 2.3 dBi at 2345 MHz, and the elevation angle is 25, 30, 35, 40, 45, 50, 55, Even if it becomes as large as 60 deg, the average gain at 2332.5 MHz changes only between about 1.5 dBi and about 2.5 dBi, and a substantially constant average gain is obtained. Also, the average gain at 2345 MHz changes only between about 1.4 dBi and about 2.4 dBi, and an almost constant average gain is obtained, and it is about 1.4 dBi or more in the entire XMXRadio band. A good average gain is obtained.
  • FIG. 30 shows the minimum gain characteristic with respect to the elevation angle when the SDARS antenna 13 receives a satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz in the antenna device 1 of the present invention. .
  • This minimum value is the minimum value of gain in the horizontal plane directivity. Referring to FIG. 30, a minimum gain of about ⁇ 2.0 dBi is obtained at an elevation angle of 20 deg and 2332.5 MHz and about ⁇ 2.1 dBi at 2345 MHz, and the elevation angle is 25, 30, 35, 40, 45, 50, It shows a tendency that the minimum gain increases as it becomes 55,60 deg.
  • the minimum gain at 2332.5 MHz changes only between about ⁇ 2.0 dBi and about 1.7 dBi, and a stable minimum gain that changes only in a small range is obtained, and about 1.7 dBi at 55 deg.
  • the maximum minimum value is obtained.
  • the minimum gain at 2345 MHz also changes only between about -2.1 dBi and about 1.4 dBi, so that a sufficient minimum gain is obtained and a stable minimum gain that changes only in a small range is obtained.
  • the maximum minimum value of about 1.4 dBi is obtained at 60 deg.
  • the minimum gain is a sufficient minimum gain of about ⁇ 2.1 dBi or more in the entire XM Radio band.
  • the average gain and the minimum gain for the elevation angle of 20 to 60 deg in the entire XM Radio band of the SDARS antenna 13 have substantially the same characteristics as the average gain and the minimum gain for the elevation angle of the SDARS antenna 13 at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz. It has been confirmed that the average gain is almost constant regardless of the elevation angle, and the minimum gain is only slightly increased as the elevation angle is increased. As described above, the SDARS antenna 13 exhibits good gain characteristics when receiving satellite waves (Satellite) in the XM Radio band.
  • This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 31, an average gain of about ⁇ 3.2 dBi is obtained at an elevation angle of 0 deg at 2332.5 MHz and about ⁇ 3.4 dBi at 2345 MHz, and increases as the elevation angle increases to 5, 10, and 15 deg.
  • the average gain at 2332.5 MHz at 15 deg is about 2.5 dBi, and the average gain at 2345 MHz at 15 deg is about 2.3 dBi. It has been confirmed that the average gain for the elevation angle of 0 to 15 deg in the entire XM Radio band of the SDARS antenna 13 has characteristics similar to the average gain for the elevation angle of the SDARS antenna 13 at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz. The average gain increases as the elevation angle increases. As described above, the SDARS antenna 13 exhibits practically sufficient gain characteristics even when receiving the XM Radio band terrestrial wave (Terrestrial).
  • FIGS. 32 to 41 show elevation angles 20, 30, 40, 50 when the antenna device 1 of the present invention receives satellite waves at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band.
  • the directivity characteristics in the horizontal plane of the SDARS antenna 13 at 60 degrees are shown.
  • FIG. 32 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and an elevation angle of 20 deg.
  • the ripple is a maximum gain of about 4.4 dBi and a minimum gain of about ⁇ 2.0 dBi.
  • FIG. 33 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 20 deg.
  • the maximum gain is about 5.0 dBi
  • the minimum gain is about -2.1 dBi
  • the ripple is about
  • the gain in the direction of about 150 ° and about ⁇ 120 ° is reduced to 7.1 dB, but almost omnidirectional directional characteristics are obtained.
  • FIG. 34 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and an elevation angle of 30 deg.
  • the ripple is a maximum gain of about 4.6 dBi and a minimum gain of about ⁇ 1.1 dBi. Is almost omnidirectional directional characteristics of about 5.7 dB.
  • FIG. 35 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 30 deg.
  • the maximum gain is about 4.9 dBi
  • the minimum gain is about -1.2 dBi
  • the ripple is about An almost omnidirectional directional characteristic of 6.1 dB is obtained.
  • FIG. 36 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 40 deg.
  • the maximum gain is about 3.1 dBi
  • the minimum gain is about 1.1 dBi
  • the ripple is A good directivity characteristic of about 2.0 dB and almost non-directivity is obtained.
  • FIG. 37 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 40 deg.
  • the maximum gain is about 2.7 dBi
  • the minimum gain is about 0.4 dBi
  • the ripple is about 3 Good directional characteristics of .9 dB almost non-directional characteristics are obtained.
  • FIG. 38 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 50 deg.
  • the maximum gain is about 4.2 dBi
  • the minimum gain is about 0.9 dBi
  • the ripple is A good directivity characteristic of approximately 3.3 dB with almost no directivity is obtained.
  • FIG. 39 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 50 deg.
  • the maximum gain is about 4.3 dBi
  • the minimum gain is about 0.9 dBi
  • the ripple is about 3 Good directivity characteristics of .4 dB and almost no directivity are obtained.
  • FIG. 40 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 60 deg.
  • the maximum gain is about 3.0 dBi
  • the minimum gain is about 1.0 dBi
  • the ripple is A good directivity characteristic of about 2.0 dB and almost non-directivity is obtained.
  • FIG. 41 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 60 deg.
  • the maximum gain is about 3.1 dBi
  • the minimum gain is about 1.4 dBi
  • the ripple is about 1 Good directivity characteristics of .7 dB with almost no directivity are obtained.
  • the directional characteristics in the horizontal plane of the SDARS antenna 13 become closer to omnidirectionality as the elevation angle increases. This is presumably because the greater the elevation angle, the less affected by the TEL_AMPS antenna composed of the first pattern 12a and the second pattern 12b formed on the antenna substrate 12.
  • FIGS. 42 to 47 show SDARS at elevation angles 0, 10, and 15 deg when the antenna apparatus 1 of the present invention receives a terrestrial wave at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band.
  • the directivity characteristics of the antenna 13 in the horizontal plane are shown.
  • FIG. 42 shows the directivity characteristic in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 0 deg.
  • the ripple is a maximum gain of about 0.2 dBi and a minimum gain of about ⁇ 13.2 dBi.
  • FIG. 43 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 0 deg.
  • the maximum gain is about 0.9 dBi
  • the minimum gain is about ⁇ 13.4 dBi
  • the ripple is about
  • the gain in the direction of about 140 ° is lowered and the gain in the direction of about ⁇ 120 ° is considerably lowered, and the gain and the directivity are degraded as the frequency is increased.
  • directivity characteristics suitable for practical use are obtained.
  • FIG. 44 shows the directional characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 10 deg.
  • the ripple is a maximum gain of about 4.1 dBi and a minimum gain of about ⁇ 6.7 dBi. Is about 10.8 dB, the gain in the direction of about 140 ° is reduced, and the gain in the direction of about ⁇ 120 ° is considerably reduced.
  • the gain and directivity are improved as compared with the elevation angle of 0 deg, and the directivity sufficiently suitable for practical use is obtained.
  • FIG. 45 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 10 deg.
  • the maximum gain is about 4.1 dBi
  • the minimum gain is about -6.2 dBi
  • the ripple is about
  • the gain in the direction of about 140 ° and in the direction of about ⁇ 120 ° is decreased at 10.3 dB.
  • the gain and directivity are improved as compared with the elevation angle of 0 deg, and the directivity sufficiently suitable for practical use is obtained.
  • FIG. 46 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 15 deg.
  • the ripple is a maximum gain of about 5.3 dBi and a minimum gain of about ⁇ 4.6 dBi. Is about 9.9 dB, the gain in the direction of about 140 ° is reduced, and the gain in the direction of about ⁇ 120 ° is considerably reduced.
  • the gain and directivity are improved compared to the elevation angle of 10 deg, and the directivity that is sufficiently suitable for practical use is obtained.
  • FIG. 47 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 15 deg.
  • the SDARS antenna 13 in the antenna device 1 of the present invention is an antenna suitable for receiving satellite waves (Satellite) and terrestrial waves (Terrestrial) in the XM Radio band.
  • the distance La between the rear end of the SDARS antenna 13 and the front side edge of the first pattern 12a is set to about ⁇ / 4 (about 32 mm) or more, and the second pattern The reason why the elevation angle ⁇ a connecting the hypotenuse of 12b and the approximate center of the SDARS antenna 13 is about 30 degrees or less will be described.
  • the SDARS antenna 13 is arranged so that the distance between the rear end and the front side edge of the first pattern 12a is shortened, and the distance Lb is changed to about 30 mm.
  • the configuration of the antenna device 2 is shown in which the elevation angle connecting the hypotenuse of the second pattern and the approximate center of the SDARS antenna 13 is changed to an elevation angle ⁇ b that is about 35 degrees. Note that the shape of the second pattern is extended forward like the second pattern 12b 'shown in FIG. 48, and the length D4 thereof is about 30 mm. Other configurations of the antenna device 2 are the same as those of the antenna device 1.
  • FIG. 49 shows the gain characteristics of the average value with respect to the elevation angle when the antenna device 2 receives the satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band in the SDARS antenna 13.
  • This average value is an average value of gains in the horizontal plane directivity.
  • an average gain of about 2.2 dBi is obtained at 2332.5 MHz at an elevation angle of 20 deg and about 1.6 dBi at 2345 MHz, which is slightly lower than the average gain in the antenna device 1, but is sufficient An average gain is obtained. And even if the elevation angle increases to 25, 30, 35, 40, 45, 50, 55, 60 deg, the average gain at 2332.5 MHz changes only between about 1.6 dBi and about 3.1 dBi, and is almost A certain average gain is obtained. Also, the average gain at 2345 MHz changes only between about 1.3 dBi and about 2.7 dBi, and an almost constant average gain is obtained, and in the entire band of the XM Radio band, it is about 1.3 dBi or more. A good average gain is obtained.
  • FIG. 50 shows the gain characteristic of the minimum value with respect to the elevation angle when the antenna device 2 receives a satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM radio band in the SDARS antenna 13.
  • This minimum value is the minimum value of gain in the horizontal plane directivity.
  • a minimum gain of about ⁇ 1.8 dBi is obtained at an elevation angle of 20 deg at 2332.5 MHz and about ⁇ 4.5 dBi at 2345 MHz, and the elevation angle is 25, 30, 35, 40, 45, 50, It shows a tendency that the minimum gain increases as it becomes 55,60 deg.
  • the minimum gain at 2332.5 MHz changes only between about -1.4 dBi and about 2.3 dBi, and changes only in a small range, and a maximum value of about 1.7 dBi is obtained at 60 deg. Further, the minimum gain at 2345 MHz varies between about ⁇ 4.5 dBi and about 1.8 dBi, and ⁇ 4.5 dBi which is considerably lower than the minimum value ⁇ 2.1 dBi in the antenna device 1 is the minimum value. . In this case, when the elevation angle is smaller than about 30 deg, the minimum value is further decreased as the frequency is increased.
  • the interval La is about 32 mm and the elevation angle ⁇ a is about 30 deg.
  • the interval La is increased, the elevation angle ⁇ a is also reduced, and the SDARS antenna 13 is separated from the first pattern 12a and the second pattern 12b, and the influence thereof is reduced. That is, the gain of the SDARS antenna 13 increases as the interval La increases and the elevation angle ⁇ a decreases.
  • the interval La is about 32 mm and the elevation angle ⁇ a is about 30 deg, the gain of the SDARS antenna 13 becomes a practically sufficient gain. Therefore, in the antenna device 1 of the present invention, the interval La is about 32 mm ( ⁇ / 4) As described above, the elevation angle ⁇ a is about 30 degrees or less.
  • FIG. 51 to FIG. 55 show the elevation angles 20, 30, 40, 50, and 60 deg when the antenna device 2 shown in FIG. 48 receives a satellite wave at the center frequency 2338.75 MHz of the XM Radio band.
  • the directivity characteristics in the horizontal plane of the SDARS antenna 13 are shown.
  • FIG. 51 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 20 deg.
  • the ripple is a maximum gain of about 4.6 dBi and a minimum gain of about ⁇ 3.5 dBi.
  • FIG. 52 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 30 deg.
  • the ripple is a maximum gain of about 4.3 dBi and a minimum gain of about ⁇ 1.4 dBi. Is about 5.7 dB, and the gain in the direction of about 60 ° and about 150 ° to about ⁇ 120 ° decreases.
  • FIG. 53 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an XM Radio band center frequency of 2338.75 MHz and an elevation angle of 40 deg.
  • the maximum gain is about 3.6 dBi
  • the minimum gain is about 0.5 dBi
  • the ripple is It is about 3.1 dB, and almost omnidirectional directional characteristics are obtained.
  • FIG. 54 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 50 deg.
  • the ripple is a maximum gain of about 4.3 dBi, a minimum gain of about 1.5 dBi. It is about 2.7 dB, and an almost omnidirectional directional characteristic is obtained.
  • FIG. 53 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an XM Radio band center frequency of 2338.75 MHz and an elevation angle of 40 deg.
  • the ripple is a maximum gain of about 4.3 dBi
  • FIG. 56 to FIG. 59 show SDARS antennas at elevation angles of 0, 5, 10, and 15 deg when the antenna apparatus 2 shown in FIG. 48 receives a terrestrial wave at a center frequency of 2338.75 MHz in the XM Radio band.
  • the directional characteristics in 13 horizontal planes are shown.
  • FIG. 56 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of the XM Radio band of 2338.75 MHz and an elevation angle of 0 deg.
  • the ripple is a maximum gain of about 0.6 dBi and a minimum gain of about ⁇ 13.3 dBi.
  • FIG. 57 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an XM Radio band center frequency of 2338.75 MHz and an elevation angle of 5 deg.
  • the ripple is a maximum gain of about 2.6 dBi and a minimum gain of about ⁇ 11.0 dBi.
  • the gain in the direction of about 50 ° is reduced, the gain in the direction of about 150 ° and about ⁇ 120 ° is greatly reduced, and the gain in the direction of about ⁇ 120 ° is considerably reduced.
  • the omnidirectionality is not obtained.
  • the minimum gain is as small as about ⁇ 11.0 dBi and omnidirectionality cannot be obtained, directional characteristics sufficient for practical use cannot be obtained.
  • FIG. 58 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of XM Radio band of 2338.75 MHz and an elevation angle of 10 deg.
  • the ripple is a maximum gain of about 4.4 dBi and a minimum gain of about ⁇ 8.0 dBi. Is about 12.4 dB, and the gain in the direction of about 50 ° is reduced and the gain in the direction of about 150 ° and about ⁇ 120 ° is considerably reduced, but is significantly improved as compared with the case where the elevation angle is 0 deg. .
  • the minimum gain is not sufficiently ⁇ 8.0 dBi, and a directional characteristic sufficient for practical use cannot be obtained.
  • the ripple is a maximum gain of about 5.7 dBi and a minimum gain of about ⁇ 5.8 dBi. Is about 11.5 dB, and the gain in the direction of about 50 ° is reduced and the gains in the direction of about 150 ° and about ⁇ 120 ° are considerably reduced, but the gain is significantly improved compared to when the elevation angle is 0 deg. .
  • the minimum gain is not sufficient as -5.8 dBi, and a directivity characteristic sufficient for practical use is not obtained.
  • the directivity characteristics in the horizontal plane of the SDARS antenna 13 that receives the XM radio band in the antenna device 2 shown in FIG. 48 are not limited to satellite waves and satellite waves (terrestrial), but the directivity characteristics at low elevation angles are practical. However, sufficient directivity characteristics are not obtained. However, the directivity is improved as the elevation angle increases.
  • the reason why the height H from the antenna base 10 on the lower surfaces of the first coil 12c and the second coil 12d is about 38 mm or more will be described.
  • 60 in the antenna device 1 according to the present invention, the height from the antenna base 10 on the lower surfaces of the first coil 12c ′ and the second coil 12d ′ is reduced to a height Hb of about 31.5 mm.
  • the structure of the changed antenna apparatus 3 is shown.
  • the electrical characteristics of the antenna device 3 shown in FIG. 60 are shown in FIGS.
  • the height Hb from the antenna base 10 on the lower surfaces of the first coil 12c ′ and the second coil 12d ′ is about 31.5 mm, and other dimensions are the same as those of the antenna device 1.
  • This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 61, an average gain of about ⁇ 2.0 dBi is obtained at an elevation angle of 0 deg at 824 MHz and about ⁇ 2.8 dBi at 894 MHz, and the elevation angle is increased to 5, 10, 15, 20, 25, and 30 deg. As the average gain increases. A good average gain of about 2.9 dBi is obtained at an elevation angle of 30 deg at 824 MHz and about 2.4 dBi at 894 MHz.
  • the average gain of the TEL_AMPS antenna in the antenna device 3 decreases as the frequency increases and the elevation angle decreases.
  • the TEL_AMPS antenna in the antenna device 1 according to the present invention has an improved average gain at frequencies higher than low frequencies over almost the entire elevation angle of 0 to 30 deg.
  • the TEL_AMPS antenna in the antenna device 3 has an elevation angle of 0 to 30 deg.
  • the average gain at a frequency higher than the low frequency is reduced almost throughout. That is, if the height Hb of the first coil 12c 'and the second coil 12d' is reduced to about 31.5 mm, the average gain in the high band of the AMPS band is lowered.
  • FIG. 62 shows average gain characteristics with respect to the elevation angle of the TEL_PCS antenna at the lower limit frequency 1850 MHz and the upper limit frequency 1990 MHz of the PCS band in the antenna device 3 shown in FIG.
  • This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 62, an average gain of approximately ⁇ 0.8 dBi is obtained at 1850 MHz with an elevation angle of 0 deg and approximately ⁇ 0.7 dBi at 1990 MHz, and the average gain increases as the elevation angle increases to 5, 10, 15, 20 deg. Although it increases, the average gain decreases as it becomes saturated at about 20 deg and reaches 25, 30 deg.
  • a good average gain of about 3.9 dBi at 1850 MHz at an elevation angle of 20 deg and about 4.7 dBi at 1990 MHz is obtained.
  • the average gain of the TEL_PCS antenna in the antenna device 3 with respect to the elevation angle of 0 to 30 deg in the PCS band is compared with the TEL_PCS antenna in the antenna device 1 according to the present invention, it has been confirmed that the average gain decreases at about 1910 MHz to 1990 MHz. . That is, when the height Hb of the first coil 12c ′ and the second coil 12d ′ is reduced to about 31.5 mm, the average gain decreases as the frequency becomes higher in the PCS band.
  • the height Hb of the first coil 12c ′ and the second coil 12d ′ is reduced to about 31.5 mm, the average gain in the high band of the AMPS band decreases and the high band in the PCS band.
  • the height H of the first coil 12c and the second coil 12d is about 38 mm or more in the antenna device 1 according to the present invention.
  • FIG. 63 to FIG. 78 in the antenna device 3 shown in FIG.
  • the directional characteristics in the horizontal plane of the TEL_PCS antenna at the elevation angles of 0, 10, 20, and 30 deg at the PCS band lower limit frequency of 1850 MHz and upper limit frequency of 1990 MHz are shown.
  • FIG. 63 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and the elevation angle of 0 deg.
  • the maximum gain is about ⁇ 1.5 dBi
  • the minimum gain is about ⁇ 2.5 dBi
  • the ripple is about 1
  • a good directivity characteristic of about 0.0 dB is obtained.
  • FIG. 65 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 0 deg.
  • the maximum gain is about 0.9 dBi
  • the minimum gain is about ⁇ 4.4 dBi
  • the ripple is about 5.
  • a slightly elliptical directional characteristic is obtained with the gain in the direction of about 110 ° and about ⁇ 70 ° decreased at 3 dB.
  • FIG. 66 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band and an elevation angle of 0 deg.
  • the maximum gain is about 1.5 dBi
  • the minimum gain is about ⁇ 5.7 dBi
  • the ripple is about 7.
  • the gain in the direction of about 120 ° and about ⁇ 75 ° is reduced at 2 dB, and a slightly elliptical directivity characteristic is obtained.
  • FIG. 67 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and the elevation angle of 10 deg.
  • the maximum gain is about 0.6 dBi
  • the minimum gain is about 0.0 dBi
  • the ripple is about 0.6 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 68 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 10 deg.
  • the maximum gain is about 0.5 dBi
  • the minimum gain is about ⁇ 0.8 dBi
  • the ripple is about 1.
  • a good directivity characteristic of almost 3 dB is obtained.
  • the gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 69 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 10 deg.
  • the maximum gain is about 3.6 dBi
  • the minimum gain is about -1.6 dBi
  • the ripple is about 5.
  • the gain in the directions of about 110 ° and about ⁇ 70 ° is reduced, and a slightly elliptical directivity characteristic is obtained. The gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 70 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band at an elevation angle of 10 deg.
  • the maximum gain is about 4.6 dBi, the minimum gain is about ⁇ 1.8 dBi, and the ripple is about 6.
  • the gain in the directions of about 120 ° and about ⁇ 70 ° is reduced, and a slightly elliptical directivity characteristic is obtained.
  • the gain is improved compared to when the elevation angle is 0 deg.
  • FIG. 71 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and an elevation angle of 20 deg.
  • the maximum gain is about 2.9 dBi
  • the minimum gain is about 1.6 dBi
  • the ripple is about 1.3 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 72 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at an upper frequency of 894 MHz in the AMPS band at an elevation angle of 20 deg.
  • the maximum gain is about 2.1 dBi
  • the minimum gain is about 1.2 dBi
  • the ripple is about 0.9 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 73 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 20 deg.
  • the maximum gain is about 5.9 dBi
  • the minimum gain is about 0.7 dBi
  • the ripple is about 5.2 dB.
  • the gain in the direction of about 120 ° and about ⁇ 70 ° is reduced, and a slightly elliptical directional characteristic is obtained. The gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 74 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 20 deg.
  • the maximum gain is about 6.6 dBi
  • the minimum gain is about 0.3 dBi
  • the ripple is about 6.3 dB.
  • the gain in the direction of about 120 ° and the direction of about ⁇ 80 ° is lowered, and a slightly elliptical directivity characteristic is obtained.
  • the gain is improved as compared with the elevation angle of 10 degrees.
  • FIG. 75 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 30 deg.
  • the maximum gain is about 3.5 dBi
  • the minimum gain is about 2.3 dBi
  • the ripple is about 1.2 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved compared to when the elevation angle is 20 degrees.
  • FIG. 76 shows the directivity characteristic in the horizontal plane of the TEL_AMPS antenna at an upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 30 deg.
  • the maximum gain is about 2.8 dBi
  • the minimum gain is about 1.8 dBi
  • the ripple is about 1.0 dB.
  • Good directivity characteristics that are almost non-directional are obtained.
  • the gain is improved compared to when the elevation angle is 20 degrees.
  • FIG. 77 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 30 deg.
  • the maximum gain is about 5.3 dBi
  • the minimum gain is about -1.9 dBi
  • the ripple is about 7.
  • the gain in the direction of about 120 ° and about ⁇ 100 ° is reduced at 2 dB, and a slightly elliptical directivity characteristic is obtained.
  • the gain is lower than when the elevation angle is 20 deg.
  • FIG. 78 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 30 deg.
  • the maximum gain is about 5.0 dBi, the minimum gain is about -1.9 dBi, and the ripple is about 6.
  • the gain in the direction of about 130 ° and about ⁇ 100 ° is reduced at 9 dB, and a slightly elliptical directivity characteristic is obtained.
  • the gain is lower than when the elevation angle is 20 deg. Referring to FIGS.
  • the directivity characteristic in the horizontal plane in the entire AMPS band of the TEL_AMPS antenna is It can be seen that the omnidirectional and good directivity characteristics are obtained at an elevation angle of 0 to 30 degrees, but the average gain in the high band of the AMPS band is lowered.
  • the directional characteristics in the horizontal plane of the TEL_PCS antenna in the entire PCS band are elliptical directional characteristics at an elevation angle of 0 to 30 deg. It can be seen that the average gain decreases as the frequency increases in the PCS band.
  • the SDARS antenna 13 has a satellite wave reception performance of up to 20 deg so that the satellite wave from the satellite station and the ground wave from the ground station (gap filler) can be received. With a low elevation angle, there is little deviation in the horizontal plane, and it has good directivity.
  • the SDARS antenna 13 is arranged at an interval of ⁇ / 4 (about 32 mm) or more from the first pattern 12a in order to prevent electrical interference.
  • the GPS antenna 14 can receive signals from a plurality of satellites in the sky, it is not necessary to ensure reception performance at such a low elevation angle. Therefore, it is disposed between the antenna substrate 12 and the SDARS antenna 13 that have no shield in the zenith direction.
  • the TEL_PCS antenna and the TEL_AMPS antenna are monopole antennas, and are used in a call, data communication / emergency call system, etc. in a horizontal plane.
  • the antenna device according to the present invention has omnidirectionality or directional characteristics close to omnidirectionality in a horizontal plane.
  • the choke coil including the first coil 12c and the second coil The 12d loading coil is arranged to be positioned above the TEL_AMPS antenna with a small current distribution.
  • the AM / FM antenna is a monopole antenna, which is about 1/45 the wavelength of the FM frequency and the antenna height is low. Therefore, it is difficult to resonate with a desired FM frequency using only the first pattern 12a to the third pattern 12e and the first coil 12c. Therefore, in order to obtain electrical matching, a loading coil including the second coil 12d is provided. As a result, the entire AM / FM antenna resonates at the FM frequency. In the AM band, the AM / FM antenna operates in the capacitive region from the frequency used. Therefore, a capacity loading type may be used so as to obtain good reception performance.
  • the choke coil including the first coil 12c is provided in order to isolate the third pattern 12e in high frequency by using self-resonance to increase the impedance in the 900 MHz band of the AMPS band or the GSM900 band. That is, the first coil 12c is a 900 MHz band trap coil. Furthermore, when a large current is induced in the first coil 12c and the second coil 12d, the inductance performance changes due to magnetic field coupling, and therefore, the central axes are arranged orthogonal to each other.

Abstract

[Problem] To mount a plurality of antenna devices corresponding to a plurality of media in a limited space such that the antenna devices do not interfere with one another. [Solution] An antenna substrate (12) is vertically disposed on an antenna base (10). A first pattern (12a), a second pattern (12b) which is connected via a connecting line to the first pattern (12a), and a third pattern (12e) which is connected via a first coil (12c) and a second coil (12d) to the second pattern (12b) are formed on the antenna substrate (12). A gap (La) between a lateral end of the first pattern and an SDARS antenna (13) is made to be greater than or equal to 32mm, and an angle of elevation θa between an oblique side of the second pattern (12b) and the SDARS antenna (13) is made to be approximately 30 degrees or less.

Description

アンテナ装置Antenna device
 本発明は、自動車へ搭載可能な小型低姿勢の複数のメディアに対応できるアンテナ装置に関するものである。 The present invention relates to an antenna device capable of supporting a plurality of small and low-profile media that can be mounted on an automobile.
 従来、車両用のアンテナ装置のように限られた空間しか有していないアンテナカバーを備えるアンテナ装置に、さらにアンテナを組み込んでも良好な電気的特性を得るアンテナ装置が提案されている。この従来のアンテナ装置100の構成を図79に示す。
 この図に示す従来のアンテナ装置100は、アンテナカバー110と、このアンテナカバー110の下端に嵌合されているアンテナベース120と、アンテナベース120に取り付けられているアンテナ基板130と、アンプ基板134と、平面アンテナユニット135から構成されている。アンテナカバー110の長手方向の長さは約200mmとされ、横幅は約75mmとされている。アンテナカバー110は電波透過性の合成樹脂製とされており、先端に行くほど細くなると共に、側面も内側に絞った曲面とされた流線型の外形形状とされている。アンテナカバー110内には、アンテナ基板130を立設して収納できる空間と、アンプ基板134をアンテナベース120にほぼ平行に収納する空間が形成されている。アンテナカバー110の下面には金属製のアンテナベース120が取り付けられている。そして、アンテナベース120にアンテナ基板130が立設して固着されていると共に、アンテナ基板130の前方に位置するようにアンプ基板134がアンテナベース120に固着されている。また、アンテナ基板130の下縁の中央部に矩形状の切欠130aが形成されており、この切欠130a内に位置するように平面アンテナユニット135がアンテナベース120に取り付けられている。このアンテナベース120をアンテナカバー110の下面に取り付けることにより、アンテナカバー110の内部空間にアンテナ基板130とアンプ基板134と平面アンテナユニット135とを収納することができる。
2. Description of the Related Art Conventionally, an antenna device has been proposed that obtains good electrical characteristics even when an antenna is further incorporated into an antenna device that includes an antenna cover that has only a limited space, such as a vehicle antenna device. The configuration of this conventional antenna device 100 is shown in FIG.
The conventional antenna apparatus 100 shown in this figure includes an antenna cover 110, an antenna base 120 fitted to the lower end of the antenna cover 110, an antenna substrate 130 attached to the antenna base 120, and an amplifier substrate 134. The planar antenna unit 135 is configured. The length of the antenna cover 110 in the longitudinal direction is about 200 mm, and the lateral width is about 75 mm. The antenna cover 110 is made of a radio wave-transmitting synthetic resin and has a streamlined outer shape that becomes thinner toward the tip and has a curved surface with the side surface narrowed inward. In the antenna cover 110, there are formed a space in which the antenna substrate 130 can be stood and stored, and a space in which the amplifier substrate 134 is stored in parallel with the antenna base 120. A metal antenna base 120 is attached to the lower surface of the antenna cover 110. An antenna substrate 130 is erected and fixed to the antenna base 120, and an amplifier substrate 134 is fixed to the antenna base 120 so as to be positioned in front of the antenna substrate 130. In addition, a rectangular notch 130a is formed at the center of the lower edge of the antenna substrate 130, and the planar antenna unit 135 is attached to the antenna base 120 so as to be positioned in the notch 130a. By attaching the antenna base 120 to the lower surface of the antenna cover 110, the antenna substrate 130, the amplifier substrate 134, and the planar antenna unit 135 can be accommodated in the internal space of the antenna cover 110.
 また、アンテナベース120の下面からは、アンテナ装置100を車両に取り付けるためのボルト部121が突出して形成されている。このボルト部121には貫通孔が形成されており、複数本のケーブルがボルト部121を介してアンテナ装置100から導出される。さらに、アンテナ基板130は、高周波特性の良好なガラスエポキシ基板等のプリント基板とされており、AM放送とFM放送を受信可能なアンテナを構成するアンテナ素子131のパターンが上部に形成されている。アンテナ基板130のアンテナベース120からの高さはh1、長さはpとされている。また、アンテナ素子131の長さはアンテナ基板130と同じpとされ、幅(高さ)はh2とされている。さらに、アンテナ素子131の下縁と平面アンテナユニット135の上面との間隔はdとされている。このアンテナ素子131の大きさは、アンテナカバー110の内部空間の制約から高さh1は約75mm程度までの高さ、長さpは約90mm程度までとされている。ここで、FM波帯の周波数100MHzの波長をλaとすると、約75mmの寸法は約0.025λa、約90mmの寸法は約0.03λaとなり、アンテナ素子131は波長λaに対して超小型のアンテナとなる。 Further, a bolt part 121 for attaching the antenna device 100 to the vehicle is formed so as to protrude from the lower surface of the antenna base 120. A through hole is formed in the bolt part 121, and a plurality of cables are led out from the antenna device 100 through the bolt part 121. Further, the antenna substrate 130 is a printed circuit board such as a glass epoxy substrate having good high frequency characteristics, and a pattern of an antenna element 131 that constitutes an antenna capable of receiving AM broadcast and FM broadcast is formed on the top. The height of the antenna substrate 130 from the antenna base 120 is h1, and the length is p. The length of the antenna element 131 is the same as that of the antenna substrate 130, and the width (height) is h2. Furthermore, the distance between the lower edge of the antenna element 131 and the upper surface of the planar antenna unit 135 is d. The size of the antenna element 131 is set such that the height h1 is about 75 mm and the length p is about 90 mm due to restrictions on the internal space of the antenna cover 110. Here, when the wavelength of the frequency of 100 MHz in the FM wave band is λa, the dimension of about 75 mm is about 0.025 λa, the dimension of about 90 mm is about 0.03 λa, and the antenna element 131 is an ultra-small antenna with respect to the wavelength λa. It becomes.
 なお、1μH~3μH程度のアンテナコイルがアンテナ素子131の給電点とアンプ基板134におけるアンプの入力との間に直列に挿入されており、アンテナ素子131とアンテナコイル132とからなるアンテナ部をFM波帯付近で共振させている。また、アンプ基板134に設けられているアンプは、アンテナ素子131により受信されたFM放送信号とAM放送信号とを増幅して出力している。さらに、アンテナ素子131の直下に衛星ラジオ放送を受信する平面アンテナユニット135が配置されている。平面アンテナユニット135は、摂動素子を備え円偏波を受信可能なパッチ素子を備えている。平面アンテナユニット135は、SDARS(Satellite Digital Audio Radio Service:衛星ディジタルラジオサービス)受信用のアンテナとされ、その中心周波数は2338.75MHzとされている。平面アンテナユニット135の動作周波数帯の中心周波数の波長をλsとした際に、平面アンテナユニット135の上面とアンテナ素子131の下端との間隔が約0.25λs以上とされている。これにより、アンテナ素子131の影響を受けることなく平面アンテナユニット135の水平面内の放射指向特性を無指向性とすることができると共に、良好なゲイン特性が得られるようになる。 Note that an antenna coil of about 1 μH to 3 μH is inserted in series between the feeding point of the antenna element 131 and the input of the amplifier in the amplifier board 134, and the antenna portion composed of the antenna element 131 and the antenna coil 132 is connected to the FM wave. Resonates near the band. The amplifier provided on the amplifier board 134 amplifies and outputs the FM broadcast signal and the AM broadcast signal received by the antenna element 131. Further, a planar antenna unit 135 that receives satellite radio broadcasts is disposed immediately below the antenna element 131. The planar antenna unit 135 includes a patch element that includes a perturbation element and can receive circularly polarized waves. The planar antenna unit 135 is an antenna for receiving SDARS (Satellite Digital Audio Radio Service), and has a center frequency of 2338.75 MHz. When the wavelength of the center frequency in the operating frequency band of the planar antenna unit 135 is λs, the distance between the upper surface of the planar antenna unit 135 and the lower end of the antenna element 131 is about 0.25λs or more. Thereby, the radiation directivity characteristic in the horizontal plane of the planar antenna unit 135 can be made omnidirectional without being affected by the antenna element 131, and a good gain characteristic can be obtained.
特開2009-135741号公報JP 2009-135741 A
 近年の車両には安全性や快適性を求め様々な情報機器の搭載が進められている。それに伴い、多くのメディアに対応するため車両には放送系受信アンテナ及び情報通信系アンテナの搭載が必要とされている。車両(移動体)用のアンテナに求められる性能は水平面内において無指向性であることが一般的ある。従って、アンテナ搭載位置として適している位置は、金属物による遮蔽や反射の影響が最も少ない車両の外側であり、特にルーフパネル上が好条件となる。しかし、車両デザインとの整合性を考慮するとメディア毎に複数のアンテナをルーフパネル上に林立して設置することは困難である。また、法規制により車両からの突起(アンテナ高)には制限が設けられている場合が多く、各メディアの送受信に適した波長のアンテナサイズとした場合には長くなることから、法規制を回避するために脱着式エレメントとしている。この場合、付け忘れによる受信・通信不具合や盗難による被害等が懸念される。 In recent years, various information devices are being installed in vehicles for safety and comfort. Accordingly, vehicles are required to be equipped with broadcast receiving antennas and information communication antennas in order to support many media. The performance required for an antenna for a vehicle (moving body) is generally omnidirectional in a horizontal plane. Therefore, the position suitable as the antenna mounting position is the outside of the vehicle having the least influence of shielding and reflection by metal objects, and particularly on the roof panel. However, considering the consistency with the vehicle design, it is difficult to install a plurality of antennas on the roof panel for each medium. In addition, there are many cases where there are restrictions on the protrusions (antenna height) from the vehicle due to laws and regulations, and the length becomes longer when the antenna size has a wavelength suitable for transmission / reception of each media. In order to do this, it is a removable element. In this case, there is a concern about reception / communication problems due to forgetting to attach or damage due to theft.
 従来のアンテナ装置は衛星ラジオ放送を受信するアンテナユニットを備えているが、さらに他のメディアに対応するアンテナを搭載するとアンテナカバー内は限られた空間とされていることから、互いにアンテナ同士が影響し合って良好な指向特性やゲイン特性を得られないという問題点があった。
 そこで、本発明は限られた空間に互いに影響し合わないように複数のメディアに対応する複数のアンテナ装置を搭載できるアンテナ装置を提供することを目的としている。
The conventional antenna device has an antenna unit that receives satellite radio broadcasts. However, if an antenna that supports other media is installed, the antenna cover has a limited space. As a result, there was a problem that good directivity characteristics and gain characteristics could not be obtained.
Therefore, an object of the present invention is to provide an antenna device that can be mounted with a plurality of antenna devices corresponding to a plurality of media so as not to affect each other in a limited space.
 上記目的を達成するために、本発明のアンテナ装置は、アンテナカバーの下端がアンテナベースに嵌合されて内部に収納空間が形成されているアンテナ装置であって、前記アンテナベース上に立設されて配置され、下部の給電点から上部にかけて側縁に沿って形成された第1パターンと、該第1パターンと接続ラインで接続された上部に形成された第2パターンと、直列接続されたチョークコイルとローディングコイルを介して前記第2パターンに接続された上部に形成された第3パターンとを有するアンテナ基板と、前記第1パターンの側端と所定間隔Laだけ離隔されて前記アンテナベース上に配置されたアンテナユニットとを備え、前記第2パターンの前記側縁側の斜辺と前記アンテナユニットのほぼ中心とを結ぶ仰角θaが約30°以下とされていると共に、前記アンテナユニットの使用周波数帯域の中心周波数の波長をλとした際に、前記所定間隔Laが約λ/4以上とされていることを最も主要な特徴としている。 In order to achieve the above object, an antenna device of the present invention is an antenna device in which a lower end of an antenna cover is fitted into an antenna base and a storage space is formed therein, and is erected on the antenna base. The first pattern formed along the side edge from the lower feeding point to the upper part, the second pattern formed on the upper part connected to the first pattern by the connection line, and the choke connected in series An antenna substrate having a third pattern formed on an upper portion connected to the second pattern via a coil and a loading coil; and a side edge of the first pattern spaced apart by a predetermined distance La on the antenna base. The antenna unit is disposed, and an elevation angle θa connecting the oblique side on the side edge side of the second pattern and the substantially center of the antenna unit is about 30 °. The main feature is that the predetermined interval La is about λ / 4 or more when the wavelength of the center frequency of the use frequency band of the antenna unit is λ.
 本発明のアンテナ装置では、アンテナユニットをアンテナカバーとアンテナベースとで形成される収納空間内に収納する際に、第2パターンの側縁側の斜辺とアンテナユニットのほぼ中心とを結ぶ仰角θaが約30°以下とされていると共に、アンテナユニットの使用周波数帯域の中心周波数の波長をλとした際に、所定間隔Laが約λ/4以上とされている。これにより、収納空間が限られた空間であっても互いにアンテナ同士が極力影響し合うことなく配置することができる。なお、第1パターンは2GHz帯の電話用アンテナとして動作し、第1パターンと第2パターンが900MHz帯の電話用アンテナとして動作し、チョークコイルは、900MHz帯以上において第3パターンを第2パターンから高周波的に切り離すよう機能し、直列接続された第3パターン、チョークコイル、ローディングコイル、第2パターンおよび第1パターンの全体がAM/FM周波数帯のアンテナとして動作する。 In the antenna device of the present invention, when the antenna unit is stored in the storage space formed by the antenna cover and the antenna base, the elevation angle θa connecting the hypotenuse on the side edge side of the second pattern and the approximate center of the antenna unit is about The predetermined interval La is set to about λ / 4 or more when the wavelength of the center frequency of the use frequency band of the antenna unit is λ. Thereby, even if it is the space where storage space was restricted, it can arrange | position, without mutually affecting antennas as much as possible. Note that the first pattern operates as a 2 GHz band telephone antenna, the first pattern and the second pattern operate as a 900 MHz band telephone antenna, and the choke coil moves the third pattern from the second pattern above the 900 MHz band. The third pattern, the choke coil, the loading coil, the second pattern, and the first pattern, which function to cut off at a high frequency and are connected in series, operate as an antenna in the AM / FM frequency band.
本発明の実施例にかかるアンテナ装置の構成を示す平面図である。It is a top view which shows the structure of the antenna apparatus concerning the Example of this invention. 本発明の実施例にかかるアンテナ装置の構成を示す側面図である。It is a side view which shows the structure of the antenna apparatus concerning the Example of this invention. 本発明の実施例にかかるアンテナ装置の構成を示す正面図である。It is a front view which shows the structure of the antenna apparatus concerning the Example of this invention. 本発明の実施例にかかるアンテナ装置の内部構成を示す側面図である。It is a side view which shows the internal structure of the antenna apparatus concerning the Example of this invention. 本発明の実施例にかかるアンテナ装置の各部の寸法を示す側面図である。It is a side view which shows the dimension of each part of the antenna apparatus concerning the Example of this invention. 本発明のアンテナ装置にかかるAMPSの仰角に対する平均値の利得特性を示す図である。It is a figure which shows the gain characteristic of the average value with respect to the elevation angle of AMPS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるPCSの仰角に対する平均値の利得特性を示す図である。It is a figure which shows the gain characteristic of the average value with respect to the elevation angle of PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角0°、周波数824MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree, and frequency of 824 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角0°、周波数894MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 0 degrees of the AMPS / PCS concerning the antenna apparatus of this invention, and the frequency of 894 MHz. 本発明のアンテナ装置にかかるAMPS/PCSの仰角0°、周波数1850MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree, and frequency of 1850 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角0°、周波数1990MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 0 degrees of the AMPS / PCS concerning the antenna apparatus of this invention, and the frequency of 1990 MHz. 本発明のアンテナ装置にかかるAMPS/PCSの仰角5°、周波数824MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 5 degrees, and frequency of 824 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角5°、周波数894MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 5 degrees, and frequency of 894 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角5°、周波数1850MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 5 degrees of the AMPS / PCS concerning the antenna apparatus of this invention, and the frequency of 1850 MHz. 本発明のアンテナ装置にかかるAMPS/PCSの仰角5°、周波数1990MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 5 degrees of AMPS / PCS concerning the antenna apparatus of this invention, and the frequency of 1990 MHz. 本発明のアンテナ装置にかかるAMPS/PCSの仰角10°、周波数824MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees, and frequency of 824 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角10°、周波数894MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees, and the frequency of 894 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角10°、周波数1850MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees, and the frequency of 1850 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角10°、周波数1990MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees, and the frequency of 1990 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角20°、周波数824MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees, and frequency of 824 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角20°、周波数894MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees, and frequency of 894 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角20°、周波数1850MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees, and frequency of 1850 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角20°、周波数1990MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of AMPS / PCS concerning the antenna apparatus of this invention, and the frequency of 1990 MHz. 本発明のアンテナ装置にかかるAMPS/PCSの仰角30°、周波数824MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees, and frequency of 824 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角30°、周波数894MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees, and the frequency of 894 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角30°、周波数1850MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees, and frequency of 1850 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるAMPS/PCSの仰角30°、周波数1990MHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees, and frequency of 1990 MHz of AMPS / PCS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるGPSの仰角に対する利得特性を示す図である。It is a figure which shows the gain characteristic with respect to the elevation angle of GPS concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角に対する平均値の利得特性を示す図である。It is a figure which shows the gain characteristic of the average value with respect to the elevation angle of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角に対する最小値の利得特性を示す図である。It is a figure which shows the gain characteristic of the minimum value with respect to the elevation angle of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(地上波)の仰角に対する平均値の利得特性を示す図である。It is a figure which shows the gain characteristic of the average value with respect to the elevation angle of XM (ground wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角20°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of XM (satellite wave) concerning the antenna apparatus of this invention, and the frequency of 2.3325 GHz. 本発明のアンテナ装置にかかるXM(衛星波)の仰角20°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of XM (satellite wave) concerning the antenna apparatus of this invention, and the frequency of 2.345 GHz. 本発明のアンテナ装置にかかるXM(衛星波)の仰角30°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees, and frequency 2.3325GHz of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角30°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees, and the frequency of 2.345 GHz of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角40°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 40 degrees, and the frequency of 2.3325 GHz of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角40°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 40 degrees, and the frequency of 2.345 GHz of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角50°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directivity characteristic with respect to the elevation angle of 50 degrees of XM (satellite wave) concerning the antenna apparatus of this invention, and the frequency of 2.3325 GHz. 本発明のアンテナ装置にかかるXM(衛星波)の仰角50°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 50 degrees, and frequency of 2.345 GHz of XM (satellite wave) concerning the antenna apparatus of this invention. 本発明のアンテナ装置にかかるXM(衛星波)の仰角60°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 60 degrees of XM (satellite wave) concerning the antenna apparatus of this invention, and the frequency of 2.3325 GHz. 本発明のアンテナ装置にかかるXM(衛星波)の仰角60°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 60 degrees of XM (satellite wave) concerning the antenna apparatus of this invention, and the frequency of 2.345 GHz. 本発明のアンテナ装置にかかるXM(地上波)の仰角0°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree of XM (ground wave) concerning the antenna apparatus of this invention, and the frequency of 2.3325 GHz. 本発明のアンテナ装置にかかるXM(地上波)の仰角0°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree of XM (terrestrial wave) concerning the antenna apparatus of this invention, and the frequency of 2.345 GHz. 本発明のアンテナ装置にかかるXM(地上波)の仰角10°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directivity characteristic with respect to the elevation angle of 10 degrees of XM (terrestrial wave) concerning the antenna apparatus of this invention, and the frequency of 2.3325 GHz. 本発明のアンテナ装置にかかるXM(地上波)の仰角10°、周波数2.345GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees of XM (ground wave) concerning the antenna apparatus of this invention, and frequency 2.345GHz. 本発明のアンテナ装置にかかるXM(地上波)の仰角15°、周波数2.3325GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 15 degrees of XM (terrestrial wave) concerning the antenna apparatus of this invention, and the frequency of 2.3325 GHz. 本発明のアンテナ装置にかかるXM(地上波)の仰角15°、周波数2.45GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 15 degrees of XM (ground wave) concerning the antenna apparatus of this invention, and the frequency of 2.45 GHz. 本発明のアンテナ装置におけるSDARSアンテナの位置を変更した他のアンテナ装置の内部構成を示す側面図である。It is a side view which shows the internal structure of the other antenna apparatus which changed the position of the SDARS antenna in the antenna apparatus of this invention. 他のアンテナ装置のXM(衛星波)の仰角に対する平均値の利得特性を示す図である。It is a figure which shows the gain characteristic of the average value with respect to the elevation angle of XM (satellite wave) of another antenna apparatus. 他のアンテナ装置のXM(衛星波)の仰角に対する最小値の利得特性を示す図である。It is a figure which shows the gain characteristic of the minimum value with respect to the elevation angle of XM (satellite wave) of another antenna apparatus. 他のアンテナ装置のXM(衛星波)の仰角20°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of other antenna apparatuses, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(衛星波)の仰角30°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 30 degree | times of another antenna apparatus, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(衛星波)の仰角40°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 40 degree | times of another antenna apparatus, and the frequency of 2.3338875 GHz. 他のアンテナ装置のXM(衛星波)の仰角50°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 50 degrees of other antenna apparatuses, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(衛星波)の仰角60°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 60 degree | times of another antenna apparatus, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(地上波)の仰角0°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directivity characteristic with respect to the elevation angle of 0 degree of XM (terrestrial wave) of another antenna apparatus, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(地上波)の仰角5°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 5 degree | times of another antenna apparatus, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(地上波)の仰角10°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees of other antenna apparatuses, and the frequency of 2.333875 GHz. 他のアンテナ装置のXM(地上波)の仰角15°、周波数2.33875GHzに対する指向特性を示す図である。It is a figure which shows the directional characteristic with respect to the elevation angle of 15 degrees of other antenna apparatuses, and the frequency of 2.333875 GHz. 本発明の実施例かかるアンテナ装置においてチョークコイルとローディングコイルの高さを低くしたさらに他のアンテナ装置の内部構成を示す側面図である。It is a side view which shows the internal structure of the further another antenna apparatus which made the height of a choke coil and a loading coil low in the antenna apparatus concerning the Example of this invention. さらに他のアンテナ装置のAMPSの仰角に対する利得特性を示す図である。It is a figure which shows the gain characteristic with respect to the elevation angle of AMPS of another antenna apparatus. さらに他のアンテナ装置のPCSの仰角に対する利得特性を示す図である。It is a figure which shows the gain characteristic with respect to the elevation angle of PCS of another antenna apparatus. さらに他のアンテナ装置のAMPS/PCSの仰角0°、周波数824MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree of AMPS / PCS of another antenna apparatus, and the frequency of 824 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角0°、周波数894MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 0 degrees of AMPS / PCS of another antenna apparatus, and the frequency of 894 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角0°、周波数1850MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree of AMPS / PCS of another antenna apparatus, and the frequency of 1850 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角0°、周波数1930MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 0 degree of AMPS / PCS of another antenna apparatus, and the frequency of 1930 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角10°、周波数824MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees, and frequency 824MHz of AMPS / PCS of another antenna apparatus. さらに他のアンテナ装置のAMPS/PCSの仰角10°、周波数894MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees of AMPS / PCS of another antenna apparatus, and the frequency of 894 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角10°、周波数1850MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees, and frequency 1850MHz of AMPS / PCS of another antenna apparatus. さらに他のアンテナ装置のAMPS/PCSの仰角10°、周波数1930MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 10 degrees of other antenna apparatuses, and the frequency of 1930 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角20°、周波数824MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of AMPS / PCS of another antenna apparatus, and the frequency of 824 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角20°、周波数894MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of AMPS / PCS of another antenna apparatus, and the frequency of 894 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角20°、周波数1850MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees, and the frequency of 1850 MHz of AMPS / PCS of another antenna apparatus. さらに他のアンテナ装置のAMPS/PCSの仰角20°、周波数1930MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 20 degrees of AMPS / PCS of another antenna apparatus, and the frequency of 1930 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角30°、周波数824MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees of other antenna apparatuses, and the frequency of 824 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角30°、周波数894MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees of other antenna apparatuses, and the frequency of 894 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角30°、周波数1850MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees of other antenna apparatuses, and the frequency of 1850 MHz. さらに他のアンテナ装置のAMPS/PCSの仰角30°、周波数1930MHzに対する指向特性を示す図である。Furthermore, it is a figure which shows the directional characteristic with respect to the elevation angle of 30 degrees of other antenna apparatuses, and the frequency of 1930 MHz. 従来のアンテナ装置の構成を示す側面図である。It is a side view which shows the structure of the conventional antenna device.
 本発明の実施例にかかるアンテナ装置1の構成を図1ないし図5に示す。ただし、図1は本発明にかかるアンテナ装置1の構成を示す平面図であり、図2は本発明にかかるアンテナ装置1の構成を示す側面図であり、図3は本発明にかかるアンテナ装置1の構成を示す正面図であり、図4は本発明にかかるアンテナ装置1の内部構成を示す側面図であり、図5は本発明にかかるアンテナ装置1の各部の寸法を示す側面図である。
 これらの図に示す本発明の実施例にかかるアンテナ装置1は、車両のルーフに取り付けられるアンテナ装置とされており、長手方向の長さL1は約210mm、横幅L3は約66mmとされ、車両に取り付けられた際に車両から突出する高さL2は約67mmとされて小型で低姿勢とされている。このアンテナ装置1の形状は先端に行くほど細くなる流線型とされており、車両の美観・デザインを損ねないようある程度の範囲内において自由に形状を決定することができる。そして、アンテナ装置1の下面には、ゴム製またはエラストマー製の柔軟なベースパッドが嵌着されており、車両に水密に取り付けることができるようにされている。
The configuration of an antenna device 1 according to an embodiment of the present invention is shown in FIGS. However, FIG. 1 is a plan view showing the configuration of the antenna device 1 according to the present invention, FIG. 2 is a side view showing the configuration of the antenna device 1 according to the present invention, and FIG. 3 is the antenna device 1 according to the present invention. 4 is a side view showing the internal configuration of the antenna device 1 according to the present invention, and FIG. 5 is a side view showing the dimensions of each part of the antenna device 1 according to the present invention.
The antenna device 1 according to the embodiments of the present invention shown in these drawings is an antenna device attached to the roof of a vehicle, and has a longitudinal length L1 of about 210 mm and a lateral width L3 of about 66 mm. When attached, the height L2 protruding from the vehicle is about 67 mm, which is small and has a low posture. The antenna device 1 has a streamlined shape that becomes thinner toward the tip, and can be freely determined within a certain range so as not to impair the aesthetics and design of the vehicle. A flexible base pad made of rubber or elastomer is fitted on the lower surface of the antenna device 1 so that it can be attached to the vehicle in a watertight manner.
 本発明の実施例にかかるアンテナ装置1は、AMラジオ帯と、76~90MHzあるいは88~108MHzのFMラジオ帯と、824~894MHzのAMPS(Digital Advanced Mobile Phone System)あるいは880~960MHzのGSM(Global System for Mobile Communications)900の900MHz帯の電話帯と、1850~1990MHzのPCS(Personal Communication Services)あるいは1710~1880MHzのGSM1800の2GHz帯の電話帯と、1.57542GHzのGPS帯と、2.320~2.3325GHzのSirius radioあるいは2.3325~2.345GHzのXM RadioのSDARS(Satellite Digital Audio Radio)帯とを受信できるアンテナを備えている。このように、本発明の実施例にかかるアンテナ装置1は、AM/FM/TEL(2周波数)/GPS/SDARSの6つのメディアに対応している。 An antenna apparatus 1 according to an embodiment of the present invention includes an AM radio band, an FM radio band of 76 to 90 MHz or 88 to 108 MHz, an AMPS (Digital Advanced Mobile Phone System) of 824 to 894 MHz, or a GSM (Global System of 880 to 960 MHz). System for Mobile Communications) 900 MHz band, 1850 to 1990 MHz PCS (Personal Communication Services) or 1710 to 1880 MHz GSM1800 2 GHz band, 1.57542 GHz GPS band, and 2.320 to It has an antenna capable of receiving 2.3325 GHz Sirius radio or 2.3325-2.345 GHz XM radio SDARS (Satellite Digital Audio Radio) band. As described above, the antenna device 1 according to the embodiment of the present invention supports six media of AM / FM / TEL (dual frequency) / GPS / SDARS.
 この本発明の実施例にかかるアンテナ装置1は、樹脂製のアンテナカバー11と、このアンテナカバー11の下端に嵌合されている金属製のアンテナベース10と、アンテナベース10にほぼ垂直に取り付けられているアンテナ基板12と、アンテナベース10上の前方に並んで取り付けられているSDARSアンテナ13とGPSアンテナ14と、アンテナ基板12における下部を切り欠いた部分に配置されている回路基板15とを備えている。アンテナカバー11は電波透過性の合成樹脂製とされており、先端に行くほど細くなる流線型の外形形状とされている。アンテナカバー11内には、図4に示すように立設されたアンテナ基板12およびSDARSアンテナ13とGPSアンテナ14を収納する収納空間と、回路基板15を横方向に収納する空間が形成されている。アンテナカバー11の下端には金属製のアンテナベース10が嵌着されている。そして、アンテナベース10にアンテナ基板12が立設されて固着されている。 An antenna device 1 according to an embodiment of the present invention is attached to a resin antenna cover 11, a metal antenna base 10 fitted to the lower end of the antenna cover 11, and the antenna base 10 substantially vertically. Antenna board 12, SDARS antenna 13 and GPS antenna 14 mounted side by side on antenna base 10, and circuit board 15 arranged in a portion of antenna board 12 with the lower part cut away. ing. The antenna cover 11 is made of a radio wave permeable synthetic resin and has a streamlined outer shape that becomes thinner toward the tip. In the antenna cover 11, as shown in FIG. 4, an antenna board 12, a storage space for storing the SDARS antenna 13 and the GPS antenna 14, and a space for storing the circuit board 15 in the lateral direction are formed. . A metal antenna base 10 is fitted to the lower end of the antenna cover 11. An antenna substrate 12 is erected and fixed to the antenna base 10.
 図4に示すようにアンテナ基板12の一面には、例えば銅箔とされた第1パターン12a、第2パターン12bと第3パターン12eとがプリントにより形成されている。第1パターン12aは、アンテナ基板12の前方の側縁に沿って下部から上部に向かう縦方向にほぼ矩形状に形成されており、下部は次第に細くなるようテーパ状に形成されて下端が給電点12gとされている。この給電点12gは回路基板15に組み込まれた分波回路の入力に接続される。第2パターン12bは、アンテナ基板12の上部に横方向に形成されており、アンテナ基板12の前方の側縁側に斜辺が形成されたほぼ矩形状とされている。この斜辺と最も前方に配置されているSDARSアンテナ13のほぼ中心とを結ぶ仰角がθaとされ、仰角θaが約30deg以下となるようSDARSアンテナ13が配置されている。第2パターン12bの前部の所定箇所と、第1パターン12aの下部の所定箇所とは接続ライン12fにより接続されている。第3パターン12eは、アンテナ基板12の上部に横方向に細長いほぼ矩形状に形成されており、前方の下部が一部切り取られている。 As shown in FIG. 4, on one surface of the antenna substrate 12, a first pattern 12a, a second pattern 12b, and a third pattern 12e made of, for example, copper foil are formed by printing. The first pattern 12a is formed in a substantially rectangular shape in the vertical direction from the lower part to the upper part along the front side edge of the antenna substrate 12, and the lower part is formed in a tapered shape so that the lower part gradually becomes thin, and the lower end is the feeding point. 12g. This feeding point 12g is connected to an input of a branching circuit incorporated in the circuit board 15. The second pattern 12 b is formed in the lateral direction on the antenna substrate 12 and has a substantially rectangular shape with a hypotenuse formed on the front side edge of the antenna substrate 12. The elevation angle connecting this hypotenuse and the almost center of the SDARS antenna 13 arranged at the foremost is θa, and the SDARS antenna 13 is arranged so that the elevation angle θa is about 30 degrees or less. A predetermined portion at the front of the second pattern 12b and a predetermined portion at the bottom of the first pattern 12a are connected by a connection line 12f. The third pattern 12e is formed in an approximately rectangular shape elongated in the lateral direction on the upper portion of the antenna substrate 12, and a lower portion on the front is partially cut off.
 第3パターン12eのこの切り取られた部分と第2パターン12bの後端とが、第1コイル12cおよび第2コイル12dの直列回路を介して接続されている。第1コイル12cと第2コイル12dとは互いの中心軸が直交して配置されて、第1コイル12cと第2コイル12dとが互いに独立して機能するようにされている。この第1コイル12cは900MHz帯および2GHz帯の電話帯において、第3パターン12eを第2パターン12bから高周波的に切り離すチョークコイルとして作用している。また、第2コイル12dは後述するAM/FMアンテナのローディングコイルとして作用する。このように、第1コイル12cと第2コイル12dとは、それぞれ異なる動作を行うことから、それぞれ独立したコイルとしていると共に互いの中心軸が直交して配置されて互いに干渉しないようにされている。なお、第1コイル12cは800MHzないし900MHzにおいて共振するようになり、この共振は第1コイル12cの線間容量とアンテナベース10間の浮遊容量と第1コイル12cのインダクタンスとにより生じる。また、第2パターン12bの後端に第1コイル12cを接続しているのは、第2パターン12bの後端における高周波電流の小さい位置にローディングコイルを接続して放射効率を極力低下させないためである。 The cut portion of the third pattern 12e and the rear end of the second pattern 12b are connected via a series circuit of the first coil 12c and the second coil 12d. The first coil 12c and the second coil 12d are arranged so that their center axes are orthogonal to each other, and the first coil 12c and the second coil 12d function independently of each other. The first coil 12c functions as a choke coil that separates the third pattern 12e from the second pattern 12b in a high frequency manner in a telephone band of 900 MHz band and 2 GHz band. The second coil 12d acts as a loading coil for an AM / FM antenna, which will be described later. Thus, since the first coil 12c and the second coil 12d perform different operations, they are independent coils and their central axes are arranged orthogonally so as not to interfere with each other. . The first coil 12c resonates at 800 MHz to 900 MHz, and this resonance is caused by the line capacitance of the first coil 12c, the stray capacitance between the antenna bases 10, and the inductance of the first coil 12c. The reason why the first coil 12c is connected to the rear end of the second pattern 12b is that the loading coil is connected to the position where the high-frequency current is small at the rear end of the second pattern 12b so that the radiation efficiency is not lowered as much as possible. is there.
 Cで示す矩形の破線で囲われているアンテナ基板12に形成されている第1パターン12aは、2GHz帯の電話帯のTEL_PCSアンテナとして動作し、Bで示す矩形の破線で囲われている第1パターン12aと第2パターン12bとが接続ライン12fで接続されて900MHz帯の電話帯のTEL_AMPSアンテナとして動作する。なお、接続ライン12fはPCS帯において第1パターン12aが独立して動作するように、PCS帯におけるチョークコイルとして作用する。また、Aで示す折曲された矩形の破線で囲われている直列接続された第1パターン12a、第2パターン12b、第1コイル12c、第2コイル12d、第3パターン12eの全体がFMラジオ帯にほぼ共振するAM/FMアンテナとして動作する。この場合、第2コイル12dが、AM/FMアンテナをFMラジオ帯に共振させるためのローディングコイルとして作用する。なお、AM/FMアンテナはAMラジオ帯においては非共振アンテナとして動作する。このため、給電点12gからはTEL_PCSアンテナとTEL_AMPSアンテナとAM/FMアンテナとの受信信号が出力されて回路基板15に組み込まれた分波回路に入力される。この分波回路において、電話帯の受信信号とAM/FMラジオの受信信号とが分波されて、AM/FMラジオ帯の受信信号はアンプで増幅され、それぞれケーブルを介して出力される。
 また、第1コイル12cおよび第2コイル12dの下面におけるアンテナベース10からの高さがHとされており、高さHは約38mmとされている。高さHを約38mm以上とすることによりTEL_PCSアンテナの指向特性を妨げないようになって、その利得が確保されると共に、その指向特性が良好になる。
A first pattern 12a formed on the antenna substrate 12 surrounded by a rectangular broken line indicated by C operates as a TEL_PCS antenna of a 2 GHz band telephone band, and is surrounded by a rectangular broken line indicated by B. The pattern 12a and the second pattern 12b are connected by a connection line 12f and operate as a TEL_AMPS antenna in a 900 MHz telephone band. The connection line 12f functions as a choke coil in the PCS band so that the first pattern 12a operates independently in the PCS band. The first pattern 12a, the second pattern 12b, the first coil 12c, the second coil 12d, and the third pattern 12e connected in series surrounded by a broken rectangular broken line indicated by A are all FM radio. It operates as an AM / FM antenna that resonates with the band. In this case, the second coil 12d acts as a loading coil for resonating the AM / FM antenna with the FM radio band. The AM / FM antenna operates as a non-resonant antenna in the AM radio band. For this reason, reception signals from the TEL_PCS antenna, the TEL_AMPS antenna, and the AM / FM antenna are output from the feeding point 12g and input to the branching circuit incorporated in the circuit board 15. In this demultiplexing circuit, the reception signal of the telephone band and the reception signal of the AM / FM radio are demultiplexed, and the reception signal of the AM / FM radio band is amplified by an amplifier and output through a cable.
Moreover, the height from the antenna base 10 in the lower surface of the 1st coil 12c and the 2nd coil 12d is set to H, and the height H is about 38 mm. By setting the height H to about 38 mm or more, the directivity of the TEL_PCS antenna is not hindered, the gain is ensured, and the directivity is improved.
 アンテナベース10の最も前方に配置されているSDARSアンテナ13は、マイクロストリップ平面アンテナとされており、その後端と第1パターン12aの前方の側縁とがLaだけ離隔されており、間隔Laは約32mmとされている。この場合、SDRASアンテナ13の動作周波数帯の中心周波数の波長をλとするとλ/4が約32mmとなり、SDRASアンテナ13の利得を確保すると共に、その指向特性を良好にするために間隔Laは約λ/4以上とされる。そして、SDRASアンテナ13とアンテナ基板12との間にGPSアンテナ14が配置されている。GPSアンテナ14は、マイクロストリップ平面アンテナとされている。また、アンテナベース10の下面からは、アンテナ装置1を車両に取り付けるためのボルト部10aが突出して形成されている。このボルト部10aには貫通孔が形成されており、複数本のケーブルがボルト部10aを介してアンテナ装置1から導出される。この場合、ボルト部10aが挿通される穴が車両のルーフに形成され、これらの穴にボルト部10aが挿通されるようルーフ上にアンテナ装置1を載置する。そして、車両内に突出したボルト部10aにナットを締着することによりアンテナ装置1を車両のルーフに固着することができる。この際に、ボルト部10aから引き出されたケーブルが車両内に導かれる。このボルト部10aの貫通孔を挿通して外部へ引き出されているケーブルは、電話帯の送信/受信信号を伝達するケーブルと、AM/FMラジオの受信信号を導出するケーブルと、SDARSアンテナ13から導出されたケーブルと、GPSアンテナ14から導出されたケーブルとされている。それぞれのケーブルの先端には、AM/FM out端子、TEL in/out 端子、SDARS out 端子、GPS out 端子が設けられて、これらの端子は対応する受信機の入力端子にそれぞれ接続される。 The SDARS antenna 13 disposed at the forefront of the antenna base 10 is a microstrip planar antenna, the rear end thereof is separated from the front side edge of the first pattern 12a by La, and the interval La is about It is set to 32 mm. In this case, assuming that the wavelength of the center frequency of the operating frequency band of the SDRAS antenna 13 is λ, λ / 4 is about 32 mm, and in order to secure the gain of the SDRAS antenna 13 and to improve its directivity, the interval La is about λ / 4 or more. A GPS antenna 14 is disposed between the SDRAS antenna 13 and the antenna substrate 12. The GPS antenna 14 is a microstrip planar antenna. Further, a bolt portion 10 a for attaching the antenna device 1 to the vehicle is formed so as to protrude from the lower surface of the antenna base 10. A through hole is formed in the bolt portion 10a, and a plurality of cables are led out from the antenna device 1 through the bolt portion 10a. In this case, holes through which the bolt portions 10a are inserted are formed in the vehicle roof, and the antenna device 1 is placed on the roof so that the bolt portions 10a are inserted through these holes. The antenna device 1 can be fixed to the roof of the vehicle by fastening a nut to the bolt portion 10a protruding into the vehicle. At this time, the cable drawn from the bolt part 10a is guided into the vehicle. A cable inserted through the through hole of the bolt portion 10a and drawn to the outside includes a cable for transmitting a transmission / reception signal of a telephone band, a cable for deriving a reception signal of an AM / FM radio, and an SDARS antenna 13. The derived cable and the cable derived from the GPS antenna 14 are used. At the end of each cable, an AM / FM out terminal, TEL in / out terminal, SDARS out terminal, and GPS out terminal are connected to the input terminals of the corresponding receivers.
 図5に示すアンテナ基板12に形成されている第1パターン12aないし第3パターン12eの寸法の一例を挙げると、第1パターン12aの縦方向の長さD1が約39mm、幅W1が約20mmとされ、第2パターン12bの長さD2が約20mm、幅W2が約15mmとされ、第3パターン12eの長さD3が約69mm、幅W3が約27.5mmとされている。
 ここで、本発明の実施例にかかるアンテナ装置1の電気的特性を図6ないし図47に示す。この場合、第1パターン12aないし第3パターン12eの寸法は上記の通りとされ、SDARSアンテナ13の後端と第1パターン12aの前方の側縁との間隔Laが約32mm、第2パターン12bの斜辺とSDARSアンテナ13のほぼ中心とを結ぶ仰角θaが約30deg、第1コイル12cおよび第2コイル12dの下面におけるアンテナベース10からの高さHが約38mm、第1コイル12cの線径が約φ0.55mm、巻き径が約φ3mmで巻き数が約12.5ターン、第2コイル12dの線径が約φ0.55mm、巻き径が約φ5.8mmで巻き数が約13.5ターンとされている。また、アンテナ装置1は直径約1mのアース板上に設置されている。
As an example of the dimensions of the first pattern 12a to the third pattern 12e formed on the antenna substrate 12 shown in FIG. 5, the longitudinal length D1 of the first pattern 12a is about 39 mm and the width W1 is about 20 mm. The length D2 of the second pattern 12b is about 20 mm and the width W2 is about 15 mm, the length D3 of the third pattern 12e is about 69 mm, and the width W3 is about 27.5 mm.
Here, the electrical characteristics of the antenna device 1 according to the embodiment of the present invention are shown in FIGS. In this case, the dimensions of the first pattern 12a to the third pattern 12e are as described above, the interval La between the rear end of the SDARS antenna 13 and the front side edge of the first pattern 12a is about 32 mm, and the second pattern 12b The elevation angle θa connecting the hypotenuse and the approximate center of the SDARS antenna 13 is about 30 degrees, the height H from the antenna base 10 on the lower surfaces of the first coil 12c and the second coil 12d is about 38 mm, and the wire diameter of the first coil 12c is about φ0.55 mm, winding diameter is about φ3 mm, winding number is about 12.5 turns, second coil 12d has a wire diameter of about φ0.55 mm, winding diameter is about φ5.8 mm, and winding number is about 13.5 turns. ing. The antenna device 1 is installed on a ground plate having a diameter of about 1 m.
 まず、図6に、本発明のアンテナ装置1においてAMPS帯の下限周波数824MHzおよび上限周波数894MHzにおけるTEL_AMPSアンテナの仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図6を参照すると、仰角が0degで824MHzでは約-2.4dBi、894MHzで約-3.0dBiの平均利得が得られており、仰角が5,10,15,20,25,30degと大きくなるに従って平均利得も上昇していく。仰角が30degで824MHzでは約2.6dBi、894MHzで約3.2dBiの良好な平均利得が得られている。TEL_AMPSアンテナの全AMPS帯における仰角0~30degに対する平均利得は、下限周波数824MHzと上限周波数894MHzとにおけるTEL_AMPSアンテナの仰角に対する平均利得とほぼ同様の特性になることが確かめられており、周波数が高くなるほど、かつ、仰角が小さくなるほど平均利得は低下する。すなわち、TEL_AMPSアンテナにおいては仰角が0degで894MHzの約-3.0dBiの平均利得が最小値の平均利得となる。
 このように、TEL_AMPSアンテナはAMPS帯において良好な利得特性を示している。
First, FIG. 6 shows gain characteristics of an average value with respect to the elevation angle of the TEL_AMPS antenna at the lower limit frequency 824 MHz and the upper limit frequency 894 MHz of the AMPS band in the antenna device 1 of the present invention. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 6, an average gain of about −2.4 dBi is obtained at an elevation angle of 0 deg and 824 MHz and about −3.0 dBi at 894 MHz, and the elevation angle is increased to 5, 10, 15, 20, 25, and 30 deg. As the average gain increases. A good average gain of about 2.6 dBi is obtained at an elevation angle of 30 deg at 824 MHz and about 3.2 dBi at 894 MHz. It has been confirmed that the average gain for the elevation angle of 0 to 30 deg in the entire AMPS band of the TEL_AMPS antenna has almost the same characteristics as the average gain for the elevation angle of the TEL_AMPS antenna at the lower limit frequency 824 MHz and the upper limit frequency 894 MHz. In addition, the average gain decreases as the elevation angle decreases. That is, in the TEL_AMPS antenna, the average gain of about −3.0 dBi at 894 MHz at an elevation angle of 0 deg is the minimum average gain.
Thus, the TEL_AMPS antenna shows good gain characteristics in the AMPS band.
 次に、図7に、本発明のアンテナ装置1においてPCS帯の下限周波数1850MHzおよび上限周波数1990MHzにおけるTEL_PCSアンテナの仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図7を参照すると、仰角が0degで1850MHzでは約-0.8dBi、1990MHzで約-0.2dBiの平均利得が得られており、仰角が5,10,15,20degと大きくなるに従って平均利得も上昇していくが、約20degで飽和し25,30degとなるに従って平均利得は下降していく。仰角が20degで1850MHzでは約4.1dBi、1990MHzで約4.9dBiの良好な平均利得が得られている。TEL_PCSアンテナの全PCS帯における仰角0~30degに対する平均利得は、下限周波数1850MHzと上限周波数1990MHzとにおけるTEL_PCSアンテナの仰角に対する平均利得とほぼ同様の特性になることが確かめられており、周波数が約1910MHzで仰角が0degの約-1.0dBiの平均利得が最小値の平均利得となる。
 このように、TEL_PCSアンテナはPCS帯において良好な利得特性を示している。
Next, FIG. 7 shows the gain characteristics of the average value with respect to the elevation angle of the TEL_PCS antenna at the lower limit frequency 1850 MHz of the PCS band and the upper limit frequency 1990 MHz in the antenna device 1 of the present invention. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 7, an average gain of about −0.8 dBi is obtained at an elevation angle of 0 deg and 1850 MHz and about −0.2 dBi at 1990 MHz, and the average gain increases as the elevation angle increases to 5, 10, 15, and 20 deg. Although it increases, the average gain decreases as it becomes saturated at about 20 deg and reaches 25, 30 deg. A good average gain of approximately 4.1 dBi at 1850 MHz at an elevation angle of 20 deg and approximately 4.9 dBi at 1990 MHz is obtained. It has been confirmed that the average gain of the TEL_PCS antenna with respect to the elevation angle of 0 to 30 deg in the entire PCS band has substantially the same characteristics as the average gain with respect to the elevation angle of the TEL_PCS antenna at the lower limit frequency of 1850 MHz and the upper limit frequency of 1990 MHz. The average gain of about -1.0 dBi with an elevation angle of 0 deg becomes the minimum average gain.
Thus, the TEL_PCS antenna shows a good gain characteristic in the PCS band.
 次に、図8ないし図27には、本発明のアンテナ装置1において、AMPS帯の下限周波数824MHzおよび上限周波数894MHzで仰角0,5,10,20,30degにおけるTEL_AMPSアンテナの水平面内の指向特性、および、PCS帯の下限周波数1850MHzおよび上限周波数1990MHzで仰角0,5,10,20,30degにおけるTEL_PCSアンテナの水平面内の指向特性が示されている。
 図8にはAMPS帯の下限周波数824MHzで仰角0degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約-1.2dBi、最小利得が約-3.6dBiでリップルが約2.4dBのほぼ無指向性とされた良好な指向特性が得られている。
 図9にはAMPS帯の上限周波数894MHzで仰角0degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約-2.2dBi、最小利得が約-3.8dBiでリップルが約1.6dBのほぼ無指向性とされた良好な指向特性が得られている。
Next, in FIG. 8 to FIG. 27, in the antenna device 1 of the present invention, the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the elevation angles of 0, 5, 10, 20, and 30 deg at the AMPS lower limit frequency 824 MHz and the upper limit frequency 894 MHz, In addition, directional characteristics in the horizontal plane of the TEL_PCS antenna at the elevation angles of 0, 5, 10, 20, and 30 deg at the lower limit frequency 1850 MHz and the upper limit frequency 1990 MHz of the PCS band are shown.
FIG. 8 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 0 deg. The maximum gain is about -1.2 dBi, the minimum gain is about -3.6 dBi, and the ripple is about 2 A good directivity characteristic of approximately 4 dB is obtained.
FIG. 9 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at an upper limit frequency of 894 MHz in the AMPS band and an elevation angle of 0 deg. The maximum gain is about −2.2 dBi, the minimum gain is about −3.8 dBi, and the ripple is about 1 A good directivity characteristic of approximately 6 dB is obtained.
 図10にはPCS帯の下限周波数1850MHzで仰角0degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約1.5dBi、最小利得が約-4.9dBiでリップルが約6.4dBで約±120°方向の利得が低下しているやや楕円形の指向特性が得られている。
 図11にはPCS帯の上限周波数1990MHzで仰角0degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約1.3dBi、最小利得が約-4.9dBiでリップルが約7.3dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。
FIG. 10 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 0 deg. The maximum gain is about 1.5 dBi, the minimum gain is about -4.9 dBi, and the ripple is about 6. The gain in the direction of about ± 120 ° is reduced at 4 dB, and a slightly elliptical directivity is obtained.
FIG. 11 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band and an elevation angle of 0 deg. The maximum gain is about 1.3 dBi, the minimum gain is about -4.9 dBi, and the ripple is about 7. The gain in the direction of about ± 105 ° is reduced at 3 dB, and a slightly elliptical directivity is obtained.
 図12にはAMPS帯の下限周波数824MHzで仰角5degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約-0.9dBi、最小利得が約-2.4dBiでリップルが約1.5dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角0degの時より向上している。
 図13にはAMPS帯の上限周波数894MHzで仰角5degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約-0.3dBi、最小利得が約-2.0dBiでリップルが約1.7dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角0degの時より向上している。
FIG. 12 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 5 deg. The maximum gain is about −0.9 dBi, the minimum gain is about −2.4 dBi, and the ripple is about 1 A good directivity characteristic of about 5 dB is obtained. The gain is improved compared to when the elevation angle is 0 deg.
FIG. 13 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 5 deg. The maximum gain is about −0.3 dBi, the minimum gain is about −2.0 dBi, and the ripple is about 1 A good directivity characteristic of approximately 7 dB is obtained. The gain is improved compared to when the elevation angle is 0 deg.
 図14にはPCS帯の下限周波数1850MHzで仰角5degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約3.2dBi、最小利得が約-2.5dBiでリップルが約5.7dBで約±120°方向の利得が低下しているが仰角0degの時より改善されたやや楕円形の指向特性が得られている。利得は仰角0degの時より向上している。
 図15にはPCS帯の上限周波数1990MHzで仰角5degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約4.1dBi、最小利得が約-3.6dBiでリップルが約7.7dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。
FIG. 14 shows the directional characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 5 deg. The maximum gain is about 3.2 dBi, the minimum gain is about −2.5 dBi, and the ripple is about 5. Although the gain in the direction of about ± 120 ° is reduced at 7 dB, a slightly elliptical directivity characteristic obtained when the elevation angle is 0 deg is obtained. The gain is improved compared to when the elevation angle is 0 deg.
FIG. 15 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 5 deg. The maximum gain is about 4.1 dBi, the minimum gain is about -3.6 dBi, and the ripple is about 7. The gain in the direction of about ± 105 ° is reduced at 7 dB, and a slightly elliptical directional characteristic is obtained.
 図16にはAMPS帯の下限周波数824MHzで仰角10degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約0.5dBi、最小利得が約-0.9dBiでリップルが約1.4dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角5degの時より向上している。
 図17にはAMPS帯の上限周波数894MHzで仰角10degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約1.2dBi、最小利得が約-0.3dBiでリップルが約1.5dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角5degの時より向上している。
FIG. 16 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and the elevation angle of 10 deg. The maximum gain is about 0.5 dBi, the minimum gain is about -0.9 dBi, and the ripple is about 1.. A good directivity characteristic of almost 4 dBm is obtained. The gain is improved compared to when the elevation angle is 5 deg.
FIG. 17 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 10 deg. The maximum gain is about 1.2 dBi, the minimum gain is about -0.3 dBi, and the ripple is about 1.. A good directivity characteristic of almost 5 dB is obtained. The gain is improved compared to when the elevation angle is 5 deg.
 図18にはPCS帯の下限周波数1850MHzで仰角10degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約4.5dBi、最小利得が約-1.4dBiでリップルが約5.9dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角5degの時より向上している。
 図19にはPCS帯の上限周波数1990MHzで仰角10degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約5.5dBi、最小利得が約-2.2dBiでリップルが約7.7dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角5degの時より向上している。
FIG. 18 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 10 deg. The maximum gain is about 4.5 dBi, the minimum gain is about -1.4 dBi, and the ripple is about 5. The gain in the direction of about ± 105 ° is reduced at 9 dB, and a slightly elliptical directivity is obtained. The gain is improved compared to when the elevation angle is 5 deg.
FIG. 19 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band at an elevation angle of 10 deg. The maximum gain is about 5.5 dBi, the minimum gain is about -2.2 dBi, and the ripple is about 7. The gain in the direction of about ± 105 ° is reduced at 7 dB, and a slightly elliptical directional characteristic is obtained. The gain is improved compared to when the elevation angle is 5 deg.
 図20にはAMPS帯の下限周波数824MHzで仰角20degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約1.8dBi、最小利得が約1.1dBiでリップルが約0.7dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角10degの時より向上している。
 図21にはAMPS帯の上限周波数894MHzで仰角20degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約3.0dBi、最小利得が約2.0dBiでリップルが約1.0dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角10degの時より向上している。
FIG. 20 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and an elevation angle of 20 deg. The maximum gain is about 1.8 dBi, the minimum gain is about 1.1 dBi, and the ripple is about 0.7 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved as compared with the elevation angle of 10 degrees.
FIG. 21 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at an upper frequency of 894 MHz in the AMPS band and an elevation angle of 20 deg. The maximum gain is about 3.0 dBi, the minimum gain is about 2.0 dBi, and the ripple is about 1.0 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved as compared with the elevation angle of 10 degrees.
 図22にはPCS帯の下限周波数1850MHzで仰角20degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約6.2dBi、最小利得が約0.3dBiでリップルが約5.9dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角10degの時より向上している。
 図23にはPCS帯の上限周波数1990MHzで仰角20degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約7.3dBi、最小利得が約-0.1dBiでリップルが約7.4dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角10degの時より向上している。
FIG. 22 shows the directional characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 20 deg. The maximum gain is about 6.2 dBi, the minimum gain is about 0.3 dBi, and the ripple is about 5.9 dB. As a result, the gain in the direction of about ± 105 ° is reduced, and a slightly elliptical directivity characteristic is obtained. The gain is improved as compared with the elevation angle of 10 degrees.
FIG. 23 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 20 deg. The maximum gain is about 7.3 dBi, the minimum gain is about -0.1 dBi, and the ripple is about 7. The gain in the direction of about ± 105 ° is reduced at 4 dB, and a slightly elliptical directivity is obtained. The gain is improved as compared with the elevation angle of 10 degrees.
 図24にはAMPS帯の下限周波数824MHzで仰角30degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約2.9dBi、最小利得が約2.2dBiでリップルが約0.7dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角20degの時より向上している。
 図25にはAMPS帯の上限周波数894MHzで仰角30degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約3.8dBi、最小利得が約2.9dBiでリップルが約0.9dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角20degの時より向上している。
FIG. 24 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 30 deg. The maximum gain is about 2.9 dBi, the minimum gain is about 2.2 dBi, and the ripple is about 0.7 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved compared to when the elevation angle is 20 degrees.
FIG. 25 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 30 deg. The maximum gain is about 3.8 dBi, the minimum gain is about 2.9 dBi, and the ripple is about 0.9 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved compared to when the elevation angle is 20 degrees.
 図26にはPCS帯の下限周波数1850MHzで仰角30degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約4.4dBi、最小利得が約-2.4dBiでリップルが約6.8dBで約±105°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角20degの時より低下している。
 図27にはPCS帯の上限周波数1990MHzで仰角30degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約5.2dBi、最小利得が約-1.5dBiでリップルが約6.7dBで約±120°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角20degの時より低下している。
 図8ないし図27を参照すると、TEL_AMPSアンテナの全AMPS帯における水平面内の指向特性は仰角0~30degにおいてほぼ無指向性の良好な指向特性が得られている。また、TEL_PCSアンテナの全PCS帯における水平面内の指向特性は仰角0~30degにおいて楕円形の指向特性とされているが、実用上においては十分な指向特性が得られている。
FIG. 26 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 30 deg. The maximum gain is about 4.4 dBi, the minimum gain is about −2.4 dBi, and the ripple is about 6. The gain in the direction of about ± 105 ° is reduced at 8 dB, and a slightly elliptical directional characteristic is obtained. The gain is lower than when the elevation angle is 20 deg.
FIG. 27 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band at an elevation angle of 30 deg. The maximum gain is about 5.2 dBi, the minimum gain is about -1.5 dBi, and the ripple is about 6. The gain in the direction of about ± 120 ° is reduced at 7 dB, and a slightly elliptical directional characteristic is obtained. The gain is lower than when the elevation angle is 20 deg.
Referring to FIG. 8 to FIG. 27, the directional characteristics in the horizontal plane in the entire AMPS band of the TEL_AMPS antenna are almost omnidirectional and have good directivity characteristics at elevation angles of 0 to 30 degrees. Further, the directivity characteristic in the horizontal plane in the entire PCS band of the TEL_PCS antenna is an elliptical directivity characteristic at an elevation angle of 0 to 30 degrees, but a sufficient directivity characteristic is practically obtained.
 次に、図28に本発明のアンテナ装置1において、GPS帯の周波数1575.42MHzにおけるGPSアンテナ14の仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図28を参照すると、仰角が10degで約-2.7dBiの平均利得が得られており、仰角が20,30,40,50,60,70,80,90degと大きくなっても平均利得は約0dBi~約2dBiの間だけで変化しておりわずかな範囲でしか変化せず安定した平均利得が得られている。そして、80degで約1.6dBiの最大値が得られている。
 このように、GPSアンテナ14はGPS帯において良好な利得特性を示している。
Next, in FIG. 28, the gain characteristic of the average value with respect to the elevation angle of the GPS antenna 14 at the GPS band frequency 1575.42 MHz in the antenna device 1 of the present invention is shown. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 28, an average gain of about −2.7 dBi is obtained at an elevation angle of 10 deg. Even if the elevation angle is increased to 20, 30, 40, 50, 60, 70, 80, and 90 deg, the average gain is about It changes only between 0 dBi and about 2 dBi and changes only in a small range, and a stable average gain is obtained. A maximum value of about 1.6 dBi is obtained at 80 deg.
Thus, the GPS antenna 14 shows a good gain characteristic in the GPS band.
 次に、図29に本発明のアンテナ装置1において、SDARSアンテナ13でXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて衛星波(Satellite)を受信する場合の仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図29を参照すると、仰角が20degで2332.5MHzでは約2.4dBi、2345MHzで約2.3dBiの平均利得が得られており、仰角が25,30,35,40,45,50,55,60degと大きくなっても2332.5MHzでの平均利得は約1.5dBi~約2.5dBiの間だけで変化しておりほぼ一定の平均利得が得られている。また、2345MHzでの平均利得も約1.4dBi~約2.4dBiの間だけで変化しておりほぼ一定の平均利得が得られていると共に、XM Radio帯の全帯域において約1.4dBi以上の良好な平均利得が得られている。 Next, in FIG. 29, the gain characteristics of the average value with respect to the elevation angle when the SDARS antenna 13 receives a satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the SDARS antenna 13 in FIG. Show. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 29, an average gain of about 2.4 dBi is obtained at an elevation angle of 20 deg at 2332.5 MHz and about 2.3 dBi at 2345 MHz, and the elevation angle is 25, 30, 35, 40, 45, 50, 55, Even if it becomes as large as 60 deg, the average gain at 2332.5 MHz changes only between about 1.5 dBi and about 2.5 dBi, and a substantially constant average gain is obtained. Also, the average gain at 2345 MHz changes only between about 1.4 dBi and about 2.4 dBi, and an almost constant average gain is obtained, and it is about 1.4 dBi or more in the entire XMXRadio band. A good average gain is obtained.
 また、図30に本発明のアンテナ装置1において、SDARSアンテナ13でXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて衛星波(Satellite)を受信する場合の仰角に対する最小値の利得特性を示す。この最小値は、水平面内指向特性における利得の最小値である。図30を参照すると、仰角が20degで2332.5MHzでは約-2.0dBi、2345MHzで約-2.1dBiの最小利得が得られており、仰角が25,30,35,40,45,50,55,60degと大きくなるに従って最小利得が上昇する傾向を示している。2332.5MHzでの最小利得は約-2.0dBi~約1.7dBiの間だけで変化しておりわずかな範囲でしか変化しない安定した最小利得が得られており、55degで約1.7dBiの最大の最小値が得られる。また、2345MHzでの最小利得も約-2.1dBi~約1.4dBiの間だけで変化しており、十分な最小利得が得られていると共にわずかな範囲でしか変化しない安定した最小利得が得られており、60degで約1.4dBiの最大の最小値が得られる。また、最小利得はXM Radio帯の全帯域において約-2.1dBi以上の十分な最小利得が得られている。 FIG. 30 shows the minimum gain characteristic with respect to the elevation angle when the SDARS antenna 13 receives a satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz in the antenna device 1 of the present invention. . This minimum value is the minimum value of gain in the horizontal plane directivity. Referring to FIG. 30, a minimum gain of about −2.0 dBi is obtained at an elevation angle of 20 deg and 2332.5 MHz and about −2.1 dBi at 2345 MHz, and the elevation angle is 25, 30, 35, 40, 45, 50, It shows a tendency that the minimum gain increases as it becomes 55,60 deg. The minimum gain at 2332.5 MHz changes only between about −2.0 dBi and about 1.7 dBi, and a stable minimum gain that changes only in a small range is obtained, and about 1.7 dBi at 55 deg. The maximum minimum value is obtained. The minimum gain at 2345 MHz also changes only between about -2.1 dBi and about 1.4 dBi, so that a sufficient minimum gain is obtained and a stable minimum gain that changes only in a small range is obtained. The maximum minimum value of about 1.4 dBi is obtained at 60 deg. In addition, the minimum gain is a sufficient minimum gain of about −2.1 dBi or more in the entire XM Radio band.
 SDARSアンテナ13の全XM Radio帯における仰角20~60degに対する平均利得および最小利得は、下限周波数2332.5MHzと上限周波数2345MHzとにおけるSDARSアンテナ13の仰角に対する平均利得および最小利得とほぼ同様の特性になることが確かめられており、平均利得は仰角によらずほぼ一定となり、最小利得は仰角が大きくなるにつれて若干上昇するだけとなる。
 このように、SDARSアンテナ13はXM Radio帯の衛星波(Satellite)を受信する場合において良好な利得特性を示している。
The average gain and the minimum gain for the elevation angle of 20 to 60 deg in the entire XM Radio band of the SDARS antenna 13 have substantially the same characteristics as the average gain and the minimum gain for the elevation angle of the SDARS antenna 13 at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz. It has been confirmed that the average gain is almost constant regardless of the elevation angle, and the minimum gain is only slightly increased as the elevation angle is increased.
As described above, the SDARS antenna 13 exhibits good gain characteristics when receiving satellite waves (Satellite) in the XM Radio band.
 次に、図31に本発明のアンテナ装置1において、SDARSアンテナ13でXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて地上波(Terrestrial)を受信する場合の仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図31を参照すると、仰角が0degで2332.5MHzでは約-3.2dBi、2345MHzで約-3.4dBiの平均利得が得られており、仰角が5,10,15degと大きくなるに従って上昇していき、15degで2332.5MHzでの平均利得は約2.5dBiが得られ、15degで2345MHzでの平均利得も約2.3dBiが得られるようになる。
 SDARSアンテナ13の全XM Radio帯における仰角0~15degに対する平均利得は、下限周波数2332.5MHzと上限周波数2345MHzとにおけるSDARSアンテナ13の仰角に対する平均利得とほぼ同様の特性になることが確かめられており、平均利得は仰角が大きくなるにつれて上昇するようになる。
 このように、SDARSアンテナ13はXM Radio帯の地上波(Terrestrial)を受信する場合においても実用上十分な利得特性を示している。
Next, in FIG. 31, in the antenna device 1 of the present invention, the gain characteristic of the average value with respect to the elevation angle when the SDARS antenna 13 receives the terrestrial wave at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band. Show. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 31, an average gain of about −3.2 dBi is obtained at an elevation angle of 0 deg at 2332.5 MHz and about −3.4 dBi at 2345 MHz, and increases as the elevation angle increases to 5, 10, and 15 deg. The average gain at 2332.5 MHz at 15 deg is about 2.5 dBi, and the average gain at 2345 MHz at 15 deg is about 2.3 dBi.
It has been confirmed that the average gain for the elevation angle of 0 to 15 deg in the entire XM Radio band of the SDARS antenna 13 has characteristics similar to the average gain for the elevation angle of the SDARS antenna 13 at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz. The average gain increases as the elevation angle increases.
As described above, the SDARS antenna 13 exhibits practically sufficient gain characteristics even when receiving the XM Radio band terrestrial wave (Terrestrial).
 次に、図32ないし図41には、本発明のアンテナ装置1においてXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて衛星波(Satellite)を受信する場合の仰角20,30,40,50,60degにおけるSDARSアンテナ13の水平面内の指向特性が示されている。
 図32にはXM Radio帯の下限周波数2332.5MHzで仰角20degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.4dBi、最小利得が約-2.0dBiでリップルが約6.3dBとなり約150°方向および約-120°方向の利得が低下しているがほぼ無指向性の指向特性が得られている。
 図33にはXM Radio帯の上限周波数2345MHzで仰角20degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約5.0dBi、最小利得が約-2.1dBiでリップルが約7.1dBとなり約150°方向および約-120°方向の利得が低下しているがほぼ無指向性の指向特性が得られている。
Next, FIGS. 32 to 41 show elevation angles 20, 30, 40, 50 when the antenna device 1 of the present invention receives satellite waves at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band. , The directivity characteristics in the horizontal plane of the SDARS antenna 13 at 60 degrees are shown.
FIG. 32 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and an elevation angle of 20 deg. The ripple is a maximum gain of about 4.4 dBi and a minimum gain of about −2.0 dBi. Becomes about 6.3 dB, and the gain in the directions of about 150 ° and about −120 ° is reduced, but almost omnidirectional directional characteristics are obtained.
FIG. 33 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 20 deg. The maximum gain is about 5.0 dBi, the minimum gain is about -2.1 dBi, and the ripple is about The gain in the direction of about 150 ° and about −120 ° is reduced to 7.1 dB, but almost omnidirectional directional characteristics are obtained.
 図34にはXM Radio帯の下限周波数2332.5MHzで仰角30degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.6dBi、最小利得が約-1.1dBiでリップルが約5.7dBのほぼ無指向性の指向特性が得られている。
 図35にはXM Radio帯の上限周波数2345MHzで仰角30degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.9dBi、最小利得が約-1.2dBiでリップルが約6.1dBのほぼ無指向性の指向特性が得られている。
FIG. 34 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and an elevation angle of 30 deg. The ripple is a maximum gain of about 4.6 dBi and a minimum gain of about −1.1 dBi. Is almost omnidirectional directional characteristics of about 5.7 dB.
FIG. 35 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 30 deg. The maximum gain is about 4.9 dBi, the minimum gain is about -1.2 dBi, and the ripple is about An almost omnidirectional directional characteristic of 6.1 dB is obtained.
 図36にはXM Radio帯の下限周波数2332.5MHzで仰角40degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約3.1dBi、最小利得が約1.1dBiでリップルが約2.0dBのほぼ無指向性の良好な指向特性が得られている。
 図37にはXM Radio帯の上限周波数2345MHzで仰角40degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約2.7dBi、最小利得が約0.4dBiでリップルが約3.9dBのほぼ無指向性の良好な指向特性が得られている。
FIG. 36 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 40 deg. The maximum gain is about 3.1 dBi, the minimum gain is about 1.1 dBi, and the ripple is A good directivity characteristic of about 2.0 dB and almost non-directivity is obtained.
FIG. 37 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 40 deg. The maximum gain is about 2.7 dBi, the minimum gain is about 0.4 dBi, and the ripple is about 3 Good directional characteristics of .9 dB almost non-directional characteristics are obtained.
 図38にはXM Radio帯の下限周波数2332.5MHzで仰角50degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.2dBi、最小利得が約0.9dBiでリップルが約3.3dBのほぼ無指向性の良好な指向特性が得られている。
 図39にはXM Radio帯の上限周波数2345MHzで仰角50degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.3dBi、最小利得が約0.9dBiでリップルが約3.4dBのほぼ無指向性の良好な指向特性が得られている。
FIG. 38 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 50 deg. The maximum gain is about 4.2 dBi, the minimum gain is about 0.9 dBi, and the ripple is A good directivity characteristic of approximately 3.3 dB with almost no directivity is obtained.
FIG. 39 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 50 deg. The maximum gain is about 4.3 dBi, the minimum gain is about 0.9 dBi, and the ripple is about 3 Good directivity characteristics of .4 dB and almost no directivity are obtained.
 図40にはXM Radio帯の下限周波数2332.5MHzで仰角60degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約3.0dBi、最小利得が約1.0dBiでリップルが約2.0dBのほぼ無指向性の良好な指向特性が得られている。
 図41にはXM Radio帯の上限周波数2345MHzで仰角60degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約3.1dBi、最小利得が約1.4dBiでリップルが約1.7dBのほぼ無指向性の良好な指向特性が得られている。
 このように、SDARSアンテナ13の水平面内の指向特性は仰角が大きくなるほど無指向性に近づいていくようになる。これは、仰角が大きくなるほどアンテナ基板12に形成されている第1パターン12aおよび第2パターン12bからなるTEL_AMPSアンテナの影響を受けないようになるからと考えられる。
FIG. 40 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 60 deg. The maximum gain is about 3.0 dBi, the minimum gain is about 1.0 dBi, and the ripple is A good directivity characteristic of about 2.0 dB and almost non-directivity is obtained.
FIG. 41 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 60 deg. The maximum gain is about 3.1 dBi, the minimum gain is about 1.4 dBi, and the ripple is about 1 Good directivity characteristics of .7 dB with almost no directivity are obtained.
Thus, the directional characteristics in the horizontal plane of the SDARS antenna 13 become closer to omnidirectionality as the elevation angle increases. This is presumably because the greater the elevation angle, the less affected by the TEL_AMPS antenna composed of the first pattern 12a and the second pattern 12b formed on the antenna substrate 12.
 次に、図42ないし図47には、本発明のアンテナ装置1においてXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて地上波(Terrestrial)を受信する場合の仰角0,10,15degにおけるSDARSアンテナ13の水平面内の指向特性が示されている。
 図42にはXM Radio帯の下限周波数2332.5MHzで仰角0degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約0.2dBi、最小利得が約-13.2dBiでリップルが約13.4dBとなり、約140°方向の利得が低下していると共に約-120°方向の利得がかなり低下している。これは、仰角が小さいことからアンテナ基板12に形成されている第1パターン12aおよび第2パターン12b等の影響を受けるためと考えられるが、十分実用に適する指向特性が得られている。
 図43にはXM Radio帯の上限周波数2345MHzで仰角0degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約0.9dBi、最小利得が約-13.4dBiでリップルが約14.3dBとなり、約140°方向の利得が低下していると共に約-120°方向の利得がかなり低下し、利得および指向特性は周波数が高くなるほど劣化している。しかし、十分実用に適する指向特性が得られている。
Next, FIGS. 42 to 47 show SDARS at elevation angles 0, 10, and 15 deg when the antenna apparatus 1 of the present invention receives a terrestrial wave at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band. The directivity characteristics of the antenna 13 in the horizontal plane are shown.
FIG. 42 shows the directivity characteristic in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 0 deg. The ripple is a maximum gain of about 0.2 dBi and a minimum gain of about −13.2 dBi. Is about 13.4 dB, the gain in the direction of about 140 ° is reduced, and the gain in the direction of about −120 ° is considerably reduced. This is considered to be due to the small elevation angle, which is influenced by the first pattern 12a, the second pattern 12b, and the like formed on the antenna substrate 12. However, the directivity characteristics suitable for practical use are obtained.
FIG. 43 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 0 deg. The maximum gain is about 0.9 dBi, the minimum gain is about −13.4 dBi, and the ripple is about The gain in the direction of about 140 ° is lowered and the gain in the direction of about −120 ° is considerably lowered, and the gain and the directivity are degraded as the frequency is increased. However, directivity characteristics suitable for practical use are obtained.
 図44にはXM Radio帯の下限周波数2332.5MHzで仰角10degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.1dBi、最小利得が約-6.7dBiでリップルが約10.8dBで約140°方向の利得が低下していると共に、約-120°方向の利得がかなり低下している。しかし、仰角0degに比較して利得および指向特性は改善されており、十分実用に適する指向特性が得られている。
 図45にはXM Radio帯の上限周波数2345MHzで仰角10degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.1dBi、最小利得が約-6.2dBiでリップルが約10.3dBで約140°方向および約-120°方向の利得が低下している。しかし、仰角0degに比較して利得および指向特性は改善されており、十分実用に適する指向特性が得られている。
FIG. 44 shows the directional characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 10 deg. The ripple is a maximum gain of about 4.1 dBi and a minimum gain of about −6.7 dBi. Is about 10.8 dB, the gain in the direction of about 140 ° is reduced, and the gain in the direction of about −120 ° is considerably reduced. However, the gain and directivity are improved as compared with the elevation angle of 0 deg, and the directivity sufficiently suitable for practical use is obtained.
FIG. 45 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 10 deg. The maximum gain is about 4.1 dBi, the minimum gain is about -6.2 dBi, and the ripple is about The gain in the direction of about 140 ° and in the direction of about −120 ° is decreased at 10.3 dB. However, the gain and directivity are improved as compared with the elevation angle of 0 deg, and the directivity sufficiently suitable for practical use is obtained.
 図46にはXM Radio帯の下限周波数2332.5MHzで仰角15degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約5.3dBi、最小利得が約-4.6dBiでリップルが約9.9dBで約140°方向の利得が低下していると共に、約-120°方向の利得がかなり低下している。しかし、仰角10degに比較して利得および指向特性は改善されており、十分実用に適する指向特性が得られている。
 図47にはXM Radio帯の上限周波数2345MHzで仰角15degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約5.7dBi、最小利得が約-3.9dBiでリップルが約9.6dBで約140°方向および約-120°方向の利得が低下している。しかし、仰角10degに比較して利得および指向特性は改善されており、十分実用に適する指向特性が得られている。
 上記の通り、本発明のアンテナ装置1におけるSDARSアンテナ13は、XM Radio帯の衛星波(Satellite)および地上波(Terrestrial)を受信するに適したアンテナとなる。
FIG. 46 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the lower limit frequency of 2332.5 MHz of the XM Radio band and the elevation angle of 15 deg. The ripple is a maximum gain of about 5.3 dBi and a minimum gain of about −4.6 dBi. Is about 9.9 dB, the gain in the direction of about 140 ° is reduced, and the gain in the direction of about −120 ° is considerably reduced. However, the gain and directivity are improved compared to the elevation angle of 10 deg, and the directivity that is sufficiently suitable for practical use is obtained.
FIG. 47 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an upper limit frequency of 2345 MHz in the XM Radio band and an elevation angle of 15 deg. The maximum gain is about 5.7 dBi, the minimum gain is about -3.9 dBi, and the ripple is about The gain in the direction of about 140 ° and the direction of about −120 ° is reduced at 9.6 dB. However, the gain and directivity are improved compared to the elevation angle of 10 deg, and the directivity that is sufficiently suitable for practical use is obtained.
As described above, the SDARS antenna 13 in the antenna device 1 of the present invention is an antenna suitable for receiving satellite waves (Satellite) and terrestrial waves (Terrestrial) in the XM Radio band.
 次に、本発明にかかるアンテナ装置1において、SDARSアンテナ13の後端と第1パターン12aの前方の側縁との間隔Laが約λ/4(約32mm)以上とされると共に、第2パターン12bの斜辺とSDARSアンテナ13のほぼ中心とを結ぶ仰角θaが約30deg以下とされる理由について説明する。図48に、本発明にかかるアンテナ装置1において、SDARSアンテナ13をその後端と第1パターン12aの前方の側縁との間隔が短くなるよう配置して約30mmの間隔Lbに変更されると共に、第2パターンの斜辺とSDARSアンテナ13のほぼ中心とを結ぶ仰角が約35degとされた仰角θbに変更されたアンテナ装置2の構成を示している。なお、第2パターンの形状は図48に示す第2パターン12b’のように前方に向かって延伸されており、その長さD4が約30mmとされている。アンテナ装置2の他の構成はアンテナ装置1と同様とされている。 Next, in the antenna device 1 according to the present invention, the distance La between the rear end of the SDARS antenna 13 and the front side edge of the first pattern 12a is set to about λ / 4 (about 32 mm) or more, and the second pattern The reason why the elevation angle θa connecting the hypotenuse of 12b and the approximate center of the SDARS antenna 13 is about 30 degrees or less will be described. In FIG. 48, in the antenna device 1 according to the present invention, the SDARS antenna 13 is arranged so that the distance between the rear end and the front side edge of the first pattern 12a is shortened, and the distance Lb is changed to about 30 mm. The configuration of the antenna device 2 is shown in which the elevation angle connecting the hypotenuse of the second pattern and the approximate center of the SDARS antenna 13 is changed to an elevation angle θb that is about 35 degrees. Note that the shape of the second pattern is extended forward like the second pattern 12b 'shown in FIG. 48, and the length D4 thereof is about 30 mm. Other configurations of the antenna device 2 are the same as those of the antenna device 1.
 ここで、図48に示すアンテナ装置2の電気的特性を図49ないし図59に示す。この場合、第2パターン12b’の寸法は上記の通りとされ、間隔Lbは約30mm、仰角θbは約35degとされ、他の寸法等についてはアンテナ装置1と同様とされている。
 図49にアンテナ装置2において、SDARSアンテナ13でXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて衛星波(Satellite)を受信する場合の仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図49を参照すると、仰角が20degで2332.5MHzでは約2.2dBi、2345MHzで約1.6dBiの平均利得が得られており、アンテナ装置1における平均利得よりは若干低下しているが、十分な平均利得が得られている。そして、仰角が25,30,35,40,45,50,55,60degと大きくなっても2332.5MHzでの平均利得は約1.6dBi~約3.1dBiの間だけで変化しておりほぼ一定の平均利得が得られている。また、2345MHzでの平均利得も約1.3dBi~約2.7dBiの間だけで変化しておりほぼ一定の平均利得が得られていると共に、XM Radio帯の全帯域において約1.3dBi以上の良好な平均利得が得られている。
Here, the electrical characteristics of the antenna device 2 shown in FIG. 48 are shown in FIGS. In this case, the dimensions of the second pattern 12b ′ are as described above, the interval Lb is about 30 mm, the elevation angle θb is about 35 deg, and other dimensions are the same as those of the antenna device 1.
FIG. 49 shows the gain characteristics of the average value with respect to the elevation angle when the antenna device 2 receives the satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM Radio band in the SDARS antenna 13. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 49, an average gain of about 2.2 dBi is obtained at 2332.5 MHz at an elevation angle of 20 deg and about 1.6 dBi at 2345 MHz, which is slightly lower than the average gain in the antenna device 1, but is sufficient An average gain is obtained. And even if the elevation angle increases to 25, 30, 35, 40, 45, 50, 55, 60 deg, the average gain at 2332.5 MHz changes only between about 1.6 dBi and about 3.1 dBi, and is almost A certain average gain is obtained. Also, the average gain at 2345 MHz changes only between about 1.3 dBi and about 2.7 dBi, and an almost constant average gain is obtained, and in the entire band of the XM Radio band, it is about 1.3 dBi or more. A good average gain is obtained.
 また、図50にアンテナ装置2において、SDARSアンテナ13でXM Radio帯の下限周波数2332.5MHzおよび上限周波数2345MHzにおいて衛星波(Satellite)を受信する場合の仰角に対する最小値の利得特性を示す。この最小値は、水平面内指向特性における利得の最小値である。図30を参照すると、仰角が20degで2332.5MHzでは約-1.8dBi、2345MHzで約-4.5dBiの最小利得が得られており、仰角が25,30,35,40,45,50,55,60degと大きくなるに従って最小利得が上昇する傾向を示している。2332.5MHzでの最小利得は約-1.4dBi~約2.3dBiの間だけで変化しておりわずかな範囲でしか変化しないようになり、60degで約1.7dBiの最大値が得られる。また、2345MHzでの最小利得は約-4.5dBi~約1.8dBiの間で変化しており、アンテナ装置1における最小値-2.1dBiよりかなり低い-4.5dBiが最小値となっている。この場合、仰角が約30degより小さい場合は、周波数が高くなるにつれて最小値がより低下していくようになる。 FIG. 50 shows the gain characteristic of the minimum value with respect to the elevation angle when the antenna device 2 receives a satellite wave (Satellite) at the lower limit frequency 2332.5 MHz and the upper limit frequency 2345 MHz of the XM radio band in the SDARS antenna 13. This minimum value is the minimum value of gain in the horizontal plane directivity. Referring to FIG. 30, a minimum gain of about −1.8 dBi is obtained at an elevation angle of 20 deg at 2332.5 MHz and about −4.5 dBi at 2345 MHz, and the elevation angle is 25, 30, 35, 40, 45, 50, It shows a tendency that the minimum gain increases as it becomes 55,60 deg. The minimum gain at 2332.5 MHz changes only between about -1.4 dBi and about 2.3 dBi, and changes only in a small range, and a maximum value of about 1.7 dBi is obtained at 60 deg. Further, the minimum gain at 2345 MHz varies between about −4.5 dBi and about 1.8 dBi, and −4.5 dBi which is considerably lower than the minimum value −2.1 dBi in the antenna device 1 is the minimum value. . In this case, when the elevation angle is smaller than about 30 deg, the minimum value is further decreased as the frequency is increased.
 このように、間隔Lbを約30mmに変更すると共に、仰角θbを約35degに変更すると、SDARSアンテナ13の全XM Radio帯における仰角20~60degに対する最小利得の最小値が-4.5dBiとなって実用上の十分な利得を確保できないようになる。このため、本発明にかかるアンテナ装置1においては、間隔Laを約32mm、仰角θaを約30degにしているのである。なお、間隔Laを大きくすればするほど仰角θaも小さくなって、SDARSアンテナ13は第1パターン12aおよび第2パターン12bから離隔されて、その影響が低減されるようになる。すなわち、間隔Laを大きくすればするほど仰角θaを小さくすればするほどSDARSアンテナ13の利得は上昇するようになる。そして、間隔Laを約32mmに、仰角θaを約30degとした際にSDARSアンテナ13の利得は実用上十分な利得となることから、本発明のアンテナ装置1においては間隔Laを約32mm(λ/4)以上に、仰角θaを約30deg以下にしているのである。 As described above, when the interval Lb is changed to about 30 mm and the elevation angle θb is changed to about 35 deg, the minimum value of the minimum gain for the elevation angle 20 to 60 deg in all XM Radio bands of the SDARS antenna 13 becomes −4.5 dBi. A practically sufficient gain cannot be secured. Therefore, in the antenna device 1 according to the present invention, the interval La is about 32 mm and the elevation angle θa is about 30 deg. As the interval La is increased, the elevation angle θa is also reduced, and the SDARS antenna 13 is separated from the first pattern 12a and the second pattern 12b, and the influence thereof is reduced. That is, the gain of the SDARS antenna 13 increases as the interval La increases and the elevation angle θa decreases. When the interval La is about 32 mm and the elevation angle θa is about 30 deg, the gain of the SDARS antenna 13 becomes a practically sufficient gain. Therefore, in the antenna device 1 of the present invention, the interval La is about 32 mm (λ / 4) As described above, the elevation angle θa is about 30 degrees or less.
 次に、図51ないし図55には、図48に示すアンテナ装置2においてXM Radio帯の中心周波数2338.75MHzにおいて衛星波(Satellite)を受信する場合の仰角20,30,40,50,60degにおけるSDARSアンテナ13の水平面内の指向特性が示されている。
 図51にはXM Radio帯の中心周波数2338.75MHzで仰角20degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.6dBi、最小利得が約-3.5dBiでリップルが約8.1dBとなり約50°方向の利得が低下していると共に、約150°方向および約-120°方向の利得がかなり低下するようになっている。
 図52にはXM Radio帯の中心周波数2338.75MHzで仰角30degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.3dBi、最小利得が約-1.4dBiでリップルが約5.7dBとなり約60°方向および約150°方向ないし約-120°方向までの利得が低下するようになっている。
Next, FIG. 51 to FIG. 55 show the elevation angles 20, 30, 40, 50, and 60 deg when the antenna device 2 shown in FIG. 48 receives a satellite wave at the center frequency 2338.75 MHz of the XM Radio band. The directivity characteristics in the horizontal plane of the SDARS antenna 13 are shown.
FIG. 51 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 20 deg. The ripple is a maximum gain of about 4.6 dBi and a minimum gain of about −3.5 dBi. Is about 8.1 dB, the gain in the direction of about 50 ° is reduced, and the gains in the direction of about 150 ° and about −120 ° are considerably reduced.
FIG. 52 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 30 deg. The ripple is a maximum gain of about 4.3 dBi and a minimum gain of about −1.4 dBi. Is about 5.7 dB, and the gain in the direction of about 60 ° and about 150 ° to about −120 ° decreases.
 図53にはXM Radio帯の中心周波数2338.75MHzで仰角40degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約3.6dBi、最小利得が約0.5dBiでリップルが約3.1dBとなりほぼ無指向性の指向特性が得られている。
 図54にはXM Radio帯の中心周波数2338.75MHzで仰角50degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.3dBi、最小利得が約1.5dBiでリップルが約2.7dBとなりほぼ無指向性の指向特性が得られている。
 図55にはXM Radio帯の中心周波数2338.75MHzで仰角60degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.0dBi、最小利得が約2.3dBiでリップルが約1.7dBとなりほぼ無指向性の指向特性が得られている。
FIG. 53 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an XM Radio band center frequency of 2338.75 MHz and an elevation angle of 40 deg. The maximum gain is about 3.6 dBi, the minimum gain is about 0.5 dBi, and the ripple is It is about 3.1 dB, and almost omnidirectional directional characteristics are obtained.
FIG. 54 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 50 deg. The ripple is a maximum gain of about 4.3 dBi, a minimum gain of about 1.5 dBi. It is about 2.7 dB, and an almost omnidirectional directional characteristic is obtained.
FIG. 55 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of the XM Radio band of 2338.75 MHz and an elevation angle of 60 deg, with a maximum gain of about 4.0 dBi and a minimum gain of about 2.3 dBi. It is about 1.7 dB, and almost omnidirectional directional characteristics are obtained.
 次に、図56ないし図59には、図48に示すアンテナ装置2においてXM Radio帯の中心周波数2338.75MHzにおいて地上波(Terrestrial)を受信する場合の仰角0,5,10,15degにおけるSDARSアンテナ13の水平面内の指向特性が示されている。
 図56にはXM Radio帯の中心周波数2338.75MHzで仰角0degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約0.6dBi、最小利得が約-13.3dBiでリップルが約13.9dBとなり、約30°方向ないし60°方向の利得が低下していると共に約150°方向および約-120°方向の利得が非常に低下しており、無指向性が得られていない。このように最小利得が約-13.3dBiと小さいと共に無指向性が得られないことから、実用に十分な指向特性が得られていない。
 図57にはXM Radio帯の中心周波数2338.75MHzで仰角5degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約2.6dBi、最小利得が約-11.0dBiでリップルが約13.5dBとなり、約50°方向の利得が低下していると共に約150°方向および約-120°方向の利得が非常に低下していると共に約-120°方向の利得がかなり低下しており、無指向性が得られていない。このように最小利得が約-11.0dBiと小さいと共に無指向性が得られないことから、実用に十分な指向特性が得られていない。
Next, FIG. 56 to FIG. 59 show SDARS antennas at elevation angles of 0, 5, 10, and 15 deg when the antenna apparatus 2 shown in FIG. 48 receives a terrestrial wave at a center frequency of 2338.75 MHz in the XM Radio band. The directional characteristics in 13 horizontal planes are shown.
FIG. 56 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of the XM Radio band of 2338.75 MHz and an elevation angle of 0 deg. The ripple is a maximum gain of about 0.6 dBi and a minimum gain of about −13.3 dBi. Is about 13.9 dB, the gain in the direction of about 30 ° to 60 ° is reduced, and the gain in the direction of about 150 ° and about −120 ° is greatly reduced, and omnidirectionality is obtained. Absent. Thus, since the minimum gain is as small as about −13.3 dBi and omnidirectionality cannot be obtained, directional characteristics sufficient for practical use cannot be obtained.
FIG. 57 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at an XM Radio band center frequency of 2338.75 MHz and an elevation angle of 5 deg. The ripple is a maximum gain of about 2.6 dBi and a minimum gain of about −11.0 dBi. Is about 13.5 dB, the gain in the direction of about 50 ° is reduced, the gain in the direction of about 150 ° and about −120 ° is greatly reduced, and the gain in the direction of about −120 ° is considerably reduced. The omnidirectionality is not obtained. Thus, since the minimum gain is as small as about −11.0 dBi and omnidirectionality cannot be obtained, directional characteristics sufficient for practical use cannot be obtained.
 図58にはXM Radio帯の中心周波数2338.75MHzで仰角10degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約4.4dBi、最小利得が約-8.0dBiでリップルが約12.4dBとなり、約50°方向の利得が低下していると共に約150°方向および約-120°方向の利得がかなり低下しているが、仰角0degの時よりはかなり向上している。しかし、最小利得が-8.0dBiと十分ではなく、実用に十分な指向特性が得られていない。
 図59にはXM Radio帯の中心周波数2338.75MHzで仰角15degにおけるSDARSアンテナ13の水平面内の指向特性が示されており、最大利得が約5.7dBi、最小利得が約-5.8dBiでリップルが約11.5dBとなり、約50°方向の利得が低下していると共に約150°方向および約-120°方向の利得がかなり低下しているが、仰角0degの時よりはかなり向上している。しかし、最小利得が-5.8dBiと十分ではなく、実用に十分な指向特性が得られていない。
 このように、図48に示すアンテナ装置2においてXM Radio帯を受信するSDARSアンテナ13の水平面内の指向特性は、衛星波(Satellite)や地上波(Terrestrial)に限らず低仰角における指向特性は実用に十分な指向特性が得られていない。ただし、仰角が大きくなるにつれて指向特性は改善されるようになる。
FIG. 58 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of XM Radio band of 2338.75 MHz and an elevation angle of 10 deg. The ripple is a maximum gain of about 4.4 dBi and a minimum gain of about −8.0 dBi. Is about 12.4 dB, and the gain in the direction of about 50 ° is reduced and the gain in the direction of about 150 ° and about −120 ° is considerably reduced, but is significantly improved as compared with the case where the elevation angle is 0 deg. . However, the minimum gain is not sufficiently −8.0 dBi, and a directional characteristic sufficient for practical use cannot be obtained.
FIG. 59 shows the directivity characteristics in the horizontal plane of the SDARS antenna 13 at the center frequency of 2338.75 MHz in the XM Radio band at an elevation angle of 15 deg. The ripple is a maximum gain of about 5.7 dBi and a minimum gain of about −5.8 dBi. Is about 11.5 dB, and the gain in the direction of about 50 ° is reduced and the gains in the direction of about 150 ° and about −120 ° are considerably reduced, but the gain is significantly improved compared to when the elevation angle is 0 deg. . However, the minimum gain is not sufficient as -5.8 dBi, and a directivity characteristic sufficient for practical use is not obtained.
As described above, the directivity characteristics in the horizontal plane of the SDARS antenna 13 that receives the XM radio band in the antenna device 2 shown in FIG. 48 are not limited to satellite waves and satellite waves (terrestrial), but the directivity characteristics at low elevation angles are practical. However, sufficient directivity characteristics are not obtained. However, the directivity is improved as the elevation angle increases.
 次に、本発明にかかるアンテナ装置1において、第1コイル12cおよび第2コイル12dの下面におけるアンテナベース10からの高さHを約38mm以上とする理由について説明する。図60に、本発明にかかるアンテナ装置1において、第1コイル12c’および第2コイル12d’の下面におけるアンテナベース10からの高さを低くなるよう配置して約31.5mmの高さHbに変更されたアンテナ装置3の構成を示している。
 ここで、図60に示すアンテナ装置3の電気的特性を図61ないし図78に示す。この場合、第1コイル12c’および第2コイル12d’の下面におけるアンテナベース10からの高さHbが約31.5mmとされ、他の寸法等についてはアンテナ装置1と同様とされている。
Next, in the antenna device 1 according to the present invention, the reason why the height H from the antenna base 10 on the lower surfaces of the first coil 12c and the second coil 12d is about 38 mm or more will be described. 60, in the antenna device 1 according to the present invention, the height from the antenna base 10 on the lower surfaces of the first coil 12c ′ and the second coil 12d ′ is reduced to a height Hb of about 31.5 mm. The structure of the changed antenna apparatus 3 is shown.
Here, the electrical characteristics of the antenna device 3 shown in FIG. 60 are shown in FIGS. In this case, the height Hb from the antenna base 10 on the lower surfaces of the first coil 12c ′ and the second coil 12d ′ is about 31.5 mm, and other dimensions are the same as those of the antenna device 1.
 図61に、アンテナ装置3においてAMPS帯の下限周波数824MHzおよび上限周波数894MHzにおけるTEL_AMPSアンテナの仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図61を参照すると、仰角が0degで824MHzでは約-2.0dBi、894MHzで約-2.8dBiの平均利得が得られており、仰角が5,10,15,20,25,30degと大きくなるに従って平均利得も上昇していく。仰角が30degで824MHzでは約2.9dBi、894MHzで約2.4dBiの良好な平均利得が得られている。アンテナ装置3におけるTEL_AMPSアンテナは、周波数が高くなるほど、かつ、仰角が小さくなるほど平均利得は低下する。また、本発明にかかるアンテナ装置1におけるTEL_AMPSアンテナは仰角0~30degのほぼ全体にわたり低域より高域の周波数における平均利得が向上しているが、アンテナ装置3におけるTEL_AMPSアンテナでは仰角0~30degのほぼ全体にわたり低域より高域の周波数における平均利得が低下している。すなわち、第1コイル12c’および第2コイル12d’の高さHbを低くして約31.5mmとするとAMPS帯の高域における平均利得が低下するようになる。 61 shows the gain characteristics of the average value with respect to the elevation angle of the TEL_AMPS antenna at the lower limit frequency 824 MHz and the upper limit frequency 894 MHz of the AMPS band in the antenna device 3. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 61, an average gain of about −2.0 dBi is obtained at an elevation angle of 0 deg at 824 MHz and about −2.8 dBi at 894 MHz, and the elevation angle is increased to 5, 10, 15, 20, 25, and 30 deg. As the average gain increases. A good average gain of about 2.9 dBi is obtained at an elevation angle of 30 deg at 824 MHz and about 2.4 dBi at 894 MHz. The average gain of the TEL_AMPS antenna in the antenna device 3 decreases as the frequency increases and the elevation angle decreases. The TEL_AMPS antenna in the antenna device 1 according to the present invention has an improved average gain at frequencies higher than low frequencies over almost the entire elevation angle of 0 to 30 deg. However, the TEL_AMPS antenna in the antenna device 3 has an elevation angle of 0 to 30 deg. The average gain at a frequency higher than the low frequency is reduced almost throughout. That is, if the height Hb of the first coil 12c 'and the second coil 12d' is reduced to about 31.5 mm, the average gain in the high band of the AMPS band is lowered.
 次に、図62に、図60に示すアンテナ装置3において、PCS帯の下限周波数1850MHzおよび上限周波数1990MHzにおけるTEL_PCSアンテナの仰角に対する平均値の利得特性を示す。この平均値は、水平面内指向特性における利得の平均値である。図62を参照すると、仰角が0degで1850MHzでは約-0.8dBi、1990MHzで約-0.7dBiの平均利得が得られており、仰角が5,10,15,20degと大きくなるに従って平均利得も上昇していくが、約20degで飽和し25,30degとなるに従って平均利得は下降していく。仰角が20degで1850MHzでは約3.9dBi、1990MHzで約4.7dBiの良好な平均利得が得られている。しかし、アンテナ装置3におけるTEL_PCSアンテナのPCS帯における仰角0~30degに対する平均利得を、本発明にかかるアンテナ装置1におけるTEL_PCSアンテナと比較すると、約1910MHzないし1990MHzにおいて平均利得が低下することが確かめられた。すなわち、第1コイル12c’および第2コイル12d’の高さHbを低くして約31.5mmとするとPCS帯では高域になるにつれて平均利得が低下するようになる。
 このように、第1コイル12c’および第2コイル12d’の高さHbを低くして約31.5mmとすると、AMPS帯の高域における平均利得が低下すると共に、PCS帯では高域になるにつれて平均利得が低下することから、本発明にかかるアンテナ装置1においては第1コイル12cおよび第2コイル12dの高さHを約38mm以上としているのである。
Next, FIG. 62 shows average gain characteristics with respect to the elevation angle of the TEL_PCS antenna at the lower limit frequency 1850 MHz and the upper limit frequency 1990 MHz of the PCS band in the antenna device 3 shown in FIG. This average value is an average value of gains in the horizontal plane directivity. Referring to FIG. 62, an average gain of approximately −0.8 dBi is obtained at 1850 MHz with an elevation angle of 0 deg and approximately −0.7 dBi at 1990 MHz, and the average gain increases as the elevation angle increases to 5, 10, 15, 20 deg. Although it increases, the average gain decreases as it becomes saturated at about 20 deg and reaches 25, 30 deg. A good average gain of about 3.9 dBi at 1850 MHz at an elevation angle of 20 deg and about 4.7 dBi at 1990 MHz is obtained. However, when the average gain of the TEL_PCS antenna in the antenna device 3 with respect to the elevation angle of 0 to 30 deg in the PCS band is compared with the TEL_PCS antenna in the antenna device 1 according to the present invention, it has been confirmed that the average gain decreases at about 1910 MHz to 1990 MHz. . That is, when the height Hb of the first coil 12c ′ and the second coil 12d ′ is reduced to about 31.5 mm, the average gain decreases as the frequency becomes higher in the PCS band.
Thus, when the height Hb of the first coil 12c ′ and the second coil 12d ′ is reduced to about 31.5 mm, the average gain in the high band of the AMPS band decreases and the high band in the PCS band. As the average gain decreases, the height H of the first coil 12c and the second coil 12d is about 38 mm or more in the antenna device 1 according to the present invention.
 次に、図63ないし図78には、図60に示すアンテナ装置3において、AMPS帯の下限周波数824MHzおよび上限周波数894MHzで仰角0,10,20,30degにおけるTEL_AMPSアンテナの水平面内の指向特性、および、PCS帯の下限周波数1850MHzおよび上限周波数1990MHzで仰角0,10,20,30degにおけるTEL_PCSアンテナの水平面内の指向特性が示されている。
 図63にはAMPS帯の下限周波数824MHzで仰角0degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約-1.5dBi、最小利得が約-2.5dBiでリップルが約1.0dBのほぼ無指向性とされた良好な指向特性が得られている。
 図64にはAMPS帯の上限周波数894MHzで仰角0degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約-1.8dBi、最小利得が約-3.9dBiでリップルが約2.1dBのほぼ無指向性とされた良好な指向特性が得られている。
Next, in FIG. 63 to FIG. 78, in the antenna device 3 shown in FIG. The directional characteristics in the horizontal plane of the TEL_PCS antenna at the elevation angles of 0, 10, 20, and 30 deg at the PCS band lower limit frequency of 1850 MHz and upper limit frequency of 1990 MHz are shown.
FIG. 63 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and the elevation angle of 0 deg. The maximum gain is about −1.5 dBi, the minimum gain is about −2.5 dBi, and the ripple is about 1 A good directivity characteristic of about 0.0 dB is obtained.
FIG. 64 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 0 deg. The maximum gain is about −1.8 dBi, the minimum gain is about −3.9 dBi, and the ripple is about 2 Good directivity characteristics of approximately 1 dB of non-directivity are obtained.
 図65にはPCS帯の下限周波数1850MHzで仰角0degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約0.9dBi、最小利得が約-4.4dBiでリップルが約5.3dBで約110°方向および約-70°方向の利得が低下しているやや楕円形の指向特性が得られている。
 図66にはPCS帯の上限周波数1990MHzで仰角0degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約1.5dBi、最小利得が約-5.7dBiでリップルが約7.2dBで約120°方向および約-75°方向の利得が低下しているやや楕円形の指向特性が得られている。
FIG. 65 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 0 deg. The maximum gain is about 0.9 dBi, the minimum gain is about −4.4 dBi, and the ripple is about 5. A slightly elliptical directional characteristic is obtained with the gain in the direction of about 110 ° and about −70 ° decreased at 3 dB.
FIG. 66 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band and an elevation angle of 0 deg. The maximum gain is about 1.5 dBi, the minimum gain is about −5.7 dBi, and the ripple is about 7. The gain in the direction of about 120 ° and about −75 ° is reduced at 2 dB, and a slightly elliptical directivity characteristic is obtained.
 図67にはAMPS帯の下限周波数824MHzで仰角10degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約0.6dBi、最小利得が約0.0dBiでリップルが約0.6dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角0degの時より向上している。
 図68にはAMPS帯の上限周波数894MHzで仰角10degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約0.5dBi、最小利得が約-0.8dBiでリップルが約1.3dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角0degの時より向上している。
FIG. 67 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and the elevation angle of 10 deg. The maximum gain is about 0.6 dBi, the minimum gain is about 0.0 dBi, and the ripple is about 0.6 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved compared to when the elevation angle is 0 deg.
FIG. 68 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 10 deg. The maximum gain is about 0.5 dBi, the minimum gain is about −0.8 dBi, and the ripple is about 1. A good directivity characteristic of almost 3 dB is obtained. The gain is improved compared to when the elevation angle is 0 deg.
 図69にはPCS帯の下限周波数1850MHzで仰角10degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約3.6dBi、最小利得が約-1.6dBiでリップルが約5.9dBで約110°方向および約-70°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角0degの時より向上している。
 図70にはPCS帯の上限周波数1990MHzで仰角10degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約4.6dBi、最小利得が約-1.8dBiでリップルが約6.4dBで約120°方向および約-70°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角0degの時より向上している。
FIG. 69 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 10 deg. The maximum gain is about 3.6 dBi, the minimum gain is about -1.6 dBi, and the ripple is about 5. At 9 dB, the gain in the directions of about 110 ° and about −70 ° is reduced, and a slightly elliptical directivity characteristic is obtained. The gain is improved compared to when the elevation angle is 0 deg.
FIG. 70 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper limit frequency of 1990 MHz in the PCS band at an elevation angle of 10 deg. The maximum gain is about 4.6 dBi, the minimum gain is about −1.8 dBi, and the ripple is about 6. At 4 dB, the gain in the directions of about 120 ° and about −70 ° is reduced, and a slightly elliptical directivity characteristic is obtained. The gain is improved compared to when the elevation angle is 0 deg.
 図71にはAMPS帯の下限周波数824MHzで仰角20degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約2.9dBi、最小利得が約1.6dBiでリップルが約1.3dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角10degの時より向上している。
 図72にはAMPS帯の上限周波数894MHzで仰角20degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約2.1dBi、最小利得が約1.2dBiでリップルが約0.9dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角10degの時より向上している。
FIG. 71 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band and an elevation angle of 20 deg. The maximum gain is about 2.9 dBi, the minimum gain is about 1.6 dBi, and the ripple is about 1.3 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved as compared with the elevation angle of 10 degrees.
FIG. 72 shows the directivity characteristics in the horizontal plane of the TEL_AMPS antenna at an upper frequency of 894 MHz in the AMPS band at an elevation angle of 20 deg. The maximum gain is about 2.1 dBi, the minimum gain is about 1.2 dBi, and the ripple is about 0.9 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved as compared with the elevation angle of 10 degrees.
 図73にはPCS帯の下限周波数1850MHzで仰角20degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約5.9dBi、最小利得が約0.7dBiでリップルが約5.2dBで約120°方向および約-70°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角10degの時より向上している。
 図74にはPCS帯の上限周波数1990MHzで仰角20degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約6.6dBi、最小利得が約0.3dBiでリップルが約6.3dBで約120°方向および約-80°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角10degの時より向上している。
FIG. 73 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and an elevation angle of 20 deg. The maximum gain is about 5.9 dBi, the minimum gain is about 0.7 dBi, and the ripple is about 5.2 dB. The gain in the direction of about 120 ° and about −70 ° is reduced, and a slightly elliptical directional characteristic is obtained. The gain is improved as compared with the elevation angle of 10 degrees.
FIG. 74 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 20 deg. The maximum gain is about 6.6 dBi, the minimum gain is about 0.3 dBi, and the ripple is about 6.3 dB. The gain in the direction of about 120 ° and the direction of about −80 ° is lowered, and a slightly elliptical directivity characteristic is obtained. The gain is improved as compared with the elevation angle of 10 degrees.
 図75にはAMPS帯の下限周波数824MHzで仰角30degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約3.5dBi、最小利得が約2.3dBiでリップルが約1.2dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角20degの時より向上している。
 図76にはAMPS帯の上限周波数894MHzで仰角30degにおけるTEL_AMPSアンテナの水平面内の指向特性が示されており、最大利得が約2.8dBi、最小利得が約1.8dBiでリップルが約1.0dBのほぼ無指向性とされた良好な指向特性が得られている。利得は仰角20degの時より向上している。
FIG. 75 shows the directional characteristics in the horizontal plane of the TEL_AMPS antenna at the lower limit frequency of 824 MHz in the AMPS band at an elevation angle of 30 deg. The maximum gain is about 3.5 dBi, the minimum gain is about 2.3 dBi, and the ripple is about 1.2 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved compared to when the elevation angle is 20 degrees.
FIG. 76 shows the directivity characteristic in the horizontal plane of the TEL_AMPS antenna at an upper limit frequency of 894 MHz in the AMPS band at an elevation angle of 30 deg. The maximum gain is about 2.8 dBi, the minimum gain is about 1.8 dBi, and the ripple is about 1.0 dB. Good directivity characteristics that are almost non-directional are obtained. The gain is improved compared to when the elevation angle is 20 degrees.
 図77にはPCS帯の下限周波数1850MHzで仰角30degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約5.3dBi、最小利得が約-1.9dBiでリップルが約7.2dBで約120°方向および約-100°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角20degの時より低下している。
 図78にはPCS帯の上限周波数1990MHzで仰角30degにおけるTEL_PCSアンテナの水平面内の指向特性が示されており、最大利得が約5.0dBi、最小利得が約-1.9dBiでリップルが約6.9dBで約130°方向および約-100°方向の利得が低下しているやや楕円形の指向特性が得られている。利得は仰角20degの時より低下している。
 図63ないし図78を参照すると、第1コイル12c’および第2コイル12d’の高さHbを低くして約31.5mmとした場合は、TEL_AMPSアンテナの全AMPS帯における水平面内の指向特性は仰角0~30degにおいてほぼ無指向性の良好な指向特性が得られているが、AMPS帯の高域における平均利得が低下していることがわかる。また、TEL_PCSアンテナの全PCS帯における水平面内の指向特性は仰角0~30degにおいて楕円形の指向特性とされており、PCS帯では高域になるにつれて平均利得が低下していることがわかる。
FIG. 77 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at the PCS band lower limit frequency of 1850 MHz and the elevation angle of 30 deg. The maximum gain is about 5.3 dBi, the minimum gain is about -1.9 dBi, and the ripple is about 7. The gain in the direction of about 120 ° and about −100 ° is reduced at 2 dB, and a slightly elliptical directivity characteristic is obtained. The gain is lower than when the elevation angle is 20 deg.
FIG. 78 shows the directivity characteristics in the horizontal plane of the TEL_PCS antenna at an upper frequency of 1990 MHz in the PCS band at an elevation angle of 30 deg. The maximum gain is about 5.0 dBi, the minimum gain is about -1.9 dBi, and the ripple is about 6. The gain in the direction of about 130 ° and about −100 ° is reduced at 9 dB, and a slightly elliptical directivity characteristic is obtained. The gain is lower than when the elevation angle is 20 deg.
Referring to FIGS. 63 to 78, when the height Hb of the first coil 12c ′ and the second coil 12d ′ is reduced to about 31.5 mm, the directivity characteristic in the horizontal plane in the entire AMPS band of the TEL_AMPS antenna is It can be seen that the omnidirectional and good directivity characteristics are obtained at an elevation angle of 0 to 30 degrees, but the average gain in the high band of the AMPS band is lowered. The directional characteristics in the horizontal plane of the TEL_PCS antenna in the entire PCS band are elliptical directional characteristics at an elevation angle of 0 to 30 deg. It can be seen that the average gain decreases as the frequency increases in the PCS band.
 以上説明した本発明にかかるアンテナ装置1において、SDARSアンテナ13は、衛星局からの衛星波と、地上局(ギャップフィラー)からの地上波を受信できるように、衛星波の受信性能としては20degまでの低仰角において水平面内で偏差が少なく、良好な指向特性とされている。また、SDARSアンテナ13は、電気的な干渉を防ぐために、第1パターン12aからλ/4(約32mm)以上間隔を設けて配置されている。
 また、GPSアンテナ14は、上空にある複数の衛星から信号を受信することが可能であることから、それ程低仰角における受信性能を確保する必要はない。従って、天頂方向に遮蔽物がないアンテナ基板12とSDARSアンテナ13との間に配置されている。この場合、天頂方向に遮蔽物が無いアンテナ基板12の後方にGPSアンテナ14を配置するようにしても良い。
 さらに、TEL_PCSアンテナおよびTEL_AMPSアンテナは、モノポールアンテナとされており、水平面内において通話やデータ通信・緊急通報システム等で利用される。これに適するように本発明にかかるアンテナ装置では、水平面内で無指向性あるいは無指向性に近い指向特性が得られている。また、電気的に波長の短いPCS帯やGSM1800帯の2GHz帯では、アンテナ周辺にある金属物により指向性への影響が懸念されることから、第1コイル12cからなるチョークコイルと、第2コイル12dからなるローディングコイルは電流分布の少ないTEL_AMPSアンテナの上部に位置するよう配置している。
In the antenna device 1 according to the present invention described above, the SDARS antenna 13 has a satellite wave reception performance of up to 20 deg so that the satellite wave from the satellite station and the ground wave from the ground station (gap filler) can be received. With a low elevation angle, there is little deviation in the horizontal plane, and it has good directivity. In addition, the SDARS antenna 13 is arranged at an interval of λ / 4 (about 32 mm) or more from the first pattern 12a in order to prevent electrical interference.
Further, since the GPS antenna 14 can receive signals from a plurality of satellites in the sky, it is not necessary to ensure reception performance at such a low elevation angle. Therefore, it is disposed between the antenna substrate 12 and the SDARS antenna 13 that have no shield in the zenith direction. In this case, you may make it arrange | position the GPS antenna 14 behind the antenna board | substrate 12 without a shield in a zenith direction.
Furthermore, the TEL_PCS antenna and the TEL_AMPS antenna are monopole antennas, and are used in a call, data communication / emergency call system, etc. in a horizontal plane. In order to be suitable for this, the antenna device according to the present invention has omnidirectionality or directional characteristics close to omnidirectionality in a horizontal plane. In addition, in the 2 GHz band such as the PCS band and the GSM1800 band having a short electrical wavelength, there is a concern about the influence on the directivity due to the metal objects around the antenna. Therefore, the choke coil including the first coil 12c and the second coil The 12d loading coil is arranged to be positioned above the TEL_AMPS antenna with a small current distribution.
 さらにまた、AM/FMアンテナはモノポールアンテナとされており、FM周波数の波長の約1/45の高さとなりアンテナ高が低くなる。従って、第1パターン12aないし第3パターン12eおよび第1コイル12cだけで所望のFM周波数に共振させることは困難となる。そこで、電気的な整合を得るために第2コイル12dからなるローディングコイルを設けている。これにより、AM/FMアンテナ全体でFM周波数に共振するようになる。
 なお、AM帯においては、その使用周波数から容量性領域でAM/FMアンテナは作用している。従って、良好な受信性能を得られるように容量装荷型としてもよい。
 また、第1コイル12cからなるチョークコイルは、自己共振を用いてAMPS 帯あるいはGSM900帯の900MHz帯においてインピーダンスをhighにして、第3パターン12eを高周波的に切り離すために設けられている。すなわち、第1コイル12cは900MHz帯のトラップコイルとなる。さらに、第1コイル12cと第2コイル12dに大きな電流が誘起した場合、磁界結合してインダクタンス性能が変化してしまうことから、互いの中心軸を直交させて配置している。
Furthermore, the AM / FM antenna is a monopole antenna, which is about 1/45 the wavelength of the FM frequency and the antenna height is low. Therefore, it is difficult to resonate with a desired FM frequency using only the first pattern 12a to the third pattern 12e and the first coil 12c. Therefore, in order to obtain electrical matching, a loading coil including the second coil 12d is provided. As a result, the entire AM / FM antenna resonates at the FM frequency.
In the AM band, the AM / FM antenna operates in the capacitive region from the frequency used. Therefore, a capacity loading type may be used so as to obtain good reception performance.
In addition, the choke coil including the first coil 12c is provided in order to isolate the third pattern 12e in high frequency by using self-resonance to increase the impedance in the 900 MHz band of the AMPS band or the GSM900 band. That is, the first coil 12c is a 900 MHz band trap coil. Furthermore, when a large current is induced in the first coil 12c and the second coil 12d, the inductance performance changes due to magnetic field coupling, and therefore, the central axes are arranged orthogonal to each other.
1 アンテナ装置、2 アンテナ装置、3 アンテナ装置、10 アンテナベース、10a ボルト部、11 アンテナカバー、12 アンテナ基板、12a 第1パターン、12b 第2パターン、12c 第1コイル、12d 第2コイル、12e 第3パターン、12f 接続ライン、12g 給電点、13 SDARSアンテナ、14 GPSアンテナ、15 回路基板、100 アンテナ装置、100MHz 周波数、110 アンテナカバー、120 アンテナベース、130 アンテナ基板、130a 切欠、131 アンテナ素子、132 アンテナコイル、134 アンプ基板、135 平面アンテナユニット 1 antenna device, 2 antenna device, 3 antenna device, 10 antenna base, 10a bolt part, 11 antenna cover, 12 antenna substrate, 12a first pattern, 12b second pattern, 12c first coil, 12d second coil, 12e second 3 patterns, 12f connection line, 12g feeding point, 13 SDARS antenna, 14 GPS antenna, 15 circuit board, 100 antenna device, 100 MHz frequency, 110 antenna cover, 120 antenna base, 130 antenna board, 130a notch, 131 antenna element, 132 Antenna coil, 134 amplifier board, 135 planar antenna unit

Claims (3)

  1.  アンテナカバーの下端がアンテナベースに嵌合されて内部に収納空間が形成されているアンテナ装置であって、
     前記アンテナベース上に立設されて配置され、下部の給電点から上部にかけて側縁に沿って形成された第1パターンと、該第1パターンと接続ラインで接続された上部に形成された第2パターンと、直列接続されたチョークコイルとローディングコイルを介して前記第2パターンに接続された上部に形成された第3パターンとを有するアンテナ基板と、
     前記第1パターンの側端と所定間隔Laだけ離隔されて前記アンテナベース上に配置されたアンテナユニットとを備え、
     前記第2パターンの前記側縁側の斜辺と前記アンテナユニットのほぼ中心とを結ぶ仰角θaが約30°以下とされていると共に、前記アンテナユニットの使用周波数帯域の中心周波数の波長をλとした際に、前記所定間隔Laが約λ/4以上とされていることを特徴とするアンテナ装置。
    An antenna device in which a lower end of an antenna cover is fitted to an antenna base and a storage space is formed therein,
    A first pattern, which is erected on the antenna base and formed along the side edge from the lower feeding point to the upper part, and a second pattern formed on the upper part connected to the first pattern by a connection line. An antenna substrate having a pattern, and a third pattern formed in an upper part connected to the second pattern via a loading coil and a choke coil connected in series;
    An antenna unit disposed on the antenna base and spaced apart from a side edge of the first pattern by a predetermined interval La;
    When the elevation angle θa connecting the oblique side on the side edge side of the second pattern and the substantial center of the antenna unit is about 30 ° or less, and the wavelength of the center frequency of the use frequency band of the antenna unit is λ Further, the antenna device is characterized in that the predetermined interval La is about λ / 4 or more.
  2.  前記第1パターンが2GHz帯の電話用アンテナとして動作し、前記第1パターンと前記第2パターンが900MHz帯の電話用アンテナとして動作し、前記チョークコイルは、900MHz帯以上において前記第3パターンを前記第2パターンから高周波的に切り離すよう機能し、直列接続された前記第3パターン、前記チョークコイル、前記ローディングコイル、前記第2パターンおよび前記第1パターンの全体がAM/FM周波数帯のアンテナとして動作することを特徴とする請求項1記載のアンテナ装置。 The first pattern operates as a 2 GHz band telephone antenna, the first pattern and the second pattern operate as a 900 MHz band telephone antenna, and the choke coil moves the third pattern above the 900 MHz band. The third pattern, the choke coil, the loading coil, the second pattern, and the first pattern connected in series function as an antenna in the AM / FM frequency band. The antenna device according to claim 1, wherein:
  3.  前記チョークコイルの中心軸と前記ローディングコイルの中心軸とが、ほぼ直交して配置されていることを特徴とする請求項1または2記載のアンテナ装置。 3. The antenna device according to claim 1, wherein a central axis of the choke coil and a central axis of the loading coil are arranged substantially orthogonal to each other.
PCT/JP2011/069516 2010-12-08 2011-08-30 Antenna device WO2012077389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800035560A CN102893456A (en) 2010-12-08 2011-08-30 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010273794A JP4913900B1 (en) 2010-12-08 2010-12-08 Antenna device
JP2010-273794 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077389A1 true WO2012077389A1 (en) 2012-06-14

Family

ID=46170971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069516 WO2012077389A1 (en) 2010-12-08 2011-08-30 Antenna device

Country Status (3)

Country Link
JP (1) JP4913900B1 (en)
CN (1) CN102893456A (en)
WO (1) WO2012077389A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115742A (en) * 2013-12-11 2015-06-22 原田工業株式会社 Composite antenna device
GB2523443A (en) * 2013-12-11 2015-08-26 Harada Ind Co Ltd Composite antenna device
JP2017108395A (en) * 2015-11-27 2017-06-15 原田工業株式会社 Low-profile antenna device
CN113690579A (en) * 2016-02-19 2021-11-23 株式会社友华 Antenna device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207496B (en) * 2015-05-30 2023-03-10 安费诺三浦(辽宁)汽车电子有限公司 Combined antenna oscillator and low-profile vehicle-mounted antenna using same
CN108028458B (en) * 2015-09-14 2022-04-29 株式会社友华 Antenna device
EP3285332B1 (en) * 2016-08-19 2019-04-03 Swisscom AG Antenna system
CN114530698A (en) * 2016-12-06 2022-05-24 株式会社友华 Antenna device
US11804653B2 (en) 2017-02-23 2023-10-31 Yokowo Co., Ltd. Antenna device having a capacitive loading element
CN110326165B (en) 2017-02-23 2021-10-15 株式会社友华 Antenna device
JP6855308B2 (en) * 2017-04-14 2021-04-07 原田工業株式会社 Low profile antenna device
JP7040951B2 (en) * 2017-04-17 2022-03-23 株式会社ヨコオ Antenna device
US11201392B2 (en) 2017-04-17 2021-12-14 Yokowo Co., Ltd. Antenna apparatus
JP7231851B2 (en) * 2018-04-13 2023-03-02 セントラル硝子株式会社 Windshield with glass antenna element
CN111103604A (en) * 2018-10-26 2020-05-05 鲍臻 Long hole type single satellite receiving positioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223518A (en) * 2000-02-10 2001-08-17 Yokowo Co Ltd Linear antenna for television
JP2004015096A (en) * 2002-06-03 2004-01-15 Mitsumi Electric Co Ltd Composite antenna device
JP2005101805A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Antenna and personal digital assistant provided with antenna
JP2008022430A (en) * 2006-07-14 2008-01-31 Nippon Antenna Co Ltd On-board antenna system
JP2009017116A (en) * 2007-07-03 2009-01-22 Nippon Antenna Co Ltd Antenna unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307743C (en) * 2001-02-26 2007-03-28 日本安特尼株式会社 Multifrequency antenna
US20080012776A1 (en) * 2005-10-22 2008-01-17 Hirschmann Car Communication Gmbh Method of mounting and dismounting an antenna on a vehicle roof
JP2009022430A (en) * 2007-07-18 2009-02-05 Aruze Corp Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223518A (en) * 2000-02-10 2001-08-17 Yokowo Co Ltd Linear antenna for television
JP2004015096A (en) * 2002-06-03 2004-01-15 Mitsumi Electric Co Ltd Composite antenna device
JP2005101805A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Antenna and personal digital assistant provided with antenna
JP2008022430A (en) * 2006-07-14 2008-01-31 Nippon Antenna Co Ltd On-board antenna system
JP2009017116A (en) * 2007-07-03 2009-01-22 Nippon Antenna Co Ltd Antenna unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115742A (en) * 2013-12-11 2015-06-22 原田工業株式会社 Composite antenna device
GB2523443A (en) * 2013-12-11 2015-08-26 Harada Ind Co Ltd Composite antenna device
GB2523443B (en) * 2013-12-11 2018-08-08 Harada Ind Co Ltd Compact multiple frequency band antenna device with tuning coils
JP2017108395A (en) * 2015-11-27 2017-06-15 原田工業株式会社 Low-profile antenna device
CN113690579A (en) * 2016-02-19 2021-11-23 株式会社友华 Antenna device
US11456524B2 (en) 2016-02-19 2022-09-27 Yokowo Co., Ltd. Antenna device
EP4071931A1 (en) * 2016-02-19 2022-10-12 Yokowo Co., Ltd Antenna device
US11855340B2 (en) 2016-02-19 2023-12-26 Yokowo Co., Ltd. Antenna device

Also Published As

Publication number Publication date
CN102893456A (en) 2013-01-23
JP2012124714A (en) 2012-06-28
JP4913900B1 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4913900B1 (en) Antenna device
JP5237617B2 (en) Antenna device
EP3419109B1 (en) Antenna device
US20120081256A1 (en) Antenna apparatus
JP2005020301A (en) Antenna for common use of two polarized waves
US11688954B2 (en) Highly-integrated vehicle antenna configuration
JP7399239B2 (en) In-vehicle antenna device
US8089410B2 (en) Dual-band antenna
JP4738036B2 (en) Omnidirectional antenna
CN101517825A (en) An antenna in a wireless system
JP2011091557A (en) Antenna device
JP5654914B2 (en) Antenna device
JP4007332B2 (en) Integrated antenna
KR20120052784A (en) Dual patch antenna module
WO2001071847A1 (en) Multi-frequency antenna
JP4389863B2 (en) Integrated antenna
WO2000074172A1 (en) Patch antenna and a communication device including such an antenna
WO2013094692A1 (en) Antenna device
CN115812264A (en) Vehicle-mounted antenna device
JP2011101412A (en) Non-directional antenna
JP5576951B2 (en) Dual frequency antenna
WO2023090212A1 (en) Half-wavelength antenna device and low-profile antenna device using same
CN115425399A (en) Miniaturized combined antenna and communication device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003556.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847319

Country of ref document: EP

Kind code of ref document: A1