WO2013094692A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2013094692A1
WO2013094692A1 PCT/JP2012/083099 JP2012083099W WO2013094692A1 WO 2013094692 A1 WO2013094692 A1 WO 2013094692A1 JP 2012083099 W JP2012083099 W JP 2012083099W WO 2013094692 A1 WO2013094692 A1 WO 2013094692A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
planar
planar antenna
antennas
antenna device
Prior art date
Application number
PCT/JP2012/083099
Other languages
French (fr)
Japanese (ja)
Inventor
佑一郎 山口
武 戸倉
官 寧
博育 田山
千葉 洋
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2013094692A1 publication Critical patent/WO2013094692A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device having a plurality of antennas.
  • antennas that operate in various frequency bands are required.
  • FM / AM broadcasting FM / AM broadcasting
  • terrestrial digital broadcasting 3G (3rd generation: third generation mobile phone), GPS (Global Positioning System), VICS (registered trademark) (Vehicle Information)
  • GPS Global Positioning System
  • VICS registered trademark
  • Vehicle Information There is a need for antennas that operate in frequency bands such as Communication System (Road Traffic Information Communication System) and ETC (Electronic Toll Collection).
  • antennas that operate in different frequency bands are often realized as separate antenna devices.
  • an FM / AM broadcast antenna is realized as a whip antenna placed on a roof top
  • a digital terrestrial broadcast antenna is realized as a film antenna attached to a windshield.
  • the integrated antenna device refers to an antenna device including a plurality of antennas that operate in different frequency bands.
  • Examples of such an integrated antenna device include those described in Patent Documents 1 to 4.
  • the integrated antenna device described in Patent Document 1 is provided with GPS and ETC.
  • the integrated antenna device described in Patent Document 2 includes antennas for 3G and GPS.
  • the integrated antenna device described in Patent Literature 3 includes antennas for ETC, GPS, VICS, telephone main, and telephone sub.
  • the integrated antenna device described in Patent Document 4 includes antennas for GPS, ETC, first phone, and second phone.
  • JP 2007-158957 A Japanese Patent Publication “JP 2009-17116” (published on January 22, 2009) Japanese Patent Publication “JP 2009-267765 A” (published on November 12, 2009) Japanese Patent Publication “JP 2010-81500” (published April 8, 2010)
  • the conventional integrated antenna device has a problem that it is difficult to reduce the size because the radiating elements constituting each antenna are arranged so as not to overlap each other.
  • the reason why the radiating elements constituting each antenna are arranged so as not to overlap with each other is to prevent the antenna characteristics of each antenna from being impaired by the presence of other antennas.
  • the integrated antenna device described in Patent Document 1 employs a configuration in which an ETC antenna is projected from a central opening of a radiating element that constitutes a GPS antenna. For this reason, it is necessary to enlarge the radiation element of the GPS antenna so that the central opening includes the ETC antenna.
  • the integrated antenna device described in Patent Document 2 is a device in which a 3G antenna and a GPS antenna are attached to the front and back of an antenna board standing on a base so as not to overlap each other. Therefore, it is difficult to reduce the size viewed from the direction orthogonal to the antenna substrate, and it is impossible to meet the demand for a low profile.
  • the integrated antenna described in Patent Document 3 is simply arranged so that five antennas do not overlap each other without considering a space factor.
  • the integrated antenna device described in Patent Document 4 a device for arranging the ETC antenna so as to overlap a part of the GPS antenna can be seen.
  • the portion of the ETC antenna that is superimposed on the GPS antenna is very small, and does not contribute to substantial downsizing.
  • Patent Documents 1 to 4 are all for integrating antennas that operate in the GHz region, and antennas that operate in the MHz region such as digital terrestrial broadcasting are integrated with antennas that operate in the GHz region. Not meant to be nowadays, tuners for receiving terrestrial digital broadcasts are integrated into navigation systems. Recently, there is a growing need for integration of antennas operating in the MHz range and antennas operating in the GHz range. With this technology, there is a secondary problem that this need cannot be met.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize miniaturization of an antenna device including a plurality of planar antennas while suppressing the possibility of reception failure.
  • an antenna device includes a pedestal and a plurality of planar antennas attached to the pedestal and receiving a plurality of planar antennas having different frequency bands, The plurality of planar antennas are stacked such that a planar antenna that receives an electromagnetic wave having a stronger standard electric field strength is positioned on the pedestal side than a planar antenna that receives an electromagnetic wave having a weaker standard electric field strength.
  • an antenna device including a plurality of planar antennas while suppressing the possibility of reception failure.
  • the antenna device described below is an antenna device including three planar antennas.
  • the first planar antenna is for 3G (3rd generation: third-generation mobile phone)
  • the second planar antenna is for digital terrestrial broadcasting
  • the third plane The antenna is for GPS (Global Positioning System).
  • the number and application of the planar antennas included in the antenna device according to the present invention are not limited to this.
  • the antenna device according to the present invention only needs to include two or more planar antennas that receive electromagnetic waves having different frequency bands, and the use of each planar antenna is not limited to the above.
  • FIG. 1 is an exploded perspective view showing the configuration of the antenna device 1.
  • the antenna device 1 is a vehicle-mounted antenna device suitable for mounting on a roof of an automobile, and includes a base portion 10, a radome portion 20, an antenna module 30, and an amplification circuit board 50 as shown in FIG. ing.
  • the base portion 10 is composed of a metal base 11 and a resin base 12
  • the antenna module 30 is composed of three planar antennas 31 to 33.
  • the metal base 11 is a horseshoe-shaped plate member having a rounded tip (end on the positive side in the y-axis in FIG. 1), and the material thereof is metal.
  • a plurality of spacers 11a to 11b are provided on the upper surface of the metal base 11 (the main surface on the z-axis positive direction side in FIG. 1).
  • the spacer 11a having a low height is interposed between the lower surface of the first planar antenna 31 (the main surface on the negative side of the z-axis in FIG. 1), and separates the first planar antenna 31 from the metal base 11.
  • the high spacer 11b is interposed between the lower surface of the second planar antenna 32 and separates the second planar antenna 32 from the metal base 11 and the first planar antenna 31.
  • the high spacer 11 b is provided at a position where it does not interfere with the first planar antenna 31.
  • the height of the spacer 11a having a low length is set to 5 mm
  • the height of the spacer 11b having a high length is set to 10 mm. Accordingly, the first planar antenna 31 is separated from the metal base 11 by 5 mm, and the second planar antenna 32 is separated from the metal base 11 by 10 mm, that is, 5 mm from the first planar antenna 31.
  • the resin base 12 is a plate-like member having substantially the same shape as the metal base 11, and the material thereof is resin.
  • the outer edge of the resin base 12 is provided with a skirt portion 12c protruding downward (in the negative z-axis direction in FIG. 1), and the metal base 11 is on the back side of the resin base 12 surrounded by the skirt portion 12c (see FIG. It is fitted in the space on the z-axis negative direction side in FIG.
  • the resin base 12 is provided with through holes 12a to 12b through which the spacers 11a to 11b provided on the upper surface of the metal base 11 are passed.
  • the radome portion 20 is a ship-bottomed dome-shaped member, and its outer edge is bonded to the outer edge of the resin base 12 (the upper end surface of the skirt portion 12c). Thereby, the space for accommodating the antenna module 30 sealed with the base part 10 and the radome part 20 is made. As long as this sealing is maintained, there is no possibility that the antenna module 30 is exposed to rainwater even in an outdoor environment. Moreover, the material of the radome part 20 is resin. For this reason, there is no possibility that the electric field intensity of the electromagnetic wave arriving at the antenna device 1 is attenuated by the radome portion 20.
  • the antenna module 30 is configured by stacking three planar antennas 31 to 33.
  • the electromagnetic waves received by each of the three planar antennas 31 to 33 are electromagnetic waves having different frequency bands. That is, the frequency bands of electromagnetic waves (hereinafter referred to as “3G waves”) received by the first planar antenna 31 are 860 MHz to 895 MHz, 1475.9 MHz to 1510.9 MHz, 1849.9 MHz to 1879.9 MHz, and 2110 MHz to 2170 MHz. Part or all of The frequency band of electromagnetic waves (hereinafter referred to as “terrestrial digital broadcast waves”) received by the second planar antenna 32 is 470 MHz to 770 MHz.
  • the frequency band of the electromagnetic wave (hereinafter referred to as “GPS wave”) received by the third planar antenna 330 is at least one of 1227.6 MHz and 1575.42 MHz.
  • GPS wave The frequency band of the electromagnetic wave
  • the first planar antenna 31 is placed on a low-length spacer 11a provided on the upper surface of the metal base 11 and screwed.
  • a screw (not shown) used for screwing is inserted into a through-hole 31a provided in the first planar antenna 31 from below (in the negative z-axis direction in FIG. 1) and cut into the inner wall of the spacer 11a. Screw into the mountain. Since the spacers 11a have the same height (5 mm in this embodiment), the first planar antenna 31 is parallel to the upper surface of the metal base 11.
  • a coaxial cable 31c is connected to the lower surface of the first planar antenna 31 (the main surface on the z-axis negative direction side in FIG. 1). The coaxial cable 31 c is drawn out of the antenna device 1 through a through hole provided in the resin base 12 and the metal base 11.
  • the second planar antenna 32 is placed on a tall spacer 11b provided on the upper surface of the metal base 11, and is screwed.
  • a screw (not shown) used for screwing is inserted into a through-hole 32b provided in the second planar antenna 32 from above (in the z-axis positive direction in FIG. 1) and cut into the inner wall of the spacer 11b. Screw into the mountain. Since the spacers 11b have the same height (10 mm in this embodiment), the second planar antenna 32 is parallel to the upper surface of the metal base 11 (as a result, also parallel to the first planar antenna 31).
  • a coaxial cable 32c is connected to the upper surface of the second planar antenna 32 (the main surface on the z-axis positive direction side in FIG. 1). The coaxial cable 32c is connected to an amplification circuit board 50 described later.
  • the third planar antenna 33 is placed on the second planar antenna 32 via the spacer 40 and screwed.
  • three screws out of the five screws used for screwing the second planar antenna 32 are used.
  • the height of each spacer 40 is 5 mm. Therefore, the third planar antenna 33 is parallel to the second planar antenna 32 (as a result, also parallel to the first planar antenna 31). Further, the third planar antenna 33 is separated from the second planar antenna 32 by 5 mm.
  • a coaxial cable 33c is connected to the upper surface of the third planar antenna 33 (the main surface on the z-axis positive direction side in FIG. 1). The coaxial cable 33c is connected to an amplification circuit board 50 described later.
  • the amplification circuit board 50 is placed on the spacer 11c provided on the upper surface of the metal base 11 and screwed.
  • the height of the spacer 11c that supports the amplifier circuit board 50 is the same as the height of the spacer 11a that supports the first planar antenna 31, and the amplifier circuit board 50 is in the same plane as the first planar antenna 31.
  • the first planar antenna 31 is disposed side by side.
  • the amplifier circuit board 50 is formed with two amplifier circuits.
  • One amplifier circuit is for amplifying an electric signal generated by the second planar antenna 32, and is connected to the second planar antenna 32 by a coaxial cable 32c.
  • the other amplifier circuit is for amplifying an electrical signal generated by the third planar antenna 33, and is connected to the third planar antenna 33 by a coaxial cable 33c.
  • Both of the input terminals of these two amplifier circuits are provided on the upper surface of the amplifier circuit board 50 (the main surface on the z-axis positive direction side in FIG. 1), and are planes arranged above the amplifier circuit board 50.
  • the coaxial cables 32c to 33c drawn from the antennas 32 to 33 can be connected without difficulty.
  • the output terminals of these two amplifier circuits are provided on the lower surface of the amplifier circuit board 50 (the main surface on the negative side of the z-axis in FIG. 1), and the output cables 51 (2) connected to these output terminals.
  • the coaxial cables are bundled between the amplification circuit board 50 and the resin base 12 and between the first planar antenna 31 and the resin base 12 to the resin base 12 and the metal base 11. It is pulled out to the outside of the antenna device 1 through the provided through hole.
  • the antenna module 30 is configured by stacking the three planar antennas 31 to 33. Thereby, the space required for arrangement
  • the planar antenna that receives electromagnetic waves having a higher standard electric field strength is lower than the planar antenna that receives electromagnetic waves having a weaker standard electric field strength. It is preferable to arrange on the (base part 10 side). In other words, it is preferable to arrange the planar antenna that receives an electromagnetic wave having a weaker standard electric field strength in an upper layer (the side opposite to the base portion 10 side) than the planar antenna that receives an electromagnetic wave having a stronger standard electric field strength.
  • the standard electric field strength of 3G waves is about -20 dBm
  • the standard electric field strength of digital terrestrial broadcasting waves is about -60 dBm
  • the standard electric field strength of GPS waves is about -130 to -140 dBm. That is, when comparing the standard electric field strength of 3G wave, terrestrial digital broadcast wave, and GPS wave, the standard electric field strength of 3G wave is the strongest, the standard electric field strength of terrestrial digital broadcast wave is the second strongest, and the standard electric field strength of GPS wave is Is the weakest.
  • the standard electric field strength refers to the electric field strength in a standard reception environment.
  • the three planar antennas 31 to 33 are connected to the base unit 10 from the (1) first planar antenna 31 (for 3G) and (2) the second planar antenna 32 (ground) (3) A configuration in which the third planar antenna 33 (for GPS) is stacked in this order is employed. Therefore, the shielding action of the first planar antenna 31 or the second planar antenna 32 attenuates the electric field strength of the GPS wave reaching the third planar antenna 33, or the shielding action of the first planar antenna 31 There is no possibility that the electric field strength of the terrestrial digital broadcast wave reaching the second planar antenna 32 will be attenuated.
  • the 3G wave and the terrestrial digital broadcast wave are electromagnetic waves transmitted from the terrestrial transmitting station, and have a component incident on the antenna module 30 from the horizontal direction (in the xy plane in FIG. 1), whereas the GPS wave is It is an electromagnetic wave transmitted from the satellite transmission station and has almost no component incident on the antenna module 30 from the horizontal direction. Therefore, the third planar antenna 33 is more susceptible to the shielding action of other planar antennas arranged in a higher layer than the first to second planar antennas 31 to 32. Also from this viewpoint, it is preferable that the third planar antenna 33 is disposed in the uppermost layer as shown in FIG.
  • the conductor area of the planar antenna disposed in the upper layer is smaller than the conductor area of the planar antenna disposed in the lower layer. This is because a planar antenna having a larger conductor area has a higher shielding effect, and the reception sensitivity of a planar antenna disposed in a lower layer is likely to be lowered.
  • a conductor area refers to the area which an antenna pattern (conductor parts, such as a ground plane, a radiation element, and a short circuit part) occupies.
  • the height of the spacer 11 a that supports the first planar antenna 31 and the height of the spacer 11 b that supports the second planar antenna 32 are different from each other by 5 mm. Is configured to be separated from the first planar antenna 31 by 5 mm. Further, a configuration in which the third planar antenna 33 is separated from the second planar antenna 32 by 5 mm by interposing a spacer having a height of 5 mm between the second planar antenna 32 and the third planar antenna 33 is employed. is doing. This is because when the distance between the planar antennas is smaller than 5 mm, the capacitive coupling between the planar antennas increases, and the loss in each planar antenna increases.
  • a coaxial cable 31 c through which an electrical signal that does not need to be amplified (that is, relatively strong) flows is connected to the lower surface of the first planar antenna 31, and is provided on the resin base 12 and the metal base 11.
  • a configuration is adopted in which the antenna device 1 is pulled out through the formed through-hole. For this reason, the disturbance of the digital terrestrial broadcasting wave reaching the second planar antenna 32 and the disturbance of the GPS wave reaching the third planar antenna 33 due to the electric field and magnetic field formed around the coaxial cable 31c. Can be suppressed. That is, the possibility of occurrence of terrestrial digital broadcast and GPS wave reception failures can be further reduced.
  • an output cable 51 through which an amplified electric signal (that is, a relatively strong electric signal) flows is connected to the lower surface of the amplifier circuit board 50, and is provided on the resin base 12 and the metal base 11.
  • a configuration is adopted in which the antenna device 1 is pulled out through the through-hole. For this reason, due to the electric and magnetic fields formed around the output cable 51, the terrestrial digital broadcast wave that reaches the second planar antenna 32 and the GPS wave that reaches the third planar antenna 33 are disturbed. Can also be suppressed. That is, the possibility of occurrence of terrestrial digital broadcast and GPS wave reception failures can be further reduced.
  • FIG. 2 is a plan view showing the configuration of the first planar antenna 31.
  • the first planar antenna 31 includes two dielectric layers (for example, polyimide film) and an antenna pattern 100 sandwiched between the two dielectric layers.
  • the antenna pattern 100 includes a ground plane 101, a radiating element 102, and a short circuit portion 103, and operates as an inverted F antenna for 3G.
  • the ground plane 101 is a plate-like conductor of 40 mm ⁇ 80 mm, and is made of, for example, copper foil.
  • the ground plane 101 has a rectangular shape and is arranged such that its long side is parallel to the y-axis.
  • the radiating element 102 is a strip-shaped conductor having a width of 3 mm, and is made of, for example, copper foil.
  • the radiating element 102 is linear and is disposed along the long side of the ground plane 101 on the negative side of the x-axis.
  • the length of the radiating element 102 is set to about 1 ⁇ 4 of the wavelength of the 3G wave, specifically, 80 mm.
  • the radiating element 102 is formed with a convex portion 102a protruding toward the ground plane 101, and a first feeding point 100a connected to the inner conductor of the coaxial cable 31c (see FIG. 1) is formed on the convex portion 102a.
  • the second feeding point 100b connected to the outer conductor of the coaxial cable 31c is provided in a region on the ground plane 101 facing the convex portion 102a.
  • the coaxial cable 31c is connected to the lower surface side (z-axis negative direction side in FIG. 2) of the ground plane 101 and the radiating element 102.
  • the short-circuit portion 103 is a 1 mm wide strip-like conductor having one end connected to the ground plane 101 and the other end connected to the radiating element 102, and is made of, for example, copper foil.
  • the shape of the short-circuit portion 103 is determined so that the input impedance of the antenna pattern 100 matches the output impedance (for example, 50 ⁇ ) of the coaxial cable 31c.
  • a short-circuit portion 103 consisting of a third straight portion 103c extending in the positive y-axis direction from the second straight portion 103b, and (a) a positive y-axis of the first straight portion 103a.
  • the end on the direction side is connected to one corner of the ground plane 101 (the corner on the x-axis negative direction side and the y-axis negative direction side), and (b) the end portion on the y-axis positive direction side of the third straight line portion 103c is the radiating element.
  • the corner (the corner on the x-axis negative direction side and the y-axis negative direction side) of the ground plane 101 facing the radiation element 102 is rounded.
  • this radius of radius is increased, the capacitive coupling between the ground plane 101 and the radiating element 102 becomes weak, and the reactance component of the input impedance of the antenna pattern 100 is reduced.
  • impedance matching with the coaxial cable 31c is enhanced by setting the radius of this radius to 10 mm.
  • FIG. 3 is a plan view showing a configuration example of the second planar antenna 32.
  • the second planar antenna 32 includes two dielectric layers (for example, a polyimide film) and an antenna pattern 200 sandwiched between the two dielectric layers.
  • the antenna pattern 200 includes a radiating element 201 and short circuits 202a to 202b, and operates as a loop antenna for digital terrestrial broadcasting.
  • the radiating element 201 is a strip-shaped conductor having a width of 1 mm (excluding the straight portion 201a1 and the straight portion 201a1 ') and is made of, for example, copper foil.
  • the length of the radiating element 201 is set to about 1 ⁇ 4 of the wavelength of the terrestrial digital broadcast wave, specifically, 160 mm.
  • the radiating element 201 is bent so as to constitute a winding part 201a, a first meander part 201b, and a second meander part 201c.
  • the winding part 201a is configured by bending two root parts of the radiating element 201 so as to wind each other. More specifically, it is structured as follows. That is, one root part of the radiating element 201 includes (1) a first straight part 201a1 extending in the x-axis positive direction from one end of the radiating element 201, and (2) an end of the first straight part 201a1 on the x-axis positive direction side. A second linear portion 201a2 extending in the negative y-axis direction from the portion, and (3) a third linear portion 201a3 extending in the negative x-axis direction from the end of the second linear portion 201a2 on the negative y-axis side. It is bent.
  • the other root portion of the radiating element 201 includes (1) a first straight portion 201a1 ′ extending from the other end of the radiating element 201 in the negative x-axis direction, and (2) a negative x-axis direction of the first straight portion 201a1 ′.
  • a second linear portion 201a2 ′ extending in the y-axis positive direction from the end on the side, and (3) a third linear portion 201a3 ′ extending in the x-axis positive direction from the end on the y-axis positive direction side of the second linear portion 201a2 ′.
  • a fourth straight portion 201a4 ′ extending in the y-axis negative direction from the end portion on the x-axis positive direction side of the third straight portion 201a3 ′, and (5) a y-axis negative direction side of the fourth straight portion 201a4 ′.
  • the one root portion is arranged such that the first to third straight portions 201a1 to 201a3 surround the first straight portion 201a1 ′ of the other root portion from three sides, and the other root portion is The third straight portions 201a1 ′ to 201a3 ′ are arranged so as to surround the first straight portion 201a1 of the one base portion from three sides.
  • the first feeding point 200b to which the inner conductor of the coaxial cable 32c (see FIG. 1) is connected is provided at the center of the first straight line portion 201a1 ′ of the other root portion, and the outer conductor of the coaxial cable 32c is connected thereto.
  • the second feeding point 200a is provided at the center of the first straight portion 201a1 of the one base portion.
  • the reason why the width of the first straight portion 201a1 and the first straight portion 201a1 ′ is wider than the other portions of the radiating element 201 (specifically, 8 mm) is that the input impedance of the antenna pattern 200 is set to be equal to that of the coaxial cable 32c. This is to match the output impedance (for example, 50 ⁇ ).
  • the coaxial cable 32c is connected to the upper surface side (the z-axis positive direction side in FIG. 3) of the radiating element 201.
  • the intermediate part excluding the two root parts from the radiating element 201 constitutes a first meander part 201b and a second meander part 201c.
  • the first meander part 201b meanders one side of the intermediate part of the radiating element 201 so that a short straight line part extending in the y-axis direction and a long straight line part extending in the x-axis direction are alternately arranged.
  • the second meander part 201c meanders on the other root part side of the intermediate part of the radiating element 201 so that the long straight part extending in the y-axis direction and the short straight part extending in the x-axis direction are alternately connected. It has been made.
  • the antenna pattern 200 is that short-circuit portions 202a to 202b are provided on the meander portions 201b to 201c.
  • the short-circuit portions 202a to 202b are configured to short-circuit points on the meander portions 201b to 201c, and are configured by, for example, copper foil.
  • By providing such short-circuit portions 202a to 202b it is possible to suppress the deterioration of the VSWR characteristics in the frequency band of the digital terrestrial broadcast wave that may be caused by the influence of the conductor close to the antenna pattern 200.
  • examples of the conductor close to the antenna pattern 200 include an antenna pattern 100 constituting the first planar antenna 31 and an antenna pattern 300 (described later) constituting the third planar antenna 33.
  • the reason why the VSWR characteristics in the frequency band of the digital terrestrial broadcasting wave can be prevented from being deteriorated by providing the short-circuit portions 202a to 202b is as follows. That is, by providing the short-circuit portions 202a to 202b, a new current path is generated in the antenna pattern 200. As a result, the resonance point of the antenna pattern 200 increases, and the VSWR value in the frequency band of the terrestrial digital broadcast wave decreases. In particular, as shown in FIG.
  • the shapes and positions of the short-circuit portions 202a to 202b are such that the VSWR value in the frequency band of digital terrestrial broadcasting is short-circuited when the radiating element 201 is arranged in parallel with the conductor plate and at a distance of 5 mm from the conductor plate.
  • the size is determined to be smaller than the case where the parts 202a to 202b are not arranged. More preferably, in this state, the maximum value of VSWR in the frequency band of digital terrestrial broadcasting is determined to be 3.5 or less.
  • the antenna pattern 200 is parallel to the first planar antenna 31 and the third planar antenna 33, and the first planar antenna 31 and the third planar antenna 31 are arranged. Even in the antenna device 1 arranged at a distance of 5 mm from the planar antenna 33, digital terrestrial broadcasting can be normally received using the antenna pattern 200.
  • the conductor area in the second planar antenna 32 shown in FIG. 3 is smaller than the conductor area in the first planar antenna 31 shown in FIG. Therefore, compared to the case where the conductor area in the second planar antenna 32 is larger than the conductor area in the first planar antenna 31, there is a possibility that a 3G wave reception failure may occur due to the shielding effect of the second planar antenna 32. Can be lowered.
  • FIG. 4 is a plan view showing the configuration of the third planar antenna 33.
  • the third planar antenna 33 is composed of two dielectric layers (for example, polyimide film) and an antenna pattern 300 sandwiched between these two dielectric layers.
  • the antenna pattern 300 includes a radiating element 301 and two short-circuit portions 302 to 303, and operates as a GPS loop antenna.
  • the radiating element 301 is a strip-shaped conductor disposed on an ellipse having a short axis of 35 mm and a long axis of 70 mm and having a maximum width of 5 mm and a minimum width of 1 mm, and is made of, for example, copper foil.
  • the radiating element 301 is arranged so that the major axis direction is parallel to the y-axis, and the width of the radiating element 301 is maximum in the direction of 0 o'clock and 6 o'clock when viewed from the center of the ellipse, and is 3 o'clock and 9 o'clock. (The y-axis positive direction in FIG. 4 is taken as the 0 o'clock direction).
  • One end of the radiating element 301 is located in the 9 o'clock direction when viewed from the center of the ellipse, and a first feeding point 300a is provided at the end to which the inner conductor of the coaxial cable 33c (see FIG. 1) is connected.
  • the other end of the radiating element 301 is positioned in the direction of about 9 o'clock when viewed from the center of the circumference, and the second feeding point 300b where the outer conductor of the coaxial cable 33c is connected to the convex portion formed at the end. Is provided.
  • the coaxial cable 33c is connected to the upper surface side (the z-axis positive direction side in FIG. 4) of the radiating element 301.
  • the two short-circuit portions 302 to 303 are configured to match the input impedance of the antenna pattern 300 to the output impedance (for example, 50 ⁇ ) of the power feeding cable.
  • the first short circuit portion 302 is formed by bending a strip-shaped conductor into an L shape, and is made of, for example, copper foil. One end of the first short-circuit portion 302 is connected to a portion of the radiating element 301 located in the direction of 0 o'clock as viewed from the center of the ellipse, and the other end of the first short-circuit portion 302 is connected to the radiating element 301. It is connected to a portion located in the direction of 3 o'clock when viewed from the center of the ellipse.
  • the second short-circuit portion 303 is formed by bending a strip-like conductor into an L-shape like the first short-circuit portion 302 and is made of, for example, copper foil.
  • One end of the second short-circuit portion 303 is connected to a portion of the radiating element 301 that is positioned in the 6 o'clock direction as viewed from the center of the ellipse, and the other end of the second short-circuit portion 303 is connected to the radiating element 301. It is connected to the portion located in the direction of 9 o'clock when viewed from the center of the ellipse.
  • the third planar antenna 33 configured as described above has directivity in which the radiation direction with the maximum radiation intensity is orthogonal to the antenna formation surface (xy plane in FIG. 4), and is transmitted from the satellite transmission station. Preferred for receiving GPS waves.
  • the reception sensitivity of the third planar antenna 33 can be significantly reduced by the shielding action of other planar antennas disposed on the upper layer (the z-axis positive direction side in FIG. 4) than the third planar antenna 33.
  • no other planar antenna is disposed in an upper layer than the third planar antenna 33, so there is no possibility that such a decrease in reception sensitivity occurs.
  • the conductor area of the third planar antenna 33 shown in FIG. 4 is smaller than the conductor area of the second planar antenna 32 shown in FIG. Therefore, compared with the case where the conductor area in the third planar antenna 33 is larger than the conductor area in the second planar antenna 32, the reception effect of the terrestrial digital broadcast wave may occur due to the shielding effect of the third planar antenna 33. Can be lowered.
  • the antenna device includes a pedestal and a plurality of planar antennas attached to the pedestal and receiving electromagnetic waves having different frequency bands.
  • the planar antenna is laminated such that a planar antenna that receives an electromagnetic wave having a stronger standard electric field strength is positioned on the pedestal side than a planar antenna that receives an electromagnetic wave having a weaker standard electric field strength. .
  • the antenna device can be made smaller than before by stacking the plurality of planar antennas.
  • the size seen from the direction orthogonal to each planar antenna can be reduced.
  • the flat antenna that receives an electromagnetic wave having a stronger standard electric field strength is arranged on the pedestal side than the flat antenna that receives an electromagnetic wave having a weaker standard electric field strength, so that the standard electric field strength is weaker.
  • the electromagnetic wave is attenuated by the shielding action of the planar antenna that receives the electromagnetic wave having a strong standard electric field strength, and the possibility of occurrence of reception failure can be reduced.
  • the plurality of planar antennas include at least three planar antennas adjacent to each other, and among the three planar antennas, the first planar antenna and the third planar antenna.
  • the second planar antenna sandwiched between the two is preferably a loop antenna including a radiating element having a meander portion and a short-circuit portion that short-circuits points on the meander portion.
  • the characteristics of the second planar antenna are sandwiched between the first planar antenna and the third planar antenna. Desired characteristics can be obtained.
  • the desired characteristic is, for example, that a VSWR value of the second planar antenna in a frequency band of an electromagnetic wave (for example, terrestrial digital broadcast wave) received by the second planar antenna is a desired value (for example, 3 .5 or less).
  • the plurality of planar antennas are separated from each other by 5 mm or more.
  • the planar antenna arranged in the uppermost layer has a radiation direction in which the radiation intensity becomes maximum (hereinafter referred to as “maximum intensity radiation direction”) as the antenna formation surface. It is preferable that the planar antenna is orthogonal.
  • the reception sensitivity of a planar antenna whose maximum intensity radiation direction is orthogonal to the antenna formation surface can be significantly reduced by the shielding action of the planar antenna disposed in an upper layer than the planar antenna.
  • the above configuration since no other planar antenna is arranged in a layer above the planar antenna whose maximum intensity radiation direction is orthogonal to the antenna formation surface, such a decrease in reception sensitivity cannot occur. . That is, according to the above configuration, it is possible to suppress the possibility of reception failure even in an antenna device including a planar antenna whose maximum intensity radiation direction is orthogonal to the antenna forming surface.
  • planar antenna disposed in the uppermost layer refers to a planar antenna disposed at a position farthest from the pedestal among the plurality of planar antennas.
  • the planar antenna disposed in the uppermost layer among the plurality of planar antennas is preferably a planar antenna that receives an electromagnetic wave having a satellite as a transmitting station.
  • the reception sensitivity of a planar antenna that receives electromagnetic waves using a satellite as a transmitting station can be significantly reduced by the shielding action of the planar antenna disposed in an upper layer than the planar antenna.
  • no other planar antenna is disposed above the planar antenna that receives an electromagnetic wave having a satellite as a transmission station, and thus the above-described decrease in reception sensitivity cannot occur. . That is, according to the above configuration, it is possible to reduce the possibility of reception failure even in an antenna device including a planar antenna that receives electromagnetic waves using a satellite as a transmission station.
  • planar antenna disposed in the uppermost layer refers to a planar antenna disposed at a position farthest from the pedestal among the plurality of planar antennas.
  • the planar antenna disposed in the lowest layer among the plurality of planar antennas is a planar antenna provided with a ground plane.
  • a planar antenna provided with a ground plane may significantly reduce the reception sensitivity of other planar antennas disposed below the planar antenna due to the shielding action of the ground plane.
  • the above-described reduction in reception sensitivity cannot occur. That is, according to said structure, also in the antenna apparatus containing the planar antenna provided with the ground plane, possibility that a reception failure will arise can be restrained low.
  • planar antenna provided with the ground plane for example, a monopole antenna, an inverted L antenna obtained by bending the radiating element of the monopole antenna into an L shape, an inverted F antenna obtained by adding a short circuit to the inverted L antenna, and these In this antenna, the radiating element is bent or meandered.
  • the coaxial cable connected to the planar antenna disposed in the lowermost layer is connected to the surface of the planar antenna on the pedestal side, and is connected via the through-hole provided in the pedestal. It is preferable that the antenna device is pulled out of the antenna device.
  • the plurality of planar antennas are stacked such that a planar antenna having a smaller conductor area is positioned on a side opposite to the pedestal side than a planar antenna having a larger conductor area. Is preferred.
  • a planar antenna with a larger conductor area has a higher shielding effect, and the reception sensitivity of the planar antenna disposed on the pedestal side is more likely to be lower than the planar antenna.
  • such a decrease in reception sensitivity is unlikely to occur. Therefore, it is possible to further reduce the possibility of reception failure.
  • the antenna device According to the antenna device according to the present embodiment, it is possible to reduce the size of the antenna device including a plurality of planar antennas while suppressing the possibility of reception failure.
  • the present invention can be suitably used as an antenna device mounted on a mobile object or a mobile terminal.
  • the moving body include an automobile, a railway vehicle, and a ship.
  • the mobile terminal include a mobile phone terminal, a PDA (Personal Digital Assistance), a tablet PC (Personal Computer), and the like.
  • Antenna device 10 Base (pedestal) DESCRIPTION OF SYMBOLS 11 Metal base 12 Resin base 20 Radome part 30 Antenna module 31 1st planar antenna (for 3G) 32 Second planar antenna (for digital terrestrial broadcasting) 33 Third planar antenna (for GPS)

Abstract

This antenna device (1) includes a plurality of planar antennas (31-33) stacked such that planar antennas for receiving electromagnetic waves stronger than a benchmark field intensity are positioned closer to a base (10) side than are planar antennas for receiving electromagnetic waves weaker than the benchmark field intensity.

Description

アンテナ装置Antenna device
 本発明は、複数のアンテナを備えたアンテナ装置に関する。 The present invention relates to an antenna device having a plurality of antennas.
 無線通信の用途拡大に伴い、種々の周波数帯域で動作するアンテナが求められている。例えば、車載用アンテナとしては、FM/AM放送、地上デジタル放送、3G(3rd Generation:第3世代携帯電話)、GPS(Global Positioning System:全地球測位システム)、VICS(登録商標)(Vehicle Information and Communication System:道路交通情報通信システム)、ETC(Electronic Toll Collection:電子料金徴収システム)等の周波数帯域で動作するアンテナ等が求められている。 With the expansion of wireless communication applications, antennas that operate in various frequency bands are required. For example, as an in-vehicle antenna, FM / AM broadcasting, terrestrial digital broadcasting, 3G (3rd generation: third generation mobile phone), GPS (Global Positioning System), VICS (registered trademark) (Vehicle Information) and There is a need for antennas that operate in frequency bands such as Communication System (Road Traffic Information Communication System) and ETC (Electronic Toll Collection).
 従来、相異なる周波数帯域で動作するアンテナは、別体のアンテナ装置として実現されることが多かった。例えば、FM/AM放送用のアンテナは、ルーフトップに載せ置くホイップアンテナとして実現され、地上デジタル放送用のアンテナは、フロントガラスに貼り付けるフィルムアンテナとして実現されるといった具合である。 Conventionally, antennas that operate in different frequency bands are often realized as separate antenna devices. For example, an FM / AM broadcast antenna is realized as a whip antenna placed on a roof top, and a digital terrestrial broadcast antenna is realized as a film antenna attached to a windshield.
 しかし、自動車においてアンテナ装置を取り付け可能な部位は限られている。また、取り付けるアンテナ装置の個数が増えると、意匠が損なわれたり、取り付けコストが増大したりするといった問題を生じる。このような問題を回避するためには、統合アンテナ装置の使用が効果的である。ここで、統合アンテナ装置とは、相異なる周波数帯域で動作する複数のアンテナを備えたアンテナ装置のことを指す。 However, there are only a limited number of parts where an antenna device can be attached in an automobile. Further, when the number of antenna devices to be attached is increased, there arises a problem that the design is impaired or the attachment cost is increased. In order to avoid such a problem, it is effective to use an integrated antenna device. Here, the integrated antenna device refers to an antenna device including a plurality of antennas that operate in different frequency bands.
 このような統合アンテナ装置としては、例えば、特許文献1~4に記載のものなどが挙げられる。特許文献1に記載の統合アンテナ装置は、GPS用及びETC用を備えたものである。特許文献2に記載の統合アンテナ装置は、3G用及びGPS用のアンテナを備えたものである。特許文献3に記載の統合アンテナ装置は、ETC用、GPS用、VICS用、電話用メイン、及び電話用サブのアンテナを備えたものである。特許文献4に記載の統合アンテナ装置は、GPS用、ETC用、第1電話用、及び第2電話用のアンテナを備えたものである。 Examples of such an integrated antenna device include those described in Patent Documents 1 to 4. The integrated antenna device described in Patent Document 1 is provided with GPS and ETC. The integrated antenna device described in Patent Document 2 includes antennas for 3G and GPS. The integrated antenna device described in Patent Literature 3 includes antennas for ETC, GPS, VICS, telephone main, and telephone sub. The integrated antenna device described in Patent Document 4 includes antennas for GPS, ETC, first phone, and second phone.
日本国公開特許公報「特開2007-158957号公報」(2007年 6月21日公開)Japanese Published Patent Publication “JP 2007-158957 A” (published on June 21, 2007) 日本国公開特許公報「特開2009- 17116号公報」(2009年 1月22日公開)Japanese Patent Publication “JP 2009-17116” (published on January 22, 2009) 日本国公開特許公報「特開2009-267765号公報」(2009年11月12日公開)Japanese Patent Publication “JP 2009-267765 A” (published on November 12, 2009) 日本国公開特許公報「特開2010- 81500号公報」(2010年 4月 8日公開)Japanese Patent Publication “JP 2010-81500” (published April 8, 2010)
 しかしながら、上記従来の統合アンテナ装置においては、各アンテナを構成する放射素子が互いに重なり合わないように配置されており、小型化が困難であるという問題があった。各アンテナを構成する放射素子を互いに重なり合わないように配置するのは、各アンテナのアンテナ特性が他のアンテナの存在によって損なわれないようにするためである。 However, the conventional integrated antenna device has a problem that it is difficult to reduce the size because the radiating elements constituting each antenna are arranged so as not to overlap each other. The reason why the radiating elements constituting each antenna are arranged so as not to overlap with each other is to prevent the antenna characteristics of each antenna from being impaired by the presence of other antennas.
 例えば、特許文献1に記載の統合アンテナ装置においては、GPS用アンテナを構成する放射素子の中央開口部からETC用アンテナを臨出させる構成を採用している。このため、中央開口部がETCアンテナを包含するように、GPS用アンテナの放射素子を大型化する必要がある。 For example, the integrated antenna device described in Patent Document 1 employs a configuration in which an ETC antenna is projected from a central opening of a radiating element that constitutes a GPS antenna. For this reason, it is necessary to enlarge the radiation element of the GPS antenna so that the central opening includes the ETC antenna.
 また、特許文献2に記載の統合アンテナ装置は、ベースに立設されたアンテナ基板の表裏に、互いに重なり合わないように3G用アンテナとGPS用アンテナとを貼り付けたものである。したがって、アンテナ基板に直交する方向から見たサイズを小さくすることが困難であり、低背化の要求に応えることができない。 Also, the integrated antenna device described in Patent Document 2 is a device in which a 3G antenna and a GPS antenna are attached to the front and back of an antenna board standing on a base so as not to overlap each other. Therefore, it is difficult to reduce the size viewed from the direction orthogonal to the antenna substrate, and it is impossible to meet the demand for a low profile.
 また、特許文献3に記載の統合アンテナは、スペースファクタを考慮することなく、5つのアンテナを互いに重なり合わないように配置しただけのものである。これに対し、特許文献4に記載の統合アンテナ装置においては、ETCアンテナをGPSアンテナの一部に重ね合わせて配置する工夫が見られる。しかしながら、ETCアンテナにおいてGPSアンテナと重ね合わせられる部分は僅かであり、本質的な小型化に資するものではない。 In addition, the integrated antenna described in Patent Document 3 is simply arranged so that five antennas do not overlap each other without considering a space factor. On the other hand, in the integrated antenna device described in Patent Document 4, a device for arranging the ETC antenna so as to overlap a part of the GPS antenna can be seen. However, the portion of the ETC antenna that is superimposed on the GPS antenna is very small, and does not contribute to substantial downsizing.
 また、特許文献1~4に記載の技術は、何れもGHz領域で動作するアンテナ同士を統合するためのものであり、地上デジタル放送などMHz領域で動作するアンテナをGHz領域で動作するアンテナと統合するためのものではない。地上デジタル放送を受信するためのチューナがナビゲーションシステムに統合されている昨今、MHz領域で動作するアンテナとGHz領域で動作するアンテナとの統合に対するニーズが高まっているが、特許文献1~4に記載の技術では、このニーズに応えることができないという副次的な問題がある。 The technologies described in Patent Documents 1 to 4 are all for integrating antennas that operate in the GHz region, and antennas that operate in the MHz region such as digital terrestrial broadcasting are integrated with antennas that operate in the GHz region. Not meant to be Nowadays, tuners for receiving terrestrial digital broadcasts are integrated into navigation systems. Recently, there is a growing need for integration of antennas operating in the MHz range and antennas operating in the GHz range. With this technology, there is a secondary problem that this need cannot be met.
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、受信障害が生じる可能性を抑えつつ、複数の平面アンテナを備えたアンテナ装置の小型化を実現することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to realize miniaturization of an antenna device including a plurality of planar antennas while suppressing the possibility of reception failure.
 上記課題を解決するために、本発明に係るアンテナ装置は、台座と、上記台座に取り付けられた複数の平面アンテナであって、周波数帯域の異なる電磁波を受信する複数の平面アンテナと、を備え、上記複数の平面アンテナは、標準電界強度のより強い電磁波を受信する平面アンテナが標準電界強度のより弱い電磁波を受信する平面アンテナよりも上記台座側に位置するように積層されている、ことを特徴とする。 In order to solve the above-described problem, an antenna device according to the present invention includes a pedestal and a plurality of planar antennas attached to the pedestal and receiving a plurality of planar antennas having different frequency bands, The plurality of planar antennas are stacked such that a planar antenna that receives an electromagnetic wave having a stronger standard electric field strength is positioned on the pedestal side than a planar antenna that receives an electromagnetic wave having a weaker standard electric field strength. And
 本発明によれば、受信障害が生じる可能性を抑えつつ、複数の平面アンテナを備えたアンテナ装置の小型化を実現することができる。 According to the present invention, it is possible to reduce the size of an antenna device including a plurality of planar antennas while suppressing the possibility of reception failure.
本発明の一実施形態に係るアンテナ装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the antenna device which concerns on one Embodiment of this invention. 図1に示すアンテナ装置が備える第1の平面アンテナの構成を示す平面図である。It is a top view which shows the structure of the 1st planar antenna with which the antenna apparatus shown in FIG. 1 is provided. 図1に示すアンテナ装置が備える第2の平面アンテナの構成を示す平面図である。It is a top view which shows the structure of the 2nd planar antenna with which the antenna apparatus shown in FIG. 1 is provided. 図1に示すアンテナ装置が備える第3の平面アンテナの構成を示す平面図である。It is a top view which shows the structure of the 3rd planar antenna with which the antenna apparatus shown in FIG. 1 is provided.
 本発明に係るアンテナ装置の一実施形態について、図面に基づいて説明すれば以下のとおりである。 An embodiment of the antenna device according to the present invention will be described below with reference to the drawings.
 なお、以下に説明するアンテナ装置は、3枚の平面アンテナを備えたアンテナ装置である。また、以下に説明するアンテナ装置において、第1の平面アンテナは、3G(3rd Generation:第3世代携帯電話)用であり、第2の平面アンテナは、地上デジタル放送用であり、第3の平面アンテナは、GPS(Global Positioning System:全地球測位システム)用である。ただし、本発明に係るアンテナ装置が備える平面アンテナの枚数及び用途は、これに限定されるものではない。すなわち、本発明に係るアンテナ装置は、周波数帯域の異なる電磁波を受信する2枚以上の平面アンテナを備えたものであればよく、各平面アンテナの用途は、上記のものに限定されない。 Note that the antenna device described below is an antenna device including three planar antennas. In the antenna device described below, the first planar antenna is for 3G (3rd generation: third-generation mobile phone), the second planar antenna is for digital terrestrial broadcasting, and the third plane The antenna is for GPS (Global Positioning System). However, the number and application of the planar antennas included in the antenna device according to the present invention are not limited to this. In other words, the antenna device according to the present invention only needs to include two or more planar antennas that receive electromagnetic waves having different frequency bands, and the use of each planar antenna is not limited to the above.
 〔アンテナ装置の構成〕
 本実施形態に係るアンテナ装置1の構成について、図1を参照して説明する。図1は、アンテナ装置1の構成を示す分解斜視図である。
[Configuration of antenna device]
The configuration of the antenna device 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is an exploded perspective view showing the configuration of the antenna device 1.
 アンテナ装置1は、自動車のルーフへの搭載に適した車載用アンテナ装置であり、図1に示すように、ベース部10と、レドーム部20と、アンテナモジュール30と、増幅回路基板50とを備えている。本実施形態において、ベース部10は、金属ベース11と、樹脂ベース12とにより構成され、アンテナモジュール30は、3枚の平面アンテナ31~33により構成される。 The antenna device 1 is a vehicle-mounted antenna device suitable for mounting on a roof of an automobile, and includes a base portion 10, a radome portion 20, an antenna module 30, and an amplification circuit board 50 as shown in FIG. ing. In the present embodiment, the base portion 10 is composed of a metal base 11 and a resin base 12, and the antenna module 30 is composed of three planar antennas 31 to 33.
 金属ベース11は、先端(図1におけるy軸正方向側の端部)が丸まった馬蹄型の板状部材であり、その材質は金属である。この金属ベース11の上面(図1におけるz軸正方向側の主面)には、複数のスペーサ11a~11bが設けられている。丈の低いスペーサ11aは、第1の平面アンテナ31の下面(図1におけるz軸負方向側の主面)との間に介在し、第1の平面アンテナ31を金属ベース11から離隔させるためのものである。また、丈の高いスペーサ11bは、第2の平面アンテナ32の下面との間に介在し、第2の平面アンテナ32を金属ベース11及び第1の平面アンテナ31から離隔させるためのものである。なお、丈の高いスペーサ11bは、第1の平面アンテナ31と干渉しない位置に設けられる。 The metal base 11 is a horseshoe-shaped plate member having a rounded tip (end on the positive side in the y-axis in FIG. 1), and the material thereof is metal. A plurality of spacers 11a to 11b are provided on the upper surface of the metal base 11 (the main surface on the z-axis positive direction side in FIG. 1). The spacer 11a having a low height is interposed between the lower surface of the first planar antenna 31 (the main surface on the negative side of the z-axis in FIG. 1), and separates the first planar antenna 31 from the metal base 11. Is. The high spacer 11b is interposed between the lower surface of the second planar antenna 32 and separates the second planar antenna 32 from the metal base 11 and the first planar antenna 31. The high spacer 11 b is provided at a position where it does not interfere with the first planar antenna 31.
 本実施形態において、丈の低いスペーサ11aの高さは、5mmに設定され、丈の高いスペーサ11bの高さは、10mmに設定される。これにより、第1の平面アンテナ31は、金属ベース11から5mm離隔され、第2の平面アンテナ32は、金属ベース11から10mm、すなわち、第1の平面アンテナ31から5mm離隔される。 In the present embodiment, the height of the spacer 11a having a low length is set to 5 mm, and the height of the spacer 11b having a high length is set to 10 mm. Accordingly, the first planar antenna 31 is separated from the metal base 11 by 5 mm, and the second planar antenna 32 is separated from the metal base 11 by 10 mm, that is, 5 mm from the first planar antenna 31.
 樹脂ベース12は、金属ベース11と略同一形状の板状部材であり、その材質は樹脂である。樹脂ベース12の外縁には、下方(図1におけるz軸負方向)に迫り出したスカート部12cが設けられており、金属ベース11は、このスカート部12cに囲まれた樹脂ベース12の裏側(図1におけるz軸負方向側)の空間に嵌め込まれる。また、樹脂ベース12には、金属ベース11の上面に設けられたスペーサ11a~11bを貫通させるための貫通孔12a~12bが設けられている。これは、金属ベース11を樹脂ベース12の裏側の空間に嵌め込んだときに、その上面に設けられたスペーサ11a~11bを樹脂ベース12の表側(図1におけるz軸正方向側)に露出させるためである。 The resin base 12 is a plate-like member having substantially the same shape as the metal base 11, and the material thereof is resin. The outer edge of the resin base 12 is provided with a skirt portion 12c protruding downward (in the negative z-axis direction in FIG. 1), and the metal base 11 is on the back side of the resin base 12 surrounded by the skirt portion 12c (see FIG. It is fitted in the space on the z-axis negative direction side in FIG. Further, the resin base 12 is provided with through holes 12a to 12b through which the spacers 11a to 11b provided on the upper surface of the metal base 11 are passed. This is because when the metal base 11 is fitted into the space on the back side of the resin base 12, the spacers 11a to 11b provided on the upper surface thereof are exposed to the front side of the resin base 12 (the z-axis positive direction side in FIG. 1). Because.
 レドーム部20は、船底形のドーム状部材であり、その外縁が樹脂ベース12の外縁(スカート部12cの上端面)に接着される。これにより、ベース部10とレドーム部20とによって密閉された、アンテナモジュール30を収容するための空間ができる。この密閉が保たれている限り、屋外環境においてもアンテナモジュール30が雨水に晒される虞はない。また、レドーム部20の材質は、樹脂である。このため、アンテナ装置1に到来した電磁波の電界強度がレドーム部20によって減衰する虞はない。 The radome portion 20 is a ship-bottomed dome-shaped member, and its outer edge is bonded to the outer edge of the resin base 12 (the upper end surface of the skirt portion 12c). Thereby, the space for accommodating the antenna module 30 sealed with the base part 10 and the radome part 20 is made. As long as this sealing is maintained, there is no possibility that the antenna module 30 is exposed to rainwater even in an outdoor environment. Moreover, the material of the radome part 20 is resin. For this reason, there is no possibility that the electric field intensity of the electromagnetic wave arriving at the antenna device 1 is attenuated by the radome portion 20.
 アンテナモジュール30は、3枚の平面アンテナ31~33を積層することによって構成される。これら3枚の平面アンテナ31~33の各々が受信する電磁波は、互いに周波数帯域の異なる電磁波である。すなわち、第1の平面アンテナ31が受信する電磁波(以下「3G波」と記載)の周波数帯域は、860MHz~895MHz、1475.9MHz~1510.9MHz、1849.9MHz~1879.9MHz、及び2110MHz~2170MHzの一部又は全部である。また、第2の平面アンテナ32が受信する電磁波(以下「地上デジタル放送波」と記載)の周波数帯域は、470MHz~770MHzである。また、第3の平面アンテナ330が受信する電磁波(以下「GPS波」と記載)の周波数帯域は、1227.6MHz及び1575.42MHzの少なくとも何れかである。なお、これら3枚の平面アンテナ31~33の構成例については、図2~図4を参照して後述する。 The antenna module 30 is configured by stacking three planar antennas 31 to 33. The electromagnetic waves received by each of the three planar antennas 31 to 33 are electromagnetic waves having different frequency bands. That is, the frequency bands of electromagnetic waves (hereinafter referred to as “3G waves”) received by the first planar antenna 31 are 860 MHz to 895 MHz, 1475.9 MHz to 1510.9 MHz, 1849.9 MHz to 1879.9 MHz, and 2110 MHz to 2170 MHz. Part or all of The frequency band of electromagnetic waves (hereinafter referred to as “terrestrial digital broadcast waves”) received by the second planar antenna 32 is 470 MHz to 770 MHz. The frequency band of the electromagnetic wave (hereinafter referred to as “GPS wave”) received by the third planar antenna 330 is at least one of 1227.6 MHz and 1575.42 MHz. A configuration example of these three planar antennas 31 to 33 will be described later with reference to FIGS.
 第1の平面アンテナ31は、金属ベース11の上面に設けられた丈の低いスペーサ11a上に載置され、ネジ止めされる。ネジ止めに利用されるネジ(不図示)は、第1の平面アンテナ31に設けられた貫通孔31aに下方(図1においてz軸負方向)から挿入され、スペーサ11aの内壁に切られたネジ山に螺合する。スペーサ11aの高さは共通(本実施形態においては5mm)なので、第1の平面アンテナ31は、金属ベース11の上面と平行になる。なお、第1の平面アンテナ31の下面(図1においてz軸負方向側の主面)には、同軸ケーブル31cが接続されている。この同軸ケーブル31cは、樹脂ベース12及び金属ベース11に設けられた貫通孔を介して、アンテナ装置1の外部に引き出される。 The first planar antenna 31 is placed on a low-length spacer 11a provided on the upper surface of the metal base 11 and screwed. A screw (not shown) used for screwing is inserted into a through-hole 31a provided in the first planar antenna 31 from below (in the negative z-axis direction in FIG. 1) and cut into the inner wall of the spacer 11a. Screw into the mountain. Since the spacers 11a have the same height (5 mm in this embodiment), the first planar antenna 31 is parallel to the upper surface of the metal base 11. A coaxial cable 31c is connected to the lower surface of the first planar antenna 31 (the main surface on the z-axis negative direction side in FIG. 1). The coaxial cable 31 c is drawn out of the antenna device 1 through a through hole provided in the resin base 12 and the metal base 11.
 第2の平面アンテナ32は、金属ベース11の上面に設けられた丈の高いスペーサ11b上に載置され、ネジ止めされる。ネジ止めに利用されるネジ(不図示)は、第2の平面アンテナ32に設けられた貫通孔32bに上方(図1においてz軸正方向)から挿入され、スペーサ11bの内壁に切られたネジ山に螺合する。スペーサ11bの高さは共通(本実施形態においては10mm)なので、第2の平面アンテナ32は、金属ベース11の上面と平行になる(その結果、第1の平面アンテナ31とも平行になる)。なお、第2の平面アンテナ32の上面(図1においてz軸正方向側の主面)には、同軸ケーブル32cが接続されている。この同軸ケーブル32cは、後述する増幅回路基板50に接続される。 The second planar antenna 32 is placed on a tall spacer 11b provided on the upper surface of the metal base 11, and is screwed. A screw (not shown) used for screwing is inserted into a through-hole 32b provided in the second planar antenna 32 from above (in the z-axis positive direction in FIG. 1) and cut into the inner wall of the spacer 11b. Screw into the mountain. Since the spacers 11b have the same height (10 mm in this embodiment), the second planar antenna 32 is parallel to the upper surface of the metal base 11 (as a result, also parallel to the first planar antenna 31). A coaxial cable 32c is connected to the upper surface of the second planar antenna 32 (the main surface on the z-axis positive direction side in FIG. 1). The coaxial cable 32c is connected to an amplification circuit board 50 described later.
 第3の平面アンテナ33は、スペーサ40を介して第2の平面アンテナ32上に載置され、ネジ止めされる。第3の平面アンテナ33のネジ止めには、第2の平面アンテナ32のネジ止めに用いられる5本のネジのうち、3本のネジが流用される。本実施形態において、スペーサ40の高さは何れも5mmである。したがって、第3の平面アンテナ33は、第2の平面アンテナ32と平行になる(その結果、第1の平面アンテナ31とも平行になる)。また、第3の平面アンテナ33は、第2の平面アンテナ32から5mm離隔される。なお、第3の平面アンテナ33の上面(図1においてz軸正方向側の主面)には、同軸ケーブル33cが接続されている。この同軸ケーブル33cは、後述する増幅回路基板50に接続される。 The third planar antenna 33 is placed on the second planar antenna 32 via the spacer 40 and screwed. For screwing the third planar antenna 33, three screws out of the five screws used for screwing the second planar antenna 32 are used. In the present embodiment, the height of each spacer 40 is 5 mm. Therefore, the third planar antenna 33 is parallel to the second planar antenna 32 (as a result, also parallel to the first planar antenna 31). Further, the third planar antenna 33 is separated from the second planar antenna 32 by 5 mm. A coaxial cable 33c is connected to the upper surface of the third planar antenna 33 (the main surface on the z-axis positive direction side in FIG. 1). The coaxial cable 33c is connected to an amplification circuit board 50 described later.
 増幅回路基板50は、金属ベース11の上面に設けられたスペーサ11c上に載置され、ネジ止めされる。増幅回路基板50を支持するスペーサ11cの高さは、第1の平面アンテナ31を支持するスペーサ11aの高さと同一であり、増幅回路基板50は、第1の平面アンテナ31と同一の平面内に、第1の平面アンテナ31と並んで配置される。 The amplification circuit board 50 is placed on the spacer 11c provided on the upper surface of the metal base 11 and screwed. The height of the spacer 11c that supports the amplifier circuit board 50 is the same as the height of the spacer 11a that supports the first planar antenna 31, and the amplifier circuit board 50 is in the same plane as the first planar antenna 31. The first planar antenna 31 is disposed side by side.
 増幅回路基板50には、2つの増幅回路が形成されている。一方の増幅回路は、第2の平面アンテナ32にて生成された電気信号を増幅するためのものであり、同軸ケーブル32cによって第2の平面アンテナ32と接続される。また、他方の増幅回路は、第3の平面アンテナ33にて生成された電気信号を増幅するためのものであり、同軸ケーブル33cによって第3の平面アンテナ33に接続される。 The amplifier circuit board 50 is formed with two amplifier circuits. One amplifier circuit is for amplifying an electric signal generated by the second planar antenna 32, and is connected to the second planar antenna 32 by a coaxial cable 32c. The other amplifier circuit is for amplifying an electrical signal generated by the third planar antenna 33, and is connected to the third planar antenna 33 by a coaxial cable 33c.
 これら2つの増幅回路の入力端子は、何れも、増幅回路基板50の上面(図1におけるz軸正方向側の主面)に設けられており、増幅回路基板50よりも上層に配置された平面アンテナ32~33から引き出された同軸ケーブル32c~33cを無理なく接続できるようになっている。一方、これら2つの増幅回路の出力端子は、増幅回路基板50の下面(図1におけるz軸負方向側の主面)に設けられており、これらの出力端子に接続された出力ケーブル51(2本の同軸ケーブルを結束したもの)は、増幅回路基板50と樹脂ベース12との間、及び、第1の平面アンテナ31と樹脂ベース12との間を通って、樹脂ベース12及び金属ベース11に設けられた貫通孔を介してアンテナ装置1の外部に引き出される。 Both of the input terminals of these two amplifier circuits are provided on the upper surface of the amplifier circuit board 50 (the main surface on the z-axis positive direction side in FIG. 1), and are planes arranged above the amplifier circuit board 50. The coaxial cables 32c to 33c drawn from the antennas 32 to 33 can be connected without difficulty. On the other hand, the output terminals of these two amplifier circuits are provided on the lower surface of the amplifier circuit board 50 (the main surface on the negative side of the z-axis in FIG. 1), and the output cables 51 (2) connected to these output terminals. The coaxial cables are bundled between the amplification circuit board 50 and the resin base 12 and between the first planar antenna 31 and the resin base 12 to the resin base 12 and the metal base 11. It is pulled out to the outside of the antenna device 1 through the provided through hole.
 以上のように、アンテナ装置1においては、3枚の平面アンテナ31~33を積層することによってアンテナモジュール30を構成している。これにより、アンテナモジュール30の配置に要するスペースが削減され、その結果として、アンテナ装置1の小型化が実現されている。 As described above, in the antenna device 1, the antenna module 30 is configured by stacking the three planar antennas 31 to 33. Thereby, the space required for arrangement | positioning of the antenna module 30 is reduced, As a result, size reduction of the antenna apparatus 1 is implement | achieved.
 このように、複数の平面アンテナを積層することによってアンテナモジュール30を構成する場合、標準電界強度がより強い電磁波を受信する平面アンテナを、標準電界強度がより弱い電磁波を受信する平面アンテナよりも下層(ベース部10側)に配置することが好ましい。換言すれば、標準電界強度がより弱い電磁波を受信する平面アンテナを、標準電界強度がより強い電磁波を受信する平面アンテナよりも上層(ベース部10側とは反対側)に配置することが好ましい。 In this way, when the antenna module 30 is configured by stacking a plurality of planar antennas, the planar antenna that receives electromagnetic waves having a higher standard electric field strength is lower than the planar antenna that receives electromagnetic waves having a weaker standard electric field strength. It is preferable to arrange on the (base part 10 side). In other words, it is preferable to arrange the planar antenna that receives an electromagnetic wave having a weaker standard electric field strength in an upper layer (the side opposite to the base portion 10 side) than the planar antenna that receives an electromagnetic wave having a stronger standard electric field strength.
 その理由は、以下のとおりである。すなわち、電界強度が弱い電磁波は、より上層に配置された他の平面アンテナの遮蔽作用による減衰が生じると、受信障害を帰結する可能性が高い。一方、電界強度が強い電磁波は、より上層に配置された他の平面アンテナの遮蔽作用による減衰が生じても、受信障害を帰結する可能性が低い。したがって、受信障害が生じる可能性を最小化するためには、上記の配置が最良である。 The reason is as follows. That is, an electromagnetic wave having a low electric field strength is likely to result in a reception failure when it is attenuated by the shielding action of another planar antenna disposed in an upper layer. On the other hand, an electromagnetic wave having a strong electric field strength is less likely to result in a reception failure even if it is attenuated by the shielding action of another planar antenna disposed in a higher layer. Therefore, the above arrangement is the best for minimizing the possibility of reception failure.
 ここで、3G波の標準電界強度は、-20dBm程度であり、地上デジタル放送波の標準電界強度は、-60dBm程度であり、GPS波の標準電界強度は、-130~-140dBm程度である。すなわち、3G波、地上デジタル放送波、GPS波の標準電界強度を比べると、3G波の標準電界強度が最も強く、地上デジタル放送波の標準電界強度がその次に強く、GPS波の標準電界強度が最も弱い。ここで、標準電界強度とは、標準的な受信環境における電界強度のことを指す。 Here, the standard electric field strength of 3G waves is about -20 dBm, the standard electric field strength of digital terrestrial broadcasting waves is about -60 dBm, and the standard electric field strength of GPS waves is about -130 to -140 dBm. That is, when comparing the standard electric field strength of 3G wave, terrestrial digital broadcast wave, and GPS wave, the standard electric field strength of 3G wave is the strongest, the standard electric field strength of terrestrial digital broadcast wave is the second strongest, and the standard electric field strength of GPS wave is Is the weakest. Here, the standard electric field strength refers to the electric field strength in a standard reception environment.
 このため、本実施形態においては、3枚の平面アンテナ31~33を、ベース部10側から、(1)第1の平面アンテナ31(3G用)、(2)第2の平面アンテナ32(地上デジタル放送用)、(3)第3の平面アンテナ33(GPS用)の順に積層する構成を採用している。したがって、第1の平面アンテナ31又は第2の平面アンテナ32の遮蔽作用によって、第3の平面アンテナ33に到達するGPS波の電界強度が減衰したり、第1の平面アンテナ31の遮蔽作用によって、第2の平面アンテナ32に到達する地上デジタル放送波の電界強度が減衰したりする虞がない。 For this reason, in the present embodiment, the three planar antennas 31 to 33 are connected to the base unit 10 from the (1) first planar antenna 31 (for 3G) and (2) the second planar antenna 32 (ground) (3) A configuration in which the third planar antenna 33 (for GPS) is stacked in this order is employed. Therefore, the shielding action of the first planar antenna 31 or the second planar antenna 32 attenuates the electric field strength of the GPS wave reaching the third planar antenna 33, or the shielding action of the first planar antenna 31 There is no possibility that the electric field strength of the terrestrial digital broadcast wave reaching the second planar antenna 32 will be attenuated.
 なお、3G波及び地上デジタル放送波は、地上送信局から送信される電磁波であり、アンテナモジュール30に水平方向(図1におけるxy面内)から入射する成分を持つのに対し、GPS波は、衛星送信局から送信される電磁波であり、アンテナモジュール30に水平方向から入射する成分を殆ど持たない。したがって、第3の平面アンテナ33は、第1~第2の平面アンテナ31~32と比べて、より上層に配置された他の平面アンテナの遮蔽作用を受け易い。この観点からしても、第3の平面アンテナ33は、図1に示すように、最上層に配置されることが好ましい。 The 3G wave and the terrestrial digital broadcast wave are electromagnetic waves transmitted from the terrestrial transmitting station, and have a component incident on the antenna module 30 from the horizontal direction (in the xy plane in FIG. 1), whereas the GPS wave is It is an electromagnetic wave transmitted from the satellite transmission station and has almost no component incident on the antenna module 30 from the horizontal direction. Therefore, the third planar antenna 33 is more susceptible to the shielding action of other planar antennas arranged in a higher layer than the first to second planar antennas 31 to 32. Also from this viewpoint, it is preferable that the third planar antenna 33 is disposed in the uppermost layer as shown in FIG.
 加えて、3枚の平面アンテナ31~33の設計に際しては、より上層に配置される平面アンテナにおける導体面積を、より下層に配置される平面アンテナにおける導体面積よりも小さくすることが好ましい。これは、導体面積の大きい平面アンテナほど遮蔽効果が高く、より下層に配置された平面アンテナの受信感度を低下させ易いからである。なお、導体面積とは、アンテナパターン(地板、放射素子、短絡部などの導体部分)が占める面積のことを指す。 In addition, when designing the three planar antennas 31 to 33, it is preferable that the conductor area of the planar antenna disposed in the upper layer is smaller than the conductor area of the planar antenna disposed in the lower layer. This is because a planar antenna having a larger conductor area has a higher shielding effect, and the reception sensitivity of a planar antenna disposed in a lower layer is likely to be lowered. In addition, a conductor area refers to the area which an antenna pattern (conductor parts, such as a ground plane, a radiation element, and a short circuit part) occupies.
 また、アンテナ装置1においては、第1の平面アンテナ31を支持するスペーサ11aの高さと、第2の平面アンテナ32を支持するスペーサ11bの高さとを5mm異ならせることによって、第2の平面アンテナ32を第1の平面アンテナ31から5mm離隔させる構成を採用している。また、第2の平面アンテナ32と第3の平面アンテナ33との間に高さ5mmのスペーサを介在させることによって、第3の平面アンテナ33を第2の平面アンテナ32から5mm離隔させる構成を採用している。これは、平面アンテナ間の距離が5mmよりも小さくなると、平面アンテナ間の容量性結合が大きくなり、各平面アンテナにおける損失が増大するためである。 In the antenna device 1, the height of the spacer 11 a that supports the first planar antenna 31 and the height of the spacer 11 b that supports the second planar antenna 32 are different from each other by 5 mm. Is configured to be separated from the first planar antenna 31 by 5 mm. Further, a configuration in which the third planar antenna 33 is separated from the second planar antenna 32 by 5 mm by interposing a spacer having a height of 5 mm between the second planar antenna 32 and the third planar antenna 33 is employed. is doing. This is because when the distance between the planar antennas is smaller than 5 mm, the capacitive coupling between the planar antennas increases, and the loss in each planar antenna increases.
 また、アンテナ装置1においては、増幅不要な(すなわち、比較的強度の強い)電気信号が流れる同軸ケーブル31cを、第1の平面アンテナ31の下面に接続し、樹脂ベース12及び金属ベース11に設けられた貫通孔を介して、アンテナ装置1の外部に引き出す構成を採用している。このため、同軸ケーブル31cの周囲に形成された電界及び磁界に起因する、第2の平面アンテナ32に到達する地上デジタル放送波の乱れ、及び、第3の平面アンテナ33に到達するGPS波の乱れを抑制することができる。すなわち、地上デジタル放送及びGPS波の受信障害が生じる可能性を更に低減することができる。 In the antenna device 1, a coaxial cable 31 c through which an electrical signal that does not need to be amplified (that is, relatively strong) flows is connected to the lower surface of the first planar antenna 31, and is provided on the resin base 12 and the metal base 11. A configuration is adopted in which the antenna device 1 is pulled out through the formed through-hole. For this reason, the disturbance of the digital terrestrial broadcasting wave reaching the second planar antenna 32 and the disturbance of the GPS wave reaching the third planar antenna 33 due to the electric field and magnetic field formed around the coaxial cable 31c. Can be suppressed. That is, the possibility of occurrence of terrestrial digital broadcast and GPS wave reception failures can be further reduced.
 同様に、アンテナ装置1においては、増幅後の(すなわち、比較的強度の強い)電気信号が流れる出力ケーブル51を、増幅回路基板50の下面に接続し、樹脂ベース12及び金属ベース11に設けられた貫通孔を介してアンテナ装置1の外部に引き出す構成を採用している。このため、出力ケーブル51の周囲に形成された電界及び磁界に起因する、第2の平面アンテナ32に到達する地上デジタル放送波の乱れ、及び、第3の平面アンテナ33に到達するGPS波の乱れも抑制することができる。すなわち、地上デジタル放送及びGPS波の受信障害が生じる可能性を更に低減することができる。 Similarly, in the antenna device 1, an output cable 51 through which an amplified electric signal (that is, a relatively strong electric signal) flows is connected to the lower surface of the amplifier circuit board 50, and is provided on the resin base 12 and the metal base 11. A configuration is adopted in which the antenna device 1 is pulled out through the through-hole. For this reason, due to the electric and magnetic fields formed around the output cable 51, the terrestrial digital broadcast wave that reaches the second planar antenna 32 and the GPS wave that reaches the third planar antenna 33 are disturbed. Can also be suppressed. That is, the possibility of occurrence of terrestrial digital broadcast and GPS wave reception failures can be further reduced.
 〔第1の平面アンテナの構成例〕
 次に、第1の平面アンテナ31の構成例について、図2を参照して説明する。図2は、第1の平面アンテナ31の構成を示す平面図である。第1の平面アンテナ31は、2枚の誘電体層(例えば、ポリイミドフィルム)と、これら2枚の誘電体層に挟持されたアンテナパターン100とにより構成される。アンテナパターン100は、地板101と放射素子102と短絡部103とを備え、3G用の逆Fアンテナとして動作する。
[Configuration Example of First Planar Antenna]
Next, a configuration example of the first planar antenna 31 will be described with reference to FIG. FIG. 2 is a plan view showing the configuration of the first planar antenna 31. The first planar antenna 31 includes two dielectric layers (for example, polyimide film) and an antenna pattern 100 sandwiched between the two dielectric layers. The antenna pattern 100 includes a ground plane 101, a radiating element 102, and a short circuit portion 103, and operates as an inverted F antenna for 3G.
 地板101は、40mm×80mmの板状導体であり、例えば、銅箔により構成される。地板101は、長方形状であり、その長辺がy軸と平行になるように配置される。放射素子102は、幅3mmの帯状導体であり、例えば、銅箔により構成される。放射素子102は、直線状であり、地板101のx軸負方向側の長辺に沿って配置される。放射素子102の長さは、3G波の波長の約1/4、具体的には、80mmに設定されている。 The ground plane 101 is a plate-like conductor of 40 mm × 80 mm, and is made of, for example, copper foil. The ground plane 101 has a rectangular shape and is arranged such that its long side is parallel to the y-axis. The radiating element 102 is a strip-shaped conductor having a width of 3 mm, and is made of, for example, copper foil. The radiating element 102 is linear and is disposed along the long side of the ground plane 101 on the negative side of the x-axis. The length of the radiating element 102 is set to about ¼ of the wavelength of the 3G wave, specifically, 80 mm.
 放射素子102には、地板101に向かって突出する凸部102aが形成されており、同軸ケーブル31c(図1参照)の内側導体と接続される第1の給電点100aが、この凸部102aに設けられる。一方、同軸ケーブル31cの外側導体と接続される第2の給電点100bは、この凸部102aに対向する地板101上の領域に設けられる。なお、同軸ケーブル31cは、地板101及び放射素子102の下面側(図2におけるz軸負方向側)に接続される。 The radiating element 102 is formed with a convex portion 102a protruding toward the ground plane 101, and a first feeding point 100a connected to the inner conductor of the coaxial cable 31c (see FIG. 1) is formed on the convex portion 102a. Provided. On the other hand, the second feeding point 100b connected to the outer conductor of the coaxial cable 31c is provided in a region on the ground plane 101 facing the convex portion 102a. The coaxial cable 31c is connected to the lower surface side (z-axis negative direction side in FIG. 2) of the ground plane 101 and the radiating element 102.
 短絡部103は、一端が地板101に接続され、他端が放射素子102に接続された、幅1mmの帯状導体であり、例えば、銅箔により構成される。短絡部103の形状は、アンテナパターン100の入力インピーダンスが同軸ケーブル31cの出力インピーダンス(例えば、50Ω)と整合するように決定される。本実施形態においては、(1)y軸負方向に伸びる第1の直線部103aと、(2)第1の直線部103aのy軸負方向側の端部からx軸負方向に伸びる第2の直線部103bと、(3)第2の直線部103bからy軸正方向に伸びる第3の直線部103cとからなる短絡部103を用い、(a)第1の直線部103aのy軸正方向側の端部を地板101の一角(x軸負方向側かつy軸負方向側の角)に接続し、(b)第3の直線部103cのy軸正方向側の端部を放射素子102の凸部102aに接続することによって、同軸ケーブル31cとのインピーダンス整合を図っている。 The short-circuit portion 103 is a 1 mm wide strip-like conductor having one end connected to the ground plane 101 and the other end connected to the radiating element 102, and is made of, for example, copper foil. The shape of the short-circuit portion 103 is determined so that the input impedance of the antenna pattern 100 matches the output impedance (for example, 50Ω) of the coaxial cable 31c. In the present embodiment, (1) a first linear portion 103a extending in the y-axis negative direction, and (2) a second linear portion 103a extending in the x-axis negative direction from the end of the first linear portion 103a on the y-axis negative direction side. (3) a short-circuit portion 103 consisting of a third straight portion 103c extending in the positive y-axis direction from the second straight portion 103b, and (a) a positive y-axis of the first straight portion 103a. The end on the direction side is connected to one corner of the ground plane 101 (the corner on the x-axis negative direction side and the y-axis negative direction side), and (b) the end portion on the y-axis positive direction side of the third straight line portion 103c is the radiating element. By connecting to the convex portion 102a of 102, impedance matching with the coaxial cable 31c is achieved.
 アンテナパターン100において注目すべきは、放射素子102と対向する地板101の角(x軸負方向側かつy軸負方向側の角)にアールが付けられている点である。このアールの半径を大きくすると、地板101と放射素子102との間の容量性結合が弱くなり、アンテナパターン100の入力インピーダンスのリアクタンス成分が低下する。本実施形態においては、このアールの半径を10mmとすることにより、同軸ケーブル31cとのインピーダンス整合を高めている。 What should be noted in the antenna pattern 100 is that the corner (the corner on the x-axis negative direction side and the y-axis negative direction side) of the ground plane 101 facing the radiation element 102 is rounded. When this radius of radius is increased, the capacitive coupling between the ground plane 101 and the radiating element 102 becomes weak, and the reactance component of the input impedance of the antenna pattern 100 is reduced. In the present embodiment, impedance matching with the coaxial cable 31c is enhanced by setting the radius of this radius to 10 mm.
 〔第2の平面アンテナの構成例〕
 次に、第2の平面アンテナ32の構成例について、図3を参照して説明する。図3は、第2の平面アンテナ32の構成例を示す平面図である。第2の平面アンテナ32は、2枚の誘電体層(例えば、ポリイミドフィルム)と、これら2枚の誘電体層に挟持されたアンテナパターン200とにより構成される。アンテナパターン200は、放射素子201と短絡部202a~202bとを備え、地上デジタル放送用のループアンテナとして動作する。
[Configuration Example of Second Planar Antenna]
Next, a configuration example of the second planar antenna 32 will be described with reference to FIG. FIG. 3 is a plan view showing a configuration example of the second planar antenna 32. The second planar antenna 32 includes two dielectric layers (for example, a polyimide film) and an antenna pattern 200 sandwiched between the two dielectric layers. The antenna pattern 200 includes a radiating element 201 and short circuits 202a to 202b, and operates as a loop antenna for digital terrestrial broadcasting.
 放射素子201は、幅1mm(直線部201a1及び直線部201a1’を除く)の帯状導体であり、例えば、銅箔により構成される。放射素子201の長さは、地上デジタル放送波の波長の約1/4、具体的には、160mmに設定されている。 The radiating element 201 is a strip-shaped conductor having a width of 1 mm (excluding the straight portion 201a1 and the straight portion 201a1 ') and is made of, for example, copper foil. The length of the radiating element 201 is set to about ¼ of the wavelength of the terrestrial digital broadcast wave, specifically, 160 mm.
 放射素子201は、巻込部201aと、第1のメアンダ部201bと、第2のメアンダ部201cとを構成するように折り曲げられている。 The radiating element 201 is bent so as to constitute a winding part 201a, a first meander part 201b, and a second meander part 201c.
 巻込部201aは、放射素子201の2つの根本部を、互いに巻き込み合うように折り曲げることにより構成されている。もう少し具体的に言うと、以下のように構成されている。すなわち、放射素子201の一方の根本部は、(1)放射素子201の一端からx軸正方向に伸びる第1直線部201a1と、(2)第1直線部201a1のx軸正方向側の端部からy軸負方向に伸びる第2直線部201a2と、(3)第2直線部201a2のy軸負方向側の端部からx軸負方向に伸びる第3直線部201a3とを構成するように折り曲げられている。また、放射素子201の他方の根本部は、(1)放射素子201の他端からx軸負方向に伸びる第1直線部201a1’と、(2)第1直線部201a1’のx軸負方向側の端部からy軸正方向に伸びる第2直線部201a2’と、(3)第2直線部201a2’のy軸正方向側の端部からx軸正方向に伸びる第3直線部201a3’と、(4)第3直線部201a3’のx軸正方向側の端部からy軸負方向に伸びる第4直線部201a4’と、(5)第4直線部201a4’のy軸負方向側の端部からx軸負方向に伸びる第5直線部201a5’とを構成するように折り曲げられている。そして、上記一方の根本部は、第1~第3直線部201a1~201a3が上記他方の根本部の第1直線部201a1’を三方から取り囲むように配置され、上記他方の根本部は、第1~第3直線部201a1’~201a3’が上記一方の根本部の第1直線部201a1を三方から取り囲むように配置される。 The winding part 201a is configured by bending two root parts of the radiating element 201 so as to wind each other. More specifically, it is structured as follows. That is, one root part of the radiating element 201 includes (1) a first straight part 201a1 extending in the x-axis positive direction from one end of the radiating element 201, and (2) an end of the first straight part 201a1 on the x-axis positive direction side. A second linear portion 201a2 extending in the negative y-axis direction from the portion, and (3) a third linear portion 201a3 extending in the negative x-axis direction from the end of the second linear portion 201a2 on the negative y-axis side. It is bent. Further, the other root portion of the radiating element 201 includes (1) a first straight portion 201a1 ′ extending from the other end of the radiating element 201 in the negative x-axis direction, and (2) a negative x-axis direction of the first straight portion 201a1 ′. A second linear portion 201a2 ′ extending in the y-axis positive direction from the end on the side, and (3) a third linear portion 201a3 ′ extending in the x-axis positive direction from the end on the y-axis positive direction side of the second linear portion 201a2 ′. And (4) a fourth straight portion 201a4 ′ extending in the y-axis negative direction from the end portion on the x-axis positive direction side of the third straight portion 201a3 ′, and (5) a y-axis negative direction side of the fourth straight portion 201a4 ′. Are bent so as to form a fifth straight portion 201a5 ′ extending in the negative x-axis direction from the end of the first portion. The one root portion is arranged such that the first to third straight portions 201a1 to 201a3 surround the first straight portion 201a1 ′ of the other root portion from three sides, and the other root portion is The third straight portions 201a1 ′ to 201a3 ′ are arranged so as to surround the first straight portion 201a1 of the one base portion from three sides.
 同軸ケーブル32c(図1参照)の内側導体が接続される第1の給電点200bは、上記他方の根本部の第1直線部201a1’の中央に設けられ、同軸ケーブル32cの外側導体が接続される第2の給電点200aは、上記一方の根本部の第1直線部201a1の中央部に設けられる。第1直線部201a1及び第1直線部201a1’の幅を放射素子201のその他の部分よりも広く(具体的には、8mm)にしているのは、アンテナパターン200の入力インピーダンスを同軸ケーブル32cの出力インピーダンス(例えば、50Ω)に整合させるためである。なお、同軸ケーブル32cは、放射素子201の上面側(図3におけるz軸正方向側)に接続される。 The first feeding point 200b to which the inner conductor of the coaxial cable 32c (see FIG. 1) is connected is provided at the center of the first straight line portion 201a1 ′ of the other root portion, and the outer conductor of the coaxial cable 32c is connected thereto. The second feeding point 200a is provided at the center of the first straight portion 201a1 of the one base portion. The reason why the width of the first straight portion 201a1 and the first straight portion 201a1 ′ is wider than the other portions of the radiating element 201 (specifically, 8 mm) is that the input impedance of the antenna pattern 200 is set to be equal to that of the coaxial cable 32c. This is to match the output impedance (for example, 50Ω). The coaxial cable 32c is connected to the upper surface side (the z-axis positive direction side in FIG. 3) of the radiating element 201.
 放射素子201から上記2つの根本部を除いた中間部は、第1のメアンダ部201b及び第2のメアンダ部201cを構成している。第1のメアンダ部201bは、放射素子201の中間部の上記一方の根本部側を、y軸方向に伸びる短直線部とx軸方向に伸びる長直線部とが交互に連なるように蛇行させたものである。また、第2のメアンダ部201cは、放射素子201の中間部の上記他方の根本部側を、y軸方向に伸びる長直線部とx軸方向に伸びる短直線部とが交互に連なるように蛇行させたものである。このようなメアンダ部201b~201cを設けることによって、放射素子201の長さを保ったまま、放射素子201の実装面積を縮小することが可能になる。 The intermediate part excluding the two root parts from the radiating element 201 constitutes a first meander part 201b and a second meander part 201c. The first meander part 201b meanders one side of the intermediate part of the radiating element 201 so that a short straight line part extending in the y-axis direction and a long straight line part extending in the x-axis direction are alternately arranged. Is. In addition, the second meander part 201c meanders on the other root part side of the intermediate part of the radiating element 201 so that the long straight part extending in the y-axis direction and the short straight part extending in the x-axis direction are alternately connected. It has been made. By providing such meander portions 201b to 201c, it is possible to reduce the mounting area of the radiating element 201 while maintaining the length of the radiating element 201.
 アンテナパターン200において注目すべきは、メアンダ部201b~201c上に短絡部202a~202bが設けられている点である。短絡部202a~202bは、それぞれ、メアンダ部201b~201c上の点同士を短絡するための構成であり、例えば、銅箔によって構成される。このような短絡部202a~202bを設けることによって、アンテナパターン200に近接する導体の影響によって生じ得る、地上デジタル放送波の周波数帯域におけるVSWR特性の悪化を抑制することができる。なお、アンテナ装置1において、アンテナパターン200に近接する導体としては、第1の平面アンテナ31を構成するアンテナパターン100や第3の平面アンテナ33を構成するアンテナパターン300(後述)などが挙げられる。 What should be noted in the antenna pattern 200 is that short-circuit portions 202a to 202b are provided on the meander portions 201b to 201c. The short-circuit portions 202a to 202b are configured to short-circuit points on the meander portions 201b to 201c, and are configured by, for example, copper foil. By providing such short-circuit portions 202a to 202b, it is possible to suppress the deterioration of the VSWR characteristics in the frequency band of the digital terrestrial broadcast wave that may be caused by the influence of the conductor close to the antenna pattern 200. In the antenna device 1, examples of the conductor close to the antenna pattern 200 include an antenna pattern 100 constituting the first planar antenna 31 and an antenna pattern 300 (described later) constituting the third planar antenna 33.
 短絡部202a~202bを設けることによって、地上デジタル放送波の周波数帯域におけるVSWR特性が悪化を抑制できる理由は以下のとおりである。すなわち、短絡部202a~202bを設けることによって、アンテナパターン200に新たな電流路が生じる。その結果、アンテナパターン200の共振点が増加し、地上デジタル放送波の周波数帯域におけるVSWR値が低下する。特に、図3に示すように、第1のメアンダ部201b上の点と第2のメアンダ部201c上の点とを短絡する構成を採用した場合、第1のメアンダ部201b上の点同士のみ、あるいは、第2のメアンダ部201c上の点同士のみを短絡する場合と比べて、上記の効果は一層顕著となる。 The reason why the VSWR characteristics in the frequency band of the digital terrestrial broadcasting wave can be prevented from being deteriorated by providing the short-circuit portions 202a to 202b is as follows. That is, by providing the short-circuit portions 202a to 202b, a new current path is generated in the antenna pattern 200. As a result, the resonance point of the antenna pattern 200 increases, and the VSWR value in the frequency band of the terrestrial digital broadcast wave decreases. In particular, as shown in FIG. 3, when a configuration in which a point on the first meander part 201 b and a point on the second meander part 201 c are short-circuited, only the points on the first meander part 201 b are Or compared with the case where only the points on the 2nd meander part 201c are short-circuited, said effect becomes still more remarkable.
 なお、短絡部202a~202bの形状及び位置は、放射素子201が導体板と平行に、かつ、導体板から5mm離隔して配置された状態において、地上デジタル放送の周波数帯域でのVSWR値が短絡部202a~202bを配置していない場合よりも小さくなるように決める。より好ましくは、同状態において、地上デジタル放送の周波数帯域におけるVSWRの最大値が3.5以下になるように決める。このようにして短絡部202a~202bの形状及び位置を決定すれば、アンテナパターン200が第1の平面アンテナ31及び第3の平面アンテナ33と平行に、かつ、第1の平面アンテナ31及び第3の平面アンテナ33から5mm離隔して配置されるアンテナ装置1においても、アンテナパターン200を用いて地上デジタル放送を正常に受信することができる。 The shapes and positions of the short-circuit portions 202a to 202b are such that the VSWR value in the frequency band of digital terrestrial broadcasting is short-circuited when the radiating element 201 is arranged in parallel with the conductor plate and at a distance of 5 mm from the conductor plate. The size is determined to be smaller than the case where the parts 202a to 202b are not arranged. More preferably, in this state, the maximum value of VSWR in the frequency band of digital terrestrial broadcasting is determined to be 3.5 or less. If the shapes and positions of the short-circuit portions 202a to 202b are determined in this way, the antenna pattern 200 is parallel to the first planar antenna 31 and the third planar antenna 33, and the first planar antenna 31 and the third planar antenna 31 are arranged. Even in the antenna device 1 arranged at a distance of 5 mm from the planar antenna 33, digital terrestrial broadcasting can be normally received using the antenna pattern 200.
 なお、図3に示す第2の平面アンテナ32における導体面積は、図2に示す第1の平面アンテナ31における導体面積よりも小さい点に留意されたい。したがって、第2の平面アンテナ32における導体面積を第1の平面アンテナ31における導体面積よりも大きくした場合と比べて、第2の平面アンテナ32の遮蔽効果によって3G波の受信障害が生じる可能性を低くすることができる。 It should be noted that the conductor area in the second planar antenna 32 shown in FIG. 3 is smaller than the conductor area in the first planar antenna 31 shown in FIG. Therefore, compared to the case where the conductor area in the second planar antenna 32 is larger than the conductor area in the first planar antenna 31, there is a possibility that a 3G wave reception failure may occur due to the shielding effect of the second planar antenna 32. Can be lowered.
 〔第3の平面アンテナの構成例〕
 次に、第3の平面アンテナ33の構成について、図4を参照して説明する。図4は、第3の平面アンテナ33の構成を示す平面図である。第3の平面アンテナ33は、2枚の誘電体層(例えば、ポリイミドフィルム)と、これら2枚の誘電体層に挟持されたアンテナパターン300とにより構成される。アンテナパターン300は、放射素子301と、2つの短絡部302~303とを備え、GPS用のループアンテナとして動作する。
[Configuration Example of Third Planar Antenna]
Next, the configuration of the third planar antenna 33 will be described with reference to FIG. FIG. 4 is a plan view showing the configuration of the third planar antenna 33. The third planar antenna 33 is composed of two dielectric layers (for example, polyimide film) and an antenna pattern 300 sandwiched between these two dielectric layers. The antenna pattern 300 includes a radiating element 301 and two short-circuit portions 302 to 303, and operates as a GPS loop antenna.
 放射素子301は、短軸35mm、長軸70mmの楕円上に配置され最大幅5mm、最小幅1mmの帯状導体であり、例えば、銅箔により構成される。放射素子301は、長軸方向がy軸と平行になるように配置され、放射素子301の幅は、上記楕円の中心から見て0時及び6時の方向において最大となり、3時及び9時の方向において最小となる(図4におけるy軸正方向を0時の方向とする)。 The radiating element 301 is a strip-shaped conductor disposed on an ellipse having a short axis of 35 mm and a long axis of 70 mm and having a maximum width of 5 mm and a minimum width of 1 mm, and is made of, for example, copper foil. The radiating element 301 is arranged so that the major axis direction is parallel to the y-axis, and the width of the radiating element 301 is maximum in the direction of 0 o'clock and 6 o'clock when viewed from the center of the ellipse, and is 3 o'clock and 9 o'clock. (The y-axis positive direction in FIG. 4 is taken as the 0 o'clock direction).
 放射素子301の一端は、上記楕円の中心から見て9時の方向に位置し、該端に同軸ケーブル33c(図1参照)の内側導体が接続される第1の給電点300aが設けられる。放射素子301の他端は、上記円周の中心から見て9時弱の方向に位置し、該端に形成された凸部に同軸ケーブル33cの外側導体が接続される第2の給電点300bが設けられる。なお、同軸ケーブル33cは、放射素子301の上面側(図4においてz軸正方向側)に接続される。 One end of the radiating element 301 is located in the 9 o'clock direction when viewed from the center of the ellipse, and a first feeding point 300a is provided at the end to which the inner conductor of the coaxial cable 33c (see FIG. 1) is connected. The other end of the radiating element 301 is positioned in the direction of about 9 o'clock when viewed from the center of the circumference, and the second feeding point 300b where the outer conductor of the coaxial cable 33c is connected to the convex portion formed at the end. Is provided. The coaxial cable 33c is connected to the upper surface side (the z-axis positive direction side in FIG. 4) of the radiating element 301.
 2つの短絡部302~303は、アンテナパターン300の入力インピーダンスを、給電ケーブルの出力インピーダンス(例えば、50Ω)に整合させるための構成である。 The two short-circuit portions 302 to 303 are configured to match the input impedance of the antenna pattern 300 to the output impedance (for example, 50Ω) of the power feeding cable.
 第1の短絡部302は、帯状導体をL字型に折り曲げたものであり、例えば、銅箔により構成される。第1の短絡部302の一端は、放射素子301の、上記楕円の中心から見て0時の方向に位置する部分に接続され、第1の短絡部302の他端は、放射素子301の、上記楕円の中心から見て3時弱の方向に位置する部分に接続される。 The first short circuit portion 302 is formed by bending a strip-shaped conductor into an L shape, and is made of, for example, copper foil. One end of the first short-circuit portion 302 is connected to a portion of the radiating element 301 located in the direction of 0 o'clock as viewed from the center of the ellipse, and the other end of the first short-circuit portion 302 is connected to the radiating element 301. It is connected to a portion located in the direction of 3 o'clock when viewed from the center of the ellipse.
 第2の短絡部303は、第1の短絡部302と同様、帯状導体をL字型に折り曲げたものであり、例えば、銅箔により構成される。第2の短絡部303の一端は、放射素子301の、上記楕円の中心から見て6時の方向に位置する部分に接続され、第2の短絡部303の他端は、放射素子301の、上記楕円の中心から見て9時弱の方向に位置する部分に接続される。 The second short-circuit portion 303 is formed by bending a strip-like conductor into an L-shape like the first short-circuit portion 302 and is made of, for example, copper foil. One end of the second short-circuit portion 303 is connected to a portion of the radiating element 301 that is positioned in the 6 o'clock direction as viewed from the center of the ellipse, and the other end of the second short-circuit portion 303 is connected to the radiating element 301. It is connected to the portion located in the direction of 9 o'clock when viewed from the center of the ellipse.
 上記のように構成された第3の平面アンテナ33は、放射強度が最大となる放射方向がアンテナ形成面(図4におけるxy平面)と直交する指向性を有し、衛星送信局から送信されるGPS波を受信するのに好ましい。なお、第3の平面アンテナ33の受信感度は、第3の平面アンテナ33よりも上層(図4においてz軸正方向側)に配置された他の平面アンテナの遮蔽作用により著しく低下し得る。しかし、アンテナ装置1においては、第3の平面アンテナ33よりも上層に他の平面アンテナが配置されることがないので、そのような受信感度の低下が生じる虞はない。 The third planar antenna 33 configured as described above has directivity in which the radiation direction with the maximum radiation intensity is orthogonal to the antenna formation surface (xy plane in FIG. 4), and is transmitted from the satellite transmission station. Preferred for receiving GPS waves. Note that the reception sensitivity of the third planar antenna 33 can be significantly reduced by the shielding action of other planar antennas disposed on the upper layer (the z-axis positive direction side in FIG. 4) than the third planar antenna 33. However, in the antenna device 1, no other planar antenna is disposed in an upper layer than the third planar antenna 33, so there is no possibility that such a decrease in reception sensitivity occurs.
 なお、図4に示す第3の平面アンテナ33における導体面積は、図3に示す第2の平面アンテナ32における導体面積よりも更に小さい点に留意されたい。したがって、第3の平面アンテナ33における導体面積を第2の平面アンテナ32における導体面積よりも大きくした場合と比べて、第3の平面アンテナ33の遮蔽効果によって地上デジタル放送波の受信障害が生じる可能性を低くすることができる。 It should be noted that the conductor area of the third planar antenna 33 shown in FIG. 4 is smaller than the conductor area of the second planar antenna 32 shown in FIG. Therefore, compared with the case where the conductor area in the third planar antenna 33 is larger than the conductor area in the second planar antenna 32, the reception effect of the terrestrial digital broadcast wave may occur due to the shielding effect of the third planar antenna 33. Can be lowered.
 〔まとめ〕
 以上のように、本実施形態に係るアンテナ装置は、台座と、上記台座に取り付けられた複数の平面アンテナであって、周波数帯域の異なる電磁波を受信する複数の平面アンテナと、を備え、上記複数の平面アンテナは、標準電界強度のより強い電磁波を受信する平面アンテナが標準電界強度のより弱い電磁波を受信する平面アンテナよりも上記台座側に位置するように積層されている、ことを特徴とする。
[Summary]
As described above, the antenna device according to the present embodiment includes a pedestal and a plurality of planar antennas attached to the pedestal and receiving electromagnetic waves having different frequency bands. The planar antenna is laminated such that a planar antenna that receives an electromagnetic wave having a stronger standard electric field strength is positioned on the pedestal side than a planar antenna that receives an electromagnetic wave having a weaker standard electric field strength. .
 上記の構成によれば、上記複数の平面アンテナを積層したことにより、上記アンテナ装置を従来よりも小型化することができる。特に、各平面アンテナに直交する方向から見たサイズを小さくすることができる。しかも、上記の構成によれば、標準電界強度のより強い電磁波を受信する平面アンテナを標準電界強度のより弱い電磁波を受信する平面アンテナよりも上記台座側に配置したことにより、標準電界強度の弱い電磁波が標準電界強度の強い電磁波を受信する平面アンテナの遮蔽作用によって減衰し、受信障害が生じる可能性を低下させることができる。 According to the above configuration, the antenna device can be made smaller than before by stacking the plurality of planar antennas. In particular, the size seen from the direction orthogonal to each planar antenna can be reduced. In addition, according to the above configuration, the flat antenna that receives an electromagnetic wave having a stronger standard electric field strength is arranged on the pedestal side than the flat antenna that receives an electromagnetic wave having a weaker standard electric field strength, so that the standard electric field strength is weaker. The electromagnetic wave is attenuated by the shielding action of the planar antenna that receives the electromagnetic wave having a strong standard electric field strength, and the possibility of occurrence of reception failure can be reduced.
 本実施形態に係るアンテナ装置において、上記複数の平面アンテナには、互いに隣接する少なくとも3つの平面アンテナが含まれており、上記3つの平面アンテナのうち、第1の平面アンテナと第3の平面アンテナとに挟まれた第2の平面アンテナは、メアンダ部を有する放射素子と、上記メアンダ部上の点同士を短絡する短絡部とを備えたループアンテナである、ことが好ましい。 In the antenna device according to the present embodiment, the plurality of planar antennas include at least three planar antennas adjacent to each other, and among the three planar antennas, the first planar antenna and the third planar antenna. The second planar antenna sandwiched between the two is preferably a loop antenna including a radiating element having a meander portion and a short-circuit portion that short-circuits points on the meander portion.
 上記の構成によれば、上記短絡部の配置を適宜調整することによって、上記第2の平面アンテナの特性を、上記第1の平面アンテナと上記第3の平面アンテナとに挟まれた状態において、所望の特性とすることができる。ここで、所望の特性とは、例えば、上記第2の平面アンテナが受信する電磁波(例えば、地上デジタル放送波)の周波数帯域における上記第2の平面アンテナのVSWR値が所望の値(例えば、3.5以下)になることを指す。 According to the above configuration, by appropriately adjusting the arrangement of the short-circuit portion, the characteristics of the second planar antenna are sandwiched between the first planar antenna and the third planar antenna. Desired characteristics can be obtained. Here, the desired characteristic is, for example, that a VSWR value of the second planar antenna in a frequency band of an electromagnetic wave (for example, terrestrial digital broadcast wave) received by the second planar antenna is a desired value (for example, 3 .5 or less).
 本実施形態に係るアンテナ装置において、上記複数の平面アンテナは、互いに5mm以上離隔している、ことが好ましい。 In the antenna device according to the present embodiment, it is preferable that the plurality of planar antennas are separated from each other by 5 mm or more.
 平面アンテナ間の距離が5mmよりも小さい場合、平面アンテナ間の容量性結合が大きくなり、各平面アンテナにおける損失が増大する。上記の構成によれば、このような損失増大が生じることがないので、受信障害が生じ難いアンテナ装置を実現することができる。 When the distance between the planar antennas is smaller than 5 mm, the capacitive coupling between the planar antennas increases, and the loss in each planar antenna increases. According to the above configuration, such an increase in loss does not occur, so that it is possible to realize an antenna device that is unlikely to cause a reception failure.
 本実施形態に係るアンテナ装置において、上記複数の平面アンテナのうち、最上層に配置された平面アンテナは、放射強度が最大となる放射方向(以下「最大強度放射方向」と記載)がアンテナ形成面と直交する平面アンテナである、ことが好ましい。 In the antenna device according to the present embodiment, among the plurality of planar antennas, the planar antenna arranged in the uppermost layer has a radiation direction in which the radiation intensity becomes maximum (hereinafter referred to as “maximum intensity radiation direction”) as the antenna formation surface. It is preferable that the planar antenna is orthogonal.
 最大強度放射方向がアンテナ形成面と直交する平面アンテナの受信感度は、その平面アンテナよりも上層に配置された平面アンテナの遮蔽作用により著しく低下し得る。しかし、上記の構成によれば、最大強度放射方向がアンテナ形成面と直交する平面アンテナよりも上層に他の平面アンテナが配置されることがないので、そのような受信感度の低下は生じ得ない。すなわち、上記の構成によれば、最大強度放射方向がアンテナ形成面と直交する平面アンテナを含むアンテナ装置においても、受信障害が生じる可能性を抑えることができる。 The reception sensitivity of a planar antenna whose maximum intensity radiation direction is orthogonal to the antenna formation surface can be significantly reduced by the shielding action of the planar antenna disposed in an upper layer than the planar antenna. However, according to the above configuration, since no other planar antenna is arranged in a layer above the planar antenna whose maximum intensity radiation direction is orthogonal to the antenna formation surface, such a decrease in reception sensitivity cannot occur. . That is, according to the above configuration, it is possible to suppress the possibility of reception failure even in an antenna device including a planar antenna whose maximum intensity radiation direction is orthogonal to the antenna forming surface.
 なお、最上層に配置された平面アンテナとは、上記複数の平面アンテナのうち、上記台座から最も遠い位置に配置された平面アンテナのことを指す。 In addition, the planar antenna disposed in the uppermost layer refers to a planar antenna disposed at a position farthest from the pedestal among the plurality of planar antennas.
 本実施形態に係るアンテナ装置において、上記複数の平面アンテナのうち、最上層に配置された平面アンテナは、衛星を送信局とする電磁波を受信する平面アンテナである、ことが好ましい。 In the antenna device according to the present embodiment, the planar antenna disposed in the uppermost layer among the plurality of planar antennas is preferably a planar antenna that receives an electromagnetic wave having a satellite as a transmitting station.
 衛星を送信局とする電磁波を受信する平面アンテナの受信感度は、その平面アンテナよりも上層に配置された平面アンテナの遮蔽作用により著しく低下し得る。しかし、上記の構成によれば、衛星を送信局とする電磁波を受信する平面アンテナよりも上層に他の平面アンテナが配置されることがないので、上記のような受信感度の低下は生じ得ない。すなわち、上記の構成によれば、衛星を送信局とする電磁波を受信する平面アンテナを含むアンテナ装置においても、受信障害が生じる可能性を低く抑えることができる。 The reception sensitivity of a planar antenna that receives electromagnetic waves using a satellite as a transmitting station can be significantly reduced by the shielding action of the planar antenna disposed in an upper layer than the planar antenna. However, according to the above configuration, no other planar antenna is disposed above the planar antenna that receives an electromagnetic wave having a satellite as a transmission station, and thus the above-described decrease in reception sensitivity cannot occur. . That is, according to the above configuration, it is possible to reduce the possibility of reception failure even in an antenna device including a planar antenna that receives electromagnetic waves using a satellite as a transmission station.
 なお、最上層に配置された平面アンテナとは、上記複数の平面アンテナのうち、上記台座から最も遠い位置に配置された平面アンテナのことを指す。 In addition, the planar antenna disposed in the uppermost layer refers to a planar antenna disposed at a position farthest from the pedestal among the plurality of planar antennas.
 本実施形態に係るアンテナ装置において、上記複数の平面アンテナのうち、最下層に配置された平面アンテナは、地板を備えた平面アンテナである、ことが好ましい。 In the antenna device according to the present embodiment, it is preferable that the planar antenna disposed in the lowest layer among the plurality of planar antennas is a planar antenna provided with a ground plane.
 地板を備えた平面アンテナは、地板の遮蔽作用によって、その平面アンテナよりも下層に配置された他の平面アンテナの受信感度を著しく低下させてしまう可能性がある。しかし、上記の構成によれば、地板を備えた平面アンテナよりも下層に他の平面アンテナが配置されることがないので、上記のような受信感度の低下は生じ得ない。すなわち、上記の構成によれば、地板を備えた平面アンテナを含むアンテナ装置においても、受信障害が生じる可能性を低く抑えることができる。 A planar antenna provided with a ground plane may significantly reduce the reception sensitivity of other planar antennas disposed below the planar antenna due to the shielding action of the ground plane. However, according to the above configuration, since no other planar antenna is disposed below the planar antenna provided with the ground plane, the above-described reduction in reception sensitivity cannot occur. That is, according to said structure, also in the antenna apparatus containing the planar antenna provided with the ground plane, possibility that a reception failure will arise can be restrained low.
 なお、地板を備えた平面アンテナとしては、例えば、モノポールアンテナ、モノポールアンテナの放射素子をL字状に折り曲げた逆Lアンテナ、逆Lアンテナに短絡部を付加した逆Fアンテナ、及び、これらのアンテナにおいて放射素子を折り曲げた、又はメアンダ化したものなどが挙げられる。 As the planar antenna provided with the ground plane, for example, a monopole antenna, an inverted L antenna obtained by bending the radiating element of the monopole antenna into an L shape, an inverted F antenna obtained by adding a short circuit to the inverted L antenna, and these In this antenna, the radiating element is bent or meandered.
 本実施形態に係るアンテナ装置において、最下層に配置された平面アンテナに接続される同軸ケーブルは、該平面アンテナの上記台座側の面に接続され、上記台座に設けられた貫通孔を介して当該アンテナ装置の外部に引き出される、ことが好ましい。 In the antenna device according to the present embodiment, the coaxial cable connected to the planar antenna disposed in the lowermost layer is connected to the surface of the planar antenna on the pedestal side, and is connected via the through-hole provided in the pedestal. It is preferable that the antenna device is pulled out of the antenna device.
 上記の構成によれば、上記同軸ケーブルの周囲に形成された電界及び磁界に起因して生じる、他の平面アンテナに到達する電磁波の乱れを抑制することができる。すなわち、他の平面アンテナにて受信すべき電磁波の受信障害が生じる可能性を更に低減することができる。 According to the above configuration, it is possible to suppress disturbance of electromagnetic waves that reach other planar antennas caused by an electric field and a magnetic field formed around the coaxial cable. That is, it is possible to further reduce the possibility that an electromagnetic wave reception failure should be received by another planar antenna.
 本実施形態に係るアンテナ装置において、上記複数の平面アンテナは、より導体面積の小さい平面アンテナがより導体面積の大きい平面アンテナよりも上記台座側と反対側に位置するように積層されている、ことが好ましい。 In the antenna device according to the present embodiment, the plurality of planar antennas are stacked such that a planar antenna having a smaller conductor area is positioned on a side opposite to the pedestal side than a planar antenna having a larger conductor area. Is preferred.
 導体面積の大きい平面アンテナほど遮蔽効果が高く、該平面アンテナよりも台座側に配置された平面アンテナの受信感度を低下させ易い。しかしながら、上記の構成によれば、このような受信感度の低下が生じ難い。したがって、受信障害が生じる可能性を更に低減することができる。 A planar antenna with a larger conductor area has a higher shielding effect, and the reception sensitivity of the planar antenna disposed on the pedestal side is more likely to be lower than the planar antenna. However, according to the above configuration, such a decrease in reception sensitivity is unlikely to occur. Therefore, it is possible to further reduce the possibility of reception failure.
 以上のように、本実施形態に係るアンテナ装置によれば、受信障害が生じる可能性を抑えつつ、複数の平面アンテナを備えたアンテナ装置の小型化を実現することができる。 As described above, according to the antenna device according to the present embodiment, it is possible to reduce the size of the antenna device including a plurality of planar antennas while suppressing the possibility of reception failure.
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 本発明は、移動体又は移動端末に搭載するアンテナ装置として好適に利用することができる。移動体の例としては、自動車、鉄道車両、船舶などが挙げられる。移動端末の例としては、携帯電話端末、PDA(Personal Digital Assistance)、タブレット型PC(Personal Computer)などが挙げられる。 The present invention can be suitably used as an antenna device mounted on a mobile object or a mobile terminal. Examples of the moving body include an automobile, a railway vehicle, and a ship. Examples of the mobile terminal include a mobile phone terminal, a PDA (Personal Digital Assistance), a tablet PC (Personal Computer), and the like.
  1     アンテナ装置
  10    ベース部(台座)
  11    金属ベース
  12    樹脂ベース
  20    レドーム部
  30    アンテナモジュール
  31    第1の平面アンテナ(3G用)
  32    第2の平面アンテナ(地上デジタル放送用)
  33    第3の平面アンテナ(GPS用)
1 Antenna device 10 Base (pedestal)
DESCRIPTION OF SYMBOLS 11 Metal base 12 Resin base 20 Radome part 30 Antenna module 31 1st planar antenna (for 3G)
32 Second planar antenna (for digital terrestrial broadcasting)
33 Third planar antenna (for GPS)

Claims (8)

  1.  台座と、
     上記台座に取り付けられた複数の平面アンテナであって、周波数帯域の異なる電磁波を受信する複数の平面アンテナと、を備え、
     上記複数の平面アンテナは、標準電界強度のより強い電磁波を受信する平面アンテナが標準電界強度のより弱い電磁波を受信する平面アンテナよりも上記台座側に位置するように積層されている、ことを特徴とするアンテナ装置。
    A pedestal,
    A plurality of planar antennas attached to the pedestal, wherein the plurality of planar antennas receive electromagnetic waves having different frequency bands, and
    The plurality of planar antennas are stacked such that a planar antenna that receives an electromagnetic wave having a stronger standard electric field strength is positioned on the pedestal side than a planar antenna that receives an electromagnetic wave having a weaker standard electric field strength. An antenna device.
  2.  上記複数の平面アンテナには、互いに隣接する少なくとも3つの平面アンテナが含まれており、
     上記3つの平面アンテナのうち、第1の平面アンテナと第3の平面アンテナとに挟まれた第2の平面アンテナは、メアンダ部を有する放射素子と、上記メアンダ部上の点同士を短絡する短絡部とを備えたループアンテナである、
    ことを特徴とする請求項1に記載のアンテナ装置。
    The plurality of planar antennas include at least three planar antennas adjacent to each other,
    Of the three planar antennas, the second planar antenna sandwiched between the first planar antenna and the third planar antenna is a short circuit that short-circuits the radiating element having the meander part and the points on the meander part. A loop antenna with a portion,
    The antenna device according to claim 1.
  3.  上記複数の平面アンテナは、互いに5mm以上離隔している、
    ことを特徴とする請求項1又は2に記載のアンテナ装置。
    The plurality of planar antennas are separated from each other by 5 mm or more.
    The antenna device according to claim 1 or 2, wherein
  4.  上記複数の平面アンテナのうち、最上層に配置された平面アンテナは、放射強度が最大となる放射方向がアンテナ形成面と直交する平面アンテナである、ことを特徴とする請求項1~3の何れか1項に記載のアンテナ装置。 4. The planar antenna disposed in the uppermost layer among the plurality of planar antennas is a planar antenna in which a radiation direction in which the radiation intensity is maximum is orthogonal to the antenna forming surface. The antenna device according to claim 1.
  5.  上記複数の平面アンテナのうち、最上層に配置された平面アンテナは、衛星を送信局とする電磁波を受信する平面アンテナである、
    ことを特徴とする請求項1~4の何れか1項に記載のアンテナ装置。
    Among the plurality of planar antennas, the planar antenna disposed in the uppermost layer is a planar antenna that receives electromagnetic waves having a satellite as a transmitting station.
    The antenna device according to any one of claims 1 to 4, wherein:
  6.  上記複数の平面アンテナのうち、最下層に配置された平面アンテナは、地板を備えた平面アンテナである、
    ことを特徴とする請求項1~5の何れか1項に記載のアンテナ装置。
    Among the plurality of planar antennas, the planar antenna disposed in the lowermost layer is a planar antenna provided with a ground plane.
    The antenna device according to any one of claims 1 to 5, wherein:
  7.  上記複数の平面アンテナのうち、最下層に配置された平面アンテナに接続される同軸ケーブルは、該平面アンテナの上記台座側の面に接続され、上記台座に設けられた貫通孔を介して当該アンテナ装置の外部に引き出される、
    ことを特徴とする請求項1~6の何れか1項に記載のアンテナ装置。
    Among the plurality of planar antennas, a coaxial cable connected to the planar antenna disposed in the lowermost layer is connected to the surface of the planar antenna on the pedestal side, and the antenna is connected to the antenna via a through hole provided in the pedestal. Pulled out of the device,
    The antenna device according to any one of claims 1 to 6, wherein:
  8.  上記複数の平面アンテナは、より導体面積の小さい平面アンテナがより導体面積の大きい平面アンテナよりも上記台座側と反対側に位置するように積層されている、
    ことを特徴とする請求項1~7の何れか1項に記載のアンテナ装置。
    The plurality of planar antennas are stacked such that a planar antenna having a smaller conductor area is positioned on the side opposite to the pedestal side than a planar antenna having a larger conductor area.
    The antenna device according to any one of claims 1 to 7, characterized in that:
PCT/JP2012/083099 2011-12-20 2012-12-20 Antenna device WO2013094692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011278818A JP5767578B2 (en) 2011-12-20 2011-12-20 Antenna device
JP2011-278818 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013094692A1 true WO2013094692A1 (en) 2013-06-27

Family

ID=48668572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083099 WO2013094692A1 (en) 2011-12-20 2012-12-20 Antenna device

Country Status (2)

Country Link
JP (1) JP5767578B2 (en)
WO (1) WO2013094692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963737A4 (en) * 2013-03-01 2016-02-10 Fujikura Ltd Integrated antenna, and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084128B2 (en) * 2013-07-22 2017-02-22 株式会社クボタ Work vehicle
JP2015088863A (en) * 2013-10-29 2015-05-07 株式会社フジクラ Integrated antenna module
JP2020159957A (en) * 2019-03-27 2020-10-01 東京電力ホールディングス株式会社 Partial discharge measurement apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303005A (en) * 1994-03-10 1995-11-14 Nippondenso Co Ltd Antenna system for vehicle
JP2001016016A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Antenna system for vics information reception and side- view mirror for vehicle
JP2002111377A (en) * 2000-09-29 2002-04-12 Mitsumi Electric Co Ltd Antenna apparatus
JP2003060427A (en) * 2001-08-13 2003-02-28 Harada Ind Co Ltd Antenna device
JP2004235729A (en) * 2003-01-28 2004-08-19 Denso Corp Antenna apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258819B2 (en) * 1994-04-28 2002-02-18 株式会社豊田中央研究所 Composite antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303005A (en) * 1994-03-10 1995-11-14 Nippondenso Co Ltd Antenna system for vehicle
JP2001016016A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Antenna system for vics information reception and side- view mirror for vehicle
JP2002111377A (en) * 2000-09-29 2002-04-12 Mitsumi Electric Co Ltd Antenna apparatus
JP2003060427A (en) * 2001-08-13 2003-02-28 Harada Ind Co Ltd Antenna device
JP2004235729A (en) * 2003-01-28 2004-08-19 Denso Corp Antenna apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963737A4 (en) * 2013-03-01 2016-02-10 Fujikura Ltd Integrated antenna, and manufacturing method thereof
US9935372B2 (en) 2013-03-01 2018-04-03 Fujikura Ltd. Integrated antenna, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5767578B2 (en) 2015-08-19
JP2013131852A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
CN1825697B (en) Antenna module and electronic arrangement using same
US9490541B2 (en) Loop antenna
CN108448250B (en) Antenna system and communication terminal applying same
US20130050057A1 (en) Antenna device and electronic apparatus including antenna device
JP4913900B1 (en) Antenna device
US8456366B2 (en) Communications structures including antennas with separate antenna branches coupled to feed and ground conductors
US8188926B2 (en) Folded antenna structures for portable devices
US8674884B2 (en) Dual-band circularly polarized antenna
US10374314B2 (en) Composite patch antenna device
US9698482B2 (en) Antenna device
JP5767578B2 (en) Antenna device
US8947309B2 (en) Antenna device and display device
JP2011091557A (en) Antenna device
JP6181498B2 (en) Antenna device
JP2007135212A (en) Multiband antenna apparatus
JP2007124016A (en) Integrated antenna
JP5837452B2 (en) Antenna device
US9258025B2 (en) Antenna structure and wireless communication device using the same
US20230299482A1 (en) Antenna device
JP2011015329A (en) Integrated antenna
JP2014093609A (en) Antenna device
CN115425399A (en) Miniaturized combined antenna and communication device
JP2014011692A (en) Integrated antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860419

Country of ref document: EP

Kind code of ref document: A1