JP5576951B2 - Dual frequency antenna - Google Patents

Dual frequency antenna Download PDF

Info

Publication number
JP5576951B2
JP5576951B2 JP2013025875A JP2013025875A JP5576951B2 JP 5576951 B2 JP5576951 B2 JP 5576951B2 JP 2013025875 A JP2013025875 A JP 2013025875A JP 2013025875 A JP2013025875 A JP 2013025875A JP 5576951 B2 JP5576951 B2 JP 5576951B2
Authority
JP
Japan
Prior art keywords
dbi
gain
frequency
band
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013025875A
Other languages
Japanese (ja)
Other versions
JP2013085308A (en
Inventor
浩 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harada Industry Co Ltd
Original Assignee
Harada Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harada Industry Co Ltd filed Critical Harada Industry Co Ltd
Priority to JP2013025875A priority Critical patent/JP5576951B2/en
Publication of JP2013085308A publication Critical patent/JP2013085308A/en
Application granted granted Critical
Publication of JP5576951B2 publication Critical patent/JP5576951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、2周波で動作する小型の2周波アンテナに関するものである。   The present invention relates to a small two-frequency antenna that operates at two frequencies.

車載用無線通信に用いるアンテナとしてはその動作原理から、車室内の乗員に対する送信時の電磁波放射が懸念されており、このため、ルーフパネル等の車両の外側にアンテナが設置されることが多くされている。しかし、法規制等により車両の外側に突出するアンテナのアンテナ高には制限があるため、低姿勢で小型なアンテナが必要とされる。
従来、所望の2つの異なる周波数帯を受信および送信するアンテナが必要な場合は、アンテナ素子の間にチョークコイルを設けることにより2共振を得るようにしたり、独立した2つのアンテナを使用して2周波の2出力を得たり、2周波の2出力を合成して出力を得るようにしていた。
As an antenna used for in-vehicle wireless communication, there is a concern about electromagnetic radiation at the time of transmission to passengers in the vehicle cabin due to its operating principle. For this reason, antennas are often installed outside the vehicle such as a roof panel. ing. However, the antenna height of the antenna that protrudes outside the vehicle is restricted due to legal restrictions and the like, so a small antenna with a low attitude is required.
Conventionally, when an antenna that receives and transmits two desired different frequency bands is required, two resonances can be obtained by providing a choke coil between antenna elements, or two independent antennas can be used. Two outputs of frequency were obtained, or two outputs of two frequencies were synthesized to obtain an output.

米国特許公開公報第2006/0071858号明細書US Patent Publication No. 2006/0071858 特開2004−282329号明細書Japanese Patent Application Laid-Open No. 2004-282329 米国特許公開公報第2006/0158383号明細書US Patent Publication No. 2006/0158383 米国特許第6377227号明細書US Pat. No. 6,377,227

従来の2周波アンテナでは、1本のアンテナとする場合はチョークコイルが必要とされるが、チョークコイルを使用するとチョークコイルの影響により低域側共振帯域が狭くなると云う問題点があった。
そこで、本発明はチョークコイルを必要とすることなく2つの異なる周波数帯で動作可能な2周波アンテナを提供することを目的としている。
In the conventional dual-frequency antenna, a choke coil is required when a single antenna is used. However, when the choke coil is used, there is a problem that the low-frequency side resonance band becomes narrow due to the influence of the choke coil.
Therefore, an object of the present invention is to provide a dual-frequency antenna that can operate in two different frequency bands without the need for a choke coil.

上記目的を達成するために、本発明の2周波アンテナは、略平面上のグランドと、前記グランド上に立設される絶縁性の基板と、前記基板の下端から上部に向けて面状に形成される第1素子と、前記第1素子の下端に給電するための給電部と、前記第1素子の下端近傍に配置されるスルーホールと、前記基板の前記第1素子と重ならない上部に形成される第2素子と、前記スルーホールから導出され第2素子に給電するための給電ラインと、を具備するものである。   In order to achieve the above object, a dual-frequency antenna according to the present invention is formed in a planar shape from a substantially flat ground, an insulating substrate standing on the ground, and from the lower end to the upper portion of the substrate. Formed in the upper portion of the substrate that does not overlap the first element, a through-hole disposed near the lower end of the first element, and a power supply portion for supplying power to the lower end of the first element. And a power supply line that is led out from the through hole and supplies power to the second element.

本発明の2周波アンテナでは、第1素子が2つの異なる周波数帯の内の高域側で動作し、第2素子が低域側で動作するようになり、第2素子に給電する給電ラインがインダクタンスとして機能することから、チョークコイルを不要とすることができる。また、第1素子および第2素子をプリントパターンにより構成すると、プリントパターンの形状により整合を可能とすることができる。   In the dual-frequency antenna of the present invention, the first element operates on the high frequency side of two different frequency bands, the second element operates on the low frequency side, and the power supply line for supplying power to the second element is Since it functions as an inductance, a choke coil can be dispensed with. Further, if the first element and the second element are configured by a print pattern, matching can be made possible by the shape of the print pattern.

本発明の実施例にかかる2周波アンテナの構成を示す正面図である。It is a front view which shows the structure of the dual frequency antenna concerning the Example of this invention. 本発明の実施例にかかる2周波アンテナの構成を示す背面図である。It is a rear view which shows the structure of the 2 frequency antenna concerning the Example of this invention. 本発明にかかる2周波アンテナのインピーダンスの周波数特性を示すスミスチャートである。It is a Smith chart which shows the frequency characteristic of the impedance of the 2 frequency antenna concerning this invention. 本発明にかかる2周波アンテナのVSWRの周波数特性を示す図である。It is a figure which shows the frequency characteristic of VSWR of the 2 frequency antenna concerning this invention. 本発明にかかる2周波アンテナの仰角を0°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。It is a figure which shows the directional characteristic in the horizontal plane of each frequency of the AMPS band and PCS band when the elevation angle of the dual-frequency antenna according to the present invention is 0 °. 本発明にかかる2周波アンテナの仰角を10°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。It is a figure which shows the directional characteristics in the horizontal surface of each frequency of an AMPS band and PCS band when the elevation angle of the dual-frequency antenna according to the present invention is 10 °. 本発明にかかる2周波アンテナの仰角を20°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。It is a figure which shows the directional characteristic in the horizontal plane of each frequency of the AMPS band and PCS band when the elevation angle of the dual-frequency antenna according to the present invention is 20 °. 本発明にかかる2周波アンテナの仰角を30°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。It is a figure which shows the directional characteristic in the horizontal surface of each frequency of an AMPS zone | band and a PCS zone | band when the elevation angle of the 2 frequency antenna concerning this invention is 30 degrees.

本発明の実施例にかかる2つの異なる周波数帯において動作する2周波アンテナ1の構成を図1および図2に示す。図1は2周波アンテナ1の構成を示す正面図であり、図2は2周波アンテナ1の構成を示す背面図である。
これらの図に示すように、2周波アンテナ1はガラスエポキシ基板等の絶縁性のプリント基板10の表面と裏面とにプリントパターンとして形成された第1素子11と第2素子21とを備えている。プリント基板10は、高さHおよび幅Wの細長い矩形状とされて平面状のグランド14上にほぼ垂直に立設されている。第1素子11はプリント基板10の表面の下端からほぼ幅Wで長さL1の面状のプリントパターンとして形成されており、第1素子11の下部はテーパ部11bが形成されて下端に向かって次第に幅が狭く形成されてインピーダンスが調整されている。また、第1素子11の上縁のほぼ中央から幅がSとされたスリット11aが下方へ向かって形成されている。第1素子11は下端から給電され、その下端には給電点13が設けられている。また、給電点13とされるプリント基板10の下端から高さL3の位置で、プリント基板10のほぼ中央に裏面に電気的に接続されるスルーホール12が設けられている。
1 and 2 show the configuration of a dual-frequency antenna 1 that operates in two different frequency bands according to an embodiment of the present invention. FIG. 1 is a front view showing the configuration of the dual frequency antenna 1, and FIG. 2 is a rear view showing the configuration of the dual frequency antenna 1.
As shown in these drawings, the dual-frequency antenna 1 includes a first element 11 and a second element 21 formed as printed patterns on the front and back surfaces of an insulating printed board 10 such as a glass epoxy board. . The printed circuit board 10 has an elongated rectangular shape with a height H and a width W, and is erected almost vertically on a planar ground 14. The first element 11 is formed as a planar printed pattern having a width W and a length L1 from the lower end of the surface of the printed circuit board 10. The lower portion of the first element 11 is formed with a tapered portion 11b toward the lower end. The width is gradually narrowed to adjust the impedance. In addition, a slit 11a having a width S from the substantially center of the upper edge of the first element 11 is formed downward. The first element 11 is fed from the lower end, and a feeding point 13 is provided at the lower end. In addition, a through hole 12 that is electrically connected to the back surface is provided at substantially the center of the printed circuit board 10 at a position at a height L3 from the lower end of the printed circuit board 10 that is the feeding point 13.

第2素子21は、プリント基板10の裏面の上端から幅Wで長さL2の面状のプリントパターンとして形成されており、第2素子21の両側は下方へ折り返された形状とされている。第2素子21は、プリント基板10の表面に形成されている第1素子11と重ならないプリント基板10の上部に形成されている。第2素子21のほぼ中央からは、狭くされた幅Dの給電ライン21aが引き出されており、第2素子21の折り返された両側の部位はトップローディングとして機能する。給電ライン21aはアンテナとしても機能しており、プリント基板10の下端から高さL3の位置までほぼ垂直に形成されて、給電ライン21aの下端はスルーホール12に電気的に接続されている。給電ライン21aは細長く形成されていることから、給電ライン21aに生じるインダクタンス成分により、2周波の内の低域側の信号成分に対する給電ライン21aのインピーダンスは高くなり、低域側の信号成分は給電ライン21a上において伝送されにくくなる。このように、給電ライン21aは等価的にチョークコイルとして作用することから、給電点13から第1素子11およびスルーホール12を介して給電ライン21aで伝送された低域側の信号成分が第2素子21に給電されるようになる。また、第2素子21の低域側の受信信号は給電ライン21aおよびスルーホール12を介して第1素子11の高域側の受信信号と合成され、給電点13から出力されるようになる。なお、第1素子11におけるスリット11aの幅Sは給電ライン21aの幅Dより広くされて、スリット11a内に給電ライン21aが位置するようにされており、スリット11aにより第1素子11と給電ライン21aとが電気的に結合することを極力防止している。   The second element 21 is formed as a planar print pattern having a width W and a length L2 from the upper end of the back surface of the printed circuit board 10, and both sides of the second element 21 are folded downward. The second element 21 is formed on the printed circuit board 10 that does not overlap the first element 11 formed on the surface of the printed circuit board 10. A power supply line 21a having a narrowed width D is drawn out from substantially the center of the second element 21, and the folded portions on both sides of the second element 21 function as top loading. The power supply line 21a also functions as an antenna, is formed substantially vertically from the lower end of the printed circuit board 10 to the position of the height L3, and the lower end of the power supply line 21a is electrically connected to the through hole 12. Since the feeder line 21a is formed in an elongated shape, the impedance component of the feeder line 21a with respect to the low-frequency signal component of the two frequencies is increased by the inductance component generated in the feeder line 21a, and the low-frequency signal component is fed. It becomes difficult to transmit on the line 21a. Thus, since the power supply line 21a acts equivalently as a choke coil, the low-frequency signal component transmitted from the power supply point 13 through the first element 11 and the through hole 12 through the power supply line 21a is the second. Power is supplied to the element 21. The low-frequency received signal of the second element 21 is combined with the high-frequency received signal of the first element 11 via the power supply line 21 a and the through hole 12 and output from the power supply point 13. The width S of the slit 11a in the first element 11 is wider than the width D of the power supply line 21a so that the power supply line 21a is positioned in the slit 11a. As a result, electrical coupling with 21a is prevented as much as possible.

2周波アンテナ1を、824〜894MHzのAMPS(Advanced Mobile Phone Service)帯および1850〜1990MHzのPCS(Personal Communication Services)帯の2つの異なる周波数帯、あるいは、880〜960MHzのGSM(登録商標、以下同じ)(Global System for Mobile Communications)900帯および1710〜1880MHzのGSM1800帯の2つの異なる周波数帯において動作させることができる。このようにした際の、2周波アンテナ1の寸法の一例を次に示す。まず、プリント基板10の幅Wは約15mm、高さHは約50mm、厚さは約1.6mmとされ、比誘電率εrは約4.6とされている。2周波の内の高域側(PCS/GMS1800)で動作する第1素子11の長さL1は約34.5mmとされ1850MHzの波長をλ1とすると約0.21λ1と表され、スリット11aの幅Sは約2mmとされる。2周波の内の低域側(AMPS/GMS900)で動作する第2素子21の長さL2は約15mmとされ824MHzの周波数の波長をλ2とすると約0.04λ2と表され、スルーホール12の高さL3は約10mmとされ約0.06λ1あるいは約0.03λ2と表される。   The dual-frequency antenna 1 is connected to two different frequency bands of AMPS (Advanced Mobile Phone Service) band of 824 to 894 MHz and PCS (Personal Communication Services) band of 1850 to 1990 MHz, or GSM (registered trademark) of 880 to 960 MHz. ) (Global System for Mobile Communications) It can be operated in two different frequency bands, 900 band and 1710-1880 MHz GSM1800 band. An example of the dimensions of the dual-frequency antenna 1 at this time is shown below. First, the width W of the printed circuit board 10 is about 15 mm, the height H is about 50 mm, the thickness is about 1.6 mm, and the relative dielectric constant εr is about 4.6. The length L1 of the first element 11 operating on the high frequency side (PCS / GMS1800) of the two frequencies is about 34.5 mm, and when the wavelength of 1850 MHz is λ1, it is expressed as about 0.21λ1, and the width of the slit 11a S is about 2 mm. The length L2 of the second element 21 operating on the low frequency side (AMPS / GMS900) of the two frequencies is about 15 mm, and the wavelength of the frequency of 824 MHz is represented by about 0.04λ2, The height L3 is about 10 mm and is expressed as about 0.06λ1 or about 0.03λ2.

次に、上記寸法とされた2周波アンテナ1のインピーダンスの周波数特性を示すスミスチャートを図3に示す。図3を参照すると、低域側の周波数824MHzにおいて抵抗分は約25.8Ω、リアクタンス分は約−21.5Ωとなり、周波数894MHzにおいて抵抗分は約48.9Ω、リアクタンス分は約41.4Ωとなる。また、高域側の周波数1850MHzにおいて抵抗分は約62.8Ω、リアクタンス分は約0.1Ωとなり、周波数1990MHzにおいて抵抗分は約74.2Ω、リアクタンス分は約−7.6Ωとなる。このように、高域側においてよりよいインピーダンス特性を示すようになる。   Next, FIG. 3 shows a Smith chart showing the frequency characteristics of the impedance of the two-frequency antenna 1 having the above dimensions. Referring to FIG. 3, the resistance is about 25.8Ω and the reactance is about −21.5Ω at the low frequency 824 MHz, and the resistance is about 48.9Ω and the reactance is about 41.4Ω at the frequency 894 MHz. Become. Further, the resistance is about 62.8Ω and the reactance is about 0.1Ω at a frequency of 1850 MHz on the high frequency side, and the resistance is about 74.2Ω and the reactance is about −7.6Ω at a frequency of 1990 MHz. Thus, a better impedance characteristic is shown on the high frequency side.

次に、上記寸法とされた2周波アンテナ1の電圧定在波比(VSWR)の周波数特性を図4に示す。図4を参照すると、低域側の周波数824MHzにおいてVSWRとして約2.41が得られ、周波数894MHzにおいてVSWRとして約2.27が得られており、824〜894MHzの低域側の周波数帯域において最良のVSWRとして約1.5が得られている。また、高域側の周波数1850MHzにおいてVSWRとして約1.26が得られ、周波数1990MHzにおいてVSWRとして約1.51が得られており、1850〜1990MHzの高域側の周波数帯域において最良のVSWRとして1.26が得られている。このように、高域側においてよりよいVSWR特性を示すようになる。一般に、VSWRは約2.5以下とされていることが求められるが、図4に示す例ではAMPS帯における最大のVSWRは約2.4(840MHz)となり、PCS帯における最大のVSWRは約1.5(1990MHz)となっており、2周波において良好なVSWR特性が得られている。なお、整合回路を付加して給電点13に給電することによりVSWRをより良好な値とすることができる。   Next, the frequency characteristic of the voltage standing wave ratio (VSWR) of the dual-frequency antenna 1 having the above dimensions is shown in FIG. Referring to FIG. 4, about 2.41 is obtained as VSWR at a frequency of 824 MHz on the low frequency side, and about 2.27 is obtained as VSWR at a frequency of 894 MHz, which is the best in the frequency band on the low frequency side of 824 to 894 MHz. As a VSWR, about 1.5 is obtained. Further, about 1.26 is obtained as the VSWR at the frequency of 1850 MHz on the high frequency side, about 1.51 is obtained as the VSWR at the frequency of 1990 MHz, and 1 as the best VSWR in the frequency band on the high frequency side of 1850 to 1990 MHz. .26 is obtained. Thus, a better VSWR characteristic is exhibited on the high frequency side. In general, the VSWR is required to be about 2.5 or less, but in the example shown in FIG. 4, the maximum VSWR in the AMPS band is about 2.4 (840 MHz), and the maximum VSWR in the PCS band is about 1 .5 (1990 MHz), and good VSWR characteristics are obtained at two frequencies. Note that the VSWR can be set to a better value by adding a matching circuit to supply power to the power supply point 13.

次に、本発明にかかる2周波アンテナ1の各周波数における水平面内指向特性を図5ないし図8に示す。この場合、2周波アンテナ1の寸法は上記の通りとされると共に、直径約1mの円形とされたグランド14のほぼ中央に2周波アンテナ1は立設されて、偏波は垂直偏波とされている。
図5は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が0°とされた際の水平面内指向特性である。図5を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約−1.7dBi、最小利得が約−2.2dBiとされ、平均利得が約−2.0dBiでリップルが約0.6dBのほぼ無指向性の良好な指向特性とされている。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約−0.8dBi、最小利得が約−1.5dBiとされ、平均利得が約−1.2dBiでリップルが約0.7dBのほぼ無指向性の良好な指向特性とされ、利得が若干向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約−1.0dBi、最小利得が約−1.7dBiとされ、平均利得が約−1.4dBiでリップルが約0.8dBのほぼ無指向性の良好な指向特性とされている。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約−1.4dBi、最小利得が約−2.3dBiとされ、平均利得が−1.8dBiでリップルが約1.0dBのほぼ無指向性の良好な指向特性とされている。
Next, the directivity characteristics in the horizontal plane at each frequency of the dual-frequency antenna 1 according to the present invention are shown in FIGS. In this case, the dimensions of the dual-frequency antenna 1 are as described above, and the dual-frequency antenna 1 is erected approximately at the center of the ground 14 having a circular shape with a diameter of about 1 m, so that the polarization is vertical polarization ing.
FIG. 5 shows horizontal plane directivity characteristics when the elevation angle is 0 ° at each frequency of the AMPS band and PCS band according to the dual-frequency antenna 1 of the present invention. Referring to FIG. 5, at 824 MHz, which is the lower limit frequency of the transmission band in the AMPS band, the maximum gain is about −1.7 dBi, the minimum gain is about −2.2 dBi, and the average gain is about −2.0 dBi. Is about 0.6 dB, which is a good directional characteristic with almost no directivity. At 849 MHz, which is the upper limit frequency of the transmission band in the AMPS band, the maximum gain is about -0.8 dBi, the minimum gain is about -1.5 dBi, the average gain is about -1.2 dBi, and the ripple is about 0.1. The directivity characteristic is 7 dB, almost omnidirectional, and the gain is slightly improved. Furthermore, at 869 MHz, which is the lower limit frequency of the reception band in the AMPS band, the maximum gain is about -1.0 dBi, the minimum gain is about -1.7 dBi, the average gain is about -1.4 dBi, and the ripple is about 0.1. The directional characteristic is 8 dB, which is almost non-directional. Furthermore, at 894 MHz, which is the upper limit frequency of the reception band in the AMPS band, the maximum gain is about -1.4 dBi, the minimum gain is about -2.3 dBi, the average gain is -1.8 dBi, and the ripple is about 1. The directivity characteristic is almost zero omnidirectional with 0 dB.

図5を参照すると、仰角が0°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約0.5dBi、最小利得が約−0.9dBiとされ、平均利得が約−0.2dBiでリップルが約1.4dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約1.0dBi、最小利得が約−0.5dBiとされ、平均利得が約0.2dBiでリップルが約1.5dBのほぼ無指向性の良好な指向特性とされ、より高利得が得られている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約1.2dBi、最小利得が約−0.3dBiとされ、平均利得が約0.5dBiでリップルが約1.5dBのほぼ無指向性の良好な指向特性とされ、さらに高利得が得られている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約0.3dBi、最小利得が約−1.0dBiとされ、平均利得が約−0.3dBiでリップルが約1.3dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。   Referring to FIG. 5, in the PCS band when the elevation angle is set to 0 °, the maximum gain is about 0.5 dBi and the minimum gain is about −0.9 dBi at the lower limit frequency of the transmission band of 1850 MHz. The gain is about -0.2 dBi and the ripple is about 1.4 dB, and the omnidirectional good directivity characteristics are obtained, and a high gain is obtained. In addition, at 1910 MHz which is the upper limit frequency of the transmission band in the PCS band, the maximum gain is about 1.0 dBi, the minimum gain is about -0.5 dBi, the average gain is about 0.2 dBi, and the ripple is about 1.5 dB. The directivity characteristics are almost omnidirectional, and a higher gain is obtained. Further, at 1930 MHz, which is the lower limit frequency of the reception band in the PCS band, the maximum gain is about 1.2 dBi, the minimum gain is about −0.3 dBi, the average gain is about 0.5 dBi, and the ripple is about 1.5 dB. The directivity characteristics are almost omnidirectional, and a higher gain is obtained. Furthermore, at 1990 MHz, which is the upper limit frequency of the reception band in the PCS band, the maximum gain is about 0.3 dBi, the minimum gain is about -1.0 dBi, the average gain is about -0.3 dBi, and the ripple is about 1. The directional characteristics are good with a 3 dB almost non-directional characteristic, and a high gain is obtained.

図6は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が10°とされた際の水平面内指向特性である。図6を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約0.2dBi、最小利得が約−0.4dBiとされ、平均利得が約−0.2dBiでリップルが約0.6dBのほぼ無指向性の良好な指向特性とされ、利得が向上している。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約1.0dBi、最小利得が約0.5dBiとされ、平均利得が約0.7dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約1.0dBi、最小利得が約0.4dBiとされ、平均利得が約0.8dBiでリップルが約0.6dBのほぼ無指向性の良好な指向特性とされている。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約1.0dBi、最小利得が約0.2dBiとされ、平均利得が0.7dBiでリップルが約0.7dBのほぼ無指向性の良好な指向特性とされている。   FIG. 6 shows horizontal plane directivity characteristics when the elevation angle is 10 ° at each frequency of the AMPS band and PCS band according to the dual-frequency antenna 1 of the present invention. Referring to FIG. 6, at 824 MHz, which is the lower limit frequency of the transmission band in the AMPS band, the maximum gain is about 0.2 dBi, the minimum gain is about −0.4 dBi, the average gain is about −0.2 dBi, and the ripple is The gain is improved with a directional characteristic of about 0.6 dB and almost no directivity. Further, at 849 MHz which is the upper limit frequency of the transmission band in the AMPS band, the maximum gain is about 1.0 dBi, the minimum gain is about 0.5 dBi, the average gain is about 0.7 dBi, and the ripple is about 0.5 dB. The directional characteristics are good with no directivity, and the gain is further improved. Furthermore, at 869 MHz, which is the lower limit frequency of the reception band in the AMPS band, the maximum gain is about 1.0 dBi, the minimum gain is about 0.4 dBi, the average gain is about 0.8 dBi, and the ripple is about 0.6 dB. It is considered to have good omnidirectional directivity characteristics. Furthermore, at 894 MHz, which is the upper limit frequency of the reception band in the AMPS band, the maximum gain is about 1.0 dBi, the minimum gain is about 0.2 dBi, the average gain is 0.7 dBi, and the ripple is about 0.7 dB. It is considered to have good omnidirectional directivity characteristics.

図6を参照すると、仰角が10°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約4.5dBi、最小利得が約3.4dBiとされ、平均利得が約3.9dBiでリップルが約1.1dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約4.4dBi、最小利得が約3.4dBiとされ、平均利得が約3.9dBiでリップルが約1.1dBのほぼ無指向性の良好な指向特性とされ、高利得が維持されている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約4.6dBi、最小利得が約3.5dBiとされ、平均利得が約4.1dBiでリップルが約1.1dBのほぼ無指向性の良好な指向特性とされ、さらに高利得が得られている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約3.6dBi、最小利得が約2.6dBiとされ、平均利得が約3.1dBiでリップルが約1.0dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。   Referring to FIG. 6, in the PCS band when the elevation angle is 10 °, the maximum gain is about 4.5 dBi and the minimum gain is about 3.4 dBi at 1850 MHz, which is the lower limit frequency of the transmission band. Is about 3.9 dBi and the ripple is about 1.1 dB, and the omnidirectional good directivity characteristic is obtained, and a high gain is obtained. In addition, at 1910 MHz which is the upper limit frequency of the transmission band in the PCS band, the maximum gain is about 4.4 dBi, the minimum gain is about 3.4 dBi, the average gain is about 3.9 dBi, and the ripple is about 1.1 dB. The directional characteristics are good with omnidirectionality, and high gain is maintained. Further, at 1930 MHz, which is the lower limit frequency of the reception band in the PCS band, the maximum gain is about 4.6 dBi, the minimum gain is about 3.5 dBi, the average gain is about 4.1 dBi, and the ripple is about 1.1 dB. The directional characteristics are excellent in omnidirectionality, and a higher gain is obtained. Furthermore, in 1990 MHz which is the upper limit frequency of the reception band in the PCS band, the maximum gain is about 3.6 dBi, the minimum gain is about 2.6 dBi, the average gain is about 3.1 dBi, and the ripple is about 1.0 dB. The directivity characteristics are almost omnidirectional, and a high gain is obtained.

図7は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が20°とされた際の水平面内指向特性である。図7を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約1.8dBi、最小利得が約1.4dBiとされ、平均利得が約1.7dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約2.6dBi、最小利得が約2.2dBiとされ、平均利得が約2.4dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約3.1dBi、最小利得が約2.7dBiとされ、平均利得が約2.9dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約3.0dBi、最小利得が約2.6dBiとされ、平均利得が2.8dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。   FIG. 7 shows the horizontal plane directivity when the elevation angle is 20 ° at each frequency of the AMPS band and PCS band according to the dual-frequency antenna 1 of the present invention. Referring to FIG. 7, at 824 MHz, which is the lower limit frequency of the transmission band in the AMPS band, the maximum gain is about 1.8 dBi, the minimum gain is about 1.4 dBi, the average gain is about 1.7 dBi, and the ripple is about 0. .4 dB, almost omnidirectional and good directivity, and high gain is obtained. At 849 MHz, which is the upper limit frequency of the transmission band in the AMPS band, the maximum gain is about 2.6 dBi, the minimum gain is about 2.2 dBi, the average gain is about 2.4 dBi, and the ripple is about 0.5 dB. The directional characteristics are good with no directivity, and the gain is further improved. Further, at 869 MHz, which is the lower limit frequency of the reception band in the AMPS band, the maximum gain is about 3.1 dBi, the minimum gain is about 2.7 dBi, the average gain is about 2.9 dBi, and the ripple is about 0.4 dB. The directional characteristics are good with no directivity, and the gain is further improved. Further, at 894 MHz, which is the upper limit frequency of the reception band in the AMPS band, the maximum gain is about 3.0 dBi, the minimum gain is about 2.6 dBi, the average gain is 2.8 dBi, and the ripple is about 0.4 dB. It has good omnidirectional directivity characteristics and high gain is obtained.

図7を参照すると、仰角が20°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約6.6dBi、最小利得が約5.8dBiとされ、平均利得が約6.1dBiでリップルが約0.8dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約6.6dBi、最小利得が約5.7dBiとされ、平均利得が約6.2dBiでリップルが約0.9dBのほぼ無指向性の良好な指向特性とされ、高利得が維持されている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約6.7dBi、最小利得が約5.7dBiとされ、平均利得が約6.3dBiでリップルが約1.0dBのほぼ無指向性の良好な指向特性とされ、さらに高利得が得られている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約5.7dBi、最小利得が約5.0dBiとされ、平均利得が約5.4dBiでリップルが約0.7dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。   Referring to FIG. 7, in the PCS band when the elevation angle is 20 °, the maximum gain is about 6.6 dBi and the minimum gain is about 5.8 dBi at the lower limit frequency of the transmission band of 1850 MHz, and the average gain Is about 6.1 dBi and the ripple is about 0.8 dB, and the omnidirectional characteristics are good, and high gain is obtained. At 1910 MHz, which is the upper limit frequency of the transmission band in the PCS band, the maximum gain is about 6.6 dBi, the minimum gain is about 5.7 dBi, the average gain is about 6.2 dBi, and the ripple is about 0.9 dB. The directional characteristics are good with omnidirectionality, and high gain is maintained. Further, at 1930 MHz, which is the lower limit frequency of the reception band in the PCS band, the maximum gain is about 6.7 dBi, the minimum gain is about 5.7 dBi, the average gain is about 6.3 dBi, and the ripple is about 1.0 dB. The directional characteristics are excellent in omnidirectionality, and a higher gain is obtained. Furthermore, in 1990 MHz which is the upper limit frequency of the reception band in the PCS band, the maximum gain is about 5.7 dBi, the minimum gain is about 5.0 dBi, the average gain is about 5.4 dBi, and the ripple is about 0.7 dB. The directivity characteristics are almost omnidirectional, and a high gain is obtained.

図8は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が30°とされた際の水平面内指向特性である。図8を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約2.9dBi、最小利得が約2.5dBiとされ、平均利得が約2.7dBiでリップルが約0.3dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約3.4dBi、最小利得が約3.0dBiとされ、平均利得が約3.2dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約4.0dBi、最小利得が約3.5dBiとされ、平均利得が約3.8dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約3.9dBi、最小利得が約3.5dBiとされ、平均利得が3.8dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。   FIG. 8 shows the horizontal plane directivity when the elevation angle is set to 30 ° at each frequency of the AMPS band and the PCS band according to the dual-frequency antenna 1 of the present invention. Referring to FIG. 8, at 824 MHz, which is the lower limit frequency of the transmission band in the AMPS band, the maximum gain is about 2.9 dBi, the minimum gain is about 2.5 dBi, the average gain is about 2.7 dBi, and the ripple is about 0. .3 dB of almost omnidirectional good directivity characteristics, and high gain is obtained. Further, at 849 MHz which is the upper limit frequency of the transmission band in the AMPS band, the maximum gain is about 3.4 dBi, the minimum gain is about 3.0 dBi, the average gain is about 3.2 dBi, and the ripple is about 0.4 dB. The directional characteristics are good with no directivity, and the gain is further improved. Furthermore, at 869 MHz, which is the lower limit frequency of the reception band in the AMPS band, the maximum gain is about 4.0 dBi, the minimum gain is about 3.5 dBi, the average gain is about 3.8 dBi, and the ripple is about 0.5 dB. The directional characteristics are good with no directivity, and the gain is further improved. Furthermore, in the 894 MHz which is the upper limit frequency of the reception band in the AMPS band, the maximum gain is about 3.9 dBi, the minimum gain is about 3.5 dBi, the average gain is 3.8 dBi, and the ripple is about 0.5 dB. It has good omnidirectional directivity characteristics and high gain is obtained.

図8を参照すると、仰角が30°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約5.1dBi、最小利得が約3.5dBiとされ、平均利得が約4.5dBiでリップルが約1.7dBのほぼ無指向性の良好な指向特性とされ、高利得とされている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約5.5dBi、最小利得が約3.9dBiとされ、平均利得が約4.9dBiでリップルが約1.7dBのほぼ無指向性の良好な指向特性とされ、高利得が維持されている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約5.7dBi、最小利得が約4.2dBiとされ、平均利得が約5.1dBiでリップルが約1.5dBのほぼ無指向性の良好な指向特性とされ、さらに高利得とされている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約4.8dBi、最小利得が約3.5dBiとされ、平均利得が約4.3dBiでリップルが約1.3dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。   Referring to FIG. 8, in the PCS band when the elevation angle is 30 °, the maximum gain is about 5.1 dBi and the minimum gain is about 3.5 dBi at the lower limit frequency of the transmission band of 1850 MHz, and the average gain is Is approximately 4.5 dBi, and the ripple is approximately 1.7 dB. In addition, at 1910 MHz which is the upper limit frequency of the transmission band in the PCS band, the maximum gain is about 5.5 dBi, the minimum gain is about 3.9 dBi, the average gain is about 4.9 dBi, and the ripple is about 1.7 dB. The directional characteristics are good with omnidirectionality, and high gain is maintained. Furthermore, at 1930 MHz which is the lower limit frequency of the reception band in the PCS band, the maximum gain is about 5.7 dBi, the minimum gain is about 4.2 dBi, the average gain is about 5.1 dBi, and the ripple is about 1.5 dB. It has good omnidirectional directivity characteristics and higher gain. Furthermore, in 1990 MHz which is the upper limit frequency of the reception band in the PCS band, the maximum gain is about 4.8 dBi, the minimum gain is about 3.5 dBi, the average gain is about 4.3 dBi, and the ripple is about 1.3 dB. The directivity characteristics are almost omnidirectional, and a high gain is obtained.

このように、本発明の2周波アンテナ1では、AMPS帯およびPCS帯の2つの異なる周波数帯において動作し、仰角が0°〜30°とされてもほぼ無指向性の指向特性を得ることができるようになる。また、本発明にかかる2周波アンテナ1のAMPS帯およびPCS帯の2つの異なる周波数帯における利得は、高域のPCS帯の利得が高い傾向を示している。この場合、ダイポールアンテナの利得は2.15dBiであることから、仰角によっては2つの異なる周波数帯においてダイポールアンテナの利得を大きく超えた利得が得られている。また、2つの異なる周波数帯をGSM900/GSM1800帯としても、本発明の2周波アンテナ1は上記と同様の電気的特性を得ることができる。従って、本発明の2周波アンテナ1は2つの異なる周波数帯において十分動作することができるアンテナとすることができる。なお、動作させる2つの異なる周波数帯が900MHz帯あるいは1800MHz帯から異なる帯域とされた場合は、その帯域に応じて第1素子11あるいは第2素子21の寸法を変更することにより、所望の2つの異なる周波数帯において本発明の2周波アンテナ1を動作させることができる。また、本発明にかかる2周波アンテナ1は高さが約50mm、幅が約15mmの小型かつ低姿勢のアンテナとすることができると共に、プリント基板10のプリントパターンにより第1素子11および第2素子21を形成することで構成されるため、簡易な構成の安価な2周波アンテナとすることができる。   As described above, the dual-frequency antenna 1 of the present invention operates in two different frequency bands, the AMPS band and the PCS band, and can obtain almost omnidirectional directional characteristics even when the elevation angle is 0 ° to 30 °. become able to. Moreover, the gain in the two different frequency bands of the AMPS band and the PCS band of the dual frequency antenna 1 according to the present invention shows a tendency that the gain of the high frequency PCS band is high. In this case, since the gain of the dipole antenna is 2.15 dBi, gain greatly exceeding the gain of the dipole antenna is obtained in two different frequency bands depending on the elevation angle. Further, even if the two different frequency bands are GSM900 / GSM1800 bands, the two-frequency antenna 1 of the present invention can obtain the same electrical characteristics as described above. Therefore, the dual-frequency antenna 1 of the present invention can be an antenna that can sufficiently operate in two different frequency bands. When two different frequency bands to be operated are different bands from the 900 MHz band or the 1800 MHz band, the two desired frequency bands can be changed by changing the dimensions of the first element 11 or the second element 21 according to the band. The dual-frequency antenna 1 of the present invention can be operated in different frequency bands. Further, the dual-frequency antenna 1 according to the present invention can be a small and low-profile antenna having a height of about 50 mm and a width of about 15 mm, and the first element 11 and the second element depending on the printed pattern of the printed circuit board 10. Therefore, it is possible to provide an inexpensive dual-frequency antenna with a simple configuration.

以上説明した本発明にかかる2周波アンテナ1において、第2素子21へ給電する給電ライン21aをメアンダ形状として2周波アンテナ1のアンテナ高さをより低く抑えるようにしてもよい。また、本発明の2周波アンテナ1を車両に搭載する際には、車両へ取り付けられるアンテナベース上に2周波アンテナ1を固着し、アンテナベースに2周波アンテナ1を覆う樹脂カバーによるレドームを取り付けるのが好適とされる。
さらに、本発明の2周波アンテナ1においては、プリント基板10の表面に形成された第1素子11および裏面に形成された第2素子21のパターン形状により、2つの異なる周波数帯の整合を取ることができるため、2周波アンテナ1の小型化やローコスト化が可能となる。このため、AM/FM放送受信アンテナ、GPS信号受信アンテナ、地上波デジタル放送受信アンテナ、DAB(Digital Audio Broadcast)受信アンテナ、SDARS(Satellite Digital Audio Radio)受信アンテナ等との複合化を容易とすることができる。
In the dual-frequency antenna 1 according to the present invention described above, the feeder line 21a that feeds power to the second element 21 may have a meander shape so that the antenna height of the dual-frequency antenna 1 can be further suppressed. Further, when the dual frequency antenna 1 of the present invention is mounted on a vehicle, the dual frequency antenna 1 is fixed on the antenna base attached to the vehicle, and a radome with a resin cover covering the dual frequency antenna 1 is attached to the antenna base. Is preferred.
Furthermore, in the dual-frequency antenna 1 of the present invention, two different frequency bands are matched by the pattern shape of the first element 11 formed on the front surface of the printed circuit board 10 and the second element 21 formed on the back surface. Therefore, the two-frequency antenna 1 can be reduced in size and cost. Therefore, it is easy to combine with an AM / FM broadcast receiving antenna, a GPS signal receiving antenna, a terrestrial digital broadcast receiving antenna, a DAB (Digital Audio Broadcast) receiving antenna, an SDARS (Satellite Digital Audio Radio) receiving antenna, and the like. Can do.

1 2周波アンテナ
10 プリント基板
11 第1素子
11a スリット
11b テーパ部
12 スルーホール
13 給電点
14 グランド
21 第2素子
21a 給電ライン
DESCRIPTION OF SYMBOLS 1 2 frequency antenna 10 Printed circuit board 11 1st element 11a Slit 11b Tapered part 12 Through hole 13 Feeding point 14 Ground 21 2nd element 21a Feeding line

Claims (4)

2周波で動作する2周波アンテナであって、該2周波アンテナは、
略平面上のグランドと、
前記グランド上に立設される絶縁性の基板と、
前記基板の下端から上部に向けて面状に形成される第1素子と、
前記第1素子の下端に給電するための給電部と、
前記第1素子の下端近傍に配置されるスルーホールと、
前記基板の前記第1素子と重ならない上部に形成される第2素子と、
前記スルーホールから導出され第2素子に給電するための給電ラインと、
を具備することを特徴とする2周波アンテナ。
A two-frequency antenna operating at two frequencies,
A ground on a substantially plane,
An insulating substrate standing on the ground;
A first element formed in a planar shape from the lower end to the upper part of the substrate;
A power feeding unit for feeding power to the lower end of the first element;
A through hole disposed in the vicinity of the lower end of the first element;
A second element formed on an upper portion of the substrate that does not overlap the first element;
A power supply line that is derived from the through hole and supplies power to the second element;
A dual-frequency antenna comprising:
請求項1に記載の2周波アンテナにおいて、前記第1素子の中途から下端に向かってテーパ部が形成されていることを特徴とする2周波アンテナ。   2. The dual-frequency antenna according to claim 1, wherein a tapered portion is formed from the middle of the first element toward the lower end. 請求項1に記載の2周波アンテナにおいて、前記第2素子の両側が第2素子の給電ラインが導出される部位から下方へ折り返されている形状とされており、前記給電ラインが前記第2素子のほぼ中央から引き出されていることを特徴とする2周波アンテナ。   2. The dual-frequency antenna according to claim 1, wherein both sides of the second element are shaped to be folded downward from a portion where a feed line of the second element is led out, and the feed line is the second element. A two-frequency antenna characterized by being pulled out from approximately the center of the antenna. 請求項1に記載の2周波アンテナにおいて、前記第1素子および前記第2素子が、前記基板上に形成されたプリントパターンにより構成されていることを特徴とする2周波アンテナ。   2. The dual-frequency antenna according to claim 1, wherein the first element and the second element are configured by a printed pattern formed on the substrate.
JP2013025875A 2013-02-13 2013-02-13 Dual frequency antenna Active JP5576951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013025875A JP5576951B2 (en) 2013-02-13 2013-02-13 Dual frequency antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013025875A JP5576951B2 (en) 2013-02-13 2013-02-13 Dual frequency antenna

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008133922A Division JP5274102B2 (en) 2008-05-22 2008-05-22 Dual frequency antenna

Publications (2)

Publication Number Publication Date
JP2013085308A JP2013085308A (en) 2013-05-09
JP5576951B2 true JP5576951B2 (en) 2014-08-20

Family

ID=48529962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025875A Active JP5576951B2 (en) 2013-02-13 2013-02-13 Dual frequency antenna

Country Status (1)

Country Link
JP (1) JP5576951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020067253A1 (en) 2018-09-28 2021-08-30 株式会社ヨコオ In-vehicle antenna device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218623A (en) * 2002-01-18 2003-07-31 Ngk Insulators Ltd Antenna system
JP2005229161A (en) * 2004-02-10 2005-08-25 Taiyo Yuden Co Ltd Antenna and radio communication equipment therewith
JP2006340202A (en) * 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd Antenna system and wireless communication device comprising the same

Also Published As

Publication number Publication date
JP2013085308A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US7498990B2 (en) Internal antenna having perpendicular arrangement
JP5274102B2 (en) Dual frequency antenna
US8711039B2 (en) Antenna module and wireless communication apparatus
US7821470B2 (en) Antenna arrangement
JP4913900B1 (en) Antenna device
CN103117452A (en) Novel LTE (long-term evolution) terminal antenna
US11688954B2 (en) Highly-integrated vehicle antenna configuration
US20120182187A1 (en) Thin antenna and an electronic device having the thin antenna
US7391375B1 (en) Multi-band antenna
US20170170555A1 (en) Decoupled Antennas For Wireless Communication
US20070052611A1 (en) Dipole antenna
US9419327B2 (en) System for radiating radio frequency signals
CN104969413A (en) Integrated antenna, and manufacturing method thereof
JP2009055299A (en) Antenna and radio apparatus
JP2013198090A (en) Antenna device
CN210111029U (en) Dual-band antenna and aircraft
KR101523026B1 (en) Multiband omni-antenna
JP5576951B2 (en) Dual frequency antenna
JP5837452B2 (en) Antenna device
US20230253712A1 (en) Antenna device for vehicle
JP5232577B2 (en) Broadband antenna
TWI520443B (en) Monopole antenna
EP4318808A1 (en) Antenna device
CN108428999B (en) Antenna with a shield
JP2004253850A (en) Antenna device and vehicle mounted therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140704

R150 Certificate of patent or registration of utility model

Ref document number: 5576951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250