WO2014003131A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2014003131A1
WO2014003131A1 PCT/JP2013/067687 JP2013067687W WO2014003131A1 WO 2014003131 A1 WO2014003131 A1 WO 2014003131A1 JP 2013067687 W JP2013067687 W JP 2013067687W WO 2014003131 A1 WO2014003131 A1 WO 2014003131A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
flank
cutting
rake face
composition
Prior art date
Application number
PCT/JP2013/067687
Other languages
English (en)
French (fr)
Inventor
佳輝 坂本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/410,572 priority Critical patent/US9643257B2/en
Priority to KR1020147034220A priority patent/KR101758691B1/ko
Priority to EP13808492.6A priority patent/EP2868408B1/en
Priority to JP2014522685A priority patent/JP5956576B2/ja
Priority to CN201380030394.9A priority patent/CN104349855B/zh
Publication of WO2014003131A1 publication Critical patent/WO2014003131A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/24Cutters, for shaping with chip breaker, guide or deflector

Definitions

  • the present invention relates to a cutting tool having a coating layer formed on the surface of a substrate.
  • sintered alloys such as cemented carbide and cermet, high-hardness sintered bodies of diamond and cBN (cubic boron nitride), and ceramics such as alumina and silicon nitride are used as bases for cutting tools. And the cutting tool which formed the coating layer into the surface of these base
  • a coating layer made of a nitride containing Ti or Al as a main component has been actively studied, and improvement has been continued.
  • these cutting tools have been devised in addition to the coating materials.
  • Patent Document 1 and Patent Document 2 disclose a cutting tool in which a surface of a substrate is coated with a coating such as TiAlN by an ion plating method, and an absolute value of a negative bias applied during film formation is determined at the initial stage of film formation. Further, a coating film is described in which the ratio of Ti is increased by the cutting edge rather than the flat portion by increasing the thickness later in the film formation.
  • the present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a cutting tool provided with a coating layer capable of optimizing the composition of the coating layer on the cutting edge and the flank and exhibiting better cutting performance. There is to do.
  • Cr a M 1-a (C 1-x N x ) (where M is Ti, Al, Si, W, Mo, Ta, Hf, Nb, Zr and Y At least one selected from the group consisting of 0.01 ⁇ a ⁇ 0.4 and 0 ⁇ x ⁇ 1), and has a cutting edge at the intersecting ridge line between the rake face and the flank face
  • the Cr content in the coating layer in the cutting blade is higher than the Cr content in the coating layer on the flank.
  • the Cr-containing coating layer covering the surface of the substrate has a configuration in which the cutting blade has a higher Cr content ratio in the coating layer than the flank.
  • FIG. 1 An example of the cutting tool of this invention is shown, (a) is a schematic perspective view, (b) is XX sectional drawing of (a). It is a principal part enlarged view about an example of the coating layer of the cutting tool of FIG. It is a figure for demonstrating the calculation method of a curvature angle.
  • FIG. 1 (a) is a schematic perspective view, and (b) is an XX cross-sectional view of (a), which is a preferred embodiment example of the cutting tool of the present invention.
  • a cutting tool 1 has a rake face 3 on a main surface, a flank face 4 on a side face, and a cutting edge 5 on a cross ridge line between the rake face 3 and the flank face 4.
  • a coating layer 6 is provided.
  • the main surface opposite to the rake surface 3 is a seating surface 8.
  • the coating layer 6 is Cr a M 1-a (C 1-x N x ) (where M is at least one selected from Ti, Al, Si, W, Mo, Ta, Hf, Nb, Zr and Y, 0.01 ⁇ a ⁇ 0.4, 0 ⁇ x ⁇ 1).
  • the cutting blade 5 has a higher Cr content in the coating layer 6 than the Cr content in the coating layer 6 on the flank 4.
  • the Cr content ratio in the coating layer 6 gradually increases from the flank 4 toward the cutting edge 5.
  • the specific composition of the coating layer 6 on the rake face 3, the flank face 4 and the cutting edge 5 is Cr a M 1-a (C 1-x N x ) (where M is Ti, Al, Si, At least one selected from W, Mo, Ta, Hf, Nb, Zr and Y, 0.01 ⁇ a ⁇ 0.4, 0 ⁇ x ⁇ 1).
  • M is Ti, Al, Si, At least one selected from W, Mo, Ta, Hf, Nb, Zr and Y, 0.01 ⁇ a ⁇ 0.4, 0 ⁇ x ⁇ 1).
  • a (metallic Cr composition ratio) when a (metallic Cr composition ratio) is smaller than 0.01, the oxidation resistance and lubricity of the coating layer 6 are lowered.
  • a (metallic Cr composition ratio) is larger than 0.4, the wear resistance of the coating layer 6 is lowered.
  • a particularly desirable range for a is 0.04 ⁇ a ⁇ 0.15.
  • M is at least one selected from Ti, Al, Si, W, Mo, Ta, Hf, Nb, Zr, and Y, but when containing at least one of Ti, Al, Si, Nb, Mo, and W Hardness can be increased and wear resistance is excellent. Among these, when M contains Ti, Al, Nb or Mo, the oxidation resistance at high temperature is excellent. Therefore, for example, the progress of crater wear in high-speed cutting can be suppressed.
  • the coating layer 6 has a high oxidation start temperature and high oxidation resistance, and can reduce internal stress, and has high fracture resistance.
  • the coating layer 6 has high hardness and high adhesion to the substrate 2. Therefore, the coating layer 6 is excellent in wear resistance and fracture resistance even under severe cutting conditions such as processing difficult-to-cut materials, dry cutting, and high-speed cutting.
  • b (Ti composition ratio) when b (Ti composition ratio) is 0.2 or more, the crystal structure of the coating layer 6 is changed from cubic to hexagonal and the hardness is not lowered, and the wear resistance is high.
  • b (Ti composition ratio) When b (Ti composition ratio) is 0.8 or less, the coating layer 6 has high oxidation resistance and heat resistance.
  • a particularly desirable range of b is 0.4 ⁇ b ⁇ 0.5.
  • c (Al composition ratio) is 0.6 or less, the crystal structure of the coating layer 6 becomes cubic, and the hardness does not decrease without changing from cubic to hexagonal.
  • a particularly desirable range for c is 0.45 ⁇ c ⁇ 0.52.
  • d Nb composition ratio
  • e W composition ratio
  • the coating layer 6 may contain at least one selected from Si, Mo, Ta, Hf, Zr and Y at a content ratio in the coating layer 6 of less than 5 atomic%. Good.
  • C and N which are non-metallic components of the coating layer 6 are excellent in hardness and toughness required for the cutting tool.
  • x (N composition ratio) is 0 ⁇ x ⁇ 1. Within this range, both the wear resistance and fracture resistance of the coating layer 6 are high. Among them, it is desirable that 0.9 ⁇ x ⁇ 1.
  • the composition of the coating layer 6 can be measured by an electron beam microanalyzer (EPMA) or an X-ray photoelectron spectroscopy (XPS).
  • the cutting blade 5 has a higher Cr content in the coating layer 6 than the Cr content in the coating layer 6 on the rake face 3.
  • the Cr content ratio in the coating layer 6 gradually increases from the rake face 3 toward the cutting edge 5. This suppresses welding of the work material on the cutting edge 5 of the coating layer 6 and improves toughness. As a result, chipping of the cutting blade 5 can be suppressed.
  • the rake face 3 has a high hardness, and the progress of crater wear on the rake face 3 can be suppressed.
  • the coating layer 6 includes a first coating layer 6a containing Cr and a second coating layer 6b not containing Cr. And a multilayer structure in which two layers are alternately laminated. As a result, it is possible to suppress cracks from progressing in the coating layer 6 and to increase the hardness of the entire coating layer 6 and improve the wear resistance.
  • the composition of the coating layer 6 is represented by the whole composition.
  • the analysis region of the composition analysis is measured by an electron beam microanalyzer (EPMA) or the like in the range of the entire thickness of the coating layer 6 including each layer.
  • EPMA electron beam microanalyzer
  • a sample to be deposited is rotated on a side surface of the inner wall of the chamber of the deposition apparatus, with targets having different compositions arranged at regular intervals. However, it can be produced by forming a film.
  • the Cr content ratio in the composition of the coating layer 6 on the rake face 3 is higher than the Cr content ratio in the composition of the coating layer 6 on the flank face 4.
  • the range of the cutting edge 5 when specifying the composition and thickness of the coating layer 6 is defined as a region having a width of 500 ⁇ m from the intersecting ridge line of the rake face 3 and the flank face 4. Therefore, the range of the rake face 3 is a region extending from the center of the rake face 3 such as the main surface of the cutting tool 1 to the position of 500 ⁇ m from the intersecting ridge line that is the terminal end of the cutting edge 5, and the range of the flank face 4 is This is a region extending from the center of the flank 4 such as the side surface of the cutting tool 1 to the position of 500 ⁇ m from the intersecting ridge line that is the end of the cutting edge 5.
  • composition of the coating layer 6 on the rake face 5, in the above-mentioned composition formula Cr a Ti b Al c Nb d W e (C 1-x N x), 0.01 ⁇ a ⁇ 0.3,0.23 ⁇ b ⁇ 0.78, 0 ⁇ c ⁇ 0.6, 0 ⁇ d ⁇ 0.25, 0 ⁇ e ⁇ 0.25, a + b + c + d + e 1, 0 ⁇ x ⁇ 1).
  • the ratio (tc / tf) between the thickness tf of the flank 4 of the coating layer 6 and the thickness tc of the coating layer 6 of the cutting edge 5 is 1.10 to 3.00.
  • the thickness tf of the flank 4 of the coating layer 6 is thicker than the thickness tr of the rake face 3. Thereby, the wear resistance of the flank 4 is improved, and the tool life can be extended.
  • the ratio (tf / tr) between the thickness tf of the coating layer 6 on the flank 4 and the thickness tr of the coating layer 6 on the rake surface 3 is 1.50 to 3.00.
  • the thickness tf of the covering layer 6 on the flank 4 is measured by measuring the thickness of the covering layer 6 at the center position of the flank 4.
  • the thickness tr of the coating layer 6 on the rake face 3 is the center position of the rake face 3 (however, when the screw mounting hole 9 is provided in the center of the rake face 3 as shown in FIG.
  • the thickness of the covering layer 6 at the position before the mounting hole 9) is measured.
  • the thickness tc of the covering layer 6 at the cutting edge 5 is an imaginary extension of the intersection P of the virtual extension line between the rake face 3 including the covering layer 6 and the flank 4 and the rake face 3 and the flank 4 not including the covering layer 6.
  • the thickness of the covering layer 6 on a straight line passing through the line intersection Q is measured.
  • a plurality of granular substances called droplets 7 exist on the surface and inside of the coating layer 6 as shown in FIG.
  • the average composition of the plurality of droplets 7 present on the rake face 3 is higher in the Cr content ratio than the average composition of the droplets 7 present on the flank face 4.
  • the chips are solid on the rake face due to the presence of the droplets 7, that is, the chips are in a large area without contacting the rake face.
  • the surface of 6 does not become so hot.
  • the rake face 3 has a higher Cr content in the droplets 7 than the flank face 4
  • the droplets 7 present on the rake face 3 have a high lubricity and the cutting fluid is applied to the coating layer 6.
  • the flank 4 sheds and disappears early, and the finished surface state during processing is improved.
  • the Cr content ratio Cr DR of the droplet 7 formed on the rake face 3 of the coating layer 6 is 1.05 relative to the Cr content ratio Cr DF of the droplet 7 formed on the flank face 4.
  • ⁇ Cr DR / Cr DF ⁇ 1.60.
  • the number of the droplets 7 present is 15 to 50, preferably 18 to 30 droplets 7 having a diameter of 0.2 ⁇ m or more in a 10 ⁇ m ⁇ 10 ⁇ m square on the rake face 3.
  • the number of droplets 7 on the rake face 3 is larger than the number of droplets 7 present on the flank face 4. As a result, it is possible to relieve the rake face 3 from becoming hot due to the passage of chips, and to smooth the flank 4 and improve the finished surface quality.
  • the presence ratio of the droplets 7 is 10 ⁇ m ⁇ 10 ⁇ m square, the surface of the coating layer 6 is observed, and the droplets 7 having a diameter of 0.2 ⁇ m or more present in the observation region are specified and counted. And let the average value of the number of the droplets 7 in three places of arbitrary observation area
  • regions be the droplet 7 presence ratio.
  • the composition of the droplets 7 the composition of each droplet 7 is measured by EPMA, and the composition of any 10 droplets 7 having a diameter of 0.2 ⁇ m or more observed in one visual field of 10 ⁇ m ⁇ 10 ⁇ m square. Is the composition of the droplet 7.
  • the Al content ratio Al DR of the droplet 7 formed on the rake face 3 of the coating layer 6 is 1.00 relative to the Al content ratio Al DF of the droplet 7 formed on the flank face 4.
  • a particularly desirable range of the ratio Al DR / Al DF is 1.00 ⁇ Al DR / Al DF ⁇ 1.02.
  • the Ti content ratio Ti DR of the droplet 7 formed on the rake face 3 of the coating layer 6 is 0.91 relative to the Ti content ratio Ti DF of the droplet 7 formed on the flank face 4.
  • ⁇ Ti DR / Ti DF ⁇ 0.97 As a result, both chipping resistance on the rake face 3 and the flank face 4 can be optimized.
  • a particularly desirable range of the ratio Ti DR / Ti DF is 0.94 ⁇ Ti DR / Ti DF ⁇ 0.97.
  • the shape of the cutting tool 1 in FIG. 1 is a simple plate shape in which the main surface is approximately square and the angle with the side surface is 90 °, that is, the clearance angle is 0 ° (for example, ISO 13399 standard CNMA, CNMG).
  • a clearance angle an angle for creating a space between the clearance surface 4 and the work material when cutting, that is, a plane perpendicular to the grounding surface of the seating surface 8 that is grounded to the holder
  • the angle formed by the flank 4 may be a positive shape (for example, an SNKN shape of ISO 13399 standard).
  • the rake face is not a flat face, but may have a shape in which an end portion of the rake face 3 protrudes or a shape provided with a breaker.
  • the warp angle ⁇ is 20 to 50 °, the difference in composition of the coating layer 6 to be formed becomes significant due to the difference in straightness of each element when the coating layer 6 is formed. Therefore, it is easy to control the Cr content ratio in the coating layer 6 in the flank 4 and the cutting edge 5 within a predetermined range.
  • the warp angle ⁇ in the present invention is a cross-section passing through the cutting edge 5 of the cutting tool 1 and the center of the rake face 3, and between the cutting edge 5 (point A) and the rake face 3.
  • It is defined as an angle formed by a straight line L 1 connecting the lowest position (point B) and a straight line L 2 parallel to the ground contact surface that is grounded to the holder of the seating surface 8.
  • the cut is made among the lowest positions.
  • the position at which the blade is closest to the blade is set as a point B, and the warp angle ⁇ is obtained.
  • the warp angle ⁇ is 40 to 50 °
  • the Cr content ratio in the coating layer 6 in the flank 4 and the cutting edge 5 is further easily controlled, and the welding resistance of the cutting tool 1 is improved.
  • the chipping resistance and wear resistance can be further increased.
  • a cemented carbide or a cermet hard alloy comprising a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt or nickel can be suitably used.
  • ultra-high pressure sintering in which a hard phase composed of silicon nitride or aluminum oxide as a main component, a hard phase composed of polycrystalline diamond or cubic boron nitride, and a binder phase such as ceramic or iron group metal is fired under ultra-high pressure.
  • a hard material such as a body is preferably used.
  • a tool-shaped substrate is produced using a conventionally known method.
  • a coating layer is formed on the surface of the substrate.
  • a physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method. Details of an example of the film forming method will be described.
  • PVD physical vapor deposition
  • M metal chromium
  • M predetermined metal M
  • the cutting tool of the said embodiment can be produced by controlling the strength of the magnetic force of this magnet. That is, the magnetic force of the center magnet attached to the target containing Cr is increased, and the magnetic force of the center magnet of the target not containing Cr is reduced. Thereby, the diffusion state of the metal ions generated from each target is changed, and the distribution state of the metal ions existing in the chamber is changed. Note that the diffusion state of each metal ion, that is, the straightness of the metal ion jumping out of the target differs depending on the metal species. As a result, the ratio of each metal in the coating layer formed on the surface of the substrate and the presence state of the droplets can be changed.
  • the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) gas as a carbon source
  • N 2 nitrogen
  • CH 4 methane
  • C 2 H 2 acetylene
  • a coating layer and a droplet are formed by an ion plating method or a sputtering method in which the reaction is performed.
  • the base is set so that the flank face is substantially parallel to the side face of the chamber and the scoop face is substantially parallel to the upper face of the chamber.
  • a film is formed by applying a magnetic force of 2 to 8 T to the center magnet.
  • the magnetic force applied to the center magnet attached to the target containing Cr is set higher than the magnetic force applied to the center magnet attached to the target not containing Cr.
  • a bias voltage of 35 to 200 V is applied in this embodiment in order to produce a coating layer having a high hardness and to improve adhesion to the substrate.
  • tungsten carbide (WC) powder having an average particle diameter of 0.8 ⁇ m, 10% by mass of metallic cobalt (Co) powder having an average particle diameter of 1.2 ⁇ m, and vanadium carbide (VC) powder having an average particle diameter of 1.0 ⁇ m.
  • Chromium carbide (Cr 3 C 2 ) powder of 0.1% by mass and average particle size of 1.0 ⁇ m was added and mixed at a rate of 0.3% by mass, and Kyocera cutting tool BDMT11T308TR-JT shape (warpage) was formed by press molding. It was formed into a throw-away tip shape with a standing angle of 16 ° and a clearance angle of 18 °.
  • This molded body was set in a firing furnace, subjected to binder removal treatment, and fired at 1450 ° C. for 1 hour in a vacuum of 0.01 Pa to produce a cemented carbide. Further, the rake face surface of each sample was polished by blasting, brushing or the like. Further, the prepared cemented carbide was subjected to blade edge processing (honing) by brushing.
  • the center magnet shown in Table 1 was set on the first target not containing Cr and the second target containing Cr on the substrate thus prepared. Then, a bias voltage shown in Table 1 was applied, an arc current shown in Table 1 was applied, and a coating layer having a composition shown in Tables 2 to 3 was formed at a film formation temperature of 540 ° C.
  • the composition of the coating layer was measured by the following method.
  • the rake face, the cutting edge and the flank of the coating layer at any three positions in the coating layer were observed with a scanning electron microscope (SEM), and the rake face was observed with EPMA.
  • SEM scanning electron microscope
  • EPMA EPMA
  • the composition of the coating layer on the cutting edge and flank was analyzed.
  • the average composition of each 3 places about a rake face, a flank, and a cutting edge was described as a composition of the coating layer in each position.
  • the coating layer had a multilayer structure in which layers having a low Cr content and layers having a high Cr content were alternately stacked at intervals of 20 to 100 nm.
  • the number of droplets having a diameter of 0.2 ⁇ m or more in an arbitrary region of 10 ⁇ m ⁇ 10 ⁇ m on the rake face and the flank face was measured by SEM observation, and the average number at five measurement points was calculated.
  • the composition of 10 droplets observed in one field of view was measured by energy dispersive spectroscopy (EDS) (EDAX manufactured by Ametech), and the average value of these was measured for the rake face and flank face drop of the coating layer. Calculated as the average composition.
  • the average content (atomic%) of Cr, Al, Ti for the droplets formed on the rake face is Cr DR , Al DR , Ti DR , respectively, and the droplets formed on the flank are Cr, Al, Ti
  • the average content (atomic%) was expressed as Cr DF , Al DF , and Ti DF , respectively. Furthermore, SEM observation was performed about the cross section containing the coating layer of each sample, and the thickness of the coating layer in each position of a cutting edge, a rake face, and a flank was measured.
  • the rake face composition and thickness tr, the cutting edge composition and thickness tc are shown in Table 2
  • the flank face composition and thickness tf, the ratio tc / tf, and the ratio tf / tr are shown in Table 3.
  • the composition ratio between the number and composition, the composition of the rake face droplet and the composition of the flank droplet is shown in Table 4.
  • Cutting method Milling work material: Carbon steel (S45C) Cutting speed: 200 m / min Feed: 0.1 mm / rev Cutting depth: 2.0mm Cutting state: Dry evaluation method: The cutting tool after processing 500 pieces was observed to confirm the welding state on the cutting edge. Moreover, the number of processes that could be processed before the process became impossible was confirmed, and the wear form on the flank at that time was confirmed.
  • sample No. within the scope of the present invention.
  • the work material was less welded, the wear resistance was excellent, and a smooth machined surface could be processed, and good cutting performance was exhibited.
  • the throw-away tip shape of the throw-away tip of No. 1 is the same as the throw-away tip shapes of the cutting tools LOMU100408ER-SM (LOMU-SM), BDMT11T308ER-JS (BDMT-JS), SEKW120308TN (SEKW) and SEKT1203 (SEKT) manufactured by Kyocera.
  • a substrate was prepared in the same manner as in Example 1 except that the coating layer was changed, and a coating layer was formed. Evaluation of the coating layer and cutting evaluation were performed on the obtained sample in the same manner as in Example 1. The results are shown in Tables 5-8.

Abstract

【課題】耐チッピング性および耐摩耗性に優れた切削工具を提供する。 【解決手段】 基体2の表面に、Cra1-a(C1-xx)(ただし、MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる少なくとも1種、0.01≦a≦0.4、0≦x≦1)からなる被覆層6を被覆してなるとともに、すくい面3と逃げ面4との交差稜線に切刃5を有しており、逃げ面4における被覆層6中のCr含有比率よりも切刃5のほうが被覆層6中のCr含有比率が高い切削工具1である。

Description

切削工具
 本発明は基体の表面に被覆層が成膜されている切削工具に関する。
 現在、切削工具用の基体として、超硬合金やサーメット等の焼結合金、ダイヤモンドやcBN(立方晶窒化硼素)の高硬度焼結体、アルミナや窒化珪素等のセラミックスが用いられている。そして、これら基体の表面に被覆層を成膜した切削工具が使用されている。これらの切削工具においては、被覆層を形成して、耐摩耗性、摺動性または耐欠損性を向上させる手法が使われている。
 また、上記被覆層を形成する方法として、イオンプレーティング法やスパッタリング法等の物理蒸着法が用いられている。被覆層は、TiやAlを主成分とする窒化物からなる被覆層が盛んに研究されており、改良が続けられている。これら切削工具は、切削速度の高速化などの切削環境の変化や被削材の多様化に対応するため、被覆材料以外にも様々な工夫が施されてきている。
 例えば、特許文献1や特許文献2では、イオンプレーティング法にて基体の表面にTiAlN等の被膜を被覆した切削工具が開示され、成膜中に印加する負のバイアスの絶対値を成膜初期よりも成膜後期で高めることによって、Tiの比率を平坦部よりも切刃で多くした被覆膜が記載されている。
特開平01-190383号公報 特開平08-267306号公報
 しかしながら、特許文献1や特許文献2に記載された、切刃におけるTiの比率を高くしたTiAlN膜は、切刃におけるチッピングを十分に抑制することができず、チッピングの発生によって急激に摩耗が進行する場合があった。そのため、工具寿命が安定して延びなかった。
 本発明は上記課題を解決するためのものであり、その目的は、切刃や逃げ面における被覆層の組成を最適化させて、よりよい切削性能を発揮できる被覆層を備えた切削工具を提供することにある。
 本発明の切削工具は、基体の表面に、Cra1-a(C1-xx)(ただし、MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる少なくとも1種、0.01≦a≦0.4、0≦x≦1)からなる被覆層を被覆してなるとともに、すくい面と逃げ面との交差稜線に切刃を有しており、前記逃げ面における前記被覆層中のCr含有比率よりも前記切刃における前記被覆層中のCr含有比率が高いものである。
 本発明の切削工具によれば、基体の表面を覆うCrを含有する被覆層が、逃げ面よりも切刃のほうが被覆層中のCr含有比率が高い構成となっている。これによって、切刃における被削材の溶着を抑制できるとともに、切刃における耐欠損性を高くすることができる。その結果、切刃に生じるチッピングの発生を抑制することができる。しかも、逃げ面における耐摩耗性も高くすることができるために、工具寿命が延びる。
本発明の切削工具の一例を示し、(a)は概略斜視図、(b)は(a)のX-X断面図である。 図1の切削工具の被覆層の一例についての要部拡大図である。 反り立ち角の算出方法を説明するための図である。
 本発明の切削工具についての好適な実施態様例である図1((a)は概略斜視図、(b)は(a)のX-X断面図)を用いて説明する。
 図1によれば、切削工具1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有し、基体2の表面に被覆層6を具備している。すくい面3の反対側の主面は着座面8である。
 被覆層6は、Cra1-a(C1-xx)(ただし、MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる少なくとも1種、0.01≦a≦0.4、0≦x≦1)からなる。
 本実施態様の切削工具1は、逃げ面4における被覆層6中のCr含有比率よりも切刃5のほうが被覆層6中のCr含有比率が高い。また、本実施態様では、逃げ面4から切刃5に向かって次第に被覆層6中のCr含有比率が高くなっている。これによって、切刃5における被削材の溶着を抑制できるとともに、切刃5における耐欠損性が高くすることができる。その結果、切刃5に生じるチッピングの発生を抑制することができるとともに、逃げ面4における耐摩耗性を高くすることができる。
 ここで、すくい面3、逃げ面4および切刃5における被覆層6の具体的な組成は、Cra1-a(C1-xx)(ただし、MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる少なくとも1種、0.01≦a≦0.4、0≦x≦1)からなる。被覆層6において、a(金属Cr組成比率)が0.01よりも小さいと被覆層6の耐酸化性および潤滑性が低下する。a(金属Cr組成比率)が0.4よりも大きいと被覆層6の耐摩耗性が低下する。aの特に望ましい範囲は0.04≦a≦0.15である。
 MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる1種以上であるが、中でもTi、Al、Si、Nb、MoおよびWの1種以上を含有すると硬度を高めることができ、耐摩耗性に優れる。中でも、MがTi、Al、NbまたはMoを含有すると高温での耐酸化性に優れる。そのために、例えば、高速切削におけるクレータ摩耗の進行を抑制できる。
 また、本実施態様における被覆層6のより具体的な組成を例示すると、CraTibAlcNbde(C1-xx)(0.01≦a≦0.4、0.2≦b≦0.8、0≦c≦0.6、0≦d≦0.25、0≦e≦0.25、a+b+c+d+e=1、0≦x≦1)である。被覆層6がこの組成範囲になることによって、被覆層6は酸化開始温度が高くなって耐酸化性が高く、かつ内在する内部応力を低減することができて耐欠損性が高い。しかも、被覆層6は硬度および基体2との密着性も高い。そのため、被覆層6は難削材の加工や乾式切削、高速切削等の過酷な切削条件であっても耐摩耗性および耐欠損性に優れている。
 すなわち、b(Ti組成比率)が0.2以上であると、被覆層6の結晶構造が立方晶から六方晶へ変化して硬度が低下することなく、耐摩耗性が高い。b(Ti組成比率)が0.8以下であると、被覆層6の耐酸化性および耐熱性が高い。bの特に望ましい範囲は0.4≦b≦0.5である。また、c(Al組成比)が0.6以下であると被覆層6の結晶構造が立方晶となり、立方晶から六方晶に変化せず硬度が低下することがない。cの特に望ましい範囲は0.45≦c≦0.52である。さらに、d(Nb組成比率)が0.25以下であると被覆層6の耐酸化性および硬度が低下することなく耐摩耗性が高い。dの特に望ましい範囲は0.02≦d≦0.22である。e(W組成比率)が0.25以下であると被覆層6の耐酸化性および硬度が低下することなく耐摩耗性が高い。eの特に望ましい範囲は0.02≦e≦0.22である。
 なお、被覆層6中には、上記組成以外に、Si、Mo、Ta、Hf、ZrおよびYから選ばれる少なくとも1種を被覆層6中の含有比率が5原子%未満で含有していてもよい。
 また、被覆層6の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものである。本実施態様では、x(N組成比率)は0≦x≦1である。この範囲であれば、被覆層6の耐摩耗性および耐欠損性がともに高い。中でも、0.9≦x≦1であることが望ましい。ここで、本発明によれば、上記被覆層6の組成は、電子線マイクロアナライザー(EPMA)またはX線光電子分光分析法(XPS)にて測定できる。
 本実施態様においては、すくい面3における被覆層6中のCr含有比率よりも切刃5のほうが被覆層6中のCr含有比率が高い。特に、本実施態様においては、すくい面3から切刃5に向かって次第に被覆層6中のCr含有比率が高くなっている。これによって、被覆層6の切刃5における被削材の溶着が抑制されるとともに靭性が向上する。その結果、切刃5のチッピングが抑制できる。しかも、すくい面3においては硬度が高くなり、すくい面3のクレータ摩耗の進行を抑制することができる。
 また、本実施態様においては、図2(被覆層6の一例についての要部拡大図)に示すように、被覆層6がCrを含む第1被覆層6aとCrを含まない第2被覆層6bとの2層が交互に積層された多層構成となっている。これによって、被覆層6内にクラックが進展することを抑制することができ、かつ被覆層6全体が高硬度化して、耐摩耗性が向上する。なお、被覆層として、組成の異なる2種類以上の多層構成からなる被覆層を用いる場合、被覆層6の組成は全体組成で表わす。具体的には、電子線マイクロアナライザー(EPMA)等によって組成分析の分析領域を各層が含まれる被覆層6の全体厚みの範囲で測定する。また、上記多層構成の被覆層6を形成するには、例えば、成膜装置のチャンバの内壁側面に、組成の異なるターゲットを一定の間隔をあけて配置した状態で、成膜する試料を回転させながら成膜することによって作製することができる。
 本実施態様では、逃げ面4における被覆層6の組成におけるCrの含有比率よりもすくい面3における被覆層6の組成におけるCrの含有比率が高い。これによって、すくい面3における潤滑性が向上して、すくい面3におけるクレータ摩耗を抑制できるとともに切屑排出性が向上する。また、逃げ面4における硬度が高くなり、逃げ面の摩耗を抑制できる。
 また、本発明において、被覆層6の組成や厚みを特定する際の切刃5の範囲は、すくい面3と逃げ面4との交差稜線から500μm幅の領域と定義する。したがって、すくい面3の範囲は、切削工具1の主面等のすくい面3の中央から切刃5の終端である交差稜線から500μmの位置までに亘る領域であり、逃げ面4の範囲は、切削工具1の側面等の逃げ面4の中央から切刃5の終端である交差稜線から500μmの位置までに亘る領域である。
 なお、本実施態様において、切刃5における被覆層6の組成は、上記組成式CraTibAlcNbde(C1-xx)において、0.02≦a≦0.4、0.24≦b≦0.8、0≦c≦0.56、0≦d≦0.25、0≦e≦0.25、a+b+c+d+e=1、0≦x≦1)である。また、逃げ面4における被覆層6の組成は、上記組成式CraTibAlcNbde(C1-xx)において、0.015≦a≦0.35、0.24≦b≦0.79、0≦c≦0.58、0≦d≦0.25、0≦e≦0.25、a+b+c+d+e=1、0≦x≦1)である。すくい面5における被覆層6の組成は、上記組成式CraTibAlcNbde(C1-xx)において、0.01≦a≦0.3、0.23≦b≦0.78、0≦c≦0.6、0≦d≦0.25、0≦e≦0.25、a+b+c+d+e=1、0≦x≦1)である。
 さらに、本実施態様では、被覆層6の逃げ面4における厚みtfと切刃5における被覆層6の厚みtcとの比(tc/tf)が1.10~3.00である。これによって、切刃5における耐チッピング性と逃げ面4における耐摩耗性とのバランスを保って、工具寿命を長くすることができる。
 ここで、本実施態様では、被覆層6の逃げ面4における厚みtfが、すくい面3における厚みtrよりも厚い。これによって、逃げ面4の耐摩耗性が向上し、工具寿命を延ばすことができる。本実施態様では、逃げ面4における被覆層6の厚みtfとすくい面3における被覆層6の厚みtrとの比(tf/tr)が1.50~3.00である。なお、逃げ面4における被覆層6の厚みtfは、逃げ面4の中央の位置における被覆層6の厚みを測定する。すくい面3における被覆層6の厚みtrは、すくい面3の中央の位置(ただし、図1(a)のようにすくい面3の中央にねじ取付け穴9が設けられている場合には、ねじ取付け穴9の手前の位置)おける被覆層6の厚みを測定する。切刃5における被覆層6の厚みtcは、被覆層6を含むすくい面3と逃げ面4との仮想延長線の交点Pと被覆層6を含まないすくい面3と逃げ面4との仮想延長線の交点Qとを通る直線上の被覆層6の厚みを測定する。
 また、本実施態様では、被覆層6の表面および内部には、図1(b)に示すように、ドロップレット7と呼ばれる粒状物質が複数存在する。そして、本実施態様では、すくい面3に存在する複数のドロプレット7の平均組成は逃げ面4に存在するドロップレット7の平均組成に比べてCrの含有比率が高い構成となっている。
 この構成によれば、切削時にすくい面3上を切屑が通過してもドロップレット7の存在によって切屑がすくい面にベタ当たりする、すなわち切屑が広い面積ですくい面に接触することなく、被覆層6の表面がさほど高温になることがない。しかも、すくい面3のほうが逃げ面4に比べてドロップレット7中のCrの含有比率が高いので、すくい面3上に存在するドロップレット7の潤滑性が高く、かつ切削液を被覆層6の表面に保液する効果も発揮する。また、逃げ面4においてはドロップレット7中のCrの含有割合が低くて脆いために、早期に脱粒して消滅してしまい、加工時の仕上げ面状態が改善される。
 なお、本実施態様では、被覆層6のすくい面3に形成されるドロップレット7のCr含有比率CrDRは逃げ面4に形成されるドロップレット7のCr含有比率CrDFに対して1.05≦CrDR/CrDF≦1.60である。これによって、すくい面3および逃げ面4における耐摩耗性をともに最適化できる。
 また、本実施態様において、存在するドロップレット7の数は、すくい面3における10μm×10μm四方で直径が0.2μm以上のドロップレット7が15~50個、望ましくは18~30個である。これによって、切屑の通過による発熱を緩和することができる。また、本実施態様では、すくい面3におけるドロップレット7の数が逃げ面4に存在するドロップレット7の数よりも多い。これによって、すくい面3が切屑の通過によって高温になることを緩和するとともに、逃げ面4を滑らかにして仕上げ面品位を向上できる。なお、ドロップレット7の存在割合は、10μm×10μm四方で被覆層6の表面を観察し、観察領域の中に存在する直径が0.2μm以上のドロップレット7を特定してその数を数える。そして、任意の観察領域の3箇所におけるドロップレット7の数の平均値をドロップレット7の存在割合とする。また、ドロップレット7の組成については、各ドロップレット7の組成をEPMAにて測定し、10μm×10μm四方の1視野に観察される直径が0.2μm以上のドロップレット7の任意10個の組成の平均値をドロップレット7の組成とする。
 また、本実施態様において、被覆層6のすくい面3に形成されるドロップレット7のAl含有比率AlDRは逃げ面4に形成されるドロップレット7のAl含有比率AlDFに対して1.00≦AlDR/AlDF≦1.10である。これによって、すくい面3および逃げ面4における耐摩耗性をともに最適化できる。比率AlDR/AlDFの特に望ましい範囲は1.00≦AlDR/AlDF≦1.02である。さらに、本実施態様において、被覆層6のすくい面3に形成されるドロップレット7のTi含有比率TiDRは逃げ面4に形成されるドロップレット7のTi含有比率TiDFに対して0.91≦TiDR/TiDF≦0.97である。これによって、すくい面3および逃げ面4における耐チッピング性をともに最適化できる。比率TiDR/TiDFの特に望ましい範囲は0.94≦TiDR/TiDF≦0.97である。
 ここで、図1における切削工具1の形状は、主面が概略四角形で側面とのなす角度が90°、すなわち逃げ角が0°の単純な板状(例えば、ISO 13399規格のCNMA、CNMG)であるが、本発明はこれに限定されるものではない。例えば、逃げ角(切削加工する際に逃げ面4と被削材との間に空間を作るための角度、すなわち、着座面8のうちのホルダに接地される接地面に対して垂直な平面と逃げ面4とのなす角)が正のポジティブ形状(例えば、ISO 13399規格のSNKN形状)であってもよい。また、すくい面が平坦面でなく、すくい面3の端部が突出した形状やブレーカが設けられた形状であってもよい。特に、反り立ち角θが20~50°である場合には、被覆層6を成膜する際に各元素の直進性の差によって、成膜される被覆層6の組成の差が顕著になるので、逃げ面4および切刃5における被覆層6中のCr含有比率が所定の範囲内に制御しやすい。なお、本発明における反り立ち角θとは、図3に示すように、切削工具1の切刃5とすくい面3の中心とを通る断面において、切刃5(点A)とすくい面3のうちの最も低い位置(点B)とを結ぶ直線L1と、着座面8のうちのホルダに接地される接地面に平行な直線L2とのなす角度と定義する。そして、図3(b)のように、すくい面3のうちの最も低い位置が複数存在する(図3(b)では直線状に無数に存在する)場合には、最も低い位置の中で切刃に最も近い位置を点Bとして、反り立ち角θを求める。本実施態様では、反り立ち角θが40~50°である場合には、逃げ面4および切刃5における被覆層6中のCr含有比率がさらに制御しやすく、切削工具1の耐溶着性、耐欠損性、耐摩耗性をより高めることができる。
 基体2としては、炭化タングステンや炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの硬質合金が好適に使用できる。他にも、窒化ケイ素や酸化アルミニウムを主成分とするセラミックス、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相とセラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。
 (製造方法)
 次に、本発明の切削工具の製造方法について説明する。
 まず、工具形状の基体を従来公知の方法を用いて作製する。次に、基体の表面に、被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細について説明する。被覆層をアークイオンプレーティング法で作製する場合には、金属クロム(Cr)、および所定の金属M(ただし、MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる少なくとも1種以上)をそれぞれ独立に含有する金属ターゲット、複合化した合金ターゲットまたは焼結体ターゲットを用い、チャンバの側壁面位置にセットする。
 このとき、ターゲットの周囲には、ターゲットの裏面の中央側に位置するようにセンター磁石が設置されている。本発明によれば、この磁石の磁力の強さを制御することによって、上記実施態様の切削工具を作製することができる。すなわち、Crを含有するターゲットに併設されるセンター磁石の磁力を強くし、Crを含有しないターゲットのセンター磁石の磁力を弱くする。これによって、各ターゲットから発生する金属イオンの拡散状態を変えて、チャンバ内に存在する金属イオンの分布状態を変化させる。なお、各金属イオンの拡散状態、すなわちターゲットから飛び出した金属イオンの直進性は、金属種によって異なっている。その結果、基体の表面に成膜される被覆層中の各金属の比率、およびドロップレットの存在状態を変化させることができる。
 これらのターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N2)ガスや炭素源のメタン(CH4)/アセチレン(C22)ガスと反応させるイオンプレーティング法またはスパッタリング法によって被覆層およびドロップレットを成膜する。このとき、基体のセット位置は逃げ面がチャンバの側面とほぼ平行に、かつすくい面がチャンバの上面とほぼ平行な向きにセットする。この時、センター磁石には2~8Tの磁力を印加して成膜する。また、Crを含有するターゲットに併設されるセンター磁石に印加する磁力を、Crを含有しないターゲットに併設されるセンター磁石に印加する磁力よりも高くして成膜する。
 なお、上記被覆層を成膜する際には、高硬度な被覆層を作製できるとともに基体との密着性を高めるために、本実施態様では、35~200Vのバイアス電圧を印加する。
 平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.1質量%、平均粒径1.0μmの炭化クロム(Cr32)粉末を0.3質量%の割合で添加し混合して、プレス成形により京セラ製切削工具BDMT11T308TR-JT形状(反り立ち角16°、逃げ角18°)のスローアウェイチップ形状に成形した。この成形体を焼成炉にセットし、脱バインダ処理を施し、0.01Paの真空中、1450℃で1時間焼成して超硬合金を作製した。また、各試料のすくい面表面をブラスト加工、ブラシ加工等によって研磨加工した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニング)を施した。
 このようにして作製した基体に対して、Crを含有しない第1ターゲット、Crを含有する第2ターゲットに対して表1に示すセンター磁石をセットした。そして、表1に示すバイアス電圧を印加し、表1に示すアーク電流をそれぞれ流し、成膜温度540℃として表2~3に示す組成の被覆層を成膜した。なお、被覆層の組成は下記方法にて測定した。
 得られた試料に対して、被覆層の表面から、すくい面、切刃および逃げ面の被覆層の各位置の任意3箇所を走査型電子顕微鏡(SEM)にて観察し、EPMAにてすくい面、切刃及び逃げ面における被覆層の組成を分析した。被覆層の組成については、すくい面、逃げ面および切刃についての各3箇所の平均組成を各位置における被覆層の組成として表記した。なお、いずれの試料においても、被覆層はCr含有量の少ない層とCr含有量の多い層とが20~100nm間隔で交互に積層された多層構造となっていた。
 また、SEM観察にて、すくい面および逃げ面の10μm×10μmの任意領域における直径0.2μm以上のドロップレットの個数を測定し、測定箇所5箇所における平均個数を算出した。さらに、1視野に観察されるドロップレット各10個の組成をエネルギー分散分光分析(EDS)(アメテック社製EDAX)によって測定し、これらの平均値を被覆層のすくい面および逃げ面のドロップレットの平均組成として算出した。表中、すくい面に形成されたドロップレットについてCr,Al,Tiの平均含有量(原子%)をそれぞれCrDR、AlDR、TiDR、逃げ面に形成されたドロップレットについてCr,Al,Tiの平均含有量(原子%)をそれぞれCrDF、AlDF、TiDFと表記した。さらに、各試料の被覆層を含む断面についてSEM観察を行い、切刃、すくい面および逃げ面の各位置における被覆層の厚みを測定した。すくい面組成と厚みtr、切刃組成と厚みtcについては表2に、逃げ面組成と厚みtf、比tc/tf、比tf/trについては表3に、すくい面および逃げ面のドロップレットの個数と組成、すくい面のドロップレットの組成と逃げ面のドロップレットの組成との組成比については表4に示した。
 次に、得られたスローアウェイチップを用いて以下の切削条件にて切削試験を行った。結果は表4に示した。
切削方法:ミリング加工
被削材 :炭素鋼(S45C)
切削速度:200m/分
送り  :0.1mm/rev
切り込み:2.0mm
切削状態:乾式
評価方法:500個加工後の切削工具を観察して切刃における溶着状態を確認した。また、加工不能となるまでに加工できた加工数を確認し、そのときの逃げ面における摩耗形態を確認した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4に示す結果より、切刃と逃げ面との被覆層のCr含有比率が同じ試料No.9、および、切刃よりも逃げ面において被覆層のCr含有比率が高い試料No.8では、切刃において溶着が発生しやすく、かつ、逃げ面における耐摩耗性が低下して早期に摩耗が進行した。
 これに対して、本発明の範囲内である試料No.1~7では、いずれも被削材の溶着が少なく、耐摩耗性に優れるとともに平滑な加工面に加工できて良好な切削性能を発揮した。
 実施例1の試料No.1のスローアウェイチップにおいて、スローアウェイチップの形状を、京セラ製切削工具LOMU100408ER-SM(LOMU-SM)、BDMT11T308ER-JS(BDMT-JS)、SEKW120308TN(SEKW)およびSEKT1203(SEKT)のスローアウェイチップ形状に変える以外は実施例1と同様にして基体を作製し、被覆層を成膜した。得られた試料に対して、実施例1と同様に、被覆層の評価および切削評価を行った。結果は表5~8に示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表5~8に示す結果より、反り立ち角が43°、25°の試料No.10、11は、試料No.1に比べて被削材の溶着がさらに少なく、耐摩耗性がよく、平滑な加工面に加工できた。また、反り立ち角が0°に近い試料No.12、No.13は、試料No.1に比べて被削材の耐溶着性、耐摩耗性が低下する傾向にあった。
 1 切削工具
 2 基体
 3 すくい面
 4 逃げ面
 5 切刃
 6 被覆層
 7 ドロップレット
 8 着座面

Claims (6)

  1.  基体の表面に、Cra1-a(C1-xx)(ただし、MはTi、Al、Si、W、Mo、Ta、Hf、Nb、ZrおよびYから選ばれる少なくとも1種、0.01≦a≦0.4、0≦x≦1)からなる被覆層を被覆してなるとともに、すくい面と逃げ面との交差稜線に切刃を有しており、前記逃げ面における前記被覆層中のCr含有比率よりも前記切刃における前記被覆層中のCr含有比率が高い切削工具。
  2.  前記すくい面における前記被覆層中のCr含有比率よりも前記切刃における前記被覆層中のCr含有比率が高い請求項1記載の切削工具。
  3.  前記被覆層が、Crを含む第1被覆層とCrを含まない第2被覆層との2層以上の多層からなる請求項1または2記載の切削工具。
  4.  前記逃げ面における前記被覆層の厚みtfと前記切刃における前記被覆層の厚みtcとの比(tc/tf)が1.10~3.00である請求項1乃至3のいずれか記載の切削工具。
  5.  前記逃げ面における前記被覆層中のCrの含有比率よりも前記すくい面における前記被覆層中のCrの含有比率が高い請求項1乃至4のいずれか記載の切削工具。
  6.  前記すくい面において、着座面に対する前記切刃の反り立ち角が20~50°である請求項1乃至5のいずれか記載の切削工具。
PCT/JP2013/067687 2012-06-27 2013-06-27 切削工具 WO2014003131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/410,572 US9643257B2 (en) 2012-06-27 2013-06-27 Cutting tool
KR1020147034220A KR101758691B1 (ko) 2012-06-27 2013-06-27 절삭 공구
EP13808492.6A EP2868408B1 (en) 2012-06-27 2013-06-27 Cutting tool
JP2014522685A JP5956576B2 (ja) 2012-06-27 2013-06-27 切削工具
CN201380030394.9A CN104349855B (zh) 2012-06-27 2013-06-27 切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012144360 2012-06-27
JP2012-144360 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014003131A1 true WO2014003131A1 (ja) 2014-01-03

Family

ID=49783266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067687 WO2014003131A1 (ja) 2012-06-27 2013-06-27 切削工具

Country Status (6)

Country Link
US (1) US9643257B2 (ja)
EP (1) EP2868408B1 (ja)
JP (1) JP5956576B2 (ja)
KR (1) KR101758691B1 (ja)
CN (1) CN104349855B (ja)
WO (1) WO2014003131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579728B2 (en) 2012-12-27 2017-02-28 Kyocera Corporation Cutting tool
WO2018124111A1 (ja) * 2016-12-26 2018-07-05 京セラ株式会社 切削インサート

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136515B (zh) * 2015-09-26 2019-08-30 京瓷株式会社 棒状体及切削工具
RU2639189C1 (ru) * 2017-03-10 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ получения многослойного покрытия для режущего инструмента
US11167356B2 (en) 2017-09-27 2021-11-09 Kyocera Corporation Coated tool and cutting tool including same
US11471948B2 (en) 2017-09-27 2022-10-18 Kyocera Corporation Coated tool and cutting tool including same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190383A (ja) 1988-01-22 1989-07-31 Taito Corp スロットマシン
JPH0280559A (ja) * 1988-07-23 1990-03-20 Toni Leyendecker 耐摩耗被覆膜及びその形成方法
JPH08267306A (ja) 1995-04-04 1996-10-15 Mitsubishi Materials Corp 硬質層被覆切削工具およびその製造方法
JPH1177409A (ja) * 1997-09-09 1999-03-23 Toshiba Tungaloy Co Ltd スローアウェイチップ
JP2010179458A (ja) * 1999-02-17 2010-08-19 Oerlikon Trading Ag Truebbach 切削工具および工具セットの保護被覆方法
JP2010188512A (ja) * 2009-01-21 2010-09-02 Kyocera Corp 切削工具
WO2011065540A1 (ja) * 2009-11-27 2011-06-03 京セラ株式会社 切削インサートおよび切削工具、並びにそれを用いた切削加工物の製造方法
WO2011122553A1 (ja) * 2010-03-29 2011-10-06 京セラ株式会社 切削工具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226670B2 (en) * 2003-04-28 2007-06-05 Oc Oerlikon Balzers Ag Work piece with a hard film of AlCr-containing material, and process for its production
DE102004010285A1 (de) * 2004-03-03 2005-09-29 Walter Ag Beschichtung für ein Schneidwerkzeug sowie Herstellungsverfahren
WO2006046498A1 (ja) * 2004-10-29 2006-05-04 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具
US20090130434A1 (en) * 2006-03-28 2009-05-21 Kyocera Corporation Surface Coated Tool
US7960016B2 (en) * 2007-03-23 2011-06-14 Oerlikon Trading Ag, Truebbach Wear resistant hard coating for a workpiece and method for producing the same
CN101855035B (zh) * 2007-10-12 2013-03-27 日立工具股份有限公司 被覆有硬质被膜的部件及其制造方法
JP5241538B2 (ja) * 2009-01-27 2013-07-17 京セラ株式会社 切削工具
US8586214B2 (en) 2010-03-29 2013-11-19 Kyocera Corporation Cutting tool
EP2623241B1 (en) * 2010-09-29 2017-11-08 Kyocera Corporation Cutting tool
EP2737967B1 (en) 2011-07-25 2017-02-01 Kyocera Corporation Cutting tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190383A (ja) 1988-01-22 1989-07-31 Taito Corp スロットマシン
JPH0280559A (ja) * 1988-07-23 1990-03-20 Toni Leyendecker 耐摩耗被覆膜及びその形成方法
JPH08267306A (ja) 1995-04-04 1996-10-15 Mitsubishi Materials Corp 硬質層被覆切削工具およびその製造方法
JPH1177409A (ja) * 1997-09-09 1999-03-23 Toshiba Tungaloy Co Ltd スローアウェイチップ
JP2010179458A (ja) * 1999-02-17 2010-08-19 Oerlikon Trading Ag Truebbach 切削工具および工具セットの保護被覆方法
JP2010188512A (ja) * 2009-01-21 2010-09-02 Kyocera Corp 切削工具
WO2011065540A1 (ja) * 2009-11-27 2011-06-03 京セラ株式会社 切削インサートおよび切削工具、並びにそれを用いた切削加工物の製造方法
WO2011122553A1 (ja) * 2010-03-29 2011-10-06 京セラ株式会社 切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868408A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579728B2 (en) 2012-12-27 2017-02-28 Kyocera Corporation Cutting tool
WO2018124111A1 (ja) * 2016-12-26 2018-07-05 京セラ株式会社 切削インサート

Also Published As

Publication number Publication date
JPWO2014003131A1 (ja) 2016-06-02
JP5956576B2 (ja) 2016-07-27
KR20150023350A (ko) 2015-03-05
EP2868408B1 (en) 2018-08-29
US9643257B2 (en) 2017-05-09
CN104349855B (zh) 2016-10-05
EP2868408A4 (en) 2016-02-24
CN104349855A (zh) 2015-02-11
EP2868408A1 (en) 2015-05-06
US20150328690A1 (en) 2015-11-19
KR101758691B1 (ko) 2017-07-18

Similar Documents

Publication Publication Date Title
JP5542925B2 (ja) 切削工具
JP4975193B2 (ja) 切削工具
EP2554303B1 (en) Cutting tool
JP5174292B1 (ja) 切削工具
JP5956576B2 (ja) 切削工具
JP5883161B2 (ja) 切削工具
WO2012043459A1 (ja) 切削工具
CN112770858B (zh) 硬质包覆层发挥优异的耐崩刃性的表面包覆切削工具
WO2014129530A1 (ja) 切削工具
JP5922546B2 (ja) 切削工具
JP5713663B2 (ja) 切削工具
JP2014144506A (ja) 切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522685

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147034220

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013808492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14410572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE