WO2014002731A1 - Front-surface plate for tactile sensor - Google Patents

Front-surface plate for tactile sensor Download PDF

Info

Publication number
WO2014002731A1
WO2014002731A1 PCT/JP2013/065812 JP2013065812W WO2014002731A1 WO 2014002731 A1 WO2014002731 A1 WO 2014002731A1 JP 2013065812 W JP2013065812 W JP 2013065812W WO 2014002731 A1 WO2014002731 A1 WO 2014002731A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
layer
insulating layer
front plate
high resistance
Prior art date
Application number
PCT/JP2013/065812
Other languages
French (fr)
Japanese (ja)
Inventor
健輔 藤井
佐藤 浩二
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014522515A priority Critical patent/JP6076342B2/en
Publication of WO2014002731A1 publication Critical patent/WO2014002731A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a front plate for a tactile sensor provided on the front surface of a touch panel display device equipped with a so-called tactile sensor that feeds back a tactile sensation to a user's fingertip.
  • a touch panel display device including a touch panel display that performs an operation by directly touching the touch panel with a finger or the like is used.
  • a touch panel display device used as an input device or an input / output device can freely configure an input screen by software. Therefore, the touch panel display device has flexibility that cannot be obtained by an input device configured using a mechanical switch. Since it can be compactly configured and has many advantages such as low frequency of mechanical failure, it is now widely used from operation panels of various relatively large machines to very small portable device input / output devices. It's being used.
  • the fingertip of the user operating the touch panel touches only a flat and smooth surface to be touched. Therefore, the click feeling felt by the fingertip when operating an input device configured using a mechanical switch. As described above, there is no feedback to the user by touch, which makes the operation feeling of the device unreliable.
  • a touch panel display device provided with a so-called tactile sensor that feeds back a tactile sensation to the fingertip of the user who operates it has been proposed (for example, see Patent Document 1).
  • a tactile sensation is generated by a user by vibrating the surface of the touch panel in contact with the fingertip of the user.
  • Non-Patent Document 1 discloses a touch panel in which a transparent electrode laminated on a glass substrate is covered with an insulating layer.
  • the voltage and frequency are controlled in a pattern that can reproduce the tactile sensation to be expressed, and the touch panel is touched from a control unit (not shown). It is configured to charge the front plate 101 by energizing a transparent electrode (not shown) of the main body 100 and accumulating charges induced on the front plate 101 side in the layer 103 formed on the transparent substrate 102. Yes.
  • the sensory receptor X such as a finger is brought into contact with the surface of the front plate 101 in such a charged state, the sensory receptor as a tactile sensation such as a concavo-convex sensation by a weak electrostatic force acting between the two via the insulating layer 104. It is configured to be detected by X.
  • the state of charge based on the voltage and frequency sent from the control unit is accurately prevented without interfering with the operation of the transparent electrode provided on the touch panel body.
  • the layer 103 for accumulating charges is required to precisely control the resistance value within a predetermined range.
  • a layer containing a predetermined metal oxide as a main component such as niobium oxide or titanium oxide, is used.
  • the layer 103 made of such a metal oxide generally has a refractive index of about 1.8 to 2.5, whereas the insulating layer 104 provided on the upper surface thereof has a refractive index of 1. Since it is about 3 to 1.6, a difference in refractive index tends to occur between them. Therefore, as shown in FIG. 2, reflected light L1 is generated at the interface between the layer 103 and the insulating layer 104, and this reflected light L1 interferes with the reflected light L2 on the surface of the front plate 101. A phenomenon called interference fringes exhibiting a rainbow hue may occur.
  • the front plate is provided on the front surface of the touch panel body on which an image is projected, from the viewpoint of ensuring visibility, it suppresses the occurrence of white clouding on the front plate surface and is high with respect to light in the visible light range. It is also required to have optical transparency.
  • the present invention has been made in order to solve the above-described problems.
  • the sensor accuracy sensed by tactile sensation is good, the deterioration of the appearance due to interference fringes is suppressed, the light transmittance is high, and the visibility is excellent.
  • An object is to provide a front plate for a tactile sensor.
  • the front plate for a tactile sensor of the present invention is a front plate for a tactile sensor in which a high resistance layer and an insulating layer having electrical insulation are laminated in this order from the transparent substrate side on a transparent substrate,
  • the high resistance layer has a surface resistance value of 1 to 100 M ⁇ / ⁇ , a refractive index of 1.8 to 2.5, and a thickness of 5 to 50 nm.
  • the insulating layer has a refractive index of 1.3 to 1. 6.
  • the thickness is 0.5 to 15 ⁇ m
  • the surface roughness Ra of the surface of the transparent substrate on the high resistance layer side is 0.05 to 0.5 ⁇ m
  • the front surface plate for the tactile sensor is on the insulating layer side
  • the surface roughness Ra of the surface is 0.05 ⁇ m or less.
  • the insulating layer is preferably composed of a layer mainly composed of an organic resin. Moreover, it is preferable that the said high resistance layer consists of a layer which has a metal oxide as a main component. Moreover, it is preferable that a barrier layer is interposed between the transparent substrate and the high resistance layer. Moreover, it is preferable that the said insulating layer is arrange
  • the sensor accuracy sensed by tactile sense is good,
  • FIG. 2 is a schematic cross-sectional view showing a state in which external light is incident on the tactile sensor front plate shown in FIG.
  • FIG. 4 is a schematic cross-sectional view showing a state in which the touch sensor front plate shown in FIG. 3 is stacked above the touch panel body.
  • the typical sectional view showing another example of the front board for touch sensors of the present invention.
  • FIG. 1 The figure which shows the spectral reflectance of the front plate for touch sensors of Example 1.
  • FIG. 3 The figure which shows the spectral reflectance of the front plate for touch sensors of Example 3.
  • FIG. 3 is a schematic cross-sectional view showing an example of a front plate for a tactile sensor according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing a part thereof enlarged
  • FIG. 5 is a front view for the tactile sensor. It is typical sectional drawing which shows the state which laminated
  • 6 and 7 are schematic cross-sectional views showing another example and still another example of the front plate for a tactile sensor according to the embodiment of the present invention, respectively.
  • a high resistance layer 3 and an insulating layer 4 are laminated in this order on a transparent substrate 2.
  • the front plate 1 for the tactile sensor has a surface resistance value of the high resistance layer 3 of 1 to 100 M ⁇ / ⁇ , a refractive index of 1.8 to 2.5, a thickness of 5 to 50 nm, and a refractive index of the insulating layer 4. 1.3 to 1.6, the thickness is 0.5 to 15 ⁇ m, the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is 0.05 to 0.5 ⁇ m, and the front plate for a tactile sensor The surface roughness Ra of the surface on the insulating layer 4 side of 1 is 0.05 ⁇ m or less.
  • “refractive index” refers to a refractive index measured using a light beam having a wavelength of 550 nm at 20 ° C. unless otherwise specified.
  • the “surface roughness Ra” is the arithmetic average roughness Ra, and the value of the arithmetic average roughness Ra is defined in JIS B0601 (1994) 3 “Definition of defined arithmetic average roughness. And display ".
  • the “thickness” of each layer in the present specification is a thickness obtained by measuring with a stylus type surface roughness measuring machine.
  • the “surface on the insulating layer 4 side of the front plate 1 for tactile sensor” refers to the surface of the outermost layer on the insulating layer side of the front plate for tactile sensor.
  • the surface on the insulating layer 4 side of the front panel 1 for the touch sensor is a functional layer constituting the outermost layer, for example, FIG. 6 is a surface S5 including the water repellent layer 6 of the front plate 1 for the touch sensor.
  • the “surface on the insulating layer 4 side of the front plate 1 for tactile sensor” means the surface opposite to the surface S4 on the transparent substrate 2 side of the front plate 1 for tactile sensor, that is, the side on which the touch panel is provided.
  • the surface opposite to the surface see FIG. 5.
  • the surface on the insulating layer side of the front plate for a touch sensor may be referred to as “the surface of the front plate for a touch sensor”.
  • the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is set to 0.05 to 0.5 ⁇ m, for example, in FIG.
  • the reflected light generated at the interface between the insulating layer 104 and the layer 103 and the reflected light generated on the surface of the front plate 101 interfere with each other and the reflected light exhibits a rainbow hue. Interference fringes can be suppressed.
  • the surface roughness Ra of the surface of the front plate 1 for the tactile sensor is set to 0.05 ⁇ m or less, thereby causing white clouding or the like on the surface of the front plate 1.
  • a front plate for a tactile sensor that can suppress a decrease in light transmittance and has excellent visibility can be obtained.
  • the transparent substrate 2 is used without particular limitation as long as the surface roughness Ra of the surface S1 on the high resistance layer 3 side is 0.05 to 0.5 ⁇ m and can transmit light in the visible light region. be able to.
  • the interface S3 on the insulating layer 4 side of the high resistance layer 3 laminated on the transparent substrate 2 usually reflects the shape of the surface S1 of the transparent substrate 2 on the high resistance layer 3 side. Has the shape.
  • the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is 0.05 ⁇ m or more, for example, as shown in FIG. 4, the light L3 incident from the surface S2 of the front plate 1 for tactile sensor is At the interface S3 between the insulating layer 4 and the high resistance layer 3 reflecting the shape of the surface S1 on the high resistance layer 3 side of the transparent substrate 2, the reflected light L4 is generated by being diffusely reflected. Since the reflected light L4 is diffusely reflected light that is reflected in various directions, the reflected light L4 hardly interferes with the reflected light L5 on the surface S2 of the front plate 1 for tactile sensors, and thus the generation of interference fringes is suppressed. The For this reason, it can be set as the tactile sensor front plate 1 having a good appearance without the reflected light exhibiting a rainbow hue.
  • the convex portion is insulated at the interface S3 on the insulating layer 4 side of the high resistance layer 3 reflecting the shape.
  • the front panel 1 for a tactile sensor is used as shown in FIG. 5, a sense of approaching to the surface S2 of the front panel 1 for a tactile sensor is likely to occur.
  • a current based on the charge accumulated in the high resistance layer 3 directly flows into the receptor X.
  • the transparent substrate 2 and the surface S1 of the transparent substrate 2 on the high resistance layer 3 side are directly laminated.
  • the adhesion with the high resistance layer 3 is lowered, and the shape stability as the front plate for the tactile sensor may be lowered.
  • the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is preferably 0.07 to 0.2 ⁇ m, more preferably 0.08 to 0.15 ⁇ m.
  • the transparent substrate 2 include colorless and transparent soda lime silicate glass, aluminosilicate glass (SiO 2 —Al 2 O 3 —Na 2 O glass), lithium aluminosilicate glass, quartz glass, and alkali-free.
  • Glass transparent glass plate made of other various glasses, plastic film consisting of a single layer of plastic material selected from polyethylene terephthalate, polycarbonate, triacetyl cellulose, polyethersulfone, polymethyl methacrylate, cycloolefin polymer, etc.
  • a plastic film such as a laminated film obtained by laminating two or more layers of plastic materials selected from the above can be used.
  • the frost treatment can be performed, for example, by immersing a glass plate, which is an object to be processed, in a mixed solution of hydrogen fluoride and ammonium fluoride and chemically treating the immersion surface.
  • a chemical treatment method for example, a so-called sand blasting method in which crystalline silicon dioxide powder, silicon carbide powder or the like is blown onto the glass plate surface with pressurized air, crystalline silicon dioxide powder, silicon carbide, etc.
  • a method based on physical treatment such as polishing with a brush moistened with water using a brush to which powder or the like is adhered.
  • the method of chemically surface-treating using a chemical solution such as hydrogen fluoride is preferable because microcracks are hardly generated on the surface of the object to be processed, and mechanical strength is not easily lowered.
  • the transparent substrate 2 it is preferable to use a soda lime silicate glass plate from the viewpoint of adhesion with a layer directly provided on the surface S 1 on the high resistance layer 3 side. Further, from the viewpoint of the strength of the transparent substrate 2 itself, it is preferable to use a tempered glass plate (for example, “Dragon Trail (registered trademark)”) obtained by strengthening an aluminosilicate glass plate.
  • a tempered glass plate for example, “Dragon Trail (registered trademark)”
  • the transparent substrate 2 is required to have sufficient strength to withstand a certain amount of pressing force. From such a viewpoint, it is preferable to use as the transparent substrate 2 a tempered glass plate obtained by strengthening an aluminosilicate glass plate.
  • a glass material constituting the aluminosilicate glass plate for example, a glass material having the following composition is used.
  • the composition expressed in mol% is SiO 2 50-50%, Al 2 O 3 1-20%, Na 2 O 6-20%, K 2 O 0-11%, MgO 0-15%.
  • a glass material containing 0-6% CaO and 0-5% ZrO 2 is used as a glass material constituting the aluminosilicate glass plate.
  • a compressive stress layer is formed on the surface of the tempered glass plate obtained by strengthening the aluminosilicate glass plate, and the thickness of the compressive stress layer is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more. Further, the surface compressive stress in the compressive stress layer is preferably 200 MPa or more, and more preferably 550 MPa or more.
  • chemical strengthening treatment is preferable.
  • a method for performing chemical strengthening treatment typically, a method in which an aluminosilicate glass plate is immersed in KNO 3 molten salt, subjected to ion exchange treatment, and then cooled to around room temperature.
  • the processing conditions such as the temperature and immersion time of the KNO 3 molten salt may be set so that the surface compressive stress and the thickness of the compressive stress layer have desired values.
  • the thickness of the transparent substrate 2 is not particularly limited, but when the transparent substrate 2 is composed of the glass plate described above, it is preferably 0.1 to 2 mm, more preferably 0.3 to 1 mm. When the thickness of the transparent substrate 2 is 2 mm or less, the pressing force against the surface of the touch sensor front plate 1 is easily transmitted to the lower panel body, and the operability is good. When the transparent substrate 2 is composed of the above-described plastic film, the thickness is preferably 50 to 500 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the transparent substrate 2 may be composed of a single layer or may be composed of a plurality of layers.
  • the transparent substrate 2 one having a haze value of 5 to 30% is preferably used, and one having a haze value of 10 to 27% is more preferably used.
  • the front plate 1 for a tactile sensor is sufficiently secured to have light transmission as the front plate 1 for a tactile sensor and the occurrence of dielectric breakdown is suppressed. be able to.
  • the haze value of the transparent substrate 2 is set to 5% or more, formation of interference fringes due to reflected light is suppressed, and the front panel 1 for a tactile sensor having a good appearance can be obtained.
  • the haze value is an index of turbidity, and the ratio of the diffuse transmitted light to the total transmitted light, that is, the total transmittance T when the sample is irradiated with light from the light source, and scattered in the sample.
  • the haze value H S / T ⁇ 100 is obtained from the light transmittance S.
  • the high resistance layer 3 is a layer having a surface resistance value of 1 to 100 M ⁇ / ⁇ , a refractive index of 1.8 to 2.5, and a thickness of 5 to 50 nm.
  • the touch sensor front plate 1 is used by being laminated with a touch panel body 5 including a transparent electrode 5a. Lamination is performed such that the surface S4 on the transparent substrate 2 side of the front plate 1 for touch sensor faces the transparent electrode 5a of the touch panel body 5.
  • the high resistance layer 3 in the touch sensor front plate 1 used by being laminated with the touch panel body 5 is induced to the touch sensor front plate 1 side by energizing the transparent electrode 5 a of the touch panel body 5. It functions as a layer for accumulating the accumulated charges.
  • the configuration of the high resistance layer 3 is not particularly limited as long as it is a layer having a surface resistance value, a refractive index, and a thickness in the above ranges.
  • the high resistance layer 3 is a layer provided directly (see FIG. 3) or via another functional layer such as the barrier layer 7 (see FIG. 7) on the surface S1 having the surface roughness Ra in the above range of the transparent substrate 2. It is.
  • the surface S3 of the high resistance layer 3 opposite to the transparent substrate 2 is formed to have a shape that sufficiently reflects the surface shape of the surface S1 of the transparent substrate 2 on the high resistance layer 3 side. Is preferred.
  • a layer containing a metal oxide as a main component for example, a layer containing tin oxide and titanium oxide as main components, or a layer containing niobium oxide and titanium oxide as main components can be suitably used.
  • the layer containing tin oxide and titanium oxide as a main component may contain a composite oxide of tin and titanium.
  • the layer containing niobium oxide and titanium oxide as main components may contain a composite oxide of niobium and titanium.
  • a layer containing a metal oxide as a main component refers to a layer containing a metal oxide at a ratio of 95 mass% or more.
  • the high-resistance layer 3 and the transparent electrode 5a are electrically operated when the transparent electrode 5a of the touch panel body 5 is energized, and the touch panel body 5 It is possible to prevent the operation from being hindered.
  • the surface resistance value of the high resistance layer 3 is preferably 5 to 60 M ⁇ / ⁇ .
  • a layer containing tin oxide and titanium oxide as main components controls the surface resistance value within the above desired range while ensuring good luminous transmittance and low luminous reflectance. Since it is easy, it is used suitably.
  • the refractive index of the high resistance layer 3 is 1.8 to 2.5 as described above.
  • the constituent material of the high resistance layer 3 is required to have a desired resistance value and light transmittance.
  • a constituent material that can satisfy these characteristics usually has a refractive index of 1.8 to 2.5.
  • a more preferable constituent material satisfying the above characteristics is a material having a refractive index of 2.0 to 2.5.
  • the refractive index of the constituent material that can be selected as the high resistance layer 3 from the viewpoint of the resistance value and the light transmittance is limited to the above range, and by adjusting the refractive index of the high resistance layer 3 itself.
  • the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is set to 0.05 to 0.5 ⁇ m so that this shape is insulated from the high resistance layer 3. Reflecting on the interface S3 with the layer 4, the generation of interference fringes is suppressed.
  • the layer containing tin oxide and titanium oxide as main components, or the layer containing niobium oxide and titanium oxide as main components contains tin oxide and titanium oxide or niobium oxide and titanium oxide as main components, and serves as the high resistance layer 3.
  • Other elements such as Al, Si, Ga, and In may be included as long as the function is not impaired.
  • the high resistance layer 3 is a glass plate or plastic film that has been surface-treated so that the surface roughness Ra is in the above range by sputtering such as DC (direct current) sputtering, AC (alternating current) sputtering, and RF (high frequency) sputtering. It can form on the surface treatment surface of the transparent base
  • the sputtering method by DC magnetron sputtering is preferably used because the process is stable and film formation on a large area is easy.
  • DC magnetron sputtering includes pulsed (applying voltage in the form of a pulse wave) DC magnetron sputtering. Pulsed DC magnetron sputtering is effective in preventing abnormal discharge.
  • the high resistance layer 3 includes two or more metal elements such as the above-described layer containing tin oxide and titanium oxide as a main component, and has the desired surface resistance value while having good light transmittance. It is suitable because it is easy to control within the range. For the formation of such a high resistance layer 3, so-called co-sputtering using a plurality of targets made of a single element can be used.
  • a target containing tin as a main component and a target containing titanium as a main component are used.
  • a metal target mainly composed of tin a metal target composed solely of tin, or containing tin as a main component, and a known dopant such as a metal other than tin, for example, Al, Si, or the like, as long as the characteristics of the present invention are not impaired. Doped ones can be used.
  • the metal target containing titanium as a main component a target made of only titanium or a material containing titanium as a main component and doped with a known dopant other than titanium within a range not impairing the characteristics of the present invention can be used. .
  • a target containing niobium as a main component and a target containing titanium as a main component are preferably used.
  • a metal target mainly composed of niobium a metal target composed of niobium alone or a material containing niobium as a main component, and a known dopant such as a metal other than niobium, such as Al and Si, does not impair the characteristics of the present invention. Doped ones can be used.
  • a mixed gas of oxygen gas and inert gas a mixed gas of oxygen gas, nitrogen gas, and inert gas, or the like can be used.
  • the inert gas include rare gases such as helium, neon, argon, krypton, and xenon.
  • argon is preferable from the viewpoint of economy and ease of discharge. These may be used alone or in admixture of two or more.
  • N 2 nitrogen gas
  • N 2 O, NO, NO 2 , NH 3 or the like can be used as the sputtering gas as a gas containing nitrogen atoms.
  • the partial pressure of the gas containing oxygen gas, inert gas, and nitrogen atom in the sputtering gas, and the total pressure of the sputtering gas are not particularly limited, and may be any pressure at which glow discharge is stably performed.
  • the power density is preferably 0.9 to 4 W / cm 2 and more preferably 0.9 to 3 W / cm 2 .
  • the film formation time may be determined according to the film formation speed and the desired film thickness.
  • co-sputtering is performed by discharging each target simultaneously, and a film having a desired composition can be formed by controlling the power density applied to each target and the partial pressure of the sputtering gas. .
  • the high resistance layer 3 is formed by using, for example, a physical vapor deposition method other than a sputtering method such as a vacuum vapor deposition method, an ion beam assisted vapor deposition method or an ion plate method, or a chemical vapor deposition method such as a plasma CVD method. Can also be done. Since it is easy to obtain a uniform film thickness with a large area, a sputtering method is preferably used.
  • the high-resistance layer 3 When the high-resistance layer 3 is a layer containing tin oxide and titanium oxide as main components, the high-resistance layer 3 contains 1 to 30 atomic percent of Ti with respect to the total amount (100 atomic percent) of Sn and Ti. A layer containing 5 to 20 atom% is more preferable. In the case where the high resistance layer 3 is a layer containing niobium oxide and titanium oxide as main components, the high resistance layer 3 has a Ti content of 90 to 99 with respect to the total amount (100 atomic%) of Nb and Ti. A layer containing 0.9 atomic% is preferable, and a layer containing 95 to 99.9 atomic% is more preferable.
  • the atomic ratio in the high resistance layer 3 within the above range, the surface resistance value in the desired range can be easily obtained in the high resistance layer 3, and the refractive index in the desired range can be obtained. it can.
  • the thickness of the high resistance layer 3 is 5 nm or more and 50 nm or less, more preferably 5 nm or more and 30 nm or less. By setting the thickness of the high resistance layer 3 to 5 nm or more, a sufficient charge holding function can be obtained.
  • the thickness of the high resistance layer 3 exceeds 50 nm, the shape of the surface S1 having the surface roughness Ra in the above range in the transparent substrate 2 is the surface opposite to the transparent substrate 2 side of the high resistance layer 3, that is, the insulation. It is not sufficiently reflected on the interface S3 with the layer 4, and the effect of diffusing the reflected light L4 generated at the interface S3 cannot be sufficiently obtained.
  • the front plate 1 for a tactile sensor having a good external appearance with suppressed interference fringes while ensuring a sufficient charge holding function is obtained. Can do.
  • the thickness of the high resistance layer 3 can be appropriately adjusted depending on the film forming speed and the substantial film forming time when performing sputtering.
  • the insulating layer 4 is a layer provided on the upper surface of the high-resistance layer 3 or another layer on the high-resistance layer 3, for example, when used as shown in FIG. 5 for a tactile sensor It has a function of preventing a current based on charges accumulated in the high resistance layer 3 from directly flowing into the sensory receptor X such as a fingertip that touches the surface S2 of the front plate 1.
  • the insulating layer 4 refers to a layer having a volume resistance value of 10 10 ⁇ ⁇ cm or more.
  • the volume resistance value is a value measured according to JIS C2318 (1975).
  • the insulating layer 4 has a refractive index of 1.3 to 1.6, and a more preferable constituent material that can be applied to the insulating layer 4 has a refractive index of 1.4 to 1.6.
  • the insulating layer 4 has a refractive index of 1.3 to 1.6 when a constituent material is selected in consideration of electrical insulation, light transmittance, ease of formation of the insulating layer 4, and the like.
  • the thickness of the insulating layer 4 is in the range of 0.5 to 15 ⁇ m.
  • the insulating layer 4 is not particularly limited as long as it has the above-described refractive index and has a light transmitting property and an electrical insulating property when the layer is formed with a thickness in the above range.
  • a composition for forming an insulating layer (i) containing an ultraviolet curable component and adjusted to satisfy the characteristics of the insulating layer 4 when the layer is formed from the obtained cured product (i) ) Was cured with ultraviolet rays, or (II) containing a thermosetting component, and (I) was adjusted so as to satisfy the characteristics of the insulating layer 4 when a layer was formed from the obtained cured product.
  • a layer made of a cured product obtained by curing the insulating layer forming composition (ii) with heat can be used.
  • the insulating layer forming compositions (i) and (ii) may contain a volatile component such as an organic solvent which volatilizes when forming the layer.
  • the component that actually forms the insulating layer other than the volatile component is referred to as solid content.
  • the solid content may contain a non-curable component in addition to the curable component. Therefore, the “cured product” obtained by curing the insulating layer forming compositions (i) and (ii) is a cured product of a curable component and a non-cured product formed from a solid content contained in the composition.
  • hardenable component is a volatile component such as an organic solvent which volatilizes when forming the layer.
  • the insulating layer 4 is preferably a layer containing an organic resin as a main component. That is, when the insulating layer 4 is made of a cured body as described above, the cured body preferably contains an organic resin as a main component.
  • a layer containing an organic resin as a main component refers to a layer containing an organic resin at a ratio of 95% by mass or more.
  • the organic resin is preferably one or more selected from acrylic resins, epoxy resins, silicone resins and the like. Among these, acrylic resins are particularly preferable. Examples of the acrylic resin include acrylic resin, urethane acrylate resin, epoxy acrylate resin, polyester acrylate, and polyether acrylate.
  • the organic resin used for the insulating layer 4 may be a cured product of an ultraviolet curable component or a cured product of a thermosetting component.
  • the organic resin is preferably a cured product of an ultraviolet curable component. Therefore, the ultraviolet curable component contained in the insulating layer forming composition (i) is preferably a component that is cured to become an organic resin, particularly an acrylic resin.
  • the thermosetting component contained in the insulating layer forming composition (ii) may be a component that is cured to become an organic resin, and has a main skeleton due to a siloxane bond by curing such as organosilane. It may be a component that gives a cured product.
  • the components in the insulating layer forming composition (i) and the insulating layer forming composition (ii) and the method for forming the insulating layer 4 using the composition will be described.
  • the insulating layer forming composition (i) is cured by curing, using as an example a component containing an organic resin, particularly an acrylic resin.
  • a component containing an organic resin particularly an acrylic resin.
  • Examples of the insulating layer forming composition (i) include the following ultraviolet curable polymerizable compound (A) (hereinafter referred to as “polymerizable compound (A)”), ultraviolet absorber (B) and light. What contains a polymerization initiator (C) can be used.
  • A ultraviolet curable polymerizable compound
  • B ultraviolet absorber
  • C What contains a polymerization initiator
  • the polymerizable compound (A) may be a monomer or a (co) oligomer or pre (co) polymer in which one or more of them are polymerized as long as they have ultraviolet curing properties. Good.
  • At least a part of the polymerizable compound (A) is a polyfunctional polymerizable compound (a-1) having two or more acryloyl groups or methacryloyl groups in one molecule (hereinafter referred to as polymerizable compound (a-1)). .).
  • a (meth) acrylol group is used as a term meaning both polymerizable functional groups of an acryloyl group and a methacryloyl group. The same applies to terms such as (meth) acrylate and (meth) acrylic acid.
  • an acryloyl group is preferred because of its high polymerizability, particularly high polymerizability by ultraviolet rays. Accordingly, preferred compounds having the (meth) acryloyl group are compounds having an acryloyl group. Similarly, in (meth) acrylate, (meth) acrylic acid and the like, a compound having an acryloyl group is preferable. In one molecule of a compound having two or more (meth) acryloyl groups, the polymerizable functional group may be different, that is, it may contain one or more acryloyl groups and one or more methacryloyl groups. Are those in which all polymerizable functional groups are acryloyl groups.
  • Examples of the polymerizable compound (A) other than the polymerizable compound (a-1) include a monofunctional polymerizable compound having one (meth) acryloyl group in one molecule (hereinafter referred to as “polymerizable compound (a-2)”). And a polymerizable compound having one or more ultraviolet curable polymerizable functional groups other than (meth) acryloyl groups.
  • the UV-curable polymerizable functional group is a (meth) acryloyl group
  • the UV-curing property is sufficient and it is easily available, so that a polymerizable compound other than the polymerizable compound (a-1) (A ) Is preferably a polymerizable compound (a-2).
  • the polymerizable compound (A) is preferably composed of at least one compound having a (meth) acryloyl group substantially including the polymerizable compound (a-1).
  • all the polymerizable compounds (A) including the polymerizable compound (a-1) are described as compounds having a (meth) acryloyl group, that is, an organic resin obtained by curing is an acrylic resin. To do.
  • the polymerizable compound (A) may be a compound having various functional groups and bonds in addition to the (meth) acryloyl group.
  • it may have a hydroxyl group, a carboxyl group, a halogen atom, a urethane bond, an ether bond, an ester bond, a thioether bond, an amide bond, or the like.
  • a (meth) acryloyl group-containing compound having a urethane bond hereinafter referred to as “acrylic urethane”
  • acrylic urethane a (meth) acrylic acid ester compound having no urethane bond
  • the polymerizable compound (a-2) is usually a compound having no urethane bond, but the polymerizable compound (a-2) is not limited to a compound having no urethane bond.
  • the polymerizable compound (a-1) may or may not have a urethane bond.
  • the average number of (meth) acryloyl groups per molecule of the polymerizable compound (a-1) is not particularly limited, but is preferably 2 to 50, and more preferably 2 to 30.
  • Acrylic urethane is a reaction between a compound having a (meth) acryloyl group and a hydroxyl group and a compound having an isocyanate group, a compound having a (meth) acryloyl group and an isocyanate group and a (meth) acryloyl group and having two or more hydroxyl groups Or a compound having a (meth) acryloyl group and a hydroxyl group and a compound having two or more isocyanate groups (hereinafter referred to as “polyisocyanate”). And a hydroxyl group-containing compound.
  • Two or more (meth) acryloyl groups, hydroxyl groups and isocyanate groups may be present in each molecule in each of the above-mentioned compounds which are raw materials for acrylic urethane.
  • a hydroxyl group may be present but an isocyanate group is preferably absent.
  • hydroxyl-containing compound a high molecular weight polyol, a hydroxyl-containing vinyl polymer, etc. are mentioned compared with a polyhydric alcohol or a polyhydric alcohol. These hydroxyl group-containing compounds may be used alone or in combination of two or more.
  • a preferred acrylic urethane as the polymerizable compound (a-1) is preferably a reaction product of a hydroxyl group-containing (poly) pentaerythritol poly (meth) acrylate and a polyisocyanate.
  • the (poly) pentaerythritol in the above (poly) pentaerythritol poly (meth) acrylate means a pentaerythritol multimer such as pentaerythritol or dipentaerythritol, or a mixture containing them as a main component.
  • the degree is preferably about 1 to 4, particularly about 1.5 to 3.
  • the poly (meth) acrylate in the (poly) pentaerythritol poly (meth) acrylate is an ester having two or more (meth) acryloyl groups, and an average of about 3 to 6 (meth) acryloyl per molecule. Compounds having a group are preferred.
  • the (poly) pentaerythritol poly (meth) acrylate used for producing the acrylic urethane has an average of about 1 or more hydroxyl groups per molecule.
  • the average number of (meth) acryloyl groups per molecule in the acrylic urethane which is a reaction product of the hydroxyl group-containing (poly) pentaerythritol poly (meth) acrylate and polyisocyanate is 4 or more, particularly 8 to 20 preferable.
  • the polymerizable compound (a-1) containing no urethane bond is preferably a (meth) acrylate of a hydroxyl group-containing compound or a (meth) acrylic acid adduct of a polyepoxide.
  • the hydroxyl group-containing compound include polyhydric alcohols and high molecular weight polyols as described above.
  • Specific examples of the polymerizable compound (a-1) not containing a urethane bond include the following compounds.
  • 1,3-butanediol di (meth) acrylate ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, triglycerol di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythrito
  • (Meth) acrylate of polyhydric alcohol or polyhydric phenol having the following aromatic nucleus or triazine ring Bis (2- (meth) acryloyloxyethyl) bisphenol A, bis (2- (meth) acryloyloxyethyl) bisphenol S, bis (2- (meth) acryloyloxyethyl) bisphenol F, tris (2- (meth) acryloyl) Oxyethyl) isocyanurate, bisphenol A di (meth) acrylate.
  • EO represents ethylene oxide
  • PO represents propylene oxide
  • [] represents the molecular weight of the polyoxyalkylene polyol.
  • Carboxylic acid ester and phosphoric acid ester having the following (meth) acryloyl group.
  • the following compounds are similarly applied to the term “modification” in the alkenyl etherified product, carboxylic acid esterified product and the like of the above (meth) acrylates and compounds having an unreacted hydroxyl group.
  • a preferable example of the polymerizable compound (a-1) which is a polyester having no urethane bond and having two or more (meth) acryloyl groups is (poly) pentaerythritol poly (meth) acrylate as described above.
  • (poly) pentaerythritol poly (meth) acrylate is a compound having an average of two or more (meth) acryloyl groups per molecule, and may or may not have a hydroxyl group.
  • the degree of multimerization of the (poly) pentaerythritol moiety is preferably about 1 to 4, and more preferably 1.5 to 3.
  • poly pentaerythritol poly (meth) acrylate is (poly) pentaerythritol poly (meth) acrylate in which substantially all hydroxyl groups of (poly) pentaerythritol are converted to (meth) acryloyloxy groups.
  • the monofunctional polymerizable compound having one (meth) acryloyl group per molecule as the polymerizable compound (a-2) may have a functional group such as a hydroxyl group or an epoxy group.
  • a preferred polymerizable compound (a-2) is (meth) acrylic acid ester, that is, (meth) acrylate.
  • polymerizable compound (a-2) examples include the following compounds. Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) Acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, 1,4- (Meth) acrylic acid adducts of butylene glycol mono (meth) acrylate, ethoxyethyl (meth) acrylate, and
  • polymerizable compounds (a-1) are compounds having 2 to 3 (meth) acryloyl groups, and the other one or more are compounds having a large number of (meth) acryloyl groups.
  • the former polymerizable compound (a-1) is preferably a compound having two (meth) acryloyl groups.
  • the total ratio of the polymerizable compound (a-1) in the polymerizable compound (A) is preferably 20 to 100% by mass, particularly preferably 50 to 100% by mass, and further preferably 70 to 100% by mass. When the ratio of the polymerizable compound (a-1) is within this range, the scratch resistance is sufficient.
  • the ultraviolet absorber (B) is composed of a polymerizable ultraviolet absorber (b-1).
  • the entire amount is usually composed of the polymerizable ultraviolet absorber (b-1).
  • the ratio of the polymerizable ultraviolet absorber (b-1) to 100 parts by mass of the polymerizable compound (A) is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more.
  • the upper limit is preferably 50 parts by mass, and more preferably 30 parts by mass.
  • the ultraviolet absorber (B) By using this polymerizable ultraviolet absorber (b-1), even if a relatively large amount of the ultraviolet absorber (B) is blended in the insulating layer forming composition (i), the ultraviolet absorber (B) The effect of not significantly reducing the bleeding or scratch resistance on the surface is exhibited.
  • polymerizable ultraviolet absorber (b-1) one or more selected from the following polymerizable benzophenone compounds and polymerizable benzotriazole compounds can be used.
  • ultraviolet absorber (b-1) an ultraviolet absorber other than the polymerizable ultraviolet absorber (b-1) can be used in combination as the ultraviolet absorber (B), it is not preferable to use a large amount.
  • ultraviolet absorbers other than the polymerizable ultraviolet absorber (b-1) include non-polymerizable ultraviolet absorbers (hereinafter referred to as “ultraviolet absorber (b-2)”).
  • the ratio of the UV absorber other than the polymerizable UV absorber (b-1) in the UV absorber (B) is not particularly limited, but is preferably 0 to 80% by mass, particularly 0 to 0% in the total UV absorber (B). 50 mass% is preferable.
  • the content of the ultraviolet absorber other than the polymerizable ultraviolet absorber (b-1) in the insulating layer forming composition (i) is preferably 20 parts by mass or less with respect to 100 parts by mass of the polymerizable compound (A). 10 parts by mass or less is more preferable.
  • the total content of the ultraviolet absorber (B) is preferably 0.1 to 50 parts by mass, more preferably 1 to 100 parts by mass of the polymerizable compound (A). To 30 parts by mass. Although it varies depending on the thickness of the resulting cured body, that is, the insulating layer, if it is 0.1 parts by mass or more, the weather resistance of the insulating layer itself is good, and if it is 50 parts by mass or less, the entire amount is polymerized. Even if it consists only of the photosensitive ultraviolet absorber (b-1), the curability of the coating film is good and the physical properties are excellent.
  • the polymerizable benzophenone compound is a compound having at least one organic group having a (meth) acryloyl group (hereinafter referred to as “(meth) acryloyl-containing group”) and at least one benzophenone skeleton.
  • the polymerizable benzophenone compound preferably has one or more hydroxyl groups on at least one of the two benzene rings of the benzophenone skeleton in addition to the (meth) acryloyl-containing group. This hydroxyl group may exist in the benzene ring to which the (meth) acryloyl-containing group is bonded, or may exist in another benzene ring. This hydroxyl group is preferably present at the 2-position of the benzophenone skeleton.
  • the polymerizable benzophenone compound there is usually one (meth) acryloyl-containing group.
  • two or more (meth) acryloyl-containing groups may be present, in which case they may be present only in one of the two benzene rings or may be present in both benzene rings.
  • the hydroxyl group is preferably present in the benzene ring in which the (meth) acryloyl-containing group is present.
  • one or more other substituents may be present on the two benzene rings. Examples of the substituent include hydrocarbon groups such as alkyl groups, alkoxy groups, halogens. Atoms are preferred. The number of carbon atoms of the hydrocarbon group or alkoxy group is preferably 6 or less.
  • the (meth) acryloyl-containing group is preferably a (meth) acryloyloxy group or an organic group represented by the following formula (1).
  • R represents a hydrogen atom or a methyl group
  • X 1 represents an oxygen atom, —OCONH—, —OCH 2 CH (OH) — or a single bond
  • R 1 represents a divalent hydrocarbon group
  • X 2 represents an oxygen atom, —O — (— COCH 2 CH 2 O—) k — (k is an integer of 1 or more), —NH—, or —CH (OH) CH 2 O—.
  • R is a hydrogen atom
  • X 1 is an oxygen atom or a single bond
  • R 1 is an alkylene group having 1 to 6 carbon atoms
  • X 2 is an oxygen atom.
  • Preferred (meth) acryloyl-containing groups are (meth) acryloyloxy groups, (meth) acryloyloxyalkyl groups, ((meth) acryloyloxy) alkoxy groups, and carbons other than the latter two (meth) acryloyloxy groups.
  • the number is preferably 2-4.
  • Preferred polymerizable benzophenone compounds are 2-hydroxybenzophenones having a (meth) acryloyl-containing group in the hydroxyphenyl group.
  • This compound is represented by the following formula (2).
  • A represents the (meth) acryloyl-containing group as described above
  • R 2 and R 3 represent substituents other than the (meth) acryloyl-containing group as described above.
  • Examples of specific polymerizable benzophenone compounds include the following compounds. 2-hydroxy-4- (meth) acryloyloxybenzophenone, 2-hydroxy-4- (2- (meth) acryloyloxyethoxy) benzophenone, 2-hydroxy-4- (2-acryloyloxypropoxy) benzophenone, 2,2 ′ -Dihydroxy-4- (meth) acryloyloxybenzophenone, 2,2'-dihydroxy-4- (2- (meth) acryloyloxyethoxy) benzophenone.
  • the polymerizable benzotriazole-based compound is preferably a compound having one or more (meth) acryloyl-containing groups and one or more benzotriazole rings.
  • a benzotriazole compound having ultraviolet absorbing ability has a skeleton in which one benzene ring is bonded to the 2-position of the benzotriazole ring, that is, 2-phenylbenzotriazole as a skeleton, and further a hydroxyl group at the 2-position of the phenyl group.
  • the (meth) acryloyl-containing group may be present in the 4 to 8 position of the benzotriazole ring, and is preferably present in the 3 to 6 position of the phenyl group.
  • Two or more (meth) acryloyl-containing groups may be present, and preferably one is present.
  • One or more substituents may be present at positions where the (meth) acryloyl-containing group at positions 4 to 8 of the benzotriazole ring and positions 3 to 6 of the phenyl group is not present.
  • a hydrocarbon group, a hydroxyl group, an alkoxy group, a halogen atom and the like are preferable.
  • the number of carbon atoms of the hydrocarbon group or alkoxy group is preferably 6 or less.
  • the (meth) acryloyl-containing group is preferably a (meth) acryloyloxy group or an organic group represented by the above formula (1). More preferable (meth) acryloyl-containing groups are the (meth) acryloyloxy group, (meth) acryloyloxyalkyl group, ((meth) acryloyloxy) alkoxy group, and the latter two (meth) acryloyl groups as described above.
  • the number of carbon atoms other than the oxy group is preferably 2-4.
  • Preferred polymerizable benzotriazole compounds are 2- (2-hydroxyphenyl) benzotriazoles having a (meth) acryloyl-containing group in the 2-hydroxyphenyl group.
  • This compound is represented by the following formula (3).
  • A represents the (meth) acryloyl-containing group as described above
  • R 4 and R 5 represent substituents other than the (meth) acryloyl-containing group as described above.
  • polymerizable benzotriazole compounds include the following compounds. 2- ⁇ 2-hydroxy-5-((meth) acryloyloxy) phenyl ⁇ benzotriazole, 2- ⁇ 2-hydroxy-3-methyl-5-((meth) acryloyloxy) phenyl ⁇ benzotriazole, 2- ⁇ 2 -Hydroxy-3-t-butyl-5-((meth) acryloyloxy) phenyl ⁇ benzotriazole, 2- ⁇ 2-hydroxy-5- (2- (meth) acryloyloxyethyl) phenyl ⁇ benzotriazole, 2- ⁇ 2-hydroxy-5- (3- (meth) acryloyloxypropyl) phenyl ⁇ benzotriazole, 2- ⁇ 2-hydroxy-3-tert-butyl-5- (2- (meth) acryloyloxyethyl) phenyl ⁇ benzotriazole .
  • UV absorber (b-2) a known or known ultraviolet absorber that is commercially available can be used.
  • UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, salicylic acid UV absorbers, and phenyltriazine UV absorbers. Specific examples include the following compounds.
  • aryl ketone photopolymerization initiators for example, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyldimethylketals, benzoylbenzoates, ⁇ -acyloxime esters), sulfur-containing photopolymerization initiators (eg, sulfides, thioxanthones, etc.), acylphosphine oxides (eg, acyldiarylphosphine oxides), and other photopolymerization initiators.
  • a photoinitiator may be used independently and may use 2 or more types together.
  • the photopolymerization initiator can be used in combination with a photosensitizer such as amines.
  • Specific photopolymerization initiators include the following compounds.
  • the content of the photopolymerization initiator (C) in the insulating layer forming composition (i) is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable compound (A).
  • the composition for forming an insulating layer (i) may contain an appropriate amount of a polymerization inhibitor such as hydroquinone monomethyl ether for the purpose of adjusting the degree of polymerization of the polymerizable component by ultraviolet irradiation.
  • a high molecular weight compound such as an acrylic (co) polymer, an antioxidant, a light stabilizer, a stabilizer such as a thermal polymerization inhibitor, a leveling agent, Defoamers, thickeners, anti-settling agents, pigment dispersants, antifogging agents and other surfactants, near infrared absorbers, and the like may be appropriately blended and used.
  • the adhesion of the insulating layer made of the resulting cured product can be increased, Leveling can be improved.
  • the content of the high molecular weight compound such as an acrylic (co) polymer in the insulating layer forming composition (i) is preferably 20 parts by mass or less with respect to 100 parts by mass of the polymerizable compound (A).
  • colloidal silica (D) may be further blended for the purpose of further improving the scratch resistance of the insulating layer made of the cured product.
  • Colloidal silica (D) is an ultrafine particle of silicic acid colloid dispersed in a dispersion medium composed of water, methanol or the like, and the average particle size of colloidal silica (D) is usually about 1 to 1000 nm, preferably Has an average particle size of 1 to 200 nm, particularly preferably an average particle size of 1 to 50 nm.
  • the colloidal silica (D) has a particle surface modified with a hydrolyzate of a hydrolyzable silane compound in order to improve dispersion stability, that is, a part or all of the silanol groups on the surface of the colloidal silica particle.
  • a silane compound hydrolyzate that is bonded and retained by a condensation reaction and whose surface characteristics are modified.
  • the blending amount (solid content) is 500 parts by mass or less, particularly 300 parts by mass or less, based on 100 parts by mass of the polymerizable compound (A). preferable.
  • blending colloidal silica (D) the compounded effect is exhibited by mix
  • a light stabilizer is preferably added to the insulating layer forming composition (i) in order to improve the stability to light.
  • the light stabilizer is preferably a hindered amine light stabilizer, particularly a hindered amine light stabilizer having a 2,2,6,6-tetramethylpiperidine residue.
  • bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl 1,2, 2,6,6-pentamethyl-4-piperidyl) sebacate, 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6 6-pentamethyl-4-piperidyl) and the like.
  • the blending amount is preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less with respect to 100 parts by mass of the polymerizable compound (A).
  • the fluorine-containing polymerizable compound (e-1) represented by the following formula (4) is added to the water repellent polymerizable compound (i) in the insulating layer forming composition (i). You may mix
  • R 6 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • X 3 represents a divalent organic group having 1 to 6 carbon atoms
  • R f represents a paroxy group having 4 to 6 carbon atoms. Represents a fluoroalkyl group.
  • Examples of the fluorine-containing polymerizable compound (e-1) represented by the above formula (4) include the following.
  • R 7 represents an alkylene group having 1 to 6 carbon atoms
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 9 represents a single bond or an alkylene group having 1 to 4 carbon atoms.
  • X 3 is preferably an alkylene group having 2 to 4 carbon atoms from the viewpoint of availability.
  • fluorine-containing polymerizable compound (e-1) represented by the above formula (4) include perfluorohexylethyl (meth) acrylate and perfluorobutylethyl (meth) acrylate.
  • the polymerizable compound represented by the above formula (4) may be used alone or in combination of two or more.
  • R f is a perfluoroalkyl group having 4 to 6 carbon atoms
  • the fluorine-containing polymerizable compound (e-1) has good compatibility with other components such as the polymerizable compound (A)
  • the coating film of the insulating layer forming composition (i) is cured, the polymers do not aggregate. Therefore, the appearance of the insulating layer 4 as a cured body is good without being clouded, and the adhesion between the insulating layer 4 and its lower layer (for example, the high resistance layer 3) is increased.
  • R f is a perfluoroalkyl group having 4 or more carbon atoms, the water repellency of the insulating layer 4 is good.
  • R f is a perfluoroalkyl group having 6 or less carbon atoms
  • the insulating layer 4 which is a cured body does not become cloudy, and the insulating layer 4 and its lower layer (for example, the high resistance layer 3) ).
  • the insulating layer forming composition (i) may be blended with an organic solvent for the purpose of improving the coating property of the coating film and the adhesion to the lower layer such as the high resistance layer 3.
  • the organic solvent is not particularly limited as long as there is no problem in the solubility of the polymerizable compound (A), the ultraviolet absorber (B), the photopolymerization initiator (C), and other additives, and satisfies the above performance. Anything is acceptable. Moreover, you may use individually and may use 2 or more types of organic solvents together.
  • the content of the organic solvent in the insulating layer forming composition (i) is suitably 100 times or less, particularly 50 times or less, of the polymerizable compound (A).
  • organic solvent examples include organic solvents such as lower alcohols, ketones, ethers, cellosolves and the like.
  • esters such as n-butyl acetate and diethylene glycol monoacetate, halogenated hydrocarbons, hydrocarbons and the like can be used.
  • the insulating layer 4 made of a cured product of the insulating layer forming composition (i) is a surface on the high resistance layer 3 side of the laminate having the high resistance layer 3 on the transparent substrate 2, for example, for the tactile sensor shown in FIG.
  • the insulating layer forming composition (i) containing each of the above components is applied to the upper surface S 3 of the high resistance layer 3 by spin coating, dip coating, flow coating, spray coating, bar coating.
  • a composition containing an organic solvent it is formed by drying and then irradiating it with ultraviolet rays and curing it by a method such as a coating method, a gravure coating method, a roll coating method, a blade coating method or an air knife coating method. be able to.
  • the insulating layer forming composition (i) when the insulating layer forming composition (i) is applied by applying a spin coating method, an insulating layer is formed on the surface of the laminate having the high resistance layer 3 on the transparent substrate 2 on the high resistance layer 3 side.
  • the stage for mounting and fixing the laminate After dropping the composition (i), the stage for mounting and fixing the laminate is rotated at a predetermined number of rotations, so that the composition for forming an insulating layer ( The uniform coating film of i) can be formed.
  • the dropping amount of the composition for forming an insulating layer (i) and the rotation speed of the stage are appropriately selected so that the insulating layer obtained after curing has a film thickness within the range of the present invention. It will be adjusted.
  • the laminate it is preferable to rotate the stage on which is mounted at an initial rotational speed of about 200 to 2000 rpm for about 10 to 15 seconds, and then at a maximum rotational speed of about 2000 to 3000 rpm for about 0.1 to 1 second.
  • the organic solvent can be removed by holding the laminated body after the coating film is formed, for example, at a temperature range of 100 to 150 ° C. for about 10 minutes. preferable.
  • ultraviolet sources used for ultraviolet irradiation include xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, carbon arc lamps and tungsten lamps.
  • the irradiation time and irradiation intensity of ultraviolet irradiation are appropriately changed according to the conditions such as the type of the polymerizable compound (A), the type of the ultraviolet absorber (B), the type of the photopolymerization initiator (C), the film thickness, and the ultraviolet ray source. Can be done. Usually, the object is achieved by irradiation for about 1 to 60 seconds. Further, for the purpose of completing the curing reaction, heat treatment can be performed after the irradiation with ultraviolet rays.
  • the irradiation time and irradiation intensity of ultraviolet irradiation are appropriately adjusted so that, for example, the energy integrated value of irradiation light is about 500 to 2000 mJ / cm 2 and the peak value of irradiation intensity is 100 to 500 mW / cm 2. Is preferred.
  • the insulating layer 4 is formed by applying and curing the insulating layer forming composition (i) as described above on the upper surface S3 of the high-resistance layer 3 made of a layer containing, for example, a metal oxide as a main component.
  • silane coupling agents For the surface treatment for improving adhesion, for example, the following silane coupling agents can be used.
  • a composition obtained by mixing the above silane coupling agent with an organic solvent such as lower alcohols, ketones, ethers, cellosolves, etc. is applied to the upper surface S3 of the high resistance layer 3 by spin coating or dipping. It can be performed by applying and drying by a coating method, a flow coating method, a spray coating method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method or the like.
  • a laminate having the high resistance layer 3 is prepared on the transparent substrate 2, and the upper surface S3 of the high resistance layer 3 is prepared.
  • the stage on which the laminate is placed and fixed is rotated at a predetermined number of revolutions, so that the upper surface S3 of the high resistance layer 3 of the laminate is provided.
  • a thin film of a composition containing a silane coupling agent can be formed and an adhesion treatment can be performed.
  • the rotation of the stage on which the stacked body is placed it is preferable that the initial rotation speed is 500 rpm to 1500 rpm for about 5 to 15 seconds, and then the maximum rotation speed is 1500 rpm to 2500 rpm for 0.1 to 1 second.
  • the composition used for the adhesion treatment contains an organic solvent, it is preferable to remove the organic solvent by holding the laminate after the adhesion treatment at 100 to 150 ° C. for about 30 minutes.
  • the insulating layer forming composition (ii) is not particularly limited as long as it can obtain a light-transmitting cured product after heat curing.
  • colloidal silica (f-1) and the following formula (5) Those comprising an aqueous / organic solvent dispersion (F) containing a solid component comprising a partial condensate (f-2) of an organoalkoxysilane represented by the formula (1) can be suitably used.
  • the aqueous / organic solvent dispersion refers to an embodiment in which solid components are dispersed in an aqueous medium and / or an organic solvent.
  • organoalkoxysilane for example, one represented by the following formula (5) can be used.
  • R 10 is a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • R 11 is a monovalent hydrocarbon group or hydrogen group having 1 to 6 carbon atoms
  • a is an integer of 0 to 2
  • R 10 and R 11 are preferably alkyl groups having 1 to 4 carbon atoms.
  • the organoalkoxysilane included within the scope of the above formula (5) is preferably methyltrimethoxysilane, methyltrihydroxysilane, or a mixture thereof, which can form a partial condensate (f-2). Is.
  • examples of the organotrialkoxysilane included in the range of the formula (5) include tetraethoxysilane, ethyltriethoxysilane, diethyldiethoxysilane, tetramethoxysilane, methyltrimethoxysilane, and dimethyldimethoxy. Examples include silane.
  • aqueous / organic solvent dispersion (F) for example, those shown in US Pat. No. 3,986,997 of Clark can be used.
  • aqueous / organic solvent dispersion (F) in addition to those described above, for example, U.S. Pat. Nos. 3,986,997, 4,624,870, 4,680,232, and Those shown in US Pat. No. 4,914,143 can be used.
  • the aqueous / organic solvent dispersion (F) can be produced by adding a trialkoxysilane such as methyltrimethoxysilane to the aqueous / organic solvent dispersion of colloidal silica.
  • a trialkoxysilane such as methyltrimethoxysilane
  • examples of such an aqueous / organic solvent dispersion of colloidal silica include “Ludox HS” (manufactured by DuPont) and “Nalco” 1034A (manufactured by Nalco Chemical Co.).
  • OSCAL trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.
  • organosilica sol trade name, manufactured by Nissan Chemical Industries, Ltd.
  • aqueous / organic solvent dispersion of colloidal silica (f-1) for example, those shown in Ubersax US Pat. No. 4,177,315 can be used.
  • the organoalkoxysilane partial condensate (f-2) is preferably composed of a mixture of various organoalkoxysilane partial condensates.
  • the aqueous / organic solvent dispersion (F) itself (that is, the combination of colloidal silica (f-1) and organoalkoxysilane partial condensate (f-2)) usually has a solid content of about 10% to 50% by mass. %, Preferably about 15% to 25% by weight of the solid content.
  • composition for forming an insulating layer (ii) is generally used to improve the adhesion to the coated surface, for example, the surface S3 of the high resistance layer 3 on the side opposite to the transparent substrate 2, so that the organoalkoxysilane, colloidal silica ( It is preferable to mix the adhesion promoter (G) with the aqueous / organic solvent dispersion (F) containing f-1) and a sufficient amount of alcohol.
  • adhesion promoter (G) for example, (meth) acrylate esters described in US Pat. No. 5,411,807 can be used.
  • the (meth) acrylate ester for example, a commercially available Tone monomer from Union Carbide Coating Resins may be used as the adhesion promoter (G). .
  • caprolactone (meth) acrylate can be suitably used as the adhesion promoter (G).
  • (Meth) acrylate ester is usually used in an amount of about 1 to 20 parts by mass based on 100 parts by mass of resin solids.
  • the (meth) acrylate ester is preferably used in an amount of about 3 to 8 parts by mass based on 100 parts by mass of the resin solid content.
  • polyester polyol can be used as other than the above.
  • polyester polyol for example, a caprolactone-based polyester polyol described in US Pat. No. 5,349,002 can be used.
  • caprolactone-based polyester polyols are difunctional or trifunctional, and for example, those commercially available as Tone polyols from Union Carbide can be used.
  • Tone polyols for example, “Tone 0200 diol” (trade name, manufactured by Union Carbide), “Tone 0301 Triol” (trade name, manufactured by Union Carbide), “Tone 0310 Triol” (trade name, Union Carbide) Carbide) and the like can be used.
  • Tone polyol and various things from which said molecular weight, a hydroxy value, melting
  • polyester polyol other than the caprolactone-based polyester polyol urethane-modified polyester polyol or silicone-modified polyester polyol can be used.
  • the polyester polyol can be usually used in an amount of about 1 to 10 parts by mass based on 100 parts by mass of the resin solid content.
  • acrylic urethane can be used as other than the above.
  • acrylic urethane for example, those described in US Pat. No. 5,503,935 can be used.
  • Acrylic urethanes typically have a molecular weight in the range of about 400-1500, generally have semi-solid or viscous properties, and can be added directly to the aqueous / organic solvent dispersion (F).
  • acrylic urethane examples include, for example, “Actylane CB-32” (trade name, manufactured by SNPE® Chimie (France)) and “Ebecryl 8804” (trade name, Radcure Specialties). (Radcure Specialties) 40sha (Louisville, Kent.), Etc., such as “M-407” (trade name, Echo Resins & Laboratory) etc. it can. “M-407” is an adduct of isophorone diisocyanate and 2-hydroxyethyl methacrylate and has a molecular weight of about 482.
  • Acrylic urethane can be usually used in an amount of about 1 to 15 parts by mass based on 100 parts by mass of resin solids.
  • an acrylic copolymer (g-1) having a reactive site or an interactive site and having a number average molecular weight of about 1000 to about 10,000 can be used as a material other than the above.
  • the acrylic copolymer (g-1) usually thermosetting
  • a preferred acrylic copolymer (g-1) has a hydroxyl group as a reactive site or interaction site, a hydroxy value in the range of about 30 to 160, an acid value of less than about 4, and about It has a number average molecular weight of 1000 to 10,000.
  • Examples of the acrylic copolymer (g-1) are those described in Mark et al., “Encyclopedia of Polymer Science and Engineering, Vol. 4 (published by John Wiley & Sons, 1986)”, pages 374-375. These can be synthesized by radical polymerization of various comonomers.
  • the acrylic copolymer (g-1) is K.K. J. et al. As described in “Organic Polymer Chemistry” (issued by Chapman Hall (London), 1973) by Saunders, the copolymer has a combination of suitable properties by using a plurality of types of monomers. can do.
  • the acrylic copolymer (g-1) when a monomer such as acrylonitrile or methyl methacrylate is used, generally, the acrylic copolymer (g-1) is given hardness, and a single amount such as ethyl acrylate or 2-ethylhexyl acrylate. When the body is used, the acrylic copolymer (g-1) is given flexibility. Further, by using a monomer such as dimethylaminoethyl methacrylate or acrylic acid, a reactive site suitable for polymerization is usually provided.
  • the acrylic copolymer (g-1) as the adhesion promoter (G) may contain an amino group, a carboxyl group, an amide bond, an epoxy group, a hydroxyl group, or an acyloxy group.
  • acrylic copolymer (g-1) examples include, for example, an acrylic polyol “Joncry (trademark)” (trade name, manufactured by BASF), an acryloid acrylic resin (Rohm and Haas ( Rohm and Haas Company) can be used as the adhesion promoter (G).
  • the acrylic copolymer (g-1) is preferably a hydroxyalkyl acrylate copolymer because it has a reactive site or interaction site with a silanol group.
  • the acrylic copolymer (g-1) can be obtained, for example, by using the method described in the paper “Journal of Coating Technology, Vol. 59, No. 746 (March, 1987)” by Kamath et al. What was manufactured can be used as a suitable thing of an adhesion promoter (G).
  • the acrylic copolymer (g-1) can usually be used in an amount of about 1 to 15 parts by mass based on 100 parts by mass of the resin solid content.
  • aqueous / organic solvent dispersion (F) for example, alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol; organic solvents such as glycols and glycol ethers such as propylene glycol methyl ether, and These mixtures can be used suitably.
  • the insulating layer forming composition (ii) comprises the aqueous / organic solvent dispersion (F) as described above
  • the insulating layer forming composition (ii) is made of colloidal silica (f-1 ) In an amount of 10 to 50% by weight and a solid content of 10 to 70% by weight and a partial condensate of organoalkoxysilane represented by the formula (5) (f-2) 30 to 90% by weight It is preferable to contain 1 to 10 parts by mass of an adhesion promoter (G) made of an acrylic polyol with respect to 100 parts of the solvent dispersion (F).
  • the ultraviolet absorber (J) to be blended in the insulating layer forming composition (ii) those which react with the organoalkoxysilane and hardly volatilize during the heat curing step are suitable.
  • the ultraviolet absorber (J) include 2-hydroxy-4- (3- (trimethoxysilyl) propoxy) benzophenone, (2-hydroxy-4- (3- (triethoxysilyl) propoxy) benzophenone, and their The ultraviolet absorber (J) can be blended at a concentration of 0.1 to 20% by mass with respect to the insulating layer forming composition (ii).
  • the insulating layer forming composition (ii) contains free radical initiators, sterically hindered amine light stabilizers, antioxidants, dyes, flow improvers and other additives such as leveling agents or surface lubricants. It can also be blended.
  • Insulating layer forming composition (ii) has a catalyst such as tetrabutylammonium carboxylate such as tetra-n-butylammonium acetate (TBAA) or tetra-n-butylammonium formate to shorten the curing time.
  • a catalyst such as tetrabutylammonium carboxylate such as tetra-n-butylammonium acetate (TBAA) or tetra-n-butylammonium formate to shorten the curing time.
  • TBAA tetra-n-butylammonium acetate
  • a catalyst or an acid such as acetic acid can also be blended.
  • the insulating layer 4 made of a cured product of the insulating layer forming composition (ii) is a surface on the high resistance layer 3 side of the laminate having the high resistance layer 3 on the transparent substrate 2, for example, for the tactile sensor shown in FIG.
  • the insulating layer forming composition (ii) containing each of the above components is applied to the upper surface S 3 of the high resistance layer 3 by spin coating, dip coating, flow coating, spray coating, bar coating. After applying by a known arbitrary coating method such as a coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, etc., and then heating at 100 to 150 ° C. for about 30 to 90 minutes, It can be formed by heating and curing using microwave energy.
  • the insulating layer forming composition (ii) when the insulating layer forming composition (ii) is applied by applying a spin coating method, an insulating layer is formed on the surface of the laminate having the high resistance layer 3 on the transparent substrate 2 on the high resistance layer 3 side. After the composition (ii) is dropped, the stage for mounting and fixing the laminate is rotated at a predetermined number of rotations, so that the composition for forming an insulating layer ( The uniform coating film of ii) can be formed. As for the film thickness of the coating film, the dropping amount of the composition for forming an insulating layer (ii) and the rotational speed of the stage are appropriately selected so that the insulating layer obtained after curing has a film thickness within the range of the present invention. It will be adjusted.
  • the rotation of the stage for mounting and fixing the laminate is, for example, the amount of the insulating layer forming composition (ii) dropped onto the application surface of the laminate having the high resistance layer 3 on the transparent substrate 2. Is about 1 cm 3 , it is preferable that the initial rotation speed is 100 to 300 rpm for about 10 to 15 seconds, and then the maximum rotation speed is about 1500 to 2500 rpm and the rotation time is 0.1 to 1 second.
  • the insulating layer 4 By forming the insulating layer 4 as a layer obtained by curing the insulating layer forming composition (ii) as described above, the formation speed of the insulating layer 4 is increased as compared with the case of using a technique such as sputtering. Thus, the manufacturing efficiency of the touch sensor front plate 1 can be increased.
  • the thickness of the insulating layer 4 is 0.5 ⁇ m or more and 15 ⁇ m or less, preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and further preferably 1 ⁇ m or more and 8 ⁇ m or less.
  • the thickness of the insulating layer 4 is less than 0.5 ⁇ m, the surface shape of the interface S3 of the high resistance layer 3 with the insulating layer 4 is changed to the surface S2 of the insulating layer 4 opposite to the high resistance layer 3 side.
  • the surface of the insulating layer 4 on the side opposite to the high resistance layer 3 side for example, because the convex portion of the interface S3 between the high resistance layer 3 and the insulating layer 4 partially protrudes from the insulating layer 4 or the like.
  • the shape is affected, and the surface roughness Ra is excessively high on the surface of the front plate 1 for the tactile sensor, and the visibility may be deteriorated due to white clouding or the like.
  • the thickness of the insulating layer 4 By setting the thickness of the insulating layer 4 to 0.5 ⁇ m or more, white clouding on the surface of the touch sensor front plate 1 can be suppressed, and excellent visibility can be obtained, and sufficient wear resistance and weather resistance can be obtained. Sex can be obtained.
  • the thickness of the insulating layer 4 By setting the thickness of the insulating layer 4 to 15 ⁇ m or less, the curing sufficiently proceeds even in the deep part of the insulating layer 4 and excellent light transmission can be obtained. Bending strength can be obtained.
  • this insulating layer 4 when the insulating layer 4 does not contain a component imparting water repellency such as the fluorine-containing polymerizable compound (e-1), this insulating layer 4 is the surface opposite to the high resistance layer 3 side, that is, the water in contact with the surface S2 of the tactile sensor front plate 1 is easily diffused and adhered to the surface S2, and the high resistance layer 3 in which charges are accumulated Since the electrostatic attractive force (Coulomb force) acting between the sensory receptor X such as a fingertip adjacent to the surface layer of the insulating layer 4 is shielded, there is a possibility that the function as a tactile sensor cannot be sufficiently obtained.
  • Coulomb force Coulomb force
  • a water repellent layer 6 can be further formed on the surface S2 of the insulating layer 4 that does not contain a sufficient amount of a component imparting water repellency, as shown in FIG.
  • the surface of the touch sensor front plate 1 is a surface S5 of the water repellent layer 6 opposite to the insulating layer 4 side.
  • the insulating layer 4 is a layer formed of a cured product of the insulating layer forming composition (i) that does not contain a component imparting water repellency such as the above-described fluorine-containing polymerizable compound (e-1). In this case, it is preferable to form the water repellent layer 6 on the upper surface S2 of the insulating layer 4.
  • the water repellent layer 6 can be formed of a layer made of a cured product of a water repellent layer-forming composition containing a fluorine-containing compound or a silicon-containing compound (hereinafter referred to as a water repellent (H)).
  • Examples of the fluorine-containing compound or silicon-containing compound constituting the water repellent (H) include silane coupling agents.
  • silane coupling agents fluorine-containing silane coupling agents, silane coupling agents having amino groups, silane coupling agents having (meth) acryloyl groups, silane coupling agents having thiol groups, silane cups having isocyanate groups
  • examples thereof include a ring agent and a silane coupling agent having an oxiranyl group.
  • Commercial products such as FS-10 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be employed.
  • a fluorine-containing silane coupling agent is preferable from the viewpoint of water repellency and the like, and a silane coupling agent having a fluoroalkyl group is particularly preferable.
  • the fluoroalkyl group include a perfluoroalkyl group; a fluoroalkyl group containing a perfluoro (polyoxyalkylene) chain, and the like.
  • silane coupling agents having a fluoroalkyl group include AQUAPHOBE (registered trademark) CF manufactured by Gelest, Novec (registered trademark) EGC-1720 manufactured by MIM, and OPTOOL (registered trademark) DSX manufactured by Daikin. (Silane coupling agent having a perfluoro (polyoxyalkylene) chain) and the like.
  • silane coupling agent having an amino group include aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, aminoethyl-aminopropyltrimethoxysilane, aminoethyl-aminopropylmethyldimethoxysilane, and the like.
  • the water repellent layer 6 is an insulating material for a laminate in which the water repellent layer-containing composition containing the above-described water repellent is laminated in the order of, for example, the transparent substrate 2, the high resistance layer 3, and the insulating layer 4 shown in FIG.
  • the application method include spin coating, dip coating, casting, slit coating, and spray coating.
  • the temperature for the heat treatment is preferably 20 to 150 ° C., and particularly preferably 70 to 140 ° C. from the viewpoint of productivity.
  • the humidity may be controlled during the heat treatment.
  • the water repellent layer 6 In the case of forming the water repellent layer 6 by vapor deposition of the water repellent layer forming composition, for example, after removing the solvent from the water repellent layer forming composition described above, it is heated to 250 to 300 ° C. in a vacuum state, In an atmosphere in which the water repellent (H) is in a gas phase state, for example, a laminated body in which the transparent substrate 2, the high resistance layer 3, and the insulating layer 4 shown in FIG. Then, gas molecules of the water repellent (H) are attached to the surface S2 of the insulating layer 4 opposite to the high resistance layer 3 side to form a uniform thin film of the water repellent (H). be able to.
  • a gas phase state for example, a laminated body in which the transparent substrate 2, the high resistance layer 3, and the insulating layer 4 shown in FIG.
  • the front plate 1 for a tactile sensor is not limited to the configuration shown in FIG. 3 or FIG. 6, but has a configuration in which a barrier layer 7 is interposed between the transparent substrate 2 and the high resistance layer 3 as shown in FIG. It is also preferable to do.
  • the barrier layer 7 By interposing the barrier layer 7 between the transparent substrate 2 and the high resistance layer 3, it is possible to suppress the components contained in the transparent substrate 2 from diffusing into the high resistance layer 3, and the surface resistance value of the high resistance layer 3. Variations in characteristics such as can be suppressed. Moreover, the influence which the surface shape of the transparent base
  • the front plate for the tactile sensor having the barrier layer 7 is not necessarily limited to the one having the configuration shown in FIG. 7.
  • the barrier layer 7 is interposed between the transparent substrate 2 and the high resistance layer 3. A structure in which the water repellent layer 6 is laminated on the upper surface of the insulating layer 4 may be used.
  • the barrier layer 7 examples include a layer mainly composed of silicon oxide and a layer mainly composed of a layer mainly composed of silicon oxide and indium oxide.
  • a layer containing a silicon oxide as a main component is preferable because good light transmittance is easily secured.
  • a layer containing nitrogen for example, a layer containing silicon oxynitride (SiON) can obtain excellent light transmittance and can be used as the front plate 1 for a tactile sensor. This is preferable because an effect of reducing the luminous reflectance can be obtained.
  • the barrier layer 7 is formed on the transparent substrate 2 by sputtering such as DC (direct current) sputtering such as DC (direct current) magnetron sputtering, AC (alternating current) sputtering, or RF (high frequency) sputtering. It can be formed on the surface S1 having the surface roughness Ra.
  • the barrier layer 7 is a layer mainly composed of silicon oxide
  • a target mainly composed of silicon is used as a target used for forming the barrier layer 7.
  • a target having silicon as a main component a target composed solely of silicon, or a dopant containing silicon as a main component and a known dopant such as boron or phosphorus other than silicon, as long as the characteristics of the present invention are not impaired. Things.
  • the formation of the barrier layer 7 by sputtering can be performed by appropriately adjusting conditions such as the pressure of the sputtering gas and the film forming speed in the same manner as the sputtering in the high resistance layer 3 described above.
  • the barrier layer 7 is formed of a silicon oxide as a main component and a layer containing nitrogen, for example, a layer containing silicon oxynitride (SiON), for example, oxygen gas and inert gas are used as sputtering gases.
  • oxygen gas and inert gas are used as sputtering gases.
  • nitrogen gas or a mixed gas in which a gas containing nitrogen atoms such as N 2 O, NO, NO 2 , NH 3 or the like is mixed can be used.
  • the formation of the barrier layer 7 made of an inorganic oxide such as silicon oxide is not limited to the sputtering method as described above.
  • sputtering such as a vacuum vapor deposition method, an ion beam assisted vapor deposition method, and an ion plate method is used.
  • the thickness of the barrier layer 7 is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. If the thickness of the barrier layer 7 exceeds 100 nm, the surface shape on the surface S1 having the surface roughness Ra of the transparent substrate 2 is not sufficiently reflected in the high resistance layer 3, so the high resistance layer 3 and the insulating layer 4 There is a possibility that the effect of diffusing the reflected light generated at the interface S3 may not be sufficiently obtained. By making the thickness of the barrier layer 7 100 nm or less, the appearance of interference fringes is suppressed and the front plate 1 for the tactile sensor has an appropriate bending strength and sufficient light. It can have transparency.
  • the refractive index of the barrier layer 7 is preferably 1.4 to 2.2 from the viewpoint of obtaining excellent visible light transmittance and visible light reflectance.
  • the surface roughness Ra of the surface of the touch sensor front plate 1 is 0.05 ⁇ m or less. By making the surface roughness Ra of the surface of the touch sensor front plate 1 0.05 ⁇ m or less, a decrease in light transmittance due to white clouding or the like in the touch sensor front plate 1 is suppressed, and the surface has excellent visibility. can do.
  • the surface roughness Ra of the surface of the touch sensor front plate 1 is more preferably 0.01 to 0.03 ⁇ m.
  • the haze value of the touch sensor front plate 1 is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. By setting the haze value to 1% or less, sufficient light transmittance can be obtained in the front plate 1 for a tactile sensor, and the visibility can be improved.
  • the luminous transmittance of the front plate 1 for touch sensor is 85% or more. Sufficient visibility can be obtained by having a luminous transmittance of 85% or more.
  • the luminous transmittance of the touch sensor front plate 1 is more preferably 88% or more.
  • the luminous reflectance on the surface of the touch sensor front plate 1 is preferably 14% or less, and more preferably 10% or less.
  • the luminous transmittance and luminous reflectance refer to luminous transmittance and luminous reflectance by daylight measured according to JIS R3106 (1998).
  • the static friction coefficient on the surface of the touch sensor front plate 1 is preferably 0.2 or less, and more preferably 0.15 or less.
  • the coefficient of dynamic friction on the surface of the front plate 1 for touch sensor is preferably 0.2 or less, and more preferably 0.15 or less.
  • the tactile sensor front plate 1 has an indentation elastic modulus of 2.5 GPa or more, more preferably 3.0 GPa or more, evaluated on the surface using a micro hardness measurement test.
  • the “micro hardness measurement test” is a test method for calculating the hardness from the penetration depth, whereby the indentation elastic modulus (GPa) corresponding to the indentation hardness can be known.
  • This hardness serves as a guide indicating the “hardness” of the front plate 1 for a tactile sensor, that is, a mechanical strength such as scratch resistance.
  • the contact angle with water on the surface of the front plate 1 for touch sensor is preferably 80 degrees or more, and more preferably 90 degrees or more.
  • the contact angle with respect to water is measured using a contact angle meter.
  • Such a tactile sensor front plate 1 is provided on the front surface of the touch panel body 5 as shown in FIG. 5, for example, and is not shown in a voltage and frequency controlled in a pattern capable of reproducing the tactile sensation to be expressed.
  • the front plate 1 for tactile sensor is charged. It is configured.
  • the sensory receptor X such as a finger is brought into contact with the surface of the front plate 1 for a tactile sensor in such a charged state, a tactile sensation such as an uneven feeling is caused by a weak electrostatic force acting between the two via the insulating layer 4.
  • Sensory receptor X senses it.
  • a transparent electrode may be provided on the touch sensor front plate 1. That is, the transparent electrode may be disposed on the surface S4 on the opposite side of the tactile sensor front plate 1 where the high resistance layer 3 of the transparent substrate 2 is disposed.
  • the transparent electrode may be disposed on the surface S4 on the opposite side of the tactile sensor front plate 1 where the high resistance layer 3 of the transparent substrate 2 is disposed.
  • the material constituting the transparent electrode examples include tin-doped indium oxide (ITO), indium / gallium-doped zinc oxide (IGZO), and gallium-doped zinc oxide (GZO). Of these, ITO is preferable because of its good permeability, resistance stability and durability.
  • the thickness of the transparent electrode is preferably 50 to 500 nm, and more preferably 100 to 300 nm. A thickness of 50 nm or more is preferable because a sufficient resistance value can be obtained and the stability of the resistance value can be secured. A thickness of 500 nm or less is preferable because sufficient transmittance can be secured.
  • the transparent electrode When a transparent electrode is disposed on the front plate 1 for the tactile sensor, the transparent electrode is formed by first forming a film of a material for forming the transparent electrode by sputtering, vapor deposition or the like, and disposing the high resistance layer 3 of the transparent substrate 2. It is formed on the surface S4 opposite to the surface. Then, the transparent electrode is formed by patterning the film into a desired shape by a photolithography method, a laser patterning method or the like.
  • the surface resistance value of the high resistance layer 3 is 1 to 100 M ⁇ / ⁇ , and the high resistance layer 3 and the touch panel body 5 or the touch sensor are used in use.
  • the desired tactile sensation can be expressed with good reproducibility without causing an electrical action with the transparent electrode of the front plate 1 itself, and the surface of the transparent substrate 2 on the high resistance layer 3 side can be obtained.
  • the surface roughness Ra of S1 is 0.05 to 0.5 ⁇ m, and the surface roughness Ra of the surface of the front plate 1 for tactile sensor is 0.05 ⁇ m or less, so that a good appearance with suppressed generation of interference fringes is achieved. And having high light transmittance and excellent visibility.
  • the embodiments of the front plate for a touch sensor of the present invention have been described with reference to the examples shown in FIGS. 3 to 7, but the front plate for a touch sensor of the present invention is not limited thereto. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
  • Examples 1 to 5 are examples, and examples 6 to 7 are comparative examples.
  • ⁇ Preparation of insulating layer forming composition b1> In a 300 mL four-necked flask equipped with a stirrer, 163 g of butyl acetate first grade (manufactured by Junsei Chemical Co., Ltd.) and 41 g of 2-propanol were placed, and a polymerizable benzotriazole ultraviolet absorber (manufactured by Otsuka Chemical Co., Ltd., 2 g of trade name: R-UVA93), 1 g of light stabilizer (manufactured by BASF, trade name: TINUVIN292), 0.65 g of leveling agent (trade name: BYK306, manufactured by Big Chemie), photopolymerization initiator (BASF) Product, product name
  • Example 1 A high resistance layer forming surface of a glass substrate (manufactured by Asahi Glass Co., Ltd., soda lime glass, length 100 mm ⁇ width 100 mm ⁇ thickness 1 mm) was frosted by HF etching to obtain a glass substrate Q1.
  • the surface roughness Ra of the frosted surface of the glass substrate Q1 after the frosting was 0.093 ⁇ m, and the haze value was 15.2%.
  • the surface roughness Ra of the glass substrate Q1 is determined by measuring the surface shape of the glass substrate Q1 with a laser microscope (manufactured by Keyence Corporation, product name “VK-9700”) at a magnification of 50 times, according to JIS B0601. Calculated.
  • the haze value of the glass substrate Q1 was measured using a haze meter (product name “HZ-1” manufactured by Suga Test Instruments Co., Ltd.).
  • This glass substrate Q1 was put into a vacuum chamber and evacuated until the pressure in the chamber became 1 ⁇ 10 ⁇ 4 Pa. Thereafter, a film forming process was performed on the frosted surface of the glass substrate Q1 by a magnetron sputtering method under the following conditions to form a barrier layer C1 and a high resistance layer A1.
  • a tin oxide target manufactured by AGC Ceramics, trade name: GIT target
  • a titanium oxide target manufactured by AGC Ceramics, trade name: TXO
  • Co-sputtering was performed by a magnetron sputtering method at a pressure of 0.1 Pa.
  • the GIT target performs pulse sputtering under the conditions of a frequency of 20 kHz, a power density of 3.8 W / cm 2 , and an inversion pulse width of 5 ⁇ sec.
  • the TXO target is pulsed under the conditions of a frequency of 20 kHz, power density of 4 W / cm 2 , and an inversion pulse width of 5 ⁇ sec. Sputtering was performed. As a result, a high resistance layer A1 made of tin oxide-titanium oxide and having a thickness of 20 nm was formed on the surface of the glass substrate Q1.
  • a measuring device manufactured by Mitsubishi Chemical Analytech Co., Ltd., device name: Hiresta UP (MCP-HT450 type)
  • MCP-HT450 type device name: Hiresta UP
  • the surface resistance value of the high resistance layer A1 was measured.
  • the probe was placed at the center of the surface of the high resistance layer A1 of the 10 cm ⁇ laminate and energized at 10V for 10 seconds, the surface resistance value was 50 M ⁇ / ⁇ .
  • an adhesion treatment was performed on the high resistance layer A1 by the following method.
  • 3-methacryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM503
  • KBM503 3-methacryloxypropyltrimethoxysilane
  • the coating was performed with a spin coater while rotating at 1000 rpm for 10 seconds and then at 2000 rpm for 0.5 seconds. Then, it put into the thermostat and hold
  • an adhesion treatment was performed on the high resistance layer A1.
  • the insulating layer B1 was formed by the following method. First, about 1 cm 3 of the composition for forming an insulating layer b1 obtained above is dropped on the adhesion-treated surface of the high-resistance layer A1 that has been subjected to the adhesion treatment, and the spin coater is used for 10 seconds at a rotation speed of 200 rpm, and then at 2000 rpm. The coating film was formed by rotating for 0.5 seconds. Then, it put into the thermostat and hold
  • the integrated value of UV irradiation was 1000 mJ / cm 2
  • the dried coating film is cured, and the insulating layer B1 made of a cured body of the insulating layer forming composition b1 is formed. Formed.
  • the thickness of the insulating layer B1 was 10 ⁇ m.
  • the refractive index of the insulating layer B1 was calculated from the spectral transmittance and the reflectance, and was 1.55 at a wavelength of 550 nm. In this way, a front panel 1 for a tactile sensor in which the barrier layer C1, the high resistance layer A1, and the insulating layer B1 were laminated on the frosted surface of the glass substrate Q1 was obtained.
  • Example 2 First, a high resistance layer A2 was formed on the frosted surface of the glass substrate Q1 that had been frosted in the same manner as in Example 1 under the following conditions.
  • the TXO target performs pulse sputtering under the conditions of a frequency of 20 kHz, a power density of 3.8 W / cm 2 and an inversion pulse width of 5 ⁇ sec, and the NBO target is pulsed under the conditions of a frequency of 20 kHz, power density of 1 W / cm 2 and inversion pulse width of 5 ⁇ sec. Sputtering was performed. As a result, a high resistance layer A2 made of titanium oxide-niobium oxide and having a thickness of 20 nm was formed on the frosted surface of the glass substrate Q1.
  • Example 2 Next, an adhesion treatment was performed on the high resistance layer A2 in the same manner as in Example 1, and then an insulating layer B1 having a thickness of 10 ⁇ m was formed in the same manner as in Example 1.
  • the touch sensor front plate 2 in which the high resistance layer A2 and the insulating layer B1 were laminated on the frosted surface of the glass substrate Q1 was obtained.
  • Example 3 A high resistance layer forming surface of a glass substrate (manufactured by Asahi Glass Co., Ltd., trade name: Dragon Trail, length 100 mm ⁇ width 100 mm ⁇ thickness 1 mm) was frosted by HF etching to obtain a glass substrate Q2.
  • a glass substrate Q2 manufactured by Asahi Glass Co., Ltd., trade name: Dragon Trail, length 100 mm ⁇ width 100 mm ⁇ thickness 1 mm
  • the surface roughness Ra was 0.103 ⁇ m and the haze value was 17.8%.
  • a tactile sensor front plate 3 was obtained in the same manner as in Example 1 except that this glass substrate Q2 was used in place of the glass substrate Q1.
  • Example 4 A glass substrate (manufactured by Asahi Glass Co., Ltd., soda lime glass, length 100 mm ⁇ width 100 mm ⁇ thickness 1 mm) is subjected to a frost treatment under conditions where the high resistance layer forming surface is etched deeper than in Example 1 by HF etching. A substrate Q3 was obtained. When the surface roughness Ra and haze value of the frosted surface of the glass substrate Q3 after the frost treatment were measured in the same manner as in Example 1, the surface roughness Ra was 0.133 ⁇ m and the haze value was 25.8%. . A tactile sensor front plate 4 was obtained in the same manner as in Example 1 except that this glass substrate Q3 was used in place of the glass substrate Q1.
  • Example 5 First, the barrier layer C1 and the high resistance layer A1 were formed in the same manner as in Example 1 on the frosted surface of the glass substrate Q1 that had been frosted in the same manner as in Example 1. Thereafter, an adhesion treatment was performed on the high resistance layer A1 in the same manner as in Example 1.
  • the laminate on which the dried coating film was formed was irradiated with UV while adjusting the conveyance speed and UV intensity in the same manner as in Example 1 to cure the dried coating film, thereby forming an insulating layer forming composition.
  • An insulating layer B1 made of a cured product of the object b1 was formed.
  • the thickness of the insulating layer B1 was 3 ⁇ m.
  • Example 6 instead of the glass substrate Q1, a glass substrate Q4 made of a glass substrate that is not subjected to frost treatment (manufactured by Asahi Glass Co., Ltd., soda lime glass, vertical 100 mm ⁇ horizontal 100 mm ⁇ thickness 1 mm) was used in the same manner as in Example 1. Thus, the front plate 6 for tactile sensor was obtained.
  • the surface roughness Ra and haze value of the high resistance layer forming surface of the glass substrate Q4 used were measured in the same manner as in Example 1, the surface roughness Ra was 0 ⁇ m and the haze value was 0%. This means that all are below the measurement limit, that is, the surface roughness Ra is 0.01 ⁇ m or less, and the haze value is 0.1% or less.
  • Example 7 First, the barrier layer C1 and the high resistance layer A1 were formed in the same manner as in Example 1 on the frosted surface of the glass substrate Q1 that had been frosted in the same manner as in Example 1. Thereafter, an adhesion treatment was performed on the high resistance layer A1 in the same manner as in Example 1.
  • the laminate on which the dried coating film was formed was irradiated with UV while adjusting the conveyance speed and UV intensity in the same manner as in Example 1 to cure the dried coating film, thereby forming an insulating layer.
  • An insulating layer B1 made of a cured product of the composition b1 was formed.
  • the thickness of the insulating layer B1 was 0.4 ⁇ m.
  • Luminous reflectance Using a spectrophotometer (manufactured by Shimadzu Corporation, device name: SolidSpec3700), the spectral reflectance at the surface on the insulating layer side of the front plate for each tactile sensor is measured, and the luminous reflectance is measured from the reflectance according to JIS R3106. (%) was calculated. Among these, the measurement results of the reflectance in the wavelength region of 300 to 850 nm for the front plates for the tactile sensor of Examples 1, 3 and 6 are shown in FIGS. 8, 9 and 10, respectively.
  • the surface on the glass substrate side (the surface opposite to the surface on which the high resistance layer is formed on the glass substrate) is painted black to cancel back reflection.
  • the face plate was placed on a desk with the insulating layer side facing up. Further, a stand of daylight direct fluorescent lamp (manufactured by NEC Corporation, three-wavelength daylight white) was arranged at a height of 40 cm from the desk. Under the irradiation light from the fluorescent lamp, the surface (insulating layer surface) of the front plate for the tactile sensor was visually observed from various angles, and the change in the color tone of the reflected light depending on the viewing angle was evaluated.
  • the color tone of the front surface of the tactile sensor front plate is a single color (mainly blue, etc.) or when the visual angle is changed more than 10 degrees, the color tone of the tactile sensor front plate is visually observed from any angle.
  • “ ⁇ ” was assigned, and when the visual angle was changed within a range of 10 degrees or less, the change in the color tone of the surface of the front plate for the tactile sensor was assigned “X”.
  • a copper conductive tape (a tape in which a polyethylene terephthalate film (thickness 10 ⁇ m) is attached to a copper foil) is attached to the four sides of the surface on the glass substrate side, and the frequency is around 400 Hz. A voltage of 2 kV was applied.
  • the surface of the energized tactile sensor front plates 1 to 7 (the surface on the insulating layer side) was traced with the fingertip, and the tactile sensor sensitivity was evaluated in four stages according to the size of the tactile sensed by the fingertip.
  • 0 to 4 indicate the states of “0: I don't feel at all”, “1: I feel faint but weak”, “2: I feel”, and “3: I feel enough”, respectively.
  • the applied voltage (2 kV) for sensitivity evaluation was determined as follows. When the supply voltage from the conductive tape provided on the surface of the front plate for the tactile sensor on the glass substrate side was adjusted between the applied voltage of 750 V and 100 kV, the tactile sensation was exhibited at about 2 kV. Based on this, sensor sensitivity was evaluated.
  • the high resistance layer had a surface resistance value of 1 to 100 M ⁇ / ⁇ , and good sensor sensitivity was obtained.
  • the surface of each glass substrate (transparent substrate) on the high resistance layer side has a surface roughness Ra of 0.05 to 0.5 ⁇ m, and the surface of the front plate for the tactile sensor is 0. It has a surface roughness Ra of 05 ⁇ m or less, has little variation in reflection color, has a good appearance without interference fringes, has a low haze value of 1% or less, and a luminous transmittance of 85%. As described above, it had excellent visibility.
  • Example 6 the surface roughness Ra of the surface on the high resistance layer side of the glass substrate (transparent substrate) was less than 0.05 ⁇ m, the variation in the reflection color due to the interference fringes was large, and the appearance was inferior. . Further, in Example 7, the surface roughness of the front plate for the tactile sensor exceeds 0.05 ⁇ m, the haze value is as high as more than 1%, and the reflection color changes, resulting in visibility and appearance. Both were inferior.
  • the front plate for the tactile sensor of Example 1 in which the surface roughness Ra of the surface on the high resistance layer side of the glass substrate is 0.05 to 0.5 ⁇ m the wavelength change of the irradiation light is changed. 12 is suppressed, whereas the surface roughness Ra of the surface of the glass substrate on the high resistance layer side is less than 0.05 ⁇ m, as shown in FIG.
  • the front plate for use had a large variation in light transmittance accompanying a change in the wavelength of irradiation light, and the light transmission stability was poor.
  • SYMBOLS 1 ... Front plate for tactile sensors, 2,102 ... Transparent substrate, 3 ... High resistance layer, 4,104 ... Insulating layer, 5,100 ... Touch panel body, 5a ... Transparent electrode, 6 ... Water-repellent layer, 7 ... Barrier layer , 101 ... front plate, 103 ... layer formed on the transparent substrate 102, S1 ... surface of the transparent substrate 2 on the high resistance layer 3 side, S2 ... surface of the insulating layer 4 opposite to the high resistance layer 3 side, S3 ...
  • S4 the surface on the transparent substrate 2 side of the front plate 1 for tactile sensor
  • S5 the surface opposite to the insulating layer 4 side of the water repellent layer 6
  • L1, L2, L4 , L5 reflected light
  • L3 incident light
  • X sensory receptor.

Abstract

Provided is a front-surface plate for a tactile sensor with good sensor accuracy for perceiving by touch, in which any reduction in the external appearance due to an interference pattern is suppressed, light permeability is excellent, and readability is exceptional. A front-surface plate (1) for a tactile sensor comprising a high-resistance layer (3) and an electrically insulating insulation layer (4) layered on a transparent substrate (2) in the stated order from the transparent substrate (2) side, wherein the high-resistance layer (3) has a surface resistance value of 1-100 MΩ/□, a refraction index of 1.8-2.5, and a thickness of 5-50 nm; the insulation layer (4) has a refraction index of 1.3-1.6 and a thickness of 0.5-15 µm; and the transparent substrate (2) has a surface roughness Ra on the surface facing the high-resistance layer (3) of 0.05-0.5 µm. The surface roughness Ra of the surface of the front-surface plate (1) for the tactile sensor is no more than 0.05 µm.

Description

触覚センサ用前面板Tactile sensor front plate
 本発明は、ユーザの指先に触覚をフィードバックするようにした、いわゆる触覚センサを備えたタッチパネルディスプレイ装置の前面に設ける触覚センサ用前面板に関する。 The present invention relates to a front plate for a tactile sensor provided on the front surface of a touch panel display device equipped with a so-called tactile sensor that feeds back a tactile sensation to a user's fingertip.
 近年、入力装置ないし入出力装置として、指等で直接タッチパネルに触れて操作を行うタッチパネルディスプレイを備えたタッチパネルディスプレイ装置(インタフェースデバイス)が用いられている。 In recent years, as an input device or an input / output device, a touch panel display device (interface device) including a touch panel display that performs an operation by directly touching the touch panel with a finger or the like is used.
 入力装置ないし入出力装置として用いられるタッチパネルディスプレイ装置は、ソフトウェアによって入力画面を自由に構成できるため、機械的スイッチを用いて構成した入力装置では得られないフレキシビリティを備えており、また、軽量且つコンパクトに構成でき、機械的故障の発生頻度が低い等の数々の利点を有することから、現在では、比較的大きな各種機械の操作パネルから、非常に小さな携帯機器の入出力装置に至るまで、広く利用されている。 A touch panel display device used as an input device or an input / output device can freely configure an input screen by software. Therefore, the touch panel display device has flexibility that cannot be obtained by an input device configured using a mechanical switch. Since it can be compactly configured and has many advantages such as low frequency of mechanical failure, it is now widely used from operation panels of various relatively large machines to very small portable device input / output devices. It's being used.
 多くのタッチパネルディスプレイ装置は、それを操作するユーザの指先が、平坦で滑らかな被接触面に触れるだけであるため、機械的スイッチを用いて構成した入力装置を操作するときに指先に感じるクリック感のような、触覚によるユーザへのフィードバックが存在せず、そのことが装置の操作感を頼りないものにしていた。この点を改善するために、操作するユーザの指先に触覚をフィードバックするようにした、いわゆる触覚センサを備えたタッチパネルディスプレイ装置が提案されている(例えば、特許文献1参照)。このタッチパネルディスプレイ装置は、ユーザの指先が接触するタッチパネルの表面を振動させることによって、ユーザに触覚を発生させるようにしたものである。 In many touch panel display devices, the fingertip of the user operating the touch panel touches only a flat and smooth surface to be touched. Therefore, the click feeling felt by the fingertip when operating an input device configured using a mechanical switch. As described above, there is no feedback to the user by touch, which makes the operation feeling of the device unreliable. In order to improve this point, a touch panel display device provided with a so-called tactile sensor that feeds back a tactile sensation to the fingertip of the user who operates it has been proposed (for example, see Patent Document 1). In this touch panel display device, a tactile sensation is generated by a user by vibrating the surface of the touch panel in contact with the fingertip of the user.
 このような、機械的刺激により触覚をフィードバックするものに対し、タッチパネルの前面に設ける保護膜等(以下、前面板と示す)の電荷を制御することで、電気的な感覚により利用者に触覚を与える技術も知られている(例えば、特許文献2参照)。特許文献2では、各々に絶縁体を設けた導通電極に、電圧源から所定の電気的入力を付与して導通電極と身体部分との間の領域で静電気力(容量性結合)を形成することで、電気的な感覚を発生させている。
 このような構成体として、例えば非特許文献1には、ガラス基板上に積層された透明電極が、絶縁層で被覆されてなるタッチパネルが開示されている。
By controlling the charge of a protective film or the like (hereinafter referred to as the front plate) provided on the front surface of the touch panel, the tactile sensation is fed back to the user by an electrical sense. The technique to give is also known (for example, refer patent document 2). In Patent Document 2, a predetermined electrical input is applied from a voltage source to conductive electrodes each provided with an insulator to form an electrostatic force (capacitive coupling) in a region between the conductive electrode and the body part. And it generates an electrical sensation.
As such a structure, for example, Non-Patent Document 1 discloses a touch panel in which a transparent electrode laminated on a glass substrate is covered with an insulating layer.
 特許文献2または非特許文献1に記載の装置では、具体的には、図1に示すように、表現したい触感を再現可能なパターンに電圧および周波数を制御して、不図示の制御部からタッチパネル本体100の透明電極(不図示)に通電し、前面板101側に誘起された電荷を、透明基体102上に形成した層103に蓄積することで、前面板101を帯電させるように構成されている。このような帯電状態の前面板101表面に、指等の感覚受容体Xが接触することで、絶縁層104を介して両者間に働く微弱な静電気力により、凹凸感等の触覚として感覚受容体Xに感知されるように構成されている。 In the apparatus described in Patent Document 2 or Non-Patent Document 1, specifically, as shown in FIG. 1, the voltage and frequency are controlled in a pattern that can reproduce the tactile sensation to be expressed, and the touch panel is touched from a control unit (not shown). It is configured to charge the front plate 101 by energizing a transparent electrode (not shown) of the main body 100 and accumulating charges induced on the front plate 101 side in the layer 103 formed on the transparent substrate 102. Yes. When the sensory receptor X such as a finger is brought into contact with the surface of the front plate 101 in such a charged state, the sensory receptor as a tactile sensation such as a concavo-convex sensation by a weak electrostatic force acting between the two via the insulating layer 104. It is configured to be detected by X.
 このような、いわゆる触覚センサを備えたタッチパネルディスプレイ装置に設ける前面板としては、タッチパネル本体に設けた透明電極の動作を妨げず、かつ制御部から送り込まれた電圧や周波数に基づく帯電状態を正確に発現して、所望の触覚を再現性よく発現できるものが求められており、電荷を蓄積する層103としては、その抵抗値を所定の範囲に精密に制御することが求められている。このような電気的特性を満たし、かつ透明性を有するものとして、例えば酸化ニオブや酸化チタン等の、所定の金属酸化物を主成分として含む層が用いられている。 As a front plate provided in such a touch panel display device equipped with a so-called tactile sensor, the state of charge based on the voltage and frequency sent from the control unit is accurately prevented without interfering with the operation of the transparent electrode provided on the touch panel body. There is a demand for a material that can express a desired tactile sensibility with high reproducibility, and the layer 103 for accumulating charges is required to precisely control the resistance value within a predetermined range. As a material that satisfies such electrical characteristics and has transparency, a layer containing a predetermined metal oxide as a main component, such as niobium oxide or titanium oxide, is used.
 しかしながら、このような金属酸化物からなる層103は、一般に、その屈折率が1.8~2.5程度であるのに対し、その上面に設けられる絶縁層104は、その屈折率が1.3~1.6程度であることから、両者間に屈折率差を生じ易い。このため、図2で示すように、層103と絶縁層104との界面において反射光L1が生じ、この反射光L1が前面板101表面での反射光L2と干渉することで、反射光全体が虹色の色相を呈する干渉縞とよばれる現象が生じることがある。
 干渉縞が前面板101表面に生じると、前面板101の外観が低下するとともに、タッチパネル本体に映し出された画像の識別の妨げとなり、また、前面板101自体の揺れや傾きにより、その色相が変動するため、前面板としての視認性を低下させるものであった。
However, the layer 103 made of such a metal oxide generally has a refractive index of about 1.8 to 2.5, whereas the insulating layer 104 provided on the upper surface thereof has a refractive index of 1. Since it is about 3 to 1.6, a difference in refractive index tends to occur between them. Therefore, as shown in FIG. 2, reflected light L1 is generated at the interface between the layer 103 and the insulating layer 104, and this reflected light L1 interferes with the reflected light L2 on the surface of the front plate 101. A phenomenon called interference fringes exhibiting a rainbow hue may occur.
When interference fringes occur on the surface of the front plate 101, the appearance of the front plate 101 is deteriorated and the identification of the image displayed on the touch panel body is hindered, and the hue changes due to the shaking or tilt of the front plate 101 itself. Therefore, the visibility as a front plate is reduced.
 一方、前面板は、画像が映し出されるタッチパネル本体の前面に設けられるため、視認性を確保する観点から、前面板表面での白曇り等の発生を抑制し、可視光域の光に対して高い光透過性を有することも求められる。 On the other hand, since the front plate is provided on the front surface of the touch panel body on which an image is projected, from the viewpoint of ensuring visibility, it suppresses the occurrence of white clouding on the front plate surface and is high with respect to light in the visible light range. It is also required to have optical transparency.
特開2003-288158号公報JP 2003-288158 A 特開2009-087359号公報JP 2009-087359 A
 本発明は、上記課題を解決するためになされたものであり、触覚により感知されるセンサ精度が良好であり、かつ干渉縞による外観の低下が抑制され、光透過性が高く、視認性に優れた触覚センサ用前面板の提供を目的とする。 The present invention has been made in order to solve the above-described problems. The sensor accuracy sensed by tactile sensation is good, the deterioration of the appearance due to interference fringes is suppressed, the light transmittance is high, and the visibility is excellent. An object is to provide a front plate for a tactile sensor.
 本発明の触覚センサ用前面板は、透明基体上に、高抵抗層と、電気絶縁性を有する絶縁層とが前記透明基体側からこの順で積層されてなる触覚センサ用前面板であって、前記高抵抗層は、表面抵抗値が1~100MΩ/□、屈折率が1.8~2.5、厚さが5~50nmであり、前記絶縁層は、屈折率が1.3~1.6、厚さが0.5~15μmであり、前記透明基体の前記高抵抗層側の面の表面粗さRaが0.05~0.5μmであり、前記触覚センサ用前面板の絶縁層側の表面の表面粗さRaが0.05μm以下であることを特徴とする。 The front plate for a tactile sensor of the present invention is a front plate for a tactile sensor in which a high resistance layer and an insulating layer having electrical insulation are laminated in this order from the transparent substrate side on a transparent substrate, The high resistance layer has a surface resistance value of 1 to 100 MΩ / □, a refractive index of 1.8 to 2.5, and a thickness of 5 to 50 nm. The insulating layer has a refractive index of 1.3 to 1. 6. The thickness is 0.5 to 15 μm, the surface roughness Ra of the surface of the transparent substrate on the high resistance layer side is 0.05 to 0.5 μm, and the front surface plate for the tactile sensor is on the insulating layer side The surface roughness Ra of the surface is 0.05 μm or less.
 前記絶縁層は、有機樹脂を主成分とする層からなることが好ましい。また、前記高抵抗層は、金属酸化物を主成分とする層からなることが好ましい。また、前記透明基体と前記高抵抗層との間には、バリア層が介設されてなることが好ましい。また、前記絶縁層は、前記高抵抗層の密着処理された上面に配設されてなることが好ましい。また、前記触覚センサ用前面板は、ヘイズ値が1%以下であることが好ましい。 The insulating layer is preferably composed of a layer mainly composed of an organic resin. Moreover, it is preferable that the said high resistance layer consists of a layer which has a metal oxide as a main component. Moreover, it is preferable that a barrier layer is interposed between the transparent substrate and the high resistance layer. Moreover, it is preferable that the said insulating layer is arrange | positioned by the upper surface by which the high resistance layer was contact-processed. Moreover, it is preferable that the front plate for touch sensors has a haze value of 1% or less.
 本発明によれば、透明基体上に、高抵抗層と絶縁層とが前記透明基体側からこの順で積層されてなる触覚センサ用前面板において、触覚により感知されるセンサ精度が良好であり、かつ干渉縞による外観の低下が抑制され、高い光透過性を有し、視認性に優れた触覚センサ用前面板を提供できる。 According to the present invention, on the front plate for a tactile sensor in which a high resistance layer and an insulating layer are laminated in this order from the transparent substrate side on the transparent substrate, the sensor accuracy sensed by tactile sense is good, In addition, it is possible to provide a front plate for a tactile sensor that is suppressed in appearance deterioration due to interference fringes, has high light transmittance, and is excellent in visibility.
触覚センサ用前面板を備えたタッチパネル表面に、指先が近接した状態を示す模式図。The schematic diagram which shows the state which the fingertip adjoined to the touchscreen surface provided with the front plate for touch sensors. 図1に示す触覚センサ用前面板に外光が入射した状態を示す模式的断面図。FIG. 2 is a schematic cross-sectional view showing a state in which external light is incident on the tactile sensor front plate shown in FIG. 本発明の触覚センサ用前面板の一例を示す模式的断面図。The typical sectional view showing an example of the front board for touch sensors of the present invention. 図3に示す触覚センサ用前面板の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of front plate for touch sensors shown in FIG. タッチパネル本体の上方に図3に示す触覚センサ用前面板を積層した状態を示す模式的断面図。FIG. 4 is a schematic cross-sectional view showing a state in which the touch sensor front plate shown in FIG. 3 is stacked above the touch panel body. 本発明の触覚センサ用前面板の別の一例を示す模式的断面図。The typical sectional view showing another example of the front board for touch sensors of the present invention. 本発明の触覚センサ用前面板のさらに別の一例を示す模式的断面図。The typical sectional view showing another example of the front board for touch sensors of the present invention. 例1の触覚センサ用前面板の分光反射率を示す図。The figure which shows the spectral reflectance of the front plate for touch sensors of Example 1. FIG. 例3の触覚センサ用前面板の分光反射率を示す図。The figure which shows the spectral reflectance of the front plate for touch sensors of Example 3. 例6の触覚センサ用前面板の分光反射率を示す図。The figure which shows the spectral reflectance of the front plate for touch sensors of Example 6. FIG. 例1の触覚センサ用前面板の分光透過率を示す図。The figure which shows the spectral transmittance | permeability of the front plate for touch sensors of Example 1. FIG. 例6の触覚センサ用前面板の分光透過率を示す図。The figure which shows the spectral transmission factor of the front plate for touch sensors of Example 6. FIG.
 以下、本発明の触覚センサ用前面板の実施形態について図面を参照して説明する。ただし、本発明の触覚センサ用前面板はこれに限定されるものではない。
 図3は、本発明の実施形態の触覚センサ用前面板の一例を示す模式的断面図であり、図4はその一部を拡大して示す断面図であり、図5は該触覚センサ用前面板をタッチパネル本体の上方に積層した状態を示す模式的断面図である。図6、図7は、それぞれ本発明の実施形態の触覚センサ用前面板の別の一例およびさらに別の一例を示す模式的断面図である。
Hereinafter, embodiments of a front plate for a touch sensor according to the present invention will be described with reference to the drawings. However, the front plate for a touch sensor of the present invention is not limited to this.
FIG. 3 is a schematic cross-sectional view showing an example of a front plate for a tactile sensor according to an embodiment of the present invention, FIG. 4 is a cross-sectional view showing a part thereof enlarged, and FIG. 5 is a front view for the tactile sensor. It is typical sectional drawing which shows the state which laminated | stacked the face plate on the upper side of the touch-panel main body. 6 and 7 are schematic cross-sectional views showing another example and still another example of the front plate for a tactile sensor according to the embodiment of the present invention, respectively.
 本発明の実施形態の触覚センサ用前面板1は、透明基体2上に、高抵抗層3と、絶縁層4とがこの順で積層されている。 In the touch sensor front plate 1 according to the embodiment of the present invention, a high resistance layer 3 and an insulating layer 4 are laminated in this order on a transparent substrate 2.
 触覚センサ用前面板1は、高抵抗層3の表面抵抗値が1~100MΩ/□、屈折率が1.8~2.5、厚さが5~50nmであり、絶縁層4の屈折率が1.3~1.6、厚さが0.5~15μmであり、透明基体2の高抵抗層3側の面S1の表面粗さRaが0.05~0.5μm、触覚センサ用前面板1の絶縁層4側の表面の表面粗さRaが0.05μm以下であることを特徴とする。 The front plate 1 for the tactile sensor has a surface resistance value of the high resistance layer 3 of 1 to 100 MΩ / □, a refractive index of 1.8 to 2.5, a thickness of 5 to 50 nm, and a refractive index of the insulating layer 4. 1.3 to 1.6, the thickness is 0.5 to 15 μm, the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is 0.05 to 0.5 μm, and the front plate for a tactile sensor The surface roughness Ra of the surface on the insulating layer 4 side of 1 is 0.05 μm or less.
 ここで、本明細書において「屈折率」とは、特に断りのない限り、20℃において波長550nmの光線を用いて測定される屈折率をいう。
 本明細書において「表面粗さRa」とは、算術平均粗さRaのことであり、算術平均粗さRaの値は、JIS B0601(1994年)の3「定義された算術平均粗さの定義及び表示」によって表される。
 本明細書における各層の「厚さ」は、触針式表面粗さ測定機により測定して得られた厚さである。
As used herein, “refractive index” refers to a refractive index measured using a light beam having a wavelength of 550 nm at 20 ° C. unless otherwise specified.
In the present specification, the “surface roughness Ra” is the arithmetic average roughness Ra, and the value of the arithmetic average roughness Ra is defined in JIS B0601 (1994) 3 “Definition of defined arithmetic average roughness. And display ".
The “thickness” of each layer in the present specification is a thickness obtained by measuring with a stylus type surface roughness measuring machine.
 また、本明細書において、「触覚センサ用前面板1の絶縁層4側の表面」とは、触覚センサ用前面板において絶縁層側に有する最外層の表面をいい、例えば図3では、触覚センサ用前面板1の絶縁層4を含む面S2を意味する。図6のように絶縁層4上にさらに撥水層6等の機能層を有する場合は、触覚センサ用前面板1の絶縁層4側の表面とは、最外層を構成する機能層、例えば図6においては触覚センサ用前面板1の撥水層6を含む面S5となる。「触覚センサ用前面板1の絶縁層4側の表面」とは、言い換えれば、触覚センサ用前面板1の透明基体2側の面S4と反対側の面、すなわち、タッチパネルが配設される側の面(図5参照)と反対側の面をいう。本明細書において、触覚センサ用前面板の絶縁層側の表面を「触覚センサ用前面板の表面」ということもある。 Further, in this specification, the “surface on the insulating layer 4 side of the front plate 1 for tactile sensor” refers to the surface of the outermost layer on the insulating layer side of the front plate for tactile sensor. For example, in FIG. It means the surface S2 including the insulating layer 4 of the front plate 1 for use. When the functional layer such as the water-repellent layer 6 is further provided on the insulating layer 4 as shown in FIG. 6, the surface on the insulating layer 4 side of the front panel 1 for the touch sensor is a functional layer constituting the outermost layer, for example, FIG. 6 is a surface S5 including the water repellent layer 6 of the front plate 1 for the touch sensor. In other words, the “surface on the insulating layer 4 side of the front plate 1 for tactile sensor” means the surface opposite to the surface S4 on the transparent substrate 2 side of the front plate 1 for tactile sensor, that is, the side on which the touch panel is provided. The surface opposite to the surface (see FIG. 5). In the present specification, the surface on the insulating layer side of the front plate for a touch sensor may be referred to as “the surface of the front plate for a touch sensor”.
 本発明の実施形態の触覚センサ用前面板1によれば、透明基体2の高抵抗層3側の面S1の表面粗さRaを0.05~0.5μmとすることで、例えば図2に示す従来の前面板101において発生する、絶縁層104と層103との界面で生じる反射光と前面板101の表面で生じる反射光とが干渉して反射光全体が虹色の色相を呈する、いわゆる干渉縞を抑制できる。 According to the touch sensor front plate 1 of the embodiment of the present invention, the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is set to 0.05 to 0.5 μm, for example, in FIG. The reflected light generated at the interface between the insulating layer 104 and the layer 103 and the reflected light generated on the surface of the front plate 101 interfere with each other and the reflected light exhibits a rainbow hue. Interference fringes can be suppressed.
 また、本発明の実施形態の触覚センサ用前面板1によれば、触覚センサ用前面板1の表面の表面粗さRaを0.05μm以下とすることで、前面板1表面の白曇り等による光透過性の低下を抑制でき、視認性に優れた触覚センサ用前面板とすることができる。 Further, according to the front plate 1 for a tactile sensor of the embodiment of the present invention, the surface roughness Ra of the surface of the front plate 1 for the tactile sensor is set to 0.05 μm or less, thereby causing white clouding or the like on the surface of the front plate 1. A front plate for a tactile sensor that can suppress a decrease in light transmittance and has excellent visibility can be obtained.
 透明基体2は、高抵抗層3側の面S1の表面粗さRaが0.05~0.5μmであり、かつ可視光領域の光を透過し得るものであれば、特に限定することなく用いることができる。なお、例えば図4に示すように、通常、透明基体2上に積層される高抵抗層3の絶縁層4側の界面S3は、透明基体2の高抵抗層3側の面S1の形状を反映した形状を有する。 The transparent substrate 2 is used without particular limitation as long as the surface roughness Ra of the surface S1 on the high resistance layer 3 side is 0.05 to 0.5 μm and can transmit light in the visible light region. be able to. For example, as shown in FIG. 4, the interface S3 on the insulating layer 4 side of the high resistance layer 3 laminated on the transparent substrate 2 usually reflects the shape of the surface S1 of the transparent substrate 2 on the high resistance layer 3 side. Has the shape.
 透明基体2の高抵抗層3側の面S1の表面粗さRaを0.05μm以上とすることで、例えば図4に示すように、触覚センサ用前面板1の表面S2から入射した光L3は、透明基体2の高抵抗層3側の面S1の形状を反映する絶縁層4と高抵抗層3との界面S3において、拡散反射されて反射光L4を生じる。反射光L4は様々な方向に向かって反射する拡散反射光であるため、触覚センサ用前面板1の表面S2での反射光L5とはほとんど干渉することがなく、よって干渉縞の発生が抑制される。このため、反射光が虹色の色相を呈することのない、良好な外観を有する触覚センサ用前面板1とすることができる。 By setting the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 to 0.05 μm or more, for example, as shown in FIG. 4, the light L3 incident from the surface S2 of the front plate 1 for tactile sensor is At the interface S3 between the insulating layer 4 and the high resistance layer 3 reflecting the shape of the surface S1 on the high resistance layer 3 side of the transparent substrate 2, the reflected light L4 is generated by being diffusely reflected. Since the reflected light L4 is diffusely reflected light that is reflected in various directions, the reflected light L4 hardly interferes with the reflected light L5 on the surface S2 of the front plate 1 for tactile sensors, and thus the generation of interference fringes is suppressed. The For this reason, it can be set as the tactile sensor front plate 1 having a good appearance without the reflected light exhibiting a rainbow hue.
 一方、透明基体2の高抵抗層3側の面S1の表面粗さRaが0.5μmを超えると、その形状を反映する高抵抗層3の絶縁層4側の界面S3において、凸部が絶縁層4側に過度に深く侵入し、絶縁破壊が生じ易く、例えば、図5に示すようにして触覚センサ用前面板1を用いた場合に、触覚センサ用前面板1の表面S2に接近した感覚受容体Xに、高抵抗層3に蓄積された電荷に基づく電流が直接流入するおそれがある。また、透明基体2の高抵抗層3側の面S1の表面粗さRaが0.5μmを超えると、透明基体2と、透明基体2の高抵抗層3側の面S1上に直接積層される層、例えば図3に示す例においては高抵抗層3との密着性が低下し、触覚センサ用前面板としての形状安定性が低下するおそれがある。透明基体2の高抵抗層3側の面S1の表面粗さRaは好ましくは0.07~0.2μmであり、より好ましくは0.08~0.15μmである。 On the other hand, when the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 exceeds 0.5 μm, the convex portion is insulated at the interface S3 on the insulating layer 4 side of the high resistance layer 3 reflecting the shape. For example, when the front panel 1 for a tactile sensor is used as shown in FIG. 5, a sense of approaching to the surface S2 of the front panel 1 for a tactile sensor is likely to occur. There is a possibility that a current based on the charge accumulated in the high resistance layer 3 directly flows into the receptor X. When the surface roughness Ra of the surface S1 of the transparent substrate 2 on the high resistance layer 3 side exceeds 0.5 μm, the transparent substrate 2 and the surface S1 of the transparent substrate 2 on the high resistance layer 3 side are directly laminated. In the example shown in FIG. 3, for example, the adhesion with the high resistance layer 3 is lowered, and the shape stability as the front plate for the tactile sensor may be lowered. The surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is preferably 0.07 to 0.2 μm, more preferably 0.08 to 0.15 μm.
 透明基体2としては、具体的には、例えば、無色透明なソーダライムシリケートガラス、アルミノシリケートガラス(SiO-Al-NaO系ガラス)、リチウムアルミノシリケートガラス、石英ガラス、無アルカリガラス、その他の各種ガラスからなる透明ガラス板や、ポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリエーテルスルホン、ポリメチルメタクリレート、シクロオレフィンポリマー等から選ばれるプラスチック材料の単独の層からなるプラスチックフィルム、または上記から選ばれるプラスチック材料の層を二種以上積層してなる積層フィルム等のプラスチックフィルムを用いることができる。 Specific examples of the transparent substrate 2 include colorless and transparent soda lime silicate glass, aluminosilicate glass (SiO 2 —Al 2 O 3 —Na 2 O glass), lithium aluminosilicate glass, quartz glass, and alkali-free. Glass, transparent glass plate made of other various glasses, plastic film consisting of a single layer of plastic material selected from polyethylene terephthalate, polycarbonate, triacetyl cellulose, polyethersulfone, polymethyl methacrylate, cycloolefin polymer, etc. A plastic film such as a laminated film obtained by laminating two or more layers of plastic materials selected from the above can be used.
 上記のソーダライムシリケートガラス等からなるガラス板やプラスチックフィルムの一方の主面に対して、表面粗さRaが0.05~0.5μmとなるような表面処理、例えば、ガラス板に対するフロスト処理を行うことで、上記表面粗さRaの範囲に表面処理された面を高抵抗層3側の面S1として有する透明基体2を得ることができる。 Surface treatment with a surface roughness Ra of 0.05 to 0.5 μm on one main surface of a glass plate or plastic film made of soda lime silicate glass or the like, for example, frost treatment on a glass plate By performing, the transparent base | substrate 2 which has the surface surface-treated in the range of the said surface roughness Ra as surface S1 by the side of the high resistance layer 3 can be obtained.
 フロスト処理は、例えば、フッ化水素とフッ化アンモニウムの混合溶液に、被処理体であるガラス板を浸漬し、浸漬面を化学的に表面処理することで行うことができる。
 また、このような化学的処理による方法以外にも、例えば、結晶質二酸化珪素粉、炭化珪素粉等を加圧空気でガラス板表面に吹きつけるいわゆるサンドブラスト法や、結晶質二酸化珪素粉、炭化珪素粉等を付着させたブラシを用いて、水で湿らせたもので磨く等の物理的処理による方法を用いることもできる。
 特に、フッ化水素等の薬液を用いて化学的に表面処理する方法では、被処理体表面におけるマイクロクラックが生じ難く、機械的強度の低下が生じ難いため好ましい。
The frost treatment can be performed, for example, by immersing a glass plate, which is an object to be processed, in a mixed solution of hydrogen fluoride and ammonium fluoride and chemically treating the immersion surface.
In addition to such a chemical treatment method, for example, a so-called sand blasting method in which crystalline silicon dioxide powder, silicon carbide powder or the like is blown onto the glass plate surface with pressurized air, crystalline silicon dioxide powder, silicon carbide, etc. It is also possible to use a method based on physical treatment such as polishing with a brush moistened with water using a brush to which powder or the like is adhered.
In particular, the method of chemically surface-treating using a chemical solution such as hydrogen fluoride is preferable because microcracks are hardly generated on the surface of the object to be processed, and mechanical strength is not easily lowered.
 透明基体2としては、その高抵抗層3側の面S1上に直接設ける層との密着性の観点からは、ソーダライムシリケートガラス板を用いることが好ましい。また、透明基体2自体の強度の点からは、アルミノシリケートガラス板を強化処理した強化ガラス板(例えば、「ドラゴントレイル(登録商標)」等)を用いることが好ましい。 As the transparent substrate 2, it is preferable to use a soda lime silicate glass plate from the viewpoint of adhesion with a layer directly provided on the surface S 1 on the high resistance layer 3 side. Further, from the viewpoint of the strength of the transparent substrate 2 itself, it is preferable to use a tempered glass plate (for example, “Dragon Trail (registered trademark)”) obtained by strengthening an aluminosilicate glass plate.
 触覚センサ用前面板1の使用形態を考慮すると、透明基体2としては、ある程度の押圧力に耐え得る十分な強度が求められる。このような観点から、透明基体2としては、アルミノシリケートガラス板を強化処理した強化ガラス板を用いることが好ましい。 Considering the usage pattern of the front plate 1 for a tactile sensor, the transparent substrate 2 is required to have sufficient strength to withstand a certain amount of pressing force. From such a viewpoint, it is preferable to use as the transparent substrate 2 a tempered glass plate obtained by strengthening an aluminosilicate glass plate.
 アルミノシリケートガラス板を構成するガラス材料としては、例えば以下の組成のガラス材料が使用される。モル%で表示した組成が、SiOを50~80%、Alを1~20%、NaOを6~20%、KOを0~11%、MgOを0~15%、CaOを0~6%およびZrOを0~5%含有するガラス材料。 As a glass material constituting the aluminosilicate glass plate, for example, a glass material having the following composition is used. The composition expressed in mol% is SiO 2 50-50%, Al 2 O 3 1-20%, Na 2 O 6-20%, K 2 O 0-11%, MgO 0-15%. , A glass material containing 0-6% CaO and 0-5% ZrO 2 .
 アルミノシリケートガラス板を強化処理した強化ガラス板の表面には、圧縮応力層が形成されており、その圧縮応力層の厚さは好ましくは10μm以上、より好ましくは30μm以上である。また、圧縮応力層における表面圧縮応力は、200MPa以上であることが好ましく、550MPa以上であることがより好ましい。 A compressive stress layer is formed on the surface of the tempered glass plate obtained by strengthening the aluminosilicate glass plate, and the thickness of the compressive stress layer is preferably 10 μm or more, more preferably 30 μm or more. Further, the surface compressive stress in the compressive stress layer is preferably 200 MPa or more, and more preferably 550 MPa or more.
 アルミノシリケートガラス板に対する強化処理としては、化学強化処理が好ましい。化学強化処理を施す方法としては、典型的には、アルミノシリケートガラス板を、KNO溶融塩に浸漬し、イオン交換処理した後、室温付近まで冷却する方法が挙げられる。KNO溶融塩の温度や浸漬時間等の処理条件は、表面圧縮応力および圧縮応力層の厚さが所望の値となるように設定すればよい。 As the strengthening treatment for the aluminosilicate glass plate, chemical strengthening treatment is preferable. As a method for performing chemical strengthening treatment, typically, a method in which an aluminosilicate glass plate is immersed in KNO 3 molten salt, subjected to ion exchange treatment, and then cooled to around room temperature. The processing conditions such as the temperature and immersion time of the KNO 3 molten salt may be set so that the surface compressive stress and the thickness of the compressive stress layer have desired values.
 透明基体2の厚さは特に限定されないが、透明基体2を上述したガラス板で構成する場合、0.1~2mmが好ましく、0.3~1mmがより好ましい。透明基体2の厚さが2mm以下の場合、触覚センサ用前面板1の表面に対する押圧力が下部のパネル本体に伝達し易くなり、操作性が良好である。透明基体2を上述したプラスチックフィルムで構成する場合、その厚さは50~500μmが好ましく、50~200μmがより好ましい。なお、透明基体2は、単一の層で構成されていてもよく、複数の層から構成されていてもよい。 The thickness of the transparent substrate 2 is not particularly limited, but when the transparent substrate 2 is composed of the glass plate described above, it is preferably 0.1 to 2 mm, more preferably 0.3 to 1 mm. When the thickness of the transparent substrate 2 is 2 mm or less, the pressing force against the surface of the touch sensor front plate 1 is easily transmitted to the lower panel body, and the operability is good. When the transparent substrate 2 is composed of the above-described plastic film, the thickness is preferably 50 to 500 μm, more preferably 50 to 200 μm. The transparent substrate 2 may be composed of a single layer or may be composed of a plurality of layers.
 透明基体2としては、ヘイズ値が5~30%であるものを用いることが好ましく、10~27%であるものを用いることがより好ましい。
 透明基体2のヘイズ値を30%以下とすることで、触覚センサ用前面板1としての光透過性が十分に確保されるとともに、絶縁破壊の発生が抑制された触覚センサ用前面板1とすることができる。また、透明基体2のヘイズ値を5%以上とすることで、反射光による干渉縞の形成が抑制され、外観の良好な触覚センサ用前面板1とすることができる。
As the transparent substrate 2, one having a haze value of 5 to 30% is preferably used, and one having a haze value of 10 to 27% is more preferably used.
By setting the haze value of the transparent substrate 2 to 30% or less, the front plate 1 for a tactile sensor is sufficiently secured to have light transmission as the front plate 1 for a tactile sensor and the occurrence of dielectric breakdown is suppressed. be able to. Further, by setting the haze value of the transparent substrate 2 to 5% or more, formation of interference fringes due to reflected light is suppressed, and the front panel 1 for a tactile sensor having a good appearance can be obtained.
 ここでヘイズ値とは、濁度の指標となるものであり、全透過光に対する拡散透過光の割合、すなわち、光源から試料に光を照射したときの全透過率Tと、試料中で散乱された光の透過率Sにより、ヘイズ値H=S/T×100として求められる。 Here, the haze value is an index of turbidity, and the ratio of the diffuse transmitted light to the total transmitted light, that is, the total transmittance T when the sample is irradiated with light from the light source, and scattered in the sample. The haze value H = S / T × 100 is obtained from the light transmittance S.
 高抵抗層3は、1~100MΩ/□の表面抵抗値を有し、かつ屈折率が1.8~2.5、厚さが5~50nmの層である。触覚センサ用前面板1は、例えば、図5に示すように、透明電極5aを備えるタッチパネル本体5と積層して用いられる。積層は、タッチパネル本体5が有する透明電極5aに、触覚センサ用前面板1の透明基体2側の面S4が対向するように行われる。このようにして、タッチパネル本体5と積層されて使用される触覚センサ用前面板1において高抵抗層3は、タッチパネル本体5の透明電極5aへの通電により、触覚センサ用前面板1側に誘起された電荷を蓄積する層として機能する。 The high resistance layer 3 is a layer having a surface resistance value of 1 to 100 MΩ / □, a refractive index of 1.8 to 2.5, and a thickness of 5 to 50 nm. For example, as shown in FIG. 5, the touch sensor front plate 1 is used by being laminated with a touch panel body 5 including a transparent electrode 5a. Lamination is performed such that the surface S4 on the transparent substrate 2 side of the front plate 1 for touch sensor faces the transparent electrode 5a of the touch panel body 5. In this way, the high resistance layer 3 in the touch sensor front plate 1 used by being laminated with the touch panel body 5 is induced to the touch sensor front plate 1 side by energizing the transparent electrode 5 a of the touch panel body 5. It functions as a layer for accumulating the accumulated charges.
 高抵抗層3は、上記範囲の表面抵抗値、屈折率および厚さを有する層であれば、その構成は特に限定されない。高抵抗層3は、透明基体2の上記範囲の表面粗さRaを有する面S1上に直接(図3参照)またはバリア層7等の他の機能層を介して(図7参照)設けられる層である。いずれの場合においても、高抵抗層3の透明基体2と反対側の表面S3は、透明基体2の高抵抗層3側の面S1の表面形状を十分反映した形状を有するように形成されることが好ましい。高抵抗層3としては、金属酸化物を主成分として含む層、例えば、酸化スズおよび酸化チタンを主成分として含む層、酸化ニオブおよび酸化チタンを主成分として含む層を好適に用いることができる。 The configuration of the high resistance layer 3 is not particularly limited as long as it is a layer having a surface resistance value, a refractive index, and a thickness in the above ranges. The high resistance layer 3 is a layer provided directly (see FIG. 3) or via another functional layer such as the barrier layer 7 (see FIG. 7) on the surface S1 having the surface roughness Ra in the above range of the transparent substrate 2. It is. In any case, the surface S3 of the high resistance layer 3 opposite to the transparent substrate 2 is formed to have a shape that sufficiently reflects the surface shape of the surface S1 of the transparent substrate 2 on the high resistance layer 3 side. Is preferred. As the high resistance layer 3, a layer containing a metal oxide as a main component, for example, a layer containing tin oxide and titanium oxide as main components, or a layer containing niobium oxide and titanium oxide as main components can be suitably used.
 酸化スズおよび酸化チタンを主成分として含む層には、スズとチタンの複合酸化物が含まれていてもよい。また、酸化ニオブおよび酸化チタンを主成分として含む層には、ニオブとチタンの複合酸化物が含まれていてもよい。
 なお、本明細書において、例えば「金属酸化物を主成分として含む層」とは、金属酸化物を95質量%以上の割合で含む層をいう。
The layer containing tin oxide and titanium oxide as a main component may contain a composite oxide of tin and titanium. In addition, the layer containing niobium oxide and titanium oxide as main components may contain a composite oxide of niobium and titanium.
In this specification, for example, “a layer containing a metal oxide as a main component” refers to a layer containing a metal oxide at a ratio of 95 mass% or more.
 高抵抗層3の表面抵抗値を1MΩ/□以上とすることで、タッチパネル本体5の透明電極5aへの通電時に、高抵抗層3と透明電極5aとが電気的に作用してタッチパネル本体5の動作が妨げられるのを防止できる。また、高抵抗層3の表面抵抗値を100MΩ/□以下とすることで、制御電圧や周波数に基づく帯電状態を正確に発現して、感覚受容体Xに所望の触覚を再現性よく発現させることができ、触覚による優れたセンサ精度が得られる。高抵抗層3の表面抵抗値は、5~60MΩ/□とすることが好ましい。 By setting the surface resistance value of the high-resistance layer 3 to 1 MΩ / □ or more, the high-resistance layer 3 and the transparent electrode 5a are electrically operated when the transparent electrode 5a of the touch panel body 5 is energized, and the touch panel body 5 It is possible to prevent the operation from being hindered. In addition, by setting the surface resistance value of the high resistance layer 3 to 100 MΩ / □ or less, the charged state based on the control voltage and the frequency is accurately expressed, and the desired tactile sensation is expressed in the sensory receptor X with high reproducibility. And excellent sensor accuracy by tactile sensation can be obtained. The surface resistance value of the high resistance layer 3 is preferably 5 to 60 MΩ / □.
 高抵抗層3としては、酸化スズおよび酸化チタンを主成分として含む層が、良好な視感透過率、および低視感反射率を確保しつつ、その表面抵抗値を上記所望の範囲に制御しやすいため、好適に用いられる。 As the high resistance layer 3, a layer containing tin oxide and titanium oxide as main components controls the surface resistance value within the above desired range while ensuring good luminous transmittance and low luminous reflectance. Since it is easy, it is used suitably.
 高抵抗層3の屈折率は、既に述べたように、1.8~2.5である。
 高抵抗層3の構成材料としては、所望の抵抗値を有しかつ光透過性を有することが求められる。そして、これらの特性を満たし得る構成材料は、通常、その屈折率が1.8~2.5である。上記の特性を満たすより好ましい構成材料は、屈折率が2.0~2.5のものである。
The refractive index of the high resistance layer 3 is 1.8 to 2.5 as described above.
The constituent material of the high resistance layer 3 is required to have a desired resistance value and light transmittance. A constituent material that can satisfy these characteristics usually has a refractive index of 1.8 to 2.5. A more preferable constituent material satisfying the above characteristics is a material having a refractive index of 2.0 to 2.5.
 一方、例えば図4に示す高抵抗層3と絶縁層4との界面S3における反射光L4と触覚センサ用前面板1の表面S2における反射光L5の干渉に起因する干渉縞の発生を抑制する観点からは、高抵抗層3の屈折率は、絶縁層4の屈折率と近いことが望ましい。しかしながら、前述したように、抵抗値及び光透過性の観点から高抵抗層3として選択し得る構成材料の屈折率は、上記範囲に制約されており、高抵抗層3自体の屈折率の調整により、絶縁層4と高抵抗層3との屈折率差を、干渉縞の発生を抑制できるレベルまで低減することは、事実上困難である。よって、本発明においては、上記のとおり、透明基体2の高抵抗層3側の面S1の表面粗さRaを0.05~0.5μmとすることで、この形状を高抵抗層3と絶縁層4との界面S3に反映させて、干渉縞の発生を抑制している。 On the other hand, for example, the viewpoint of suppressing the generation of interference fringes caused by the interference between the reflected light L4 at the interface S3 between the high resistance layer 3 and the insulating layer 4 shown in FIG. 4 and the reflected light L5 at the surface S2 of the front plate 1 for tactile sensors. Therefore, it is desirable that the refractive index of the high resistance layer 3 is close to the refractive index of the insulating layer 4. However, as described above, the refractive index of the constituent material that can be selected as the high resistance layer 3 from the viewpoint of the resistance value and the light transmittance is limited to the above range, and by adjusting the refractive index of the high resistance layer 3 itself. It is practically difficult to reduce the refractive index difference between the insulating layer 4 and the high resistance layer 3 to a level that can suppress the occurrence of interference fringes. Therefore, in the present invention, as described above, the surface roughness Ra of the surface S1 on the high resistance layer 3 side of the transparent substrate 2 is set to 0.05 to 0.5 μm so that this shape is insulated from the high resistance layer 3. Reflecting on the interface S3 with the layer 4, the generation of interference fringes is suppressed.
 酸化スズおよび酸化チタンを主成分として含む層や、酸化ニオブおよび酸化チタンを主成分として含む層は、酸化スズおよび酸化チタンまたは酸化ニオブおよび酸化チタンを主成分として含み、かつ高抵抗層3としての機能を損なわない範囲で、Al、Si、Ga、In等の他の元素が含まれていてもよい。 The layer containing tin oxide and titanium oxide as main components, or the layer containing niobium oxide and titanium oxide as main components contains tin oxide and titanium oxide or niobium oxide and titanium oxide as main components, and serves as the high resistance layer 3. Other elements such as Al, Si, Ga, and In may be included as long as the function is not impaired.
 高抵抗層3は、例えばDC(直流)スパッタリング、AC(交流)スパッタリング、RF(高周波)スパッタリング等のスパッタリングにより、表面粗さRaが上記範囲となるように表面処理されたガラス板やプラスチックフィルム等からなる透明基体2の表面処理面上に形成することができる。これらの中でも、DCマグネトロンスパッタリングによるスパッタ法は、プロセスが安定しており、大面積への成膜が容易であるため好適に用いられる。 The high resistance layer 3 is a glass plate or plastic film that has been surface-treated so that the surface roughness Ra is in the above range by sputtering such as DC (direct current) sputtering, AC (alternating current) sputtering, and RF (high frequency) sputtering. It can form on the surface treatment surface of the transparent base | substrate 2 which consists of these. Among these, the sputtering method by DC magnetron sputtering is preferably used because the process is stable and film formation on a large area is easy.
 なお、DCマグネトロンスパッタリングには、パルス化(パルス波状に電圧を印加する)DCマグネトロンスパッタリングが含まれる。パルス化DCマグネトロンスパッタリングは、異常放電の防止に有効である。 Note that DC magnetron sputtering includes pulsed (applying voltage in the form of a pulse wave) DC magnetron sputtering. Pulsed DC magnetron sputtering is effective in preventing abnormal discharge.
 高抵抗層3は、上述した酸化スズおよび酸化チタンを主成分として含む層のように、二以上の金属元素を含むものが、良好な光透過性を有しつつ、その表面抵抗値を上記所望の範囲に制御しやすいため好適である。このような高抵抗層3の形成には、単体の元素からなるターゲットを複数用いる、いわゆるコスパッタリングを用いることができる。 The high resistance layer 3 includes two or more metal elements such as the above-described layer containing tin oxide and titanium oxide as a main component, and has the desired surface resistance value while having good light transmittance. It is suitable because it is easy to control within the range. For the formation of such a high resistance layer 3, so-called co-sputtering using a plurality of targets made of a single element can be used.
 例えば、酸化スズおよび酸化チタンを主成分として含む層をコスパッタリング法により形成する場合、ターゲットとしては、スズを主成分とするもの、およびチタンを主成分とするものが用いられる。
 スズを主成分とする金属ターゲットとしては、スズのみからなるもの、またはスズを主成分として含み、かつスズ以外の金属、例えばAl、Si等の公知のドーパントを本発明の特徴を損なわない範囲でドープしたものを用いることができる。
 チタンを主成分とする金属ターゲットとしては、チタンのみからなるもの、またはチタンを主成分として含み、かつチタン以外の公知のドーパントを本発明の特徴を損なわない範囲でドープしたものを用いることができる。
For example, when a layer containing tin oxide and titanium oxide as main components is formed by a co-sputtering method, a target containing tin as a main component and a target containing titanium as a main component are used.
As a metal target mainly composed of tin, a metal target composed solely of tin, or containing tin as a main component, and a known dopant such as a metal other than tin, for example, Al, Si, or the like, as long as the characteristics of the present invention are not impaired. Doped ones can be used.
As the metal target containing titanium as a main component, a target made of only titanium or a material containing titanium as a main component and doped with a known dopant other than titanium within a range not impairing the characteristics of the present invention can be used. .
 例えば、酸化ニオブおよび酸化チタンを主成分として含む層をコスパッタリング法により形成する場合、ターゲットとしては、ニオブを主成分とするもの、およびチタンを主成分とするものが好適に用いられる。
 ニオブを主成分とする金属ターゲットとしては、ニオブのみからなるもの、またはニオブを主成分として含み、かつニオブ以外の金属、例えばAl、Si等の公知のドーパントを本発明の特徴を損なわない範囲でドープしたものを用いることができる。
For example, when a layer containing niobium oxide and titanium oxide as main components is formed by a co-sputtering method, a target containing niobium as a main component and a target containing titanium as a main component are preferably used.
As a metal target mainly composed of niobium, a metal target composed of niobium alone or a material containing niobium as a main component, and a known dopant such as a metal other than niobium, such as Al and Si, does not impair the characteristics of the present invention. Doped ones can be used.
 スパッタガスとしては、各種反応性ガスを用いることができる。具体的には、例えば、酸素ガスおよび不活性ガスの混合ガス、酸素ガス、窒素ガスおよび不活性ガスの混合ガス等を用いることができる。
 不活性ガスとしては、例えば、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等の希ガスが挙げられる。これらの中でも、経済性および放電のし易さの点から、アルゴンが好ましい。これらは、単独でまたは2種以上を混合して用いられる。
 なお、スパッタガスには、上記窒素ガス(N)以外にも、窒素原子を含むガスとしてNO、NO、NO、NH等を用いることもできる。
Various reactive gases can be used as the sputtering gas. Specifically, for example, a mixed gas of oxygen gas and inert gas, a mixed gas of oxygen gas, nitrogen gas, and inert gas, or the like can be used.
Examples of the inert gas include rare gases such as helium, neon, argon, krypton, and xenon. Among these, argon is preferable from the viewpoint of economy and ease of discharge. These may be used alone or in admixture of two or more.
In addition to the nitrogen gas (N 2 ), N 2 O, NO, NO 2 , NH 3 or the like can be used as the sputtering gas as a gas containing nitrogen atoms.
 スパッタガスにおける酸素ガスおよび不活性ガスや窒素原子を含むガスの分圧、ならびにスパッタガスの全圧は、特に限定されず、グロー放電が安定に行われる圧力であればよい。 The partial pressure of the gas containing oxygen gas, inert gas, and nitrogen atom in the sputtering gas, and the total pressure of the sputtering gas are not particularly limited, and may be any pressure at which glow discharge is stably performed.
 スパッタリングを行う場合、電力密度は、0.9~4W/cmが好ましく、0.9~3W/cmがより好ましい。成膜時間は、成膜速度および所望の膜厚に応じて決定すればよい。 When sputtering is performed, the power density is preferably 0.9 to 4 W / cm 2 and more preferably 0.9 to 3 W / cm 2 . The film formation time may be determined according to the film formation speed and the desired film thickness.
 なお、コスパッタリングは、各ターゲットを同時に放電させて行うものであり、それぞれのターゲットに印加される電力密度やスパッタガスの分圧を制御することにより、所望の組成の被膜を形成することができる。 Note that co-sputtering is performed by discharging each target simultaneously, and a film having a desired composition can be formed by controlling the power density applied to each target and the partial pressure of the sputtering gas. .
 なお、高抵抗層3の形成は、例えば真空蒸着法、イオンビームアシスト蒸着法、イオンプレート法等のスパッタ法以外の物理気相析出法や、プラズマCVD法等の化学気相析出法等を用いて行うこともできる。大面積で均一膜厚が得られやすいため、スパッタ法が好適に用いられる。 The high resistance layer 3 is formed by using, for example, a physical vapor deposition method other than a sputtering method such as a vacuum vapor deposition method, an ion beam assisted vapor deposition method or an ion plate method, or a chemical vapor deposition method such as a plasma CVD method. Can also be done. Since it is easy to obtain a uniform film thickness with a large area, a sputtering method is preferably used.
 高抵抗層3が、酸化スズおよび酸化チタンを主成分として含む層である場合、高抵抗層3は、SnとTiとの合計量(100原子%)に対して、Tiを1~30原子%含有する層が好ましく、5~20原子%含有する層がより好ましい。また、高抵抗層3が、酸化ニオブおよび酸化チタンを主成分として含む層である場合、高抵抗層3は、NbとTiとの合計量(100原子%)に対して、Tiを90~99.9原子%含有する層が好ましく、95~99.9原子%含有する層がより好ましい。
 高抵抗層3における、原子比率を上記範囲とすることで、高抵抗層3において、上記所望の範囲の表面抵抗値を得られやすく、また上記所望の範囲の屈折率を有するものとすることができる。
When the high-resistance layer 3 is a layer containing tin oxide and titanium oxide as main components, the high-resistance layer 3 contains 1 to 30 atomic percent of Ti with respect to the total amount (100 atomic percent) of Sn and Ti. A layer containing 5 to 20 atom% is more preferable. In the case where the high resistance layer 3 is a layer containing niobium oxide and titanium oxide as main components, the high resistance layer 3 has a Ti content of 90 to 99 with respect to the total amount (100 atomic%) of Nb and Ti. A layer containing 0.9 atomic% is preferable, and a layer containing 95 to 99.9 atomic% is more preferable.
By setting the atomic ratio in the high resistance layer 3 within the above range, the surface resistance value in the desired range can be easily obtained in the high resistance layer 3, and the refractive index in the desired range can be obtained. it can.
 高抵抗層3の厚さは、5nm以上50nm以下であり、より好ましくは5nm以上30nm以下である。高抵抗層3の厚さを5nm以上とすることで、十分な電荷保持機能が得られる。一方、高抵抗層3の厚さが50nmを超えると、透明基体2における上記範囲の表面粗さRaを備える表面S1の形状が、高抵抗層3の透明基体2側と反対側の面すなわち絶縁層4との界面S3に十分に反映されず、該界面S3で生じる反射光L4を拡散させる効果が十分に得られない。高抵抗層3の厚さを5nm以上50nm以下とすることで、十分な電荷保持機能を確保しつつ、干渉縞の発生が抑制された、良好な外観を有する触覚センサ用前面板1とすることができる。 The thickness of the high resistance layer 3 is 5 nm or more and 50 nm or less, more preferably 5 nm or more and 30 nm or less. By setting the thickness of the high resistance layer 3 to 5 nm or more, a sufficient charge holding function can be obtained. On the other hand, when the thickness of the high resistance layer 3 exceeds 50 nm, the shape of the surface S1 having the surface roughness Ra in the above range in the transparent substrate 2 is the surface opposite to the transparent substrate 2 side of the high resistance layer 3, that is, the insulation. It is not sufficiently reflected on the interface S3 with the layer 4, and the effect of diffusing the reflected light L4 generated at the interface S3 cannot be sufficiently obtained. By setting the thickness of the high-resistance layer 3 to 5 nm or more and 50 nm or less, the front plate 1 for a tactile sensor having a good external appearance with suppressed interference fringes while ensuring a sufficient charge holding function is obtained. Can do.
 なお、高抵抗層3の厚さは、スパッタリングを行う際の製膜速度や実質的な製膜時間により、適宜調整することができる。 In addition, the thickness of the high resistance layer 3 can be appropriately adjusted depending on the film forming speed and the substantial film forming time when performing sputtering.
 絶縁層4は、高抵抗層3の上面に、または高抵抗層3上に他の層を介設して設けられる層であり、例えば、図5に示すようにして用いた場合に触覚センサ用前面板1の表面S2に触れる指先等の感覚受容体Xに、高抵抗層3に蓄積された電荷に基づく電流が直接流入するのを防止する機能を有する。 The insulating layer 4 is a layer provided on the upper surface of the high-resistance layer 3 or another layer on the high-resistance layer 3, for example, when used as shown in FIG. 5 for a tactile sensor It has a function of preventing a current based on charges accumulated in the high resistance layer 3 from directly flowing into the sensory receptor X such as a fingertip that touches the surface S2 of the front plate 1.
 なお、本明細書において、絶縁層4とは、1010Ω・cm以上の体積抵抗値を有する層をいう。ここで、体積抵抗値は、JIS C2318(1975年)に準じて測定した値である。 In this specification, the insulating layer 4 refers to a layer having a volume resistance value of 10 10 Ω · cm or more. Here, the volume resistance value is a value measured according to JIS C2318 (1975).
 絶縁層4は、屈折率が1.3~1.6であり、絶縁層4に適用し得るより好ましい構成材料の屈折率は1.4~1.6である。絶縁層4は、電気絶縁性、光透過性、絶縁層4の形成のし易さ等を考慮して構成材料を選択すると、その屈折率は、1.3~1.6となる。また、絶縁層4の厚さは0.5~15μmの範囲である。 The insulating layer 4 has a refractive index of 1.3 to 1.6, and a more preferable constituent material that can be applied to the insulating layer 4 has a refractive index of 1.4 to 1.6. The insulating layer 4 has a refractive index of 1.3 to 1.6 when a constituent material is selected in consideration of electrical insulation, light transmittance, ease of formation of the insulating layer 4, and the like. The thickness of the insulating layer 4 is in the range of 0.5 to 15 μm.
 絶縁層4は、上述した屈折率を有し、かつ上記範囲の厚さで層を形成した際に、光透過性および電気的絶縁性を有する層であれば、特に限定されない。絶縁層4としては、例えば、(I)紫外線硬化性の成分を含み、得られる硬化体で層を形成した際に絶縁層4の特性を満たすように調整された絶縁層形成用組成物(i)を紫外線により硬化させた硬化体、または(II)熱硬化性の成分を含み、(I)同様に得られる硬化体で層を形成した際に絶縁層4の特性を満たすように調整された絶縁層形成用組成物(ii)を熱により硬化させた硬化体からなる層を用いることができる。 The insulating layer 4 is not particularly limited as long as it has the above-described refractive index and has a light transmitting property and an electrical insulating property when the layer is formed with a thickness in the above range. As the insulating layer 4, for example, (I) a composition for forming an insulating layer (i) containing an ultraviolet curable component and adjusted to satisfy the characteristics of the insulating layer 4 when the layer is formed from the obtained cured product (i) ) Was cured with ultraviolet rays, or (II) containing a thermosetting component, and (I) was adjusted so as to satisfy the characteristics of the insulating layer 4 when a layer was formed from the obtained cured product. A layer made of a cured product obtained by curing the insulating layer forming composition (ii) with heat can be used.
 ここで、絶縁層形成用組成物(i)、(ii)は、層を形成する際に揮発する有機溶剤のような揮発成分を含んでいてもよい。絶縁層形成用組成物(i)、(ii)中で、揮発成分以外の実際に絶縁層を形成する成分を固形分という。固形分は、硬化性の成分以外に非硬化性の成分を含んでいてもよい。したがって、絶縁層形成用組成物(i)、(ii)を硬化させた「硬化体」とは、該組成物が含有する固形分のみから硬化により形成された、硬化性成分の硬化物と非硬化性成分とからなるものをいう。 Here, the insulating layer forming compositions (i) and (ii) may contain a volatile component such as an organic solvent which volatilizes when forming the layer. In the insulating layer forming compositions (i) and (ii), the component that actually forms the insulating layer other than the volatile component is referred to as solid content. The solid content may contain a non-curable component in addition to the curable component. Therefore, the “cured product” obtained by curing the insulating layer forming compositions (i) and (ii) is a cured product of a curable component and a non-cured product formed from a solid content contained in the composition. The thing which consists of a sclerosing | hardenable component.
 絶縁層4は、有機樹脂を主成分として含む層であることが好ましい。すなわち、絶縁層4が上記のような硬化体からなる場合、該硬化体は有機樹脂を主成分として含有することが好ましい。なお、本明細書において、「有機樹脂を主成分として含む層」とは、有機樹脂を95質量%以上の割合で含む層をいう。 The insulating layer 4 is preferably a layer containing an organic resin as a main component. That is, when the insulating layer 4 is made of a cured body as described above, the cured body preferably contains an organic resin as a main component. In this specification, “a layer containing an organic resin as a main component” refers to a layer containing an organic resin at a ratio of 95% by mass or more.
 有機樹脂としては、アクリル系樹脂、エポキシ樹脂、シリコーン樹脂等から選ばれる1種または2種以上が好ましい。これらの中でも、アクリル系樹脂が特に好ましい。アクリル系樹脂としては、例えば、アクリル樹脂、ウレタンアクリレート樹脂、エポキシアクリレート樹脂、ポリエステルアクリレート、ポリエーテルアクリレート等が挙げられる。 The organic resin is preferably one or more selected from acrylic resins, epoxy resins, silicone resins and the like. Among these, acrylic resins are particularly preferable. Examples of the acrylic resin include acrylic resin, urethane acrylate resin, epoxy acrylate resin, polyester acrylate, and polyether acrylate.
 なお、絶縁層4に用いる有機樹脂としては、紫外線硬化性の成分の硬化物であってもよく、熱硬化性の成分の硬化物であってもよい。有機樹脂は好ましくは、紫外線硬化性の成分の硬化物である。よって、絶縁層形成用組成物(i)が含有する紫外線硬化性の成分としては、硬化して有機樹脂、特にはアクリル系樹脂となる成分が好ましい。
 また、絶縁層形成用組成物(ii)が含有する熱硬化性の成分としては、硬化して有機樹脂となる成分であってもよく、オルガノシランのような硬化によりシロキサン結合による主骨格を有する硬化物を与える成分であってもよい。
The organic resin used for the insulating layer 4 may be a cured product of an ultraviolet curable component or a cured product of a thermosetting component. The organic resin is preferably a cured product of an ultraviolet curable component. Therefore, the ultraviolet curable component contained in the insulating layer forming composition (i) is preferably a component that is cured to become an organic resin, particularly an acrylic resin.
Further, the thermosetting component contained in the insulating layer forming composition (ii) may be a component that is cured to become an organic resin, and has a main skeleton due to a siloxane bond by curing such as organosilane. It may be a component that gives a cured product.
 以下、絶縁層形成用組成物(i)および絶縁層形成用組成物(ii)における含有成分および該組成物を用いた絶縁層4の形成方法について説明する。なお、以下において絶縁層形成用組成物(i)については、硬化して有機樹脂、特にはアクリル系樹脂となる成分を含むものを例として、絶縁層形成用組成物(ii)については硬化によりシロキサン結合による主骨格を有する硬化物を与える成分を含むものを例として説明するが、これに限定されない。 Hereinafter, the components in the insulating layer forming composition (i) and the insulating layer forming composition (ii) and the method for forming the insulating layer 4 using the composition will be described. In the following, for the insulating layer forming composition (i), the insulating layer forming composition (ii) is cured by curing, using as an example a component containing an organic resin, particularly an acrylic resin. Although an example including a component that gives a cured product having a main skeleton by a siloxane bond will be described, the present invention is not limited to this.
[絶縁層形成用組成物(i)]
 絶縁層形成用組成物(i)としては、例えば以下に示す、紫外線硬化性の重合性化合物(A)(以下、「重合性化合物(A)」という。)、紫外線吸収剤(B)および光重合開始剤(C)を含むものを用いることができる。
[Insulating layer forming composition (i)]
Examples of the insulating layer forming composition (i) include the following ultraviolet curable polymerizable compound (A) (hereinafter referred to as “polymerizable compound (A)”), ultraviolet absorber (B) and light. What contains a polymerization initiator (C) can be used.
 ここで、重合性化合物(A)は、紫外線硬化性を有する限りにおいて、単量体であっても、その1種以上が複数個重合した(コ)オリゴマーまたはプレ(コ)ポリマーであってもよい。 Here, the polymerizable compound (A) may be a monomer or a (co) oligomer or pre (co) polymer in which one or more of them are polymerized as long as they have ultraviolet curing properties. Good.
 重合性化合物(A)のうち少なくとも一部は、アクリロイル基またはメタクリロイル基を1分子中に2個以上有する多官能性重合性化合物(a-1)(以下、重合性化合物(a-1)という。)からなることが好ましい。以下、アクリロイル基とメタクリロイル基の両重合性官能基を意味する用語として(メタ)アクリロル基を使用する。(メタ)アクリレート、(メタ)アクリル酸等の用語も同様である。 At least a part of the polymerizable compound (A) is a polyfunctional polymerizable compound (a-1) having two or more acryloyl groups or methacryloyl groups in one molecule (hereinafter referred to as polymerizable compound (a-1)). .). Hereinafter, a (meth) acrylol group is used as a term meaning both polymerizable functional groups of an acryloyl group and a methacryloyl group. The same applies to terms such as (meth) acrylate and (meth) acrylic acid.
 重合性官能基としては、重合性が高いこと、特に紫外線による重合性が高いこと、からアクリロイル基が好ましい。したがって、以下の(メタ)アクリロイル基を有する化合物において好ましいものはアクリロイル基を有する化合物である。同様に(メタ)アクリレート、(メタ)アクリル酸等においてもアクリロイル基を有する化合物が好ましい。2以上の(メタ)アクリロイル基を有する化合物1分子中において、重合性官能基が異なっていてもよく、すなわち、1個以上のアクリロイル基と1個以上のメタクリロイル基を含んでいてもよく、好ましくはすべての重合性官能基がアクリロイル基であるものである。 As the polymerizable functional group, an acryloyl group is preferred because of its high polymerizability, particularly high polymerizability by ultraviolet rays. Accordingly, preferred compounds having the (meth) acryloyl group are compounds having an acryloyl group. Similarly, in (meth) acrylate, (meth) acrylic acid and the like, a compound having an acryloyl group is preferable. In one molecule of a compound having two or more (meth) acryloyl groups, the polymerizable functional group may be different, that is, it may contain one or more acryloyl groups and one or more methacryloyl groups. Are those in which all polymerizable functional groups are acryloyl groups.
 重合性化合物(a-1)以外の重合性化合物(A)としては、(メタ)アクリロイル基を1分子中に1個有する単官能性重合性化合物(以下、「重合性化合物(a-2)」という。)や(メタ)アクリロイル基以外の紫外線硬化性の重合性官能基を1個以上有する重合性化合物が挙げられる。 Examples of the polymerizable compound (A) other than the polymerizable compound (a-1) include a monofunctional polymerizable compound having one (meth) acryloyl group in one molecule (hereinafter referred to as “polymerizable compound (a-2)”). And a polymerizable compound having one or more ultraviolet curable polymerizable functional groups other than (meth) acryloyl groups.
 紫外線硬化性の重合性官能基が(メタ)アクリロイル基であると、紫外線硬化性が十分であり、また入手も容易であることから、重合性化合物(a-1)以外の重合性化合物(A)としては、重合性化合物(a-2)が好ましい。したがって、重合性化合物(A)としては重合性化合物(a-1)を含め実質的にすべて(メタ)アクリロイル基を有する化合物の1種以上からなることが好ましい。以下、重合性化合物(a-1)を含め重合性化合物(A)はすべて(メタ)アクリロイル基を有する化合物であるもの、すなわち硬化して得られる有機樹脂がアクリル系樹脂であるもの、として説明する。 When the UV-curable polymerizable functional group is a (meth) acryloyl group, the UV-curing property is sufficient and it is easily available, so that a polymerizable compound other than the polymerizable compound (a-1) (A ) Is preferably a polymerizable compound (a-2). Accordingly, the polymerizable compound (A) is preferably composed of at least one compound having a (meth) acryloyl group substantially including the polymerizable compound (a-1). Hereinafter, all the polymerizable compounds (A) including the polymerizable compound (a-1) are described as compounds having a (meth) acryloyl group, that is, an organic resin obtained by curing is an acrylic resin. To do.
 重合性化合物(A)としては、(メタ)アクリロイル基以外に種々の官能基や結合を有する化合物であってもよい。例えば、水酸基、カルボキシル基、ハロゲン原子、ウレタン結合、エーテル結合、エステル結合、チオエーテル結合、アミド結合等を有していてもよい。特に、ウレタン結合を有する(メタ)アクリロイル基含有化合物(以下、「アクリルウレタン」という。)とウレタン結合を有しない(メタ)アクリル酸エステル化合物が好ましい。 The polymerizable compound (A) may be a compound having various functional groups and bonds in addition to the (meth) acryloyl group. For example, it may have a hydroxyl group, a carboxyl group, a halogen atom, a urethane bond, an ether bond, an ester bond, a thioether bond, an amide bond, or the like. In particular, a (meth) acryloyl group-containing compound having a urethane bond (hereinafter referred to as “acrylic urethane”) and a (meth) acrylic acid ester compound having no urethane bond are preferable.
 重合性化合物(a-2)は通常ウレタン結合を有しない化合物であるが、重合性化合物(a-2)はウレタン結合を有しない化合物に限定されない。一方、重合性化合物(a-1)はウレタン結合を有していても有していなくてもよい。重合性化合物(a-1)1分子あたり平均の(メタ)アクリロイル基の数は、特に限定されないが、2~50個が好ましく、特に2~30個が好ましい。 The polymerizable compound (a-2) is usually a compound having no urethane bond, but the polymerizable compound (a-2) is not limited to a compound having no urethane bond. On the other hand, the polymerizable compound (a-1) may or may not have a urethane bond. The average number of (meth) acryloyl groups per molecule of the polymerizable compound (a-1) is not particularly limited, but is preferably 2 to 50, and more preferably 2 to 30.
 アクリルウレタンは、(メタ)アクリロイル基および水酸基を有する化合物とイソシアネート基を有する化合物との反応、(メタ)アクリロイル基およびイソシアネート基を有する化合物と(メタ)アクリロイル基を有さず2個以上の水酸基を有する化合物(以下、「水酸基含有化合物」という。)との反応、または、(メタ)アクリロイル基および水酸基を有する化合物と2個以上のイソシアネート基を有する化合物(以下、「ポリイソシアネート」という。)と水酸基含有化合物との反応、等により得られる。 Acrylic urethane is a reaction between a compound having a (meth) acryloyl group and a hydroxyl group and a compound having an isocyanate group, a compound having a (meth) acryloyl group and an isocyanate group and a (meth) acryloyl group and having two or more hydroxyl groups Or a compound having a (meth) acryloyl group and a hydroxyl group and a compound having two or more isocyanate groups (hereinafter referred to as “polyisocyanate”). And a hydroxyl group-containing compound.
 アクリルウレタンの原料となる上記各化合物における(メタ)アクリロイル基、水酸基およびイソシアネート基はそれぞれ1分子中に2個以上存在していてもよい。これらの反応により得られるアクリルウレタンにおいては、水酸基は存在してもよいが、イソシアネート基は存在しないことが好ましい。 Two or more (meth) acryloyl groups, hydroxyl groups and isocyanate groups may be present in each molecule in each of the above-mentioned compounds which are raw materials for acrylic urethane. In the acrylic urethane obtained by these reactions, a hydroxyl group may be present but an isocyanate group is preferably absent.
 なお、水酸基含有化合物としては、多価アルコールや多価アルコールに比較して高分子量のポリオール、水酸基含有ビニルポリマー等が挙げられる。これら水酸基含有化合物は単独で用いてもよく、2種以上を併用してもよい。 In addition, as a hydroxyl-containing compound, a high molecular weight polyol, a hydroxyl-containing vinyl polymer, etc. are mentioned compared with a polyhydric alcohol or a polyhydric alcohol. These hydroxyl group-containing compounds may be used alone or in combination of two or more.
 重合性化合物(a-1)として好ましいアクリルウレタンは、水酸基含有の(ポリ)ペンタエリスリトールポリ(メタ)アクリレートとポリイソシアネートとの反応生成物が好ましい。
 上記(ポリ)ペンタエリスリトールポリ(メタ)アクリレートにおける(ポリ)ペンタエリスリトールとは、ペンタエリスリトール、ジペンタエリスリトールのようなペンタエリスリトール多量体、またはそれらを主成分とする混合物をいい、その平均の多量化度は約1~4、特に約1.5~3が好ましい。また、上記(ポリ)ペンタエリスリトールポリ(メタ)アクリレートにおけるポリ(メタ)アクリレートとしては2個以上の(メタ)アクリロイル基を有するエステルであり、1分子あたり平均約3~6個の(メタ)アクリロイル基を有する化合物が好ましい。このような上記アクリルウレタンの生成に用いる(ポリ)ペンタエリスリトールポリ(メタ)アクリレートは1分子あたり平均して約1個以上の水酸基を有する。
 また、この水酸基含有(ポリ)ペンタエリスリトールポリ(メタ)アクリレートとポリイソシアネートの反応生成物であるアクリルウレタンにおける1分子あたり平均の(メタ)アクリロイル基の数は4個以上、特に8~20個が好ましい。
A preferred acrylic urethane as the polymerizable compound (a-1) is preferably a reaction product of a hydroxyl group-containing (poly) pentaerythritol poly (meth) acrylate and a polyisocyanate.
The (poly) pentaerythritol in the above (poly) pentaerythritol poly (meth) acrylate means a pentaerythritol multimer such as pentaerythritol or dipentaerythritol, or a mixture containing them as a main component. The degree is preferably about 1 to 4, particularly about 1.5 to 3. The poly (meth) acrylate in the (poly) pentaerythritol poly (meth) acrylate is an ester having two or more (meth) acryloyl groups, and an average of about 3 to 6 (meth) acryloyl per molecule. Compounds having a group are preferred. The (poly) pentaerythritol poly (meth) acrylate used for producing the acrylic urethane has an average of about 1 or more hydroxyl groups per molecule.
In addition, the average number of (meth) acryloyl groups per molecule in the acrylic urethane which is a reaction product of the hydroxyl group-containing (poly) pentaerythritol poly (meth) acrylate and polyisocyanate is 4 or more, particularly 8 to 20 preferable.
 ウレタン結合を含まない重合性化合物(a-1)としては水酸基含有化合物の(メタ)アクリレートやポリエポキシドの(メタ)アクリル酸付加物が好ましい。水酸基含有化合物としては上記のような多価アルコールや高分子量ポリオール等がある。ウレタン結合を含まない重合性化合物(a-1)の具体例としては例えば以下のような化合物がある。 The polymerizable compound (a-1) containing no urethane bond is preferably a (meth) acrylate of a hydroxyl group-containing compound or a (meth) acrylic acid adduct of a polyepoxide. Examples of the hydroxyl group-containing compound include polyhydric alcohols and high molecular weight polyols as described above. Specific examples of the polymerizable compound (a-1) not containing a urethane bond include the following compounds.
 以下の脂肪族多価アルコールの(メタ)アクリレート。1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、炭素数14~15の長鎖脂肪族ジオールのジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ネオペンチルグリコールとトリメチロールプロパンとの縮合物からなるジオールのジ(メタ)アクリレート。 (Meth) acrylates of the following aliphatic polyhydric alcohols. 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, di (meth) acrylate of long chain aliphatic diol having 14 to 15 carbon atoms 1,3-butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, triglycerol di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Sa (meth) acrylate, dipentaerythritol penta (meth) acrylate, di (meth) acrylate of a diol comprising a condensate of neopentyl glycol and trimethylol propane.
 以下の芳香核またはトリアジン環を有する多価アルコールや多価フェノールの(メタ)アクリレート。ビス(2-(メタ)アクリロイルオキシエチル)ビスフェノールA、ビス(2-(メタ)アクリロイルオキシエチル)ビスフェノールS、ビス(2-(メタ)アクリロイルオキシエチル)ビスフェノールF、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ビスフェノールAジ(メタ)アクリレート。 (Meth) acrylate of polyhydric alcohol or polyhydric phenol having the following aromatic nucleus or triazine ring. Bis (2- (meth) acryloyloxyethyl) bisphenol A, bis (2- (meth) acryloyloxyethyl) bisphenol S, bis (2- (meth) acryloyloxyethyl) bisphenol F, tris (2- (meth) acryloyl) Oxyethyl) isocyanurate, bisphenol A di (meth) acrylate.
 以下の水酸基含有化合物-アルキレンオキシド付加物の(メタ)アクリレート、水酸基含有化合物-カプロラクトン付加物の(メタ)アクリレート、ポリオキシアルキレンポリオールの(メタ)アクリレート。以下において、EOはエチレンオキシド、POはプロピレンオキシドを表し、[ ]内はポリオキシアルキレンポリオールの分子量を表す。トリメチロールプロパン-EO付加物のトリ(メタ)アクリレート、トリメチロールプロパン-PO付加物のトリ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジペンタエリスリトール-カプロラクトン付加物のヘキサ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレート-カプロラクトン付加物のトリ(メタ)アクリレート、ポリエチレングリコール[200~1000]ジ(メタ)アクリレート、ポリプロピレングリコール[200~1000]ジ(メタ)アクリレート。 (Meth) acrylate of the following hydroxyl group-containing compound-alkylene oxide adduct, (meth) acrylate of the hydroxyl group-containing compound-caprolactone adduct, and (meth) acrylate of polyoxyalkylene polyol. In the following, EO represents ethylene oxide, PO represents propylene oxide, and [] represents the molecular weight of the polyoxyalkylene polyol. Trimethylolpropane-EO adduct tri (meth) acrylate, trimethylolpropane-PO adduct tri (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tripropylene glycol di (Meth) acrylate, dipentaerythritol-caprolactone adduct hexa (meth) acrylate, tris (2-hydroxyethyl) isocyanurate-caprolactone adduct tri (meth) acrylate, polyethylene glycol [200-1000] di (meth) Acrylate, polypropylene glycol [200-1000] di (meth) acrylate.
 下記(メタ)アクリロイル基を有するカルボン酸エステルやリン酸エステル。ビス(アクリロイルオキシネオペンチルグリコール)アジペート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステル-カプロラクトン付加物のジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ホスフェート、トリス(2-(メタ)アクリロイルオキシエチル)ホスフェート。 Carboxylic acid ester and phosphoric acid ester having the following (meth) acryloyl group. Bis (acryloyloxyneopentyl glycol) adipate, di (meth) acrylate of hydroxypivalic acid neopentyl glycol ester, di (meth) acrylate of hydroxypivalic acid neopentyl glycol ester-caprolactone adduct, bis (2- (meth) acryloyl) Oxyethyl) phosphate, tris (2- (meth) acryloyloxyethyl) phosphate.
 下記ポリエポキシドの(メタ)アクリル酸付加物(ただし、ポリエポキシドのエポキシ基1個あたり1分子の(メタ)アクリル酸が付加したもの)、およびグリシジル(メタ)アクリレートと多価アルコールもしくは多価カルボン酸との反応生成物(ただし、多価アルコール等の1分子あたりグリシジル(メタ)アクリレートの2分子以上が反応したもの)。ビスフェノールA-ジグリシジルエーテルの(メタ)アクリル酸付加物、ビニルシクロヘキセンジオキシド-(メタ)アクリル酸付加物、ジシクロペンタジエンジオキシド-(メタ)アクリル酸付加物、グリシジル(メタ)アクリレートとエチレングリコールの反応生成物、グリシジル(メタ)アクリレートとプロピレングリコールの反応生成物、グリシジル(メタ)アクリレートとジエチレングリコールの反応生成物、グリシジル(メタ)アクリレートと1,6-ヘキサンジオールの反応生成物、グリシジル(メタ)アクリレートとグリセロールの反応生成物、グリシジル(メタ)アクリレートとトリメチロールプロパンの反応生成物、グリシジル(メタ)アクリレートとフタル酸の反応生成物。 (Meth) acrylic acid adducts of the following polyepoxides (with one molecule of (meth) acrylic acid added per one epoxy group of the polyepoxide), and glycidyl (meth) acrylate and a polyhydric alcohol or polycarboxylic acid The reaction product of the above (however, two or more molecules of glycidyl (meth) acrylate reacted per molecule such as polyhydric alcohol). (Meth) acrylic acid adduct of bisphenol A-diglycidyl ether, vinylcyclohexene dioxide- (meth) acrylic acid adduct, dicyclopentadiene dioxide- (meth) acrylic acid adduct, glycidyl (meth) acrylate and ethylene glycol Reaction product of glycidyl (meth) acrylate and propylene glycol, reaction product of glycidyl (meth) acrylate and diethylene glycol, reaction product of glycidyl (meth) acrylate and 1,6-hexanediol, glycidyl (meta ) Reaction product of acrylate and glycerol, reaction product of glycidyl (meth) acrylate and trimethylolpropane, reaction product of glycidyl (meth) acrylate and phthalic acid.
 上記のような(メタ)アクリレート類でかつ未反応の水酸基を有している化合物のアルキルエーテル化物である、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート。上記のような(メタ)アクリレート類でかつ未反応の水酸基を有している化合物のアルケニルエーテル化物、カルボン酸エステル化物等も「変性」の用語について同様に準ずる下記のような化合物。ビニルシクロヘキセンジオキシド-(メタ)アクリル酸付加物のアリルエーテル化物、ビニルシクロヘキセンジオキシド-(メタ)アクリル酸付加物のメチルエーテル化物、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート。 Alkyl-modified dipentaerythritol penta (meth) acrylate, alkyl-modified dipentaerythritol tetra (meth) acrylate, which is an alkyl etherified product of the above-mentioned (meth) acrylates and having an unreacted hydroxyl group, Alkyl-modified dipentaerythritol tri (meth) acrylate. The following compounds are similarly applied to the term “modification” in the alkenyl etherified product, carboxylic acid esterified product and the like of the above (meth) acrylates and compounds having an unreacted hydroxyl group. Allyl etherified product of vinylcyclohexene dioxide- (meth) acrylic acid adduct, methyl etherified product of vinylcyclohexene dioxide- (meth) acrylic acid adduct, stearic acid-modified pentaerythritol di (meth) acrylate.
 ウレタン結合を含まず2個以上の(メタ)アクリロイル基を有するポリエステルである重合性化合物(a-1)として好ましいものは、前記したような(ポリ)ペンタエリスリトールポリ(メタ)アクリレートである。この場合、(ポリ)ペンタエリスリトールポリ(メタ)アクリレートは1分子あたり平均2個以上の(メタ)アクリロイル基を有する化合物であり、また水酸基は有していても有していなくてもよい。また、(ポリ)ペンタエリスリトール部分の多量化度は約1~4が好ましく、特に1.5~3が好ましい。さらに好ましい(ポリ)ペンタエリスリトールポリ(メタ)アクリレートは、(ポリ)ペンタエリスリトールの実質的にすべての水酸基が(メタ)アクリロイルオキシ基に変換された(ポリ)ペンタエリスリトールポリ(メタ)アクリレートである。 A preferable example of the polymerizable compound (a-1) which is a polyester having no urethane bond and having two or more (meth) acryloyl groups is (poly) pentaerythritol poly (meth) acrylate as described above. In this case, (poly) pentaerythritol poly (meth) acrylate is a compound having an average of two or more (meth) acryloyl groups per molecule, and may or may not have a hydroxyl group. The degree of multimerization of the (poly) pentaerythritol moiety is preferably about 1 to 4, and more preferably 1.5 to 3. Further preferred (poly) pentaerythritol poly (meth) acrylate is (poly) pentaerythritol poly (meth) acrylate in which substantially all hydroxyl groups of (poly) pentaerythritol are converted to (meth) acryloyloxy groups.
 重合性化合物(a-2)である(メタ)アクリロイル基を1分子中に1個有する単官能性重合性化合物としては、水酸基、エポキシ基等の官能基を有していてもよい。好ましい重合性化合物(a-2)は(メタ)アクリル酸エステル、すなわち(メタ)アクリレートである。 The monofunctional polymerizable compound having one (meth) acryloyl group per molecule as the polymerizable compound (a-2) may have a functional group such as a hydroxyl group or an epoxy group. A preferred polymerizable compound (a-2) is (meth) acrylic acid ester, that is, (meth) acrylate.
 具体的な重合性化合物(a-2)としては例えば以下の化合物が挙げられる。メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、1,4-ブチレングリコールモノ(メタ)アクリレート、エトキシエチル(メタ)アクリレート、フェニルグリシジルエーテルの(メタ)アクリル酸付加物。 Specific examples of the polymerizable compound (a-2) include the following compounds. Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) Acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, 1,4- (Meth) acrylic acid adducts of butylene glycol mono (meth) acrylate, ethoxyethyl (meth) acrylate, and phenylglycidyl ether.
 重合性化合物(a-1)は2種以上を併用することが好ましい場合が多い。そのうち1種以上の重合性化合物(a-1)は(メタ)アクリロイル基を2~3個有する化合物であり、他の1種以上はそれに比較して多数の(メタ)アクリロイル基を有する化合物であることが好ましい。前者の重合性化合物(a-1)は(メタ)アクリロイル基を2個有する化合物が好ましい。 In many cases, it is preferable to use two or more polymerizable compounds (a-1). Among them, one or more polymerizable compounds (a-1) are compounds having 2 to 3 (meth) acryloyl groups, and the other one or more are compounds having a large number of (meth) acryloyl groups. Preferably there is. The former polymerizable compound (a-1) is preferably a compound having two (meth) acryloyl groups.
 重合性化合物(A)中における重合性化合物(a-1)の合計の割合は20~100質量%が好ましく、特に50~100質量%が好ましく、さらには70~100質量%が好ましい。重合性化合物(a-1)の割合がこの範囲にあると耐擦傷性が十分となる。 The total ratio of the polymerizable compound (a-1) in the polymerizable compound (A) is preferably 20 to 100% by mass, particularly preferably 50 to 100% by mass, and further preferably 70 to 100% by mass. When the ratio of the polymerizable compound (a-1) is within this range, the scratch resistance is sufficient.
 紫外線吸収剤(B)の一部または全部は重合性紫外線吸収剤(b-1)からなる。紫外線吸収剤(B)の量が少ない場合は通常その全量が重合性紫外線吸収剤(b-1)からなる。絶縁層形成用組成物(i)における、重合性化合物(A)100質量部に対する重合性紫外線吸収剤(b-1)の割合は0.1質量部以上が好ましく、1質量部以上がより好ましい。その上限は50質量部が好ましく、30質量部がより好ましい。 Part or all of the ultraviolet absorber (B) is composed of a polymerizable ultraviolet absorber (b-1). When the amount of the ultraviolet absorber (B) is small, the entire amount is usually composed of the polymerizable ultraviolet absorber (b-1). In the insulating layer forming composition (i), the ratio of the polymerizable ultraviolet absorber (b-1) to 100 parts by mass of the polymerizable compound (A) is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more. . The upper limit is preferably 50 parts by mass, and more preferably 30 parts by mass.
 この重合性紫外線吸収剤(b-1)を使用することにより、絶縁層形成用組成物(i)中に比較的多量の紫外線吸収剤(B)を配合しても紫外線吸収剤(B)の表面へのブリードや耐擦傷性等の著しい低下を伴わないという効果が発揮される。 By using this polymerizable ultraviolet absorber (b-1), even if a relatively large amount of the ultraviolet absorber (B) is blended in the insulating layer forming composition (i), the ultraviolet absorber (B) The effect of not significantly reducing the bleeding or scratch resistance on the surface is exhibited.
 重合性紫外線吸収剤(b-1)としては、以下に述べる重合性ベンゾフェノン系化合物および重合性ベンゾトリアゾール系化合物から選ばれる1種以上を用いることができる。 As the polymerizable ultraviolet absorber (b-1), one or more selected from the following polymerizable benzophenone compounds and polymerizable benzotriazole compounds can be used.
 紫外線吸収剤(B)として重合性紫外線吸収剤(b-1)以外の紫外線吸収剤を併用しうるが、多量に使用することは好ましくない。
 重合性紫外線吸収剤(b-1)以外の紫外線吸収剤としては、非重合性の紫外線吸収剤(以下、「紫外線吸収剤(b-2)」という。)がある。
Although an ultraviolet absorber other than the polymerizable ultraviolet absorber (b-1) can be used in combination as the ultraviolet absorber (B), it is not preferable to use a large amount.
Examples of ultraviolet absorbers other than the polymerizable ultraviolet absorber (b-1) include non-polymerizable ultraviolet absorbers (hereinafter referred to as “ultraviolet absorber (b-2)”).
 紫外線吸収剤(B)における重合性紫外線吸収剤(b-1)以外の紫外線吸収剤の割合は、特に限定されないが、全紫外線吸収剤(B)中0~80質量%が好ましく、特に0~50質量%が好ましい。絶縁層形成用組成物(i)における、重合性紫外線吸収剤(b-1)以外の紫外線吸収剤の含有量としては、重合性化合物(A)100質量部に対して20質量部以下が好ましく、10質量部以下がより好ましい。 The ratio of the UV absorber other than the polymerizable UV absorber (b-1) in the UV absorber (B) is not particularly limited, but is preferably 0 to 80% by mass, particularly 0 to 0% in the total UV absorber (B). 50 mass% is preferable. The content of the ultraviolet absorber other than the polymerizable ultraviolet absorber (b-1) in the insulating layer forming composition (i) is preferably 20 parts by mass or less with respect to 100 parts by mass of the polymerizable compound (A). 10 parts by mass or less is more preferable.
 絶縁層形成用組成物(i)における、紫外線吸収剤(B)全体の含有量は重合性化合物(A)100質量部に対して好ましくは0.1~50質量部であり、より好ましくは1~30質量部である。得られる硬化体からなる層、すなわち絶縁層の厚さによっても変化するが、0.1質量部以上の場合、絶縁層自身の耐候性が良好であり、50質量部以下の場合その全量が重合性紫外線吸収剤(b-1)のみからなっていても塗膜の硬化性が良好であり物性に優れる。 In the insulating layer forming composition (i), the total content of the ultraviolet absorber (B) is preferably 0.1 to 50 parts by mass, more preferably 1 to 100 parts by mass of the polymerizable compound (A). To 30 parts by mass. Although it varies depending on the thickness of the resulting cured body, that is, the insulating layer, if it is 0.1 parts by mass or more, the weather resistance of the insulating layer itself is good, and if it is 50 parts by mass or less, the entire amount is polymerized. Even if it consists only of the photosensitive ultraviolet absorber (b-1), the curability of the coating film is good and the physical properties are excellent.
 重合性ベンゾフェノン系化合物は、(メタ)アクリロイル基を有する有機基(以下、「(メタ)アクリロイル含有基」という。)の1個以上と、ベンゾフェノン骨格の1個以上を有する化合物である。重合性ベンゾフェノン系化合物は、(メタ)アクリロイル含有基以外にベンゾフェノン骨格の2つのベンゼン環の少なくとも一方に1個以上の水酸基を有することが好ましい。この水酸基は(メタ)アクリロイル含有基が結合したベンゼン環に存在していてもよく、他のベンゼン環に存在していてもよい。この水酸基はベンゾフェノン骨格の2位に存在することが好ましい。 The polymerizable benzophenone compound is a compound having at least one organic group having a (meth) acryloyl group (hereinafter referred to as “(meth) acryloyl-containing group”) and at least one benzophenone skeleton. The polymerizable benzophenone compound preferably has one or more hydroxyl groups on at least one of the two benzene rings of the benzophenone skeleton in addition to the (meth) acryloyl-containing group. This hydroxyl group may exist in the benzene ring to which the (meth) acryloyl-containing group is bonded, or may exist in another benzene ring. This hydroxyl group is preferably present at the 2-position of the benzophenone skeleton.
 重合性ベンゾフェノン系化合物において、(メタ)アクリロイル含有基は通常1個存在する。しかし(メタ)アクリロイル含有基は2個以上存在してもよく、その場合2つのベンゼン環の一方のみに存在していてもよく両方のベンゼン環に存在していてもよい。上記水酸基は(メタ)アクリロイル含有基が存在するベンゼン環に存在していることが好ましい。また2個のベンゼン環には(メタ)アクリロイル含有基と水酸基以外に他の置換基が1個以上存在していてもよく、その置換基としてはアルキル基等の炭化水素基、アルコキシ基、ハロゲン原子等が好ましい。炭化水素基やアルコキシ基の炭素数は6以下が好ましい。 In the polymerizable benzophenone compound, there is usually one (meth) acryloyl-containing group. However, two or more (meth) acryloyl-containing groups may be present, in which case they may be present only in one of the two benzene rings or may be present in both benzene rings. The hydroxyl group is preferably present in the benzene ring in which the (meth) acryloyl-containing group is present. In addition to the (meth) acryloyl-containing group and the hydroxyl group, one or more other substituents may be present on the two benzene rings. Examples of the substituent include hydrocarbon groups such as alkyl groups, alkoxy groups, halogens. Atoms are preferred. The number of carbon atoms of the hydrocarbon group or alkoxy group is preferably 6 or less.
 (メタ)アクリロイル含有基は(メタ)アクリロイルオキシ基や下記式(1)で表される有機基が好ましい。 The (meth) acryloyl-containing group is preferably a (meth) acryloyloxy group or an organic group represented by the following formula (1).
 -X-R-X-CO-CR=CH   …(1)
 式(1)において、Rは水素原子またはメチル基を表し、Xは酸素原子、-OCONH-、-OCHCH(OH)-または単結合を表し、Rは2価の炭化水素基を表し、Xは酸素原子、-O-(-COCHCHO-)-(kは1以上の整数)、-NH-、または-CH(OH)CHO-を表す。好ましくは、Rは水素原子、Xは酸素原子または単結合、Rは炭素数1~6のアルキレン基、Xは酸素原子である。
-X 1 -R 1 -X 2 -CO- CR = CH 2 ... (1)
In the formula (1), R represents a hydrogen atom or a methyl group, X 1 represents an oxygen atom, —OCONH—, —OCH 2 CH (OH) — or a single bond, and R 1 represents a divalent hydrocarbon group. X 2 represents an oxygen atom, —O — (— COCH 2 CH 2 O—) k — (k is an integer of 1 or more), —NH—, or —CH (OH) CH 2 O—. Preferably, R is a hydrogen atom, X 1 is an oxygen atom or a single bond, R 1 is an alkylene group having 1 to 6 carbon atoms, and X 2 is an oxygen atom.
 好ましい(メタ)アクリロイル含有基は、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキル基、((メタ)アクリロイルオキシ)アルコキシ基であり、後2者の(メタ)アクリロイルオキシ基部分以外の炭素数は2~4が好ましい。 Preferred (meth) acryloyl-containing groups are (meth) acryloyloxy groups, (meth) acryloyloxyalkyl groups, ((meth) acryloyloxy) alkoxy groups, and carbons other than the latter two (meth) acryloyloxy groups. The number is preferably 2-4.
 好ましい重合性ベンゾフェノン系化合物はヒドロキシフェニル基に(メタ)アクリロイル含有基を有する2-ヒドロキシベンゾフェノン類である。この化合物は、下記式(2)で表される。下記式(2)において、Aは上記のような(メタ)アクリロイル含有基を表し、R、Rは上記のような(メタ)アクリロイル含有基以外の置換基を表す。 Preferred polymerizable benzophenone compounds are 2-hydroxybenzophenones having a (meth) acryloyl-containing group in the hydroxyphenyl group. This compound is represented by the following formula (2). In the following formula (2), A represents the (meth) acryloyl-containing group as described above, and R 2 and R 3 represent substituents other than the (meth) acryloyl-containing group as described above.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 具体的な重合性ベンゾフェノン系化合物の例としては以下の化合物がある。2-ヒドロキシ-4-(メタ)アクリロイルオキシベンゾフェノン、2-ヒドロキ-4-(2-(メタ)アクリロイルオキシエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(2-アクリロイルオキシプロポキシ)ベンゾフェノン、2,2’-ジヒドロキシ-4-(メタ)アクリロイルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-(2-(メタ)アクリロイルオキシエトキシ)ベンゾフェノン。 Examples of specific polymerizable benzophenone compounds include the following compounds. 2-hydroxy-4- (meth) acryloyloxybenzophenone, 2-hydroxy-4- (2- (meth) acryloyloxyethoxy) benzophenone, 2-hydroxy-4- (2-acryloyloxypropoxy) benzophenone, 2,2 ′ -Dihydroxy-4- (meth) acryloyloxybenzophenone, 2,2'-dihydroxy-4- (2- (meth) acryloyloxyethoxy) benzophenone.
 重合性ベンゾトリアゾール系化合物としては、1個以上の(メタ)アクリロイル含有基と1個以上のベンゾトリアゾール環を有する化合物が好ましい。通常、紫外線吸収能を有するベンゾトリアゾール系化合物はベンゾトリアゾール環の2位に1つのベンゼン環が結合している骨格、すなわち、2-フェニルベンゾトリアゾールを骨格とし、さらにこのフェニル基の2位に水酸基を有する。 The polymerizable benzotriazole-based compound is preferably a compound having one or more (meth) acryloyl-containing groups and one or more benzotriazole rings. Usually, a benzotriazole compound having ultraviolet absorbing ability has a skeleton in which one benzene ring is bonded to the 2-position of the benzotriazole ring, that is, 2-phenylbenzotriazole as a skeleton, and further a hydroxyl group at the 2-position of the phenyl group. Have
 重合性ベンゾトリアゾール系化合物においては、このような2-フェニルベンゾトリアゾールを骨格とし、かつそのフェニル基の2位に水酸基を有するものが好ましい。(メタ)アクリロイル含有基はベンゾトリアゾール環の4~8位に存在していてもよく、好ましくはフェニル基の3~6位に存在する。また(メタ)アクリロイル含有基は2個以上存在していてもよく好ましくは1個存在する。 Among the polymerizable benzotriazole compounds, those having such 2-phenylbenzotriazole as a skeleton and a hydroxyl group at the 2-position of the phenyl group are preferable. The (meth) acryloyl-containing group may be present in the 4 to 8 position of the benzotriazole ring, and is preferably present in the 3 to 6 position of the phenyl group. Two or more (meth) acryloyl-containing groups may be present, and preferably one is present.
 ベンゾトリアゾール環の4~8位およびフェニル基の3~6位の(メタ)アクリロイル含有基の存在しない位置には置換基が1個以上存在していてもよく、その置換基としてはアルキル基等の炭化水素基、水酸基、アルコキシ基、ハロゲン原子等が好ましい。炭化水素基やアルコキシ基の炭素数は6以下が好ましい。 One or more substituents may be present at positions where the (meth) acryloyl-containing group at positions 4 to 8 of the benzotriazole ring and positions 3 to 6 of the phenyl group is not present. Of these, a hydrocarbon group, a hydroxyl group, an alkoxy group, a halogen atom and the like are preferable. The number of carbon atoms of the hydrocarbon group or alkoxy group is preferably 6 or less.
 (メタ)アクリロイル含有基としては、(メタ)アクリロイルオキシ基や上記式(1)で表される有機基が好ましい。より好ましい(メタ)アクリロイル含有基は、上記と同様に、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキル基、((メタ)アクリロイルオキシ)アルコキシ基であり、後2者の(メタ)アクリロイルオキシ基部分以外の炭素数は2~4が好ましい。 The (meth) acryloyl-containing group is preferably a (meth) acryloyloxy group or an organic group represented by the above formula (1). More preferable (meth) acryloyl-containing groups are the (meth) acryloyloxy group, (meth) acryloyloxyalkyl group, ((meth) acryloyloxy) alkoxy group, and the latter two (meth) acryloyl groups as described above. The number of carbon atoms other than the oxy group is preferably 2-4.
 好ましい重合性ベンゾトリアゾール系化合物は2-ヒドロキシフェニル基に(メタ)アクリロイル含有基を有する2-(2-ヒドロキシフェニル)ベンゾトリアゾール類である。この化合物は下記式(3)で表される。下記式(3)において、Aは前記のような(メタ)アクリロイル含有基を表し、R、Rは上記のような(メタ)アクリロイル含有基以外の置換基を表す。 Preferred polymerizable benzotriazole compounds are 2- (2-hydroxyphenyl) benzotriazoles having a (meth) acryloyl-containing group in the 2-hydroxyphenyl group. This compound is represented by the following formula (3). In the following formula (3), A represents the (meth) acryloyl-containing group as described above, and R 4 and R 5 represent substituents other than the (meth) acryloyl-containing group as described above.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 具体的な重合性ベンゾトリアゾール系化合物としては以下の化合物がある。2-{2-ヒドロキシ-5-((メタ)アクリロイルオキシ)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-3-メチル-5-((メタ)アクリロイルオキシ)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-3-t-ブチル-5-((メタ)アクリロイルオキシ)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-5-(2-(メタ)アクリロイルオキシエチル)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-5-(3-(メタ)アクリロイルオキシプロピル)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-3-t-ブチル-5-(2-(メタ)アクリロイルオキシエチル)フェニル}ベンゾトリアゾール。 Specific examples of polymerizable benzotriazole compounds include the following compounds. 2- {2-hydroxy-5-((meth) acryloyloxy) phenyl} benzotriazole, 2- {2-hydroxy-3-methyl-5-((meth) acryloyloxy) phenyl} benzotriazole, 2- {2 -Hydroxy-3-t-butyl-5-((meth) acryloyloxy) phenyl} benzotriazole, 2- {2-hydroxy-5- (2- (meth) acryloyloxyethyl) phenyl} benzotriazole, 2- { 2-hydroxy-5- (3- (meth) acryloyloxypropyl) phenyl} benzotriazole, 2- {2-hydroxy-3-tert-butyl-5- (2- (meth) acryloyloxyethyl) phenyl} benzotriazole .
 2-{2-ヒドロキシ-3-t-ブチル-5-(3-(メタ)アクリロイルオキシプロピル)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-3-メチル-5-(2-(メタ)アクリロイルオキシエチル)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-3-メチル-5-(3-(メタ)アクリロイルオキシプロピル)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-5-(2-(メタ)アクリロイルオキシエチル)フェニル}-5-クロロベンゾトリアゾール、2-{2-ヒドロキシ-5-(2-(メタ)アクリロイルオキシエチル)フェニル}-5-メチルベンゾトリアゾール、2-{2-ヒドロキシ-5-(2-(2-(メタ)アクリロイルオキシエトキシカルボニル)エチル)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-5-(2-(メタ)アクリロイルオキシエトキシ)フェニル}ベンゾトリアゾール、2-{2-ヒドロキシ-5-(2-(メタ)アクリロイルオキシプロポキシ)フェニル}ベンゾトリアゾール。 2- {2-hydroxy-3-t-butyl-5- (3- (meth) acryloyloxypropyl) phenyl} benzotriazole, 2- {2-hydroxy-3-methyl-5- (2- (meth) acryloyl) Oxyethyl) phenyl} benzotriazole, 2- {2-hydroxy-3-methyl-5- (3- (meth) acryloyloxypropyl) phenyl} benzotriazole, 2- {2-hydroxy-5- (2- (meta ) Acryloyloxyethyl) phenyl} -5-chlorobenzotriazole, 2- {2-hydroxy-5- (2- (meth) acryloyloxyethyl) phenyl} -5-methylbenzotriazole, 2- {2-hydroxy-5 -(2- (2- (meth) acryloyloxyethoxycarbonyl) ethyl) phenyl} benzotriazo Le 2- {2-hydroxy-5- (2- (meth) acryloyloxy ethoxy) phenyl} benzotriazole, 2- {2-hydroxy-5- (2- (meth) acryloyloxy) phenyl} benzotriazole.
 紫外線吸収剤(b-2)としては、市販されている公知または周知の紫外線吸収剤を使用できる。そのような紫外線吸収剤としては、例えばベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、フェニルトリアジン系紫外線吸収剤等がある。具体的には例えば以下のような化合物がある。 As the ultraviolet absorber (b-2), a known or known ultraviolet absorber that is commercially available can be used. Examples of such UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, salicylic acid UV absorbers, and phenyltriazine UV absorbers. Specific examples include the following compounds.
 オクチル3-{3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル}プロピオネート、2-(3,5-ジーt-ペンチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、p-t-ブチルフェニルサリシレート。 Octyl 3- {3- (2H-benzotriazol-2-yl) -5-t-butyl-4-hydroxyphenyl} propionate, 2- (3,5-di-t-pentyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-3-tert-butyl-5) -Methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chlorobenzotriazole, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy Benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, pt-butylphenyl salicylate Door.
 光重合開始剤(C)としては、アリールケトン系光重合開始剤(例えば、アセトフェノン類、ベンゾフェノン類、アルキルアミノベンゾフェノン類、ベンジル類、ベンゾイン類、ベンゾインエーテル類、ベンジルジメチルケタール類、ベンゾイルベンゾエート類、α-アシロキシムエステル類等)、含硫黄系光重合開始剤(例えば、スルフィド類、チオキサントン類等)、アシルホスフィンオキシド類(例えばアシルジアリールホスフィンオキシド等)、その他の光重合開始剤がある。光重合開始剤は単独で用いてもよく、2種以上を併用してもよい。また、光重合開始剤はアミン類等の光増感剤と組み合わせても使用できる。具体的な光重合開始剤としては以下のような化合物がある。 As the photopolymerization initiator (C), aryl ketone photopolymerization initiators (for example, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyldimethylketals, benzoylbenzoates, α-acyloxime esters), sulfur-containing photopolymerization initiators (eg, sulfides, thioxanthones, etc.), acylphosphine oxides (eg, acyldiarylphosphine oxides), and other photopolymerization initiators. A photoinitiator may be used independently and may use 2 or more types together. The photopolymerization initiator can be used in combination with a photosensitizer such as amines. Specific photopolymerization initiators include the following compounds.
 4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、4-t-ブチル-トリクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-メチルプロパン-1-オン、1-{4-(2-ヒドロキシエトキシ)フェニル}-2-ヒドロキシ-2-メチル-プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-{4-(メチルチオ)フェニル}-2-モルホリノプロパン-1-オン。 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4- Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-methylpropan-1-one, 1- {4- (2-hydroxyethoxy) phenyl} -2 -Hydroxy-2-methyl-propan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- {4- (methylthio) phenyl} -2-morpholinopropan-1-one.
 ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルパーオキシカルボニル)ベンゾフェノン、9,10-フェナントレンキノン、カンファーキノン、ジベンゾスベロン、2-エチルアントラキノン、4’,4”-ジエチルイソフタロフェノン、α-アシロキシムエステル、メチルフェニルグリオキシレート。 Benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 3, 3 '-Dimethyl-4-methoxybenzophenone, 3,3', 4,4'-tetrakis (t-butylperoxycarbonyl) benzophenone, 9,10-phenanthrenequinone, camphorquinone, dibenzosuberone, 2-ethylanthraquinone, 4 ', 4 "-diethylisophthalophenone, α-acyloxime ester, methylphenylglyoxylate.
 4-ベンゾイル-4’-メチルジフェニルスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド。 4-benzoyl-4′-methyldiphenyl sulfide, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4 -Diisopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
 絶縁層形成用組成物(i)における光重合開始剤(C)の含有量は重合性化合物(A)100質量部に対し、0.1~20質量部が好ましい。
 絶縁層形成用組成物(i)は、紫外線照射による重合性成分の重合の度合いを調整する目的で、必要に応じて、ハイドロキノンモノメチルエーテル等の重合禁止剤の適量を含有してもよい。
The content of the photopolymerization initiator (C) in the insulating layer forming composition (i) is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable compound (A).
The composition for forming an insulating layer (i) may contain an appropriate amount of a polymerization inhibitor such as hydroquinone monomethyl ether for the purpose of adjusting the degree of polymerization of the polymerizable component by ultraviolet irradiation.
 絶縁層形成用組成物(i)には、必要に応じて、アクリル系(共)重合体等の高分子量化合物、酸化防止剤、光安定剤、熱重合防止剤等の安定剤、レベリング剤、消泡剤、増粘剤、沈降防止剤、顔料分散剤、防曇剤等の界面活性剤類、近赤外線吸収剤等を適宜配合して用いてもよい。 In the insulating layer forming composition (i), if necessary, a high molecular weight compound such as an acrylic (co) polymer, an antioxidant, a light stabilizer, a stabilizer such as a thermal polymerization inhibitor, a leveling agent, Defoamers, thickeners, anti-settling agents, pigment dispersants, antifogging agents and other surfactants, near infrared absorbers, and the like may be appropriately blended and used.
 絶縁層形成用組成物(i)に、例えば、ポリメタクリル酸メチル等のアクリル系(共)重合体を配合することにより、得られる硬化体からなる絶縁層の密着性を高めたり、塗膜のレベリング性を高めたりすることができる。絶縁層形成用組成物(i)における、アクリル系(共)重合体等の高分子量化合物の含有量は、重合性化合物(A)100質量部に対して20質量部以下が好ましい。 By, for example, blending an acrylic (co) polymer such as polymethyl methacrylate with the composition for forming an insulating layer (i), the adhesion of the insulating layer made of the resulting cured product can be increased, Leveling can be improved. The content of the high molecular weight compound such as an acrylic (co) polymer in the insulating layer forming composition (i) is preferably 20 parts by mass or less with respect to 100 parts by mass of the polymerizable compound (A).
 絶縁層形成用組成物(i)には、さらに、得られる硬化体からなる絶縁層の耐擦傷性をより向上させる目的でコロイダルシリカ(D)を配合してもよい。コロイダルシリカ(D)は、水やメタノール等からなる分散媒中にコロイド状に分散した無水ケイ酸の超微粒子であり、コロイダルシリカ(D)の平均粒径は通常1~1000nm程度であり、好ましくは平均粒径1~200nm、特に好ましくは平均粒径1~50nmである。 In the insulating layer forming composition (i), colloidal silica (D) may be further blended for the purpose of further improving the scratch resistance of the insulating layer made of the cured product. Colloidal silica (D) is an ultrafine particle of silicic acid colloid dispersed in a dispersion medium composed of water, methanol or the like, and the average particle size of colloidal silica (D) is usually about 1 to 1000 nm, preferably Has an average particle size of 1 to 200 nm, particularly preferably an average particle size of 1 to 50 nm.
 なお、コロイダルシリカ(D)は、分散安定性を向上させるために粒子表面を加水分解性シラン化合物の加水分解物で修飾されたもの、すなわち、コロイダルシリカ粒子の表面の一部または全部のシラノール基にシラン化合物の加水分解物が縮合反応により結合、保持され、表面特性が改質されたものを用いることもできる。 The colloidal silica (D) has a particle surface modified with a hydrolyzate of a hydrolyzable silane compound in order to improve dispersion stability, that is, a part or all of the silanol groups on the surface of the colloidal silica particle. In addition, it is also possible to use a silane compound hydrolyzate that is bonded and retained by a condensation reaction and whose surface characteristics are modified.
 絶縁層形成用組成物(i)にコロイダルシリカ(D)を配合する場合、その配合量(固形分)は重合性化合物(A)100質量部に対し500質量部以下、特に300質量部以下が好ましい。コロイダルシリカ(D)を配合する場合、重合性化合物(A)100質量部に対し0.1質量部以上配合することにより、その配合した効果が発揮される。 When the colloidal silica (D) is blended in the insulating layer forming composition (i), the blending amount (solid content) is 500 parts by mass or less, particularly 300 parts by mass or less, based on 100 parts by mass of the polymerizable compound (A). preferable. When mix | blending colloidal silica (D), the compounded effect is exhibited by mix | blending 0.1 mass part or more with respect to 100 mass parts of polymeric compounds (A).
 また、絶縁層形成用組成物(i)には、紫外線吸収剤(B)以外に光に対する安定性を向上させるために光安定剤を配合することも好ましい。光安定剤としてはヒンダードアミン系光安定剤、特に2,2,6,6-テトラメチルピペリジン残基を有するヒンダードアミン系光安定剤が好ましい。具体的には例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバセート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバセート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジル)セバセート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等がある。 In addition to the ultraviolet absorber (B), a light stabilizer is preferably added to the insulating layer forming composition (i) in order to improve the stability to light. The light stabilizer is preferably a hindered amine light stabilizer, particularly a hindered amine light stabilizer having a 2,2,6,6-tetramethylpiperidine residue. Specifically, for example, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl 1,2, 2,6,6-pentamethyl-4-piperidyl) sebacate, 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6 6-pentamethyl-4-piperidyl) and the like.
 絶縁層形成用組成物(i)に光安定剤を配合する場合、その配合量は重合性化合物(A)100質量部に対し10質量部以下、特に5質量部以下が好ましい。 When the light stabilizer is blended in the insulating layer forming composition (i), the blending amount is preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less with respect to 100 parts by mass of the polymerizable compound (A).
 また、絶縁層4に撥水性を付与するため、絶縁層形成用組成物(i)に、下記式(4)で表される含フッ素重合性化合物(e-1)を撥水性重合性化合物(E)として配合してもよい。 Further, in order to impart water repellency to the insulating layer 4, the fluorine-containing polymerizable compound (e-1) represented by the following formula (4) is added to the water repellent polymerizable compound (i) in the insulating layer forming composition (i). You may mix | blend as E).
 CH=C(R)COOX   …(4)
(式(4)中、Rは、水素原子、メチル基またはトリフルオロメチル基、Xは炭素数1~6の2価の有機基を示し、Rは、炭素数4~6のパーフルオロアルキル基を示す。)
CH 2 = C (R 6) COOX 3 R f ... (4)
(In the formula (4), R 6 represents a hydrogen atom, a methyl group or a trifluoromethyl group, X 3 represents a divalent organic group having 1 to 6 carbon atoms, and R f represents a paroxy group having 4 to 6 carbon atoms. Represents a fluoroalkyl group.)
 上記式(4)で表される含フッ素重合性化合物(e-1)の例としては、以下が挙げられる。 Examples of the fluorine-containing polymerizable compound (e-1) represented by the above formula (4) include the following.
 CH=C(R)COOR
 CH=C(R)COORNRSO
 CH=C(R)COORNRCOR
 CH=C(R)COOCHCH(OH)R
 ここで、Rは炭素数1~6のアルキレン基を、Rは水素原子または炭素数1~4のアルキル基を、Rは単結合または炭素数1~4のアルキレン基を示す。
CH 2 = C (R 6) COOR 7 R f
CH 2 = C (R 6) COOR 7 NR 8 SO 2 R f
CH 2 = C (R 6 ) COOR 7 NR 8 COR f
CH 2 = C (R 6) COOCH 2 CH (OH) R 9 R f
Here, R 7 represents an alkylene group having 1 to 6 carbon atoms, R 8 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 9 represents a single bond or an alkylene group having 1 to 4 carbon atoms.
 上記式(4)においてXは、入手の容易さから、炭素数2~4のアルキレン基であることが好ましい。 In the above formula (4), X 3 is preferably an alkylene group having 2 to 4 carbon atoms from the viewpoint of availability.
 上記式(4)で表される含フッ素重合性化合物(e-1)の具体例としては、パーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロブチルエチル(メタ)アクリレート等が挙げられる。
 上記式(4)で表される重合性化合物は単独で用いてもよく、2種以上を併用してもよい。
Specific examples of the fluorine-containing polymerizable compound (e-1) represented by the above formula (4) include perfluorohexylethyl (meth) acrylate and perfluorobutylethyl (meth) acrylate.
The polymerizable compound represented by the above formula (4) may be used alone or in combination of two or more.
 Rが炭素数4~6のパーフルオロアルキル基であることにより、含フッ素重合性化合物(e-1)は、重合性化合物(A)等の他の成分との相溶性が良好であり、絶縁層形成用組成物(i)の塗膜を硬化させたときにその重合体同士が凝集することがない。したがって、硬化体としての絶縁層4が白濁することなく外観が良好であり、絶縁層4とその下層(例えば、高抵抗層3)との密着性が高くなる。Rが炭素数4以上のパーフルオロアルキル基の場合、絶縁層4の撥水性が良好である。一方、Rが炭素数6以下のパーフルオロアルキル基の場合、塗膜を硬化させたときに硬化体である絶縁層4が白濁せず、絶縁層4とその下層(例えば、高抵抗層3)との密着性が良好である。 When R f is a perfluoroalkyl group having 4 to 6 carbon atoms, the fluorine-containing polymerizable compound (e-1) has good compatibility with other components such as the polymerizable compound (A), When the coating film of the insulating layer forming composition (i) is cured, the polymers do not aggregate. Therefore, the appearance of the insulating layer 4 as a cured body is good without being clouded, and the adhesion between the insulating layer 4 and its lower layer (for example, the high resistance layer 3) is increased. When R f is a perfluoroalkyl group having 4 or more carbon atoms, the water repellency of the insulating layer 4 is good. On the other hand, when R f is a perfluoroalkyl group having 6 or less carbon atoms, when the coating film is cured, the insulating layer 4 which is a cured body does not become cloudy, and the insulating layer 4 and its lower layer (for example, the high resistance layer 3) ).
 さらに、絶縁層形成用組成物(i)には、塗膜の塗工性や、高抵抗層3等の下層との密着性を向上させる目的で有機溶剤を配合してもよい。有機溶剤としては、重合性化合物(A)、紫外線吸収剤(B)、光重合開始剤(C)、およびその他の添加剤の溶解性に問題がなければ特に限定されず、上記性能を満足させるものであればよい。また、単独で使用してもよく、2種以上の有機溶剤を併用してもよい。絶縁層形成用組成物(i)における、有機溶剤の含有量は、重合性化合物(A)に対して100倍質量以下、特に50倍質量以下が適当である。 Further, the insulating layer forming composition (i) may be blended with an organic solvent for the purpose of improving the coating property of the coating film and the adhesion to the lower layer such as the high resistance layer 3. The organic solvent is not particularly limited as long as there is no problem in the solubility of the polymerizable compound (A), the ultraviolet absorber (B), the photopolymerization initiator (C), and other additives, and satisfies the above performance. Anything is acceptable. Moreover, you may use individually and may use 2 or more types of organic solvents together. The content of the organic solvent in the insulating layer forming composition (i) is suitably 100 times or less, particularly 50 times or less, of the polymerizable compound (A).
 有機溶剤としては例えば低級アルコール類、ケトン類、エーテル類、セロソルブ類等の有機溶剤がある。そのほか、n-ブチルアセテート、ジエチレングリコールモノアセテート等のエステル類、ハロゲン化炭化水素類、炭化水素類等も使用できる。 Examples of the organic solvent include organic solvents such as lower alcohols, ketones, ethers, cellosolves and the like. In addition, esters such as n-butyl acetate and diethylene glycol monoacetate, halogenated hydrocarbons, hydrocarbons and the like can be used.
 絶縁層形成用組成物(i)の硬化体からなる絶縁層4は、透明基体2上に高抵抗層3を有する積層体の高抵抗層3側の表面、例えば、図3に示す触覚センサ用前面板1の場合においては、高抵抗層3の上面S3に、上記各成分を含む絶縁層形成用組成物(i)をスピンコート法、ディップコート法、フローコート法、スプレーコート法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、エアーナイフコート法等の方法で塗布し、有機溶剤を含む組成物の場合は乾燥させた後、紫外線を照射して硬化させることで形成することができる。 The insulating layer 4 made of a cured product of the insulating layer forming composition (i) is a surface on the high resistance layer 3 side of the laminate having the high resistance layer 3 on the transparent substrate 2, for example, for the tactile sensor shown in FIG. In the case of the front plate 1, the insulating layer forming composition (i) containing each of the above components is applied to the upper surface S 3 of the high resistance layer 3 by spin coating, dip coating, flow coating, spray coating, bar coating. In the case of a composition containing an organic solvent, it is formed by drying and then irradiating it with ultraviolet rays and curing it by a method such as a coating method, a gravure coating method, a roll coating method, a blade coating method or an air knife coating method. be able to.
 例えば、スピンコート法を適用して絶縁層形成用組成物(i)の塗布を行う場合、透明基体2上に高抵抗層3を有する積層体の高抵抗層3側の表面に、絶縁層形成用組成物(i)を滴下した後、当該積層体を載置固定するステージを所定の回転数で回転させることで、積層体の高抵抗層3側の表面に、絶縁層形成用組成物(i)の均一な塗膜を形成することができる。塗膜の膜厚は、硬化後に得られる絶縁層が上記本発明の範囲の膜厚となるように、上記において絶縁層形成用組成物(i)の滴下量やステージの回転数を適宜選択することで、調整される。 For example, when the insulating layer forming composition (i) is applied by applying a spin coating method, an insulating layer is formed on the surface of the laminate having the high resistance layer 3 on the transparent substrate 2 on the high resistance layer 3 side. After dropping the composition (i), the stage for mounting and fixing the laminate is rotated at a predetermined number of rotations, so that the composition for forming an insulating layer ( The uniform coating film of i) can be formed. As for the film thickness of the coating film, the dropping amount of the composition for forming an insulating layer (i) and the rotation speed of the stage are appropriately selected so that the insulating layer obtained after curing has a film thickness within the range of the present invention. It will be adjusted.
 具体的には、例えば、透明基体2上に高抵抗層3を有する積層体の上記塗布面への絶縁層形成用組成物(i)の滴下量を、約1cm程度とした場合、積層体が載置されたステージの回転を、初期回転数を200~2000rpmで10~15秒程度、その後最大回転数を2000~3000rpmで0.1~1秒程度行うことが好ましい。
 なお、絶縁層形成用組成物(i)が有機溶媒を含む場合、塗膜形成後の積層体を、例えば100~150℃の温度範囲で10分程度保持して、有機溶媒を除去することが好ましい。
Specifically, for example, when the amount of the insulating layer forming composition (i) dropped onto the coated surface of the laminate having the high resistance layer 3 on the transparent substrate 2 is about 1 cm 3 , the laminate It is preferable to rotate the stage on which is mounted at an initial rotational speed of about 200 to 2000 rpm for about 10 to 15 seconds, and then at a maximum rotational speed of about 2000 to 3000 rpm for about 0.1 to 1 second.
In the case where the insulating layer forming composition (i) contains an organic solvent, the organic solvent can be removed by holding the laminated body after the coating film is formed, for example, at a temperature range of 100 to 150 ° C. for about 10 minutes. preferable.
 紫外線照射に用いる紫外線源としては、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等が挙げられる。 Examples of ultraviolet sources used for ultraviolet irradiation include xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, carbon arc lamps and tungsten lamps.
 紫外線照射の照射時間、照射強度は、重合性化合物(A)の種類、紫外線吸収剤(B)の種類、光重合開始剤(C)の種類、被膜厚、紫外線源等の条件により適宜変更して行うことができる。通常は1~60秒程度照射することにより目的が達成される。さらに硬化反応を完結させる目的で、紫外線照射後、加熱処理することもできる。 The irradiation time and irradiation intensity of ultraviolet irradiation are appropriately changed according to the conditions such as the type of the polymerizable compound (A), the type of the ultraviolet absorber (B), the type of the photopolymerization initiator (C), the film thickness, and the ultraviolet ray source. Can be done. Usually, the object is achieved by irradiation for about 1 to 60 seconds. Further, for the purpose of completing the curing reaction, heat treatment can be performed after the irradiation with ultraviolet rays.
 紫外線照射の照射時間、照射強度は、例えば、照射光のエネルギー積算値が500~2000mJ/cm程度、照射強度のピーク値が100~500mW/cmとなるように、適宜調整して行うことが好ましい。 The irradiation time and irradiation intensity of ultraviolet irradiation are appropriately adjusted so that, for example, the energy integrated value of irradiation light is about 500 to 2000 mJ / cm 2 and the peak value of irradiation intensity is 100 to 500 mW / cm 2. Is preferred.
 上記のような絶縁層形成用組成物(i)を、上述した例えば金属酸化物を主成分として含む層からなる高抵抗層3の上面S3に塗布、硬化させて絶縁層4を形成する場合には、高抵抗層3と絶縁層4との密着性を高めるため、高抵抗層3の上面S3に、絶縁層4との密着性を高めるための表面処理(以下、密着処理と示す。)を施した上で絶縁層形成用組成物(i)を塗布することが好ましい。 In the case where the insulating layer 4 is formed by applying and curing the insulating layer forming composition (i) as described above on the upper surface S3 of the high-resistance layer 3 made of a layer containing, for example, a metal oxide as a main component. Is a surface treatment (hereinafter referred to as adhesion treatment) for improving the adhesion with the insulating layer 4 on the upper surface S3 of the high resistance layer 3 in order to enhance the adhesion between the high resistance layer 3 and the insulating layer 4. It is preferable to apply the insulating layer forming composition (i) after applying.
 密着性向上のための表面処理には、例えば、以下に挙げるシラン系カップリング剤を用いることができる。 For the surface treatment for improving adhesion, for example, the following silane coupling agents can be used.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、および3-(メタ)アクリロキシプロピルトリメトキシシランが表面処理に用いるシラン系カップリング剤として挙げられる。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxy Silane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meta ) Acryloxypropyltrimethoxysilane is mentioned as a silane coupling agent used for surface treatment.
 密着処理は、上記のシラン系カップリング剤を低級アルコール類、ケトン類、エーテル類、セロソルブ類等の有機溶剤と混合してなる組成物を、高抵抗層3の上面S3にスピンコート法、ディップコート法、フローコート法、スプレーコート法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、エアーナイフコート法等の方法で塗布し、乾燥させることで行うことができる。 For the adhesion treatment, a composition obtained by mixing the above silane coupling agent with an organic solvent such as lower alcohols, ketones, ethers, cellosolves, etc., is applied to the upper surface S3 of the high resistance layer 3 by spin coating or dipping. It can be performed by applying and drying by a coating method, a flow coating method, a spray coating method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method or the like.
 例えば、スピンコート法を適用して高抵抗層3の上面S3の密着処理を行う場合、透明基体2上に高抵抗層3を有する積層体を準備し、その高抵抗層3の上面S3上に、上述したシラン系カップリング剤を含む組成物を滴下した後、当該積層体を載置固定するステージを所定の回転数で回転させることで、積層体が有する高抵抗層3の上面S3上にシラン系カップリング剤を含む組成物の薄膜を形成し、密着処理を行うことができる。 For example, in the case of performing the adhesion treatment of the upper surface S3 of the high resistance layer 3 by applying the spin coating method, a laminate having the high resistance layer 3 is prepared on the transparent substrate 2, and the upper surface S3 of the high resistance layer 3 is prepared. After dropping the composition containing the silane coupling agent described above, the stage on which the laminate is placed and fixed is rotated at a predetermined number of revolutions, so that the upper surface S3 of the high resistance layer 3 of the laminate is provided. A thin film of a composition containing a silane coupling agent can be formed and an adhesion treatment can be performed.
 具体的には、例えば、シラン系カップリング剤を含む組成物の高抵抗層3の上面S3への滴下量を、約1cm程度とした場合、積層体が載置されたステージの回転を、初期回転数を500rpm~1500rpmで5~15秒程度、その後最大回転数を1500rpm~2500rpmで0.1~1秒の回転時間で行うことが好ましい。
 なお、密着処理に用いた組成物が有機溶媒を含む場合、密着処理後の積層体を、100~150℃で30分間程度保持して、当該有機溶媒を除去することが好ましい。
Specifically, for example, when the dropping amount of the composition containing the silane coupling agent to the upper surface S3 of the high resistance layer 3 is about 1 cm 3 , the rotation of the stage on which the stacked body is placed, It is preferable that the initial rotation speed is 500 rpm to 1500 rpm for about 5 to 15 seconds, and then the maximum rotation speed is 1500 rpm to 2500 rpm for 0.1 to 1 second.
When the composition used for the adhesion treatment contains an organic solvent, it is preferable to remove the organic solvent by holding the laminate after the adhesion treatment at 100 to 150 ° C. for about 30 minutes.
[絶縁層形成用組成物(ii)]
 絶縁層形成用組成物(ii)としては、熱硬化後に光透過性を有する硬化体を得られるものであれば、特に限定されないが、例えば、コロイダルシリカ(f-1)および次式(5)で示されるオルガノアルコキシシランの部分縮合物(f-2)からなる固形成分を含む水性/有機溶剤分散物(F)を含有してなるものを好適に用いることができる。なお、水性/有機溶剤分散物とは、水性媒体および/または有機溶媒に固形成分が分散した態様をいう。
[Insulating layer forming composition (ii)]
The insulating layer forming composition (ii) is not particularly limited as long as it can obtain a light-transmitting cured product after heat curing. For example, colloidal silica (f-1) and the following formula (5) Those comprising an aqueous / organic solvent dispersion (F) containing a solid component comprising a partial condensate (f-2) of an organoalkoxysilane represented by the formula (1) can be suitably used. The aqueous / organic solvent dispersion refers to an embodiment in which solid components are dispersed in an aqueous medium and / or an organic solvent.
 オルガノアルコキシシランとしては、例えば下記式(5)で示されるものを用いることができる。 As the organoalkoxysilane, for example, one represented by the following formula (5) can be used.
 (R10Si(OR114-a   …(5)
(式(5)中、R10は炭素数1~6の一価炭化水素基、R11は炭素数1~6の一価炭化水素基または水素基であり、aは0~2の整数である。)
 R10、R11は、炭素数1~4のアルキル基が好ましい。
(R 10 ) a Si (OR 11 ) 4-a (5)
(In the formula (5), R 10 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, R 11 is a monovalent hydrocarbon group or hydrogen group having 1 to 6 carbon atoms, and a is an integer of 0 to 2) is there.)
R 10 and R 11 are preferably alkyl groups having 1 to 4 carbon atoms.
 上記式(5)の範囲内に包含されるオルガノアルコキシシランは、好ましくはメチルトリメトキシシラン、メチルトリヒドロキシシラン、またはそれらの混合物であり、これらは部分縮合物(f-2)を形成し得るものである。上記以外に、式(5)の範囲内に包含されるオルガノトリアルコキシシランとしては、例えば、テトラエトキシシラン、エチルトリエトキシシラン、ジエチルジエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、およびジメチルジメトキシシランが挙げられる。 The organoalkoxysilane included within the scope of the above formula (5) is preferably methyltrimethoxysilane, methyltrihydroxysilane, or a mixture thereof, which can form a partial condensate (f-2). Is. Other than the above, examples of the organotrialkoxysilane included in the range of the formula (5) include tetraethoxysilane, ethyltriethoxysilane, diethyldiethoxysilane, tetramethoxysilane, methyltrimethoxysilane, and dimethyldimethoxy. Examples include silane.
 水性/有機溶剤分散物(F)としては、例えば、Clarkの米国特許第3,986,997号明細書に示されているものを用いることができる。 As the aqueous / organic solvent dispersion (F), for example, those shown in US Pat. No. 3,986,997 of Clark can be used.
 水性/有機溶剤分散物(F)としては、上述したものの他に、例えば、米国特許第3,986,997号、同第4,624,870号、同第4,680,232号および同第4,914,143号明細書に示されているものを用いることができる。 As the aqueous / organic solvent dispersion (F), in addition to those described above, for example, U.S. Pat. Nos. 3,986,997, 4,624,870, 4,680,232, and Those shown in US Pat. No. 4,914,143 can be used.
 水性/有機溶剤分散物(F)は、具体的には、メチルトリメトキシシランのようなトリアルコキシシランを、コロイダルシリカの水性/有機溶剤分散物に添加することによって製造できる。このようなコロイダルシリカの水性/有機溶剤分散物としては、例えば「ルドックス(Ludox)HS」(デュポン社製)や、「ナルコ(Nalco)」1034A(ナルコ・ケミカル社(Nalco Chemical Co.)製、「OSCAL」(商品名、触媒化成工業株式会社製)、「オルガノシリカゾル」(商品名、日産化学工業株式会社製))等が挙げられる。 Specifically, the aqueous / organic solvent dispersion (F) can be produced by adding a trialkoxysilane such as methyltrimethoxysilane to the aqueous / organic solvent dispersion of colloidal silica. Examples of such an aqueous / organic solvent dispersion of colloidal silica include “Ludox HS” (manufactured by DuPont) and “Nalco” 1034A (manufactured by Nalco Chemical Co.). “OSCAL” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.), “organosilica sol” (trade name, manufactured by Nissan Chemical Industries, Ltd.) and the like.
 コロイダルシリカ(f-1)の水性/有機溶剤分散物としては、例えば、Ubersaxの米国特許第4,177,315号明細書に示されているものを用いることができる。 As the aqueous / organic solvent dispersion of colloidal silica (f-1), for example, those shown in Ubersax US Pat. No. 4,177,315 can be used.
 オルガノアルコキシシランの部分縮合物(f-2)は、好ましくは、オルガノアルコキシシランの様々な部分縮合物の混合物からなる。 The organoalkoxysilane partial condensate (f-2) is preferably composed of a mixture of various organoalkoxysilane partial condensates.
 水性/有機溶剤分散物(F)自体(すなわち、コロイダルシリカ(f-1)とオルガノアルコキシシランの部分縮合物(f-2)との組合せ)は、通常、固形分約10質量%~50質量%であり、好ましくは固形分約15質量%~25質量%である。 The aqueous / organic solvent dispersion (F) itself (that is, the combination of colloidal silica (f-1) and organoalkoxysilane partial condensate (f-2)) usually has a solid content of about 10% to 50% by mass. %, Preferably about 15% to 25% by weight of the solid content.
 絶縁層形成用組成物(ii)は、一般に塗布面、例えば高抵抗層3の透明基体2側と反対側の面S3に対する接着性を向上させるため、上記のようなオルガノアルコキシシラン、コロイダルシリカ(f-1)および十分量のアルコールを含む水性/有機溶剤分散物(F)に、接着促進剤(G)を混合することが好ましい。 The composition for forming an insulating layer (ii) is generally used to improve the adhesion to the coated surface, for example, the surface S3 of the high resistance layer 3 on the side opposite to the transparent substrate 2, so that the organoalkoxysilane, colloidal silica ( It is preferable to mix the adhesion promoter (G) with the aqueous / organic solvent dispersion (F) containing f-1) and a sufficient amount of alcohol.
 接着促進剤(G)としては、例えば、米国特許第5411807号に記載されている(メタ)アクリレートエステルを用いることができる。(メタ)アクリレートエステルとしては、具体的には、例えば、ユニオン・カーバイド・コーティング・レジンズ(Union Carbide Coating Resins)社からToneモノマーとして市販されているものを接着促進剤(G)として用いることができる。 As the adhesion promoter (G), for example, (meth) acrylate esters described in US Pat. No. 5,411,807 can be used. Specifically, as the (meth) acrylate ester, for example, a commercially available Tone monomer from Union Carbide Coating Resins may be used as the adhesion promoter (G). .
 (メタ)アクリレートエステルとしては、例えば、カプロラクトン(メタ)アクリレートを、接着促進剤(G)として好適に用いることができる。 As the (meth) acrylate ester, for example, caprolactone (meth) acrylate can be suitably used as the adhesion promoter (G).
 (メタ)アクリレートエステルは、通常、樹脂固形分100質量部を基準として、約1質量部~20質量部の量で用いられる。(メタ)アクリレートエステルは、好ましくは、樹脂固形分100質量部を基準として、約3質量部~8質量部の量で用いることがよい。 (Meth) acrylate ester is usually used in an amount of about 1 to 20 parts by mass based on 100 parts by mass of resin solids. The (meth) acrylate ester is preferably used in an amount of about 3 to 8 parts by mass based on 100 parts by mass of the resin solid content.
 接着促進剤(G)としては、上記以外のものとして、ポリエステルポリオールを用いることができる。ポリエステルポリオールとしては、例えば、米国特許第5349002号に記載されているカプロラクトン系ポリエステルポリオールを用いることができる。 As the adhesion promoter (G), polyester polyol can be used as other than the above. As the polyester polyol, for example, a caprolactone-based polyester polyol described in US Pat. No. 5,349,002 can be used.
 カプロラクトン系ポリエステルポリオールの多くは二官能性または三官能性であり、例えば、ユニオン・カーバイド社からToneポリオールとして市販されているものを用いることができる。具体的には、例えば、「Tone 0200ジオール」(商品名、ユニオン・カーバイド社製)、「Tone 0301トリオール」(商品名、ユニオン・カーバイド社製)、「Tone 0310トリオール」(商品名、ユニオン・カーバイド社製)等を用いることができる。
 なお、Toneポリオールとして市販されているもので、上記のものと分子量、ヒドロキシ価、融点、粘度等が異なる種々のものを、接着促進剤(G)として用いることも可能である。
Many of the caprolactone-based polyester polyols are difunctional or trifunctional, and for example, those commercially available as Tone polyols from Union Carbide can be used. Specifically, for example, “Tone 0200 diol” (trade name, manufactured by Union Carbide), “Tone 0301 Triol” (trade name, manufactured by Union Carbide), “Tone 0310 Triol” (trade name, Union Carbide) Carbide) and the like can be used.
In addition, what is marketed as Tone polyol, and various things from which said molecular weight, a hydroxy value, melting | fusing point, a viscosity etc. differ from said thing can also be used as an adhesion promoter (G).
 カプロラクトン系ポリエステルポリオール以外のポリエステルポリオールとしては、ウレタン変性ポリエステルポリオールまたはシリコーン変性ポリエステルポリオールを用いることができる。 As the polyester polyol other than the caprolactone-based polyester polyol, urethane-modified polyester polyol or silicone-modified polyester polyol can be used.
 ポリエステルポリオールは、通常、樹脂固形分100質量部を基準として、約1質量部~10質量部の量で用いることができる。 The polyester polyol can be usually used in an amount of about 1 to 10 parts by mass based on 100 parts by mass of the resin solid content.
 接着促進剤(G)としては、上記以外のものとして、アクリルウレタンを用いることができる。アクリルウレタンとしては、例えば米国特許第5503935号に記載のものを用いることができる。アクリルウレタンは、通常、約400~1500の範囲内の分子量を有しており、一般に、半固体または粘稠な性質を有し、水性/有機溶剤分散物(F)に直接添加できる。 As the adhesion promoter (G), acrylic urethane can be used as other than the above. As the acrylic urethane, for example, those described in US Pat. No. 5,503,935 can be used. Acrylic urethanes typically have a molecular weight in the range of about 400-1500, generally have semi-solid or viscous properties, and can be added directly to the aqueous / organic solvent dispersion (F).
 アクリルウレタンとしては、具体的には、例えば、アクリル系として「Actilane CB-32」(商品名、SNPEシミー (SNPE Chimie)社(フランス)製)、「Ebecryl 8804」(商品名、ラドキュア・スペシャルティーズ(Radcure Specialties) 社(ケンタッキー州ルーイビル)製)等、メタクリル系として「M-407」(商品名、エコー・レジンズ・アンド・ラボラトリ(Echo Resins & Laboratory)社製)等の市販品を用いることができる。なお、「M-407」は、イソホロンジイソシアネートと2-ヒドロキシエチルメタクリレートとの付加物であり、約482の分子量を有するものである。 Specific examples of the acrylic urethane include, for example, “Actylane CB-32” (trade name, manufactured by SNPE® Chimie (France)) and “Ebecryl 8804” (trade name, Radcure Specialties). (Radcure Specialties) 40sha (Louisville, Kent.), Etc., such as “M-407” (trade name, Echo Resins & Laboratory) etc. it can. “M-407” is an adduct of isophorone diisocyanate and 2-hydroxyethyl methacrylate and has a molecular weight of about 482.
 アクリルウレタンは、通常、樹脂固形分100質量部を基準として約1質量部~15質量部の量で用いることができる。 Acrylic urethane can be usually used in an amount of about 1 to 15 parts by mass based on 100 parts by mass of resin solids.
 接着促進剤(G)としては、上記以外のものとして、反応性部位または相互作用性部位を有する数平均分子量約1000~約10000のアクリル系共重合体(g-1)を用いることができる。アクリル系共重合体(g-1)(通常、熱硬化性のものである)としては、例えば米国特許第5503935号に記載されているものを用いることができ、これらは水性/有機溶剤分散物(F)に直接添加することができる。 As the adhesion promoter (G), an acrylic copolymer (g-1) having a reactive site or an interactive site and having a number average molecular weight of about 1000 to about 10,000 can be used as a material other than the above. As the acrylic copolymer (g-1) (usually thermosetting), for example, those described in US Pat. No. 5,503,935 can be used, and these are aqueous / organic solvent dispersions. It can be added directly to (F).
 好ましいアクリル系共重合体(g-1)は、反応性部位または相互作用性部位として、ヒドロキシル基を有しており、約30~160の範囲内のヒドロキシ価、約4未満の酸価および約1000~10000の数平均分子量を有する。
 アクリル系共重合体(g-1)としては、例えば、Mark他著の「Encyclopedia of Polymer Science and Engineering, Vol.4(John Wiley & Sons発行,1986)」374~375頁に記載されているものを用いることができ、これらは各種コモノマーのラジカル重合で合成することができる。
A preferred acrylic copolymer (g-1) has a hydroxyl group as a reactive site or interaction site, a hydroxy value in the range of about 30 to 160, an acid value of less than about 4, and about It has a number average molecular weight of 1000 to 10,000.
Examples of the acrylic copolymer (g-1) are those described in Mark et al., “Encyclopedia of Polymer Science and Engineering, Vol. 4 (published by John Wiley & Sons, 1986)”, pages 374-375. These can be synthesized by radical polymerization of various comonomers.
 アクリル系共重合体(g-1)は、K.J.Saunders著の「OrganicPolymer Chemistry(Chapman Hall(ロンドン)発行,1973)」に記載されているように、複数種の単量体を用いることで、共重合体が、適当な性質を組み合わせて有するものとすることができる。 The acrylic copolymer (g-1) is K.K. J. et al. As described in “Organic Polymer Chemistry” (issued by Chapman Hall (London), 1973) by Saunders, the copolymer has a combination of suitable properties by using a plurality of types of monomers. can do.
 例えば、アクリロニトリルやメチルメタクリレートのような単量体を用いた場合、一般には、アクリル系共重合体(g-1)には硬さが与えられ、エチルアクリレートや2-エチルヘキシルアクリレートのような単量体を用いた場合、アクリル系共重合体(g-1)には柔軟性が与えられる。さらに、ジメチルアミノエチルメタクリレートやアクリル酸のような単量体を用いることで、通常、重合に適した反応性部位が与えられる。 For example, when a monomer such as acrylonitrile or methyl methacrylate is used, generally, the acrylic copolymer (g-1) is given hardness, and a single amount such as ethyl acrylate or 2-ethylhexyl acrylate. When the body is used, the acrylic copolymer (g-1) is given flexibility. Further, by using a monomer such as dimethylaminoethyl methacrylate or acrylic acid, a reactive site suitable for polymerization is usually provided.
 接着促進剤(G)としてのアクリル系共重合体(g-1)は、アミノ基、カルボキシル基、アミド結合、エポキシ基、ヒドロキシル基またはアシルオキシ基を含んでいてもよい。 The acrylic copolymer (g-1) as the adhesion promoter (G) may contain an amino group, a carboxyl group, an amide bond, an epoxy group, a hydroxyl group, or an acyloxy group.
 アクリル系共重合体(g-1)としては、具体的には、例えば、アクリル系ポリオール「Joncryl(商標)」(商品名、BASF社製)、アクリロイドアクリル樹脂(ローム・アンド・ハース社(Rohm and Haas Company)製)を接着促進剤(G)として用いることができる。 Specific examples of the acrylic copolymer (g-1) include, for example, an acrylic polyol “Joncry (trademark)” (trade name, manufactured by BASF), an acryloid acrylic resin (Rohm and Haas ( Rohm and Haas Company) can be used as the adhesion promoter (G).
 米国特許第5503935号に記載されているとおり、アクリル系共重合体(g-1)としては、ヒドロキシアルキルアクリレート系の共重合体が、シラノール基との反応性部位または相互作用部位を有するため好ましい。アクリル系共重合体(g-1)は、例えば、Kamath他著の論文「Journal of Coating Technology, Vol.59, No.746(March, 1987)」51~56頁に記載された方法を用いて製造したものを、接着促進剤(G)の好適なものとして用いることができる。 As described in US Pat. No. 5,503,935, the acrylic copolymer (g-1) is preferably a hydroxyalkyl acrylate copolymer because it has a reactive site or interaction site with a silanol group. . The acrylic copolymer (g-1) can be obtained, for example, by using the method described in the paper “Journal of Coating Technology, Vol. 59, No. 746 (March, 1987)” by Kamath et al. What was manufactured can be used as a suitable thing of an adhesion promoter (G).
 アクリル系共重合体(g-1)は、通常、樹脂固形分100質量部を基準として、約1質量部~15質量部の量で用いることができる。 The acrylic copolymer (g-1) can usually be used in an amount of about 1 to 15 parts by mass based on 100 parts by mass of the resin solid content.
 水性/有機溶剤分散物(F)の製造には、例えば炭素数1~4のアルコール、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール;グリコールおよびグリコールエーテル、例えばプロピレングリコールメチルエーテル等の有機溶媒、およびこれらの混合物を好適に用いることができる。 For the preparation of the aqueous / organic solvent dispersion (F), for example, alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol; organic solvents such as glycols and glycol ethers such as propylene glycol methyl ether, and These mixtures can be used suitably.
 絶縁層形成用組成物(ii)を、上記のような水性/有機溶剤分散物(F)を含んでなるものとする場合、絶縁層形成用組成物(ii)は、コロイダルシリカ(f-1)を10~70質量%および式(5)で示されるオルガノアルコキシシランの部分縮合物(f-2)30~90質量%からなる固形分を、10~50質量%の割合で含む水性/有機溶剤分散物(F)100部に対し、アクリル系ポリオールからなる接着促進剤(G)を1~10質量部含有してなるものが好ましい。 When the insulating layer forming composition (ii) comprises the aqueous / organic solvent dispersion (F) as described above, the insulating layer forming composition (ii) is made of colloidal silica (f-1 ) In an amount of 10 to 50% by weight and a solid content of 10 to 70% by weight and a partial condensate of organoalkoxysilane represented by the formula (5) (f-2) 30 to 90% by weight It is preferable to contain 1 to 10 parts by mass of an adhesion promoter (G) made of an acrylic polyol with respect to 100 parts of the solvent dispersion (F).
 絶縁層形成用組成物(ii)に配合する紫外線吸収剤(J)としては、オルガノアルコキシシランと共反応し、かつ加熱硬化工程中に殆ど揮発しないものが好適である。紫外線吸収剤(J)としては、例えば、2-ヒドロキシ-4-(3-(トリメトキシシリル)プロポキシ)ベンゾフェノン、(2-ヒドロキシ-4-(3-(トリエトキシシリル)プロポキシ)ベンゾフェノンまたはそれらの混合物が好適である。紫外線吸収剤(J)は、絶縁層形成用組成物(ii)に対し、0.1~20質量%の濃度で配合できる。 As the ultraviolet absorber (J) to be blended in the insulating layer forming composition (ii), those which react with the organoalkoxysilane and hardly volatilize during the heat curing step are suitable. Examples of the ultraviolet absorber (J) include 2-hydroxy-4- (3- (trimethoxysilyl) propoxy) benzophenone, (2-hydroxy-4- (3- (triethoxysilyl) propoxy) benzophenone, and their The ultraviolet absorber (J) can be blended at a concentration of 0.1 to 20% by mass with respect to the insulating layer forming composition (ii).
 絶縁層形成用組成物(ii)には、遊離基開始剤、立体障害アミン型光安定剤、酸化防止剤、染料、流動性改良剤および均展剤または表面滑剤のような他の添加剤を配合することもできる。 The insulating layer forming composition (ii) contains free radical initiators, sterically hindered amine light stabilizers, antioxidants, dyes, flow improvers and other additives such as leveling agents or surface lubricants. It can also be blended.
 絶縁層形成用組成物(ii)には、硬化時間を短縮するため、触媒として、例えばテトラ-n-ブチルアンモニウムアセテート(TBAA)またはテトラ-n-ブチルアンモニウムホルメートのようなテトラブチルアンモニウムカルボキシレート触媒あるいは酢酸などの酸を配合することもできる。 Insulating layer forming composition (ii) has a catalyst such as tetrabutylammonium carboxylate such as tetra-n-butylammonium acetate (TBAA) or tetra-n-butylammonium formate to shorten the curing time. A catalyst or an acid such as acetic acid can also be blended.
 絶縁層形成用組成物(ii)の硬化体からなる絶縁層4は、透明基体2上に高抵抗層3を有する積層体の高抵抗層3側の表面、例えば、図3に示す触覚センサ用前面板1の場合においては、高抵抗層3の上面S3に、上記各成分を含む絶縁層形成用組成物(ii)をスピンコート法、ディップコート法、フローコート法、スプレーコート法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、エアーナイフコート法等のような周知の任意の塗布方法によって塗布した後、100~150℃で30~90分程度加熱するか、または赤外線またはマイクロ波エネルギーを用いて加熱、硬化させることで形成することができる。 The insulating layer 4 made of a cured product of the insulating layer forming composition (ii) is a surface on the high resistance layer 3 side of the laminate having the high resistance layer 3 on the transparent substrate 2, for example, for the tactile sensor shown in FIG. In the case of the front plate 1, the insulating layer forming composition (ii) containing each of the above components is applied to the upper surface S 3 of the high resistance layer 3 by spin coating, dip coating, flow coating, spray coating, bar coating. After applying by a known arbitrary coating method such as a coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, etc., and then heating at 100 to 150 ° C. for about 30 to 90 minutes, It can be formed by heating and curing using microwave energy.
 例えば、スピンコート法を適用して絶縁層形成用組成物(ii)の塗布を行う場合、透明基体2上に高抵抗層3を有する積層体の高抵抗層3側の表面に、絶縁層形成用組成物(ii)を滴下した後、当該積層体を載置固定するステージを所定の回転数で回転させることで、積層体の高抵抗層3側の表面に、絶縁層形成用組成物(ii)の均一な塗膜を形成することができる。塗膜の膜厚は、硬化後に得られる絶縁層が上記本発明の範囲の膜厚となるように、上記において絶縁層形成用組成物(ii)の滴下量やステージの回転数を適宜選択することで、調整される。 For example, when the insulating layer forming composition (ii) is applied by applying a spin coating method, an insulating layer is formed on the surface of the laminate having the high resistance layer 3 on the transparent substrate 2 on the high resistance layer 3 side. After the composition (ii) is dropped, the stage for mounting and fixing the laminate is rotated at a predetermined number of rotations, so that the composition for forming an insulating layer ( The uniform coating film of ii) can be formed. As for the film thickness of the coating film, the dropping amount of the composition for forming an insulating layer (ii) and the rotational speed of the stage are appropriately selected so that the insulating layer obtained after curing has a film thickness within the range of the present invention. It will be adjusted.
 積層体を載置固定するステージの回転は、具体的には、例えば、透明基体2上に高抵抗層3を有する積層体の上記塗布面への絶縁層形成用組成物(ii)の滴下量を、約1cmとした場合、初期回転数を100~300rpmで10~15秒程度、その後最大回転数を1500~2500rpm程度で0.1~1秒の回転時間で行うことが好ましい。 Specifically, the rotation of the stage for mounting and fixing the laminate is, for example, the amount of the insulating layer forming composition (ii) dropped onto the application surface of the laminate having the high resistance layer 3 on the transparent substrate 2. Is about 1 cm 3 , it is preferable that the initial rotation speed is 100 to 300 rpm for about 10 to 15 seconds, and then the maximum rotation speed is about 1500 to 2500 rpm and the rotation time is 0.1 to 1 second.
 絶縁層4を、上記のような絶縁層形成用組成物(ii)を硬化させてなる層とすることで、例えばスパッタリング等の手法を用いる場合と比較して、絶縁層4の形成速度が高められ、触覚センサ用前面板1の製造の効率を高めることができる。 By forming the insulating layer 4 as a layer obtained by curing the insulating layer forming composition (ii) as described above, the formation speed of the insulating layer 4 is increased as compared with the case of using a technique such as sputtering. Thus, the manufacturing efficiency of the touch sensor front plate 1 can be increased.
 絶縁層4の厚さは、0.5μm以上15μm以下であり、好ましくは0.5μm以上10μm以下であり、より好ましくは1μm以上10μm以下、さらに好ましくは1μm以上8μm以下である。
 絶縁層4の厚さが0.5μm未満であると、高抵抗層3の絶縁層4との界面S3が有する表面形状が、絶縁層4の高抵抗層3側とは反対側の表面S2に反映され易くなる、または高抵抗層3の絶縁層4との界面S3が有する凸部が部分的に絶縁層4から突出する等により、絶縁層4の高抵抗層3側とは反対側の表面形状に影響を与え、触覚センサ用前面板1の表面において表面粗さRaが過度に高くなり、白曇り等により視認性が低下するおそれがある。
The thickness of the insulating layer 4 is 0.5 μm or more and 15 μm or less, preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 10 μm or less, and further preferably 1 μm or more and 8 μm or less.
When the thickness of the insulating layer 4 is less than 0.5 μm, the surface shape of the interface S3 of the high resistance layer 3 with the insulating layer 4 is changed to the surface S2 of the insulating layer 4 opposite to the high resistance layer 3 side. The surface of the insulating layer 4 on the side opposite to the high resistance layer 3 side, for example, because the convex portion of the interface S3 between the high resistance layer 3 and the insulating layer 4 partially protrudes from the insulating layer 4 or the like. The shape is affected, and the surface roughness Ra is excessively high on the surface of the front plate 1 for the tactile sensor, and the visibility may be deteriorated due to white clouding or the like.
 絶縁層4の厚さを0.5μm以上とすることで、触覚センサ用前面板1の表面での白曇りが抑制され、優れた視認性を得ることができ、また十分な耐摩耗性や耐候性を得ることができる。一方、絶縁層4の厚さを15μm以下とすることで、絶縁層4の深部においても硬化が十分に進行し、優れた光透過性を得ることができ、また触覚センサ用前面板1において適度な曲げ強度を得ることができる。 By setting the thickness of the insulating layer 4 to 0.5 μm or more, white clouding on the surface of the touch sensor front plate 1 can be suppressed, and excellent visibility can be obtained, and sufficient wear resistance and weather resistance can be obtained. Sex can be obtained. On the other hand, by setting the thickness of the insulating layer 4 to 15 μm or less, the curing sufficiently proceeds even in the deep part of the insulating layer 4 and excellent light transmission can be obtained. Bending strength can be obtained.
 図3に示す触覚センサ用前面板1において、絶縁層4が、上記の含フッ素重合性化合物(e-1)のような撥水性を付与する成分を含有していない場合には、この絶縁層4の高抵抗層3側とは反対側の表面、すなわち触覚センサ用前面板1の表面S2に接した水分が、該表面S2に拡散、付着し易く、電荷が蓄積された高抵抗層3と、絶縁層4の表層に近接した指先等の感覚受容体Xとの間に働く静電引力(クーロン力)が遮蔽されるため、触覚センサとしての機能が十分に得られなくなるおそれがある。このため、撥水性を付与する成分を十分量含有しない絶縁層4の表面S2には、図6に示すように、さらに撥水層6を形成することができる。なお、この場合、触覚センサ用前面板1の表面は、撥水層6の絶縁層4側と反対側の表面S5となる。 In the touch sensor front plate 1 shown in FIG. 3, when the insulating layer 4 does not contain a component imparting water repellency such as the fluorine-containing polymerizable compound (e-1), this insulating layer 4 is the surface opposite to the high resistance layer 3 side, that is, the water in contact with the surface S2 of the tactile sensor front plate 1 is easily diffused and adhered to the surface S2, and the high resistance layer 3 in which charges are accumulated Since the electrostatic attractive force (Coulomb force) acting between the sensory receptor X such as a fingertip adjacent to the surface layer of the insulating layer 4 is shielded, there is a possibility that the function as a tactile sensor cannot be sufficiently obtained. Therefore, a water repellent layer 6 can be further formed on the surface S2 of the insulating layer 4 that does not contain a sufficient amount of a component imparting water repellency, as shown in FIG. In this case, the surface of the touch sensor front plate 1 is a surface S5 of the water repellent layer 6 opposite to the insulating layer 4 side.
 具体的には、例えば、絶縁層4が上述した含フッ素重合性化合物(e-1)のような撥水性を付与する成分を含有しない絶縁層形成用組成物(i)の硬化体からなる層である場合に、絶縁層4の上面S2に撥水層6を形成することが好ましい。 Specifically, for example, the insulating layer 4 is a layer formed of a cured product of the insulating layer forming composition (i) that does not contain a component imparting water repellency such as the above-described fluorine-containing polymerizable compound (e-1). In this case, it is preferable to form the water repellent layer 6 on the upper surface S2 of the insulating layer 4.
 このような構成とすることで、絶縁層4の表面S2に水分が接することなく、よって撥水層6を設けない場合に発生しやすい高抵抗層3と感覚受容体Xとの間に働く静電引力(クーロン力)の遮蔽を抑制でき、触覚センサ用前面板1において、触覚センサとしての機能が十分に得られる。 By adopting such a configuration, moisture does not contact the surface S2 of the insulating layer 4, and therefore, the static force acting between the high-resistance layer 3 and the sensory receptor X that is likely to occur when the water-repellent layer 6 is not provided. The shielding of the electric attractive force (Coulomb force) can be suppressed and the function as a tactile sensor can be sufficiently obtained in the front plate 1 for tactile sensor.
 撥水層6は、含フッ素化合物または含ケイ素化合物(以下、撥水剤(H)と示す。)を含有する撥水層形成用組成物の硬化体からなる層により形成することができる。 The water repellent layer 6 can be formed of a layer made of a cured product of a water repellent layer-forming composition containing a fluorine-containing compound or a silicon-containing compound (hereinafter referred to as a water repellent (H)).
 撥水剤(H)を構成する含フッ素化合物または含ケイ素化合物としては、シランカップリング剤等が挙げられる。シランカップリング剤としては、含フッ素シランカップリング剤、アミノ基を有するシランカップリング剤、(メタ)アクリロイル基を有するシランカップリング剤、チオール基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤、オキシラニル基を有するシランカップリング剤が挙げられる。また、FS-10(信越化学社製)等の市販品を採用することもできる。 Examples of the fluorine-containing compound or silicon-containing compound constituting the water repellent (H) include silane coupling agents. As silane coupling agents, fluorine-containing silane coupling agents, silane coupling agents having amino groups, silane coupling agents having (meth) acryloyl groups, silane coupling agents having thiol groups, silane cups having isocyanate groups Examples thereof include a ring agent and a silane coupling agent having an oxiranyl group. Commercial products such as FS-10 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be employed.
 シランカップリング剤としては、撥水性等の点から、含フッ素シランカップリング剤が好ましく、フルオロアルキル基を有するシランカップリング剤が特に好ましい。フルオロアルキル基としては、パーフルオロアルキル基;パーフルオロ(ポリオキシアルキレン)鎖を含むフルオロアルキル基等が挙げられる。 As the silane coupling agent, a fluorine-containing silane coupling agent is preferable from the viewpoint of water repellency and the like, and a silane coupling agent having a fluoroalkyl group is particularly preferable. Examples of the fluoroalkyl group include a perfluoroalkyl group; a fluoroalkyl group containing a perfluoro (polyoxyalkylene) chain, and the like.
 市販されているフルオロアルキル基を有するシランカップリング剤としては、Gelest社製のAQUAPHOBE(登録商標)CF、3M社製のノベック(登録商標)EGC-1720、ダイキン社製のオプツール(登録商標)DSX(パーフルオロ(ポリオキシアルキレン)鎖を有するシランカップリング剤)等が挙げられる。
 アミノ基を有するシランカップリング剤としては、アミノプロピルトリエトキシシラン、アミノプロピルメチルジエトキシシラン、アミノエチル-アミノプロピルトリメトキシシラン、アミノエチル-アミノプロピルメチルジメトキシシラン等が挙げられる。
Commercially available silane coupling agents having a fluoroalkyl group include AQUAPHOBE (registered trademark) CF manufactured by Gelest, Novec (registered trademark) EGC-1720 manufactured by MIM, and OPTOOL (registered trademark) DSX manufactured by Daikin. (Silane coupling agent having a perfluoro (polyoxyalkylene) chain) and the like.
Examples of the silane coupling agent having an amino group include aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, aminoethyl-aminopropyltrimethoxysilane, aminoethyl-aminopropylmethyldimethoxysilane, and the like.
 撥水層6は、上述した撥水剤を含有する撥水層形成用組成物を、例えば、図3に示す透明基体2、高抵抗層3、絶縁層4の順に積層された積層体の絶縁層4の高抵抗層3側とは反対側の表面S2に塗布した後加熱処理する方法、または、該積層体における絶縁層4の表面S2に、撥水剤を気相蒸着させた後加熱処理する方法により形成することができる。 The water repellent layer 6 is an insulating material for a laminate in which the water repellent layer-containing composition containing the above-described water repellent is laminated in the order of, for example, the transparent substrate 2, the high resistance layer 3, and the insulating layer 4 shown in FIG. A method of applying heat treatment after coating on the surface S2 opposite to the high resistance layer 3 side of the layer 4, or a heat treatment after vapor-depositing a water repellent on the surface S2 of the insulating layer 4 in the laminate. It can form by the method to do.
 撥水層形成用組成物の塗布により撥水層6を形成する場合、塗布方法としては、スピンコート法、ディップコート法、キャスト法、スリットコート法、スプレーコート法等が挙げられる。加熱処理の温度は、20~150℃が好ましく、生産性の点から、70~140℃が特に好ましい。撥水剤の反応性を高めるために、加熱処理の際に湿度を制御してもよい。 When the water repellent layer 6 is formed by application of the water repellent layer forming composition, examples of the application method include spin coating, dip coating, casting, slit coating, and spray coating. The temperature for the heat treatment is preferably 20 to 150 ° C., and particularly preferably 70 to 140 ° C. from the viewpoint of productivity. In order to increase the reactivity of the water repellent, the humidity may be controlled during the heat treatment.
 撥水層形成用組成物の蒸着により撥水層6を形成する場合には、例えば、上述した撥水層形成用組成物から溶媒を除去した後、真空状態で250~300℃に加熱し、撥水剤(H)を気相状態とした雰囲気下に、例えば、図3に示す透明基体2、高抵抗層3、絶縁層4の順に積層された積層体を投入し、所定時間保持することで、撥水剤(H)の気体分子を該積層体の絶縁層4の高抵抗層3側とは反対側の表面S2に付着させて、撥水剤(H)の均一な薄膜を形成することができる。 In the case of forming the water repellent layer 6 by vapor deposition of the water repellent layer forming composition, for example, after removing the solvent from the water repellent layer forming composition described above, it is heated to 250 to 300 ° C. in a vacuum state, In an atmosphere in which the water repellent (H) is in a gas phase state, for example, a laminated body in which the transparent substrate 2, the high resistance layer 3, and the insulating layer 4 shown in FIG. Then, gas molecules of the water repellent (H) are attached to the surface S2 of the insulating layer 4 opposite to the high resistance layer 3 side to form a uniform thin film of the water repellent (H). be able to.
 触覚センサ用前面板1としては、図3または図6で示す構成に限られず、例えば図7で示すように、透明基体2と高抵抗層3との間にバリア層7を介設した構成とすることも好ましい。 The front plate 1 for a tactile sensor is not limited to the configuration shown in FIG. 3 or FIG. 6, but has a configuration in which a barrier layer 7 is interposed between the transparent substrate 2 and the high resistance layer 3 as shown in FIG. It is also preferable to do.
 透明基体2と高抵抗層3との間にバリア層7を介設することで、透明基体2に含まれる成分が高抵抗層3に拡散するのを抑制でき、高抵抗層3の表面抵抗値等の特性の変動を抑制することができる。また、ガラス板等の透明基体2の表面形状が触覚センサ用前面板1全体に与える影響を抑制し、全体としての形状安定化を図ることができる。
 なお、バリア層7を有する触覚センサ用前面板としては、必ずしも図7で示す構成のものに限られず、例えば、透明基体2と高抵抗層3との間にバリア層7が介設されるとともに、絶縁層4の上面に、撥水層6が積層された構成のものであってもよい。
By interposing the barrier layer 7 between the transparent substrate 2 and the high resistance layer 3, it is possible to suppress the components contained in the transparent substrate 2 from diffusing into the high resistance layer 3, and the surface resistance value of the high resistance layer 3. Variations in characteristics such as can be suppressed. Moreover, the influence which the surface shape of the transparent base | substrates 2, such as a glass plate, has on the front plate 1 for tactile sensors can be suppressed, and shape stabilization as a whole can be achieved.
The front plate for the tactile sensor having the barrier layer 7 is not necessarily limited to the one having the configuration shown in FIG. 7. For example, the barrier layer 7 is interposed between the transparent substrate 2 and the high resistance layer 3. A structure in which the water repellent layer 6 is laminated on the upper surface of the insulating layer 4 may be used.
 バリア層7としては、例えば、ケイ素の酸化物を主成分とする層、ケイ素の酸化物および酸化インジウムを主成分とする層を主成分とする層が挙げられる。これらの中でも、ケイ素の酸化物を主成分とする層は、良好な光透過性を確保しやすいため好ましい。また、ケイ素の酸化物を主成分とする層の中でも、さらに窒素を含む層、例えば酸化窒化ケイ素(SiON)を含む層は、優れた光透過性を得られるうえ、触覚センサ用前面板1としての視感反射率を低減する効果を得られるため好ましい。 Examples of the barrier layer 7 include a layer mainly composed of silicon oxide and a layer mainly composed of a layer mainly composed of silicon oxide and indium oxide. Among these, a layer containing a silicon oxide as a main component is preferable because good light transmittance is easily secured. In addition, among the layers containing silicon oxide as a main component, a layer containing nitrogen, for example, a layer containing silicon oxynitride (SiON) can obtain excellent light transmittance and can be used as the front plate 1 for a tactile sensor. This is preferable because an effect of reducing the luminous reflectance can be obtained.
 バリア層7は、上述した高抵抗層3の形成と同様、DC(直流)マグネトロンスパッタリング等のDC(直流)スパッタリング、AC(交流)スパッタリング、RF(高周波)スパッタリング等のスパッタリングにより、透明基体2の上記表面粗さRaを有する面S1上に形成することができる。 Similar to the formation of the high-resistance layer 3 described above, the barrier layer 7 is formed on the transparent substrate 2 by sputtering such as DC (direct current) sputtering such as DC (direct current) magnetron sputtering, AC (alternating current) sputtering, or RF (high frequency) sputtering. It can be formed on the surface S1 having the surface roughness Ra.
 バリア層7を、ケイ素の酸化物を主成分とする層とする場合、バリア層7の形成に用いられるターゲットとしては、ケイ素を主成分とするターゲットが用いられる。ケイ素を主成分とするターゲットとしては、ケイ素のみからなるもの、またはケイ素を主成分として含み、かつケイ素以外の元素、例えばホウ素、リン等公知のドーパントを本発明の特徴を損なわない範囲でドープしたものが挙げられる。 When the barrier layer 7 is a layer mainly composed of silicon oxide, a target mainly composed of silicon is used as a target used for forming the barrier layer 7. As a target having silicon as a main component, a target composed solely of silicon, or a dopant containing silicon as a main component and a known dopant such as boron or phosphorus other than silicon, as long as the characteristics of the present invention are not impaired. Things.
 バリア層7のスパッタリングによる形成は、上述した高抵抗層3におけるスパッタリングと同様にして、スパッタガスの圧力や製膜速度等の条件を適宜調整して行うことができる。 The formation of the barrier layer 7 by sputtering can be performed by appropriately adjusting conditions such as the pressure of the sputtering gas and the film forming speed in the same manner as the sputtering in the high resistance layer 3 described above.
 なお、バリア層7として、ケイ素の酸化物を主成分とし、さらに窒素を含む層、例えば酸化窒化ケイ素(SiON)を含む層を形成する場合には、スパッタガスとして、例えば酸素ガスおよび不活性ガスに、窒素ガス、またはNO、NO、NO、NH等の窒素原子を含むガスを混合した混合ガスを用いて行うことができる。 In the case where the barrier layer 7 is formed of a silicon oxide as a main component and a layer containing nitrogen, for example, a layer containing silicon oxynitride (SiON), for example, oxygen gas and inert gas are used as sputtering gases. Further, nitrogen gas or a mixed gas in which a gas containing nitrogen atoms such as N 2 O, NO, NO 2 , NH 3 or the like is mixed can be used.
 このような、ケイ素の酸化物等の無機酸化物からなるバリア層7の形成は、上記のようなスパッタ法に限定されず、例えば真空蒸着法、イオンビームアシスト蒸着法、イオンプレート法等のスパッタ方式以外の物理気相析出法や、プラズマCVD法等の化学気相析出法等を用いて行うことができる。 The formation of the barrier layer 7 made of an inorganic oxide such as silicon oxide is not limited to the sputtering method as described above. For example, sputtering such as a vacuum vapor deposition method, an ion beam assisted vapor deposition method, and an ion plate method is used. A physical vapor deposition method other than the method, a chemical vapor deposition method such as a plasma CVD method, or the like can be used.
 バリア層7の厚さは、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。バリア層7の厚さが100nmを超えると、透明基体2の上記表面粗さRaを有する面S1における表面形状が、高抵抗層3に十分に反映されないため、高抵抗層3と絶縁層4との界面S3で生じる反射光を拡散させる効果が十分に得られないおそれがある。バリア層7の厚さを100nm以下とすることで、干渉縞の発生が抑制された良好な外観を有するとともに、触覚センサ用前面板1全体として、適度な曲げ強度を有し、かつ十分な光透過性を有するものとすることができる。 The thickness of the barrier layer 7 is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. If the thickness of the barrier layer 7 exceeds 100 nm, the surface shape on the surface S1 having the surface roughness Ra of the transparent substrate 2 is not sufficiently reflected in the high resistance layer 3, so the high resistance layer 3 and the insulating layer 4 There is a possibility that the effect of diffusing the reflected light generated at the interface S3 may not be sufficiently obtained. By making the thickness of the barrier layer 7 100 nm or less, the appearance of interference fringes is suppressed and the front plate 1 for the tactile sensor has an appropriate bending strength and sufficient light. It can have transparency.
 触覚センサ用前面板1において、優れた可視光透過率、可視光反射率を得る観点から、バリア層7の屈折率は、1.4~2.2が好ましい。 In the front plate 1 for tactile sensor, the refractive index of the barrier layer 7 is preferably 1.4 to 2.2 from the viewpoint of obtaining excellent visible light transmittance and visible light reflectance.
 触覚センサ用前面板1の表面の表面粗さRaは、0.05μm以下である。触覚センサ用前面板1の表面の表面粗さRaを0.05μm以下とすることで、触覚センサ用前面板1における白曇り等による光透過性の低下が抑制され、視認性に優れたものとすることができる。触覚センサ用前面板1の表面の表面粗さRaは、より好ましくは0.01~0.03μmである。 The surface roughness Ra of the surface of the touch sensor front plate 1 is 0.05 μm or less. By making the surface roughness Ra of the surface of the touch sensor front plate 1 0.05 μm or less, a decrease in light transmittance due to white clouding or the like in the touch sensor front plate 1 is suppressed, and the surface has excellent visibility. can do. The surface roughness Ra of the surface of the touch sensor front plate 1 is more preferably 0.01 to 0.03 μm.
 触覚センサ用前面板1のヘイズ値は、1%以下であることが好ましく、より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズ値を1%以下とすることで、触覚センサ用前面板1において十分な光透過性を得ることができ、視認性に優れたものとすることができる。 The haze value of the touch sensor front plate 1 is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. By setting the haze value to 1% or less, sufficient light transmittance can be obtained in the front plate 1 for a tactile sensor, and the visibility can be improved.
 触覚センサ用前面板1における視感透過率は、85%以上である。85%以上の視感透過率を有することで、十分な視認性を得ることができる。触覚センサ用前面板1における視感透過率は、より好ましくは88%以上である。
 また、触覚センサ用前面板1の表面における視感反射率は、14%以下が好ましく、10%以下がより好ましい。
 なお、本明細書において、視感透過率および視感反射率は、JIS R3106(1998年)に従い測定した昼色光による視感透過率および視感反射率をいう。
The luminous transmittance of the front plate 1 for touch sensor is 85% or more. Sufficient visibility can be obtained by having a luminous transmittance of 85% or more. The luminous transmittance of the touch sensor front plate 1 is more preferably 88% or more.
In addition, the luminous reflectance on the surface of the touch sensor front plate 1 is preferably 14% or less, and more preferably 10% or less.
In this specification, the luminous transmittance and luminous reflectance refer to luminous transmittance and luminous reflectance by daylight measured according to JIS R3106 (1998).
 触覚センサ用前面板1の表面における静摩擦係数は、0.2以下が好ましく、0.15以下がより好ましい。
 また、触覚センサ用前面板1の表面における動摩擦係数は、0.2以下が好ましく、0.15以下がより好ましい。
The static friction coefficient on the surface of the touch sensor front plate 1 is preferably 0.2 or less, and more preferably 0.15 or less.
The coefficient of dynamic friction on the surface of the front plate 1 for touch sensor is preferably 0.2 or less, and more preferably 0.15 or less.
 触覚センサ用前面板1はその表面において、微小硬度測定試験を用いて評価した押込み弾性率が、2.5GPa以上であることが好ましく、3.0GPa以上であることがより好ましい。
 ここで、「微小硬度測定試験」は、侵入深さから硬さを算出するこの試験方法であり、これにより、押込み硬さに相当する押込み弾性率(GPa)を知ることができる。この硬さは、触覚センサ用前面板1の「硬さ」、すなわち、耐擦傷性といった機械的強度を表す指針となる。
The tactile sensor front plate 1 has an indentation elastic modulus of 2.5 GPa or more, more preferably 3.0 GPa or more, evaluated on the surface using a micro hardness measurement test.
Here, the “micro hardness measurement test” is a test method for calculating the hardness from the penetration depth, whereby the indentation elastic modulus (GPa) corresponding to the indentation hardness can be known. This hardness serves as a guide indicating the “hardness” of the front plate 1 for a tactile sensor, that is, a mechanical strength such as scratch resistance.
 触覚センサ用前面板1の表面における水に対する接触角は、80度以上が好ましく、90度以上がより好ましい。水に対する接触角は、接触角計を用いて測定したものである。 The contact angle with water on the surface of the front plate 1 for touch sensor is preferably 80 degrees or more, and more preferably 90 degrees or more. The contact angle with respect to water is measured using a contact angle meter.
 このような触覚センサ用前面板1は、例えば図5に示すように、タッチパネル本体5の前面に設けられるものであり、表現したい触感を再現可能なパターンに制御された電圧および周波数で、不図示の制御部からタッチパネル本体5の透明電極5aに通電し、触覚センサ用前面板1側に誘起された電荷を、高抵抗層3に蓄積することで、触覚センサ用前面板1を帯電させるように構成されている。このような帯電状態の触覚センサ用前面板1表面に、指等の感覚受容体Xが接触することで、絶縁層4を介して両者間に働く微弱な静電気力により、凹凸感等の触覚として感覚受容体Xに感知される。 Such a tactile sensor front plate 1 is provided on the front surface of the touch panel body 5 as shown in FIG. 5, for example, and is not shown in a voltage and frequency controlled in a pattern capable of reproducing the tactile sensation to be expressed. By energizing the transparent electrode 5a of the touch panel main body 5 from the control unit and accumulating charges induced on the tactile sensor front plate 1 side in the high resistance layer 3, the front plate 1 for tactile sensor is charged. It is configured. When the sensory receptor X such as a finger is brought into contact with the surface of the front plate 1 for a tactile sensor in such a charged state, a tactile sensation such as an uneven feeling is caused by a weak electrostatic force acting between the two via the insulating layer 4. Sensory receptor X senses it.
 なお、タッチパネル本体5に透明電極5aを設ける代わりに、触覚センサ用前面板1に透明電極が配設されていてもよい。すなわち、触覚センサ用前面板1における透明基体2の高抵抗層3が配設されたのと反対側の面S4に、透明電極が配設されていてもよい。このような構成とすることで、タッチパネル全体の構造を簡素化できるとともに、透明電極と高抵抗層3との距離が近くなるため、駆動電圧を低く抑えることが可能となり好ましい。 In addition, instead of providing the transparent electrode 5 a on the touch panel body 5, a transparent electrode may be provided on the touch sensor front plate 1. That is, the transparent electrode may be disposed on the surface S4 on the opposite side of the tactile sensor front plate 1 where the high resistance layer 3 of the transparent substrate 2 is disposed. Such a configuration is preferable because the structure of the entire touch panel can be simplified and the distance between the transparent electrode and the high-resistance layer 3 becomes short, so that the drive voltage can be suppressed low.
 透明電極を構成する材料としては、錫ドープ酸化インジウム(ITO)、インジウム・ガリウムドープ酸化亜鉛(IGZO)、ガリウムドープ酸化亜鉛(GZO)等が挙げられる。その中でもITOが、透過性、抵抗安定性および耐久性が良好であるため好ましい。透明電極の厚さは、50~500nmであることが好ましく、100~300nmであることがより好ましい。厚さが50nm以上であることで、十分な抵抗値が得られるうえに、抵抗値の安定性が確保できるので好ましい。500nm以下であることで、十分な透過率を確保できるため好ましい。 Examples of the material constituting the transparent electrode include tin-doped indium oxide (ITO), indium / gallium-doped zinc oxide (IGZO), and gallium-doped zinc oxide (GZO). Of these, ITO is preferable because of its good permeability, resistance stability and durability. The thickness of the transparent electrode is preferably 50 to 500 nm, and more preferably 100 to 300 nm. A thickness of 50 nm or more is preferable because a sufficient resistance value can be obtained and the stability of the resistance value can be secured. A thickness of 500 nm or less is preferable because sufficient transmittance can be secured.
 触覚センサ用前面板1に透明電極を配設する場合、透明電極の形成方法は、まずスパッタリング法、蒸着法等により透明電極を形成する材料の膜を透明基体2の高抵抗層3の配設面と反対側の表面S4上に形成する。そして、前記膜を、フォトリソグラフィ法、レーザーパターニング法等により所望の形状にパターニングすることにより透明電極が形成される。 When a transparent electrode is disposed on the front plate 1 for the tactile sensor, the transparent electrode is formed by first forming a film of a material for forming the transparent electrode by sputtering, vapor deposition or the like, and disposing the high resistance layer 3 of the transparent substrate 2. It is formed on the surface S4 opposite to the surface. Then, the transparent electrode is formed by patterning the film into a desired shape by a photolithography method, a laser patterning method or the like.
 本発明の実施形態の触覚センサ用前面板1によれば、高抵抗層3の表面抵抗値が1~100MΩ/□とされており、使用に際して、高抵抗層3と、タッチパネル本体5または触覚センサ用前面板1自体が有する透明電極との電気的作用を生じることなく、所望の触覚を再現性よく発現でき、優れた触覚センサ精度を得られるうえ、透明基体2の高抵抗層3側の面S1の表面粗さRaが0.05~0.5μm、触覚センサ用前面板1の表面の表面粗さRaが0.05μm以下とされており、干渉縞の発生が抑制された良好な外観を有し、かつ光透過性が高く、視認性に優れたものとすることができる。 According to the touch sensor front plate 1 of the embodiment of the present invention, the surface resistance value of the high resistance layer 3 is 1 to 100 MΩ / □, and the high resistance layer 3 and the touch panel body 5 or the touch sensor are used in use. The desired tactile sensation can be expressed with good reproducibility without causing an electrical action with the transparent electrode of the front plate 1 itself, and the surface of the transparent substrate 2 on the high resistance layer 3 side can be obtained. The surface roughness Ra of S1 is 0.05 to 0.5 μm, and the surface roughness Ra of the surface of the front plate 1 for tactile sensor is 0.05 μm or less, so that a good appearance with suppressed generation of interference fringes is achieved. And having high light transmittance and excellent visibility.
 以上、本発明の触覚センサ用前面板の実施形態を、図3~図7に示されるそれぞれ例を挙げて説明したが、本発明の触覚センサ用前面板はこれらに限定されるものではない。本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更できる。 As described above, the embodiments of the front plate for a touch sensor of the present invention have been described with reference to the examples shown in FIGS. 3 to 7, but the front plate for a touch sensor of the present invention is not limited thereto. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
 以下、実施例を参照して具体的に説明する。なお、以下の説明は本発明を限定するものではなく、本発明の趣旨に沿った形での改変が可能である。例1~5が実施例であり、例6~7が比較例である。
<絶縁層形成用組成物b1の調製>
 撹拌機を装着した300mLの4つ口フラスコに、酢酸ブチル1級(純正化学社製)の163gと2-プロパノールの41gを入れ、ここに重合性ベンゾトリアゾール系紫外線吸収剤(大塚化学社製、商品名:R-UVA93)の2g、光安定剤(BASF社製、商品名:TINUVIN292)の1g、レベリング剤(ビックケミー社製、商品名:BYK306)の0.65g、光重合開始剤(BASF社製、商品名:IRGACURE907)の2.5g、および重合禁止剤としてハイドロキノンモノメチルエーテル(純正化学社製)の0.1gを加え、溶解させて溶液を得た。
Hereinafter, specific description will be given with reference to examples. In addition, the following description does not limit this invention, The modification | change in the form along the meaning of this invention is possible. Examples 1 to 5 are examples, and examples 6 to 7 are comparative examples.
<Preparation of insulating layer forming composition b1>
In a 300 mL four-necked flask equipped with a stirrer, 163 g of butyl acetate first grade (manufactured by Junsei Chemical Co., Ltd.) and 41 g of 2-propanol were placed, and a polymerizable benzotriazole ultraviolet absorber (manufactured by Otsuka Chemical Co., Ltd., 2 g of trade name: R-UVA93), 1 g of light stabilizer (manufactured by BASF, trade name: TINUVIN292), 0.65 g of leveling agent (trade name: BYK306, manufactured by Big Chemie), photopolymerization initiator (BASF) Product, product name: IRGACURE907) and 0.1 g of hydroquinone monomethyl ether (manufactured by Junsei Kagaku) as a polymerization inhibitor were added and dissolved to obtain a solution.
 次いで、この溶液に、多官能アクリレート(新中村化学社製、商品名:U15HA)の40g、多官能アクリレート(東亞合成社製、商品名:M325)の60g、およびメタクリル酸メチルを主成分とする高分子量体(三菱レイヨン社製、商品名:LR248、分子量約15万、固形分濃度30質量%)の33gを加え、均一になるまで室温で撹拌し、溶解させて、紫外線硬化性の絶縁層形成用組成物(i)に相当する絶縁層形成用組成物b1を得た。 Next, 40 g of polyfunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: U15HA), 60 g of polyfunctional acrylate (manufactured by Toagosei Co., Ltd., trade name: M325), and methyl methacrylate are mainly contained in this solution. Add 33 g of high molecular weight (Mitsubishi Rayon Co., Ltd., trade name: LR248, molecular weight of about 150,000, solid content concentration of 30% by mass), stir at room temperature until uniform, dissolve and dissolve, UV curable insulating layer An insulating layer forming composition b1 corresponding to the forming composition (i) was obtained.
[例1]
 ガラス基板(旭硝子社製、ソーダライムガラス、縦100mm×横100mm×厚さ1mm)の高抵抗層形成面を、HFエッチングによりフロスト処理を行い、ガラス基板Q1を得た。フロスト処理後のガラス基板Q1のフロスト処理面の表面粗さRaは0.093μm、ヘイズ値は15.2%であった。
[Example 1]
A high resistance layer forming surface of a glass substrate (manufactured by Asahi Glass Co., Ltd., soda lime glass, length 100 mm × width 100 mm × thickness 1 mm) was frosted by HF etching to obtain a glass substrate Q1. The surface roughness Ra of the frosted surface of the glass substrate Q1 after the frosting was 0.093 μm, and the haze value was 15.2%.
 なお、ガラス基板Q1の表面粗さRaは、ガラス基板Q1の表面形状をレーザー顕微鏡(株式会社キーエンス社製、製品名「VK-9700」)により50倍の倍率で測定し、JIS B0601に則って算出した。ガラス基板Q1のヘイズ値は、ヘイズメータ(スガ試験機株式会社製、製品名「HZ-1」)を用いて測定した。 The surface roughness Ra of the glass substrate Q1 is determined by measuring the surface shape of the glass substrate Q1 with a laser microscope (manufactured by Keyence Corporation, product name “VK-9700”) at a magnification of 50 times, according to JIS B0601. Calculated. The haze value of the glass substrate Q1 was measured using a haze meter (product name “HZ-1” manufactured by Suga Test Instruments Co., Ltd.).
 このガラス基板Q1を真空チャンバーに投入し、チャンバー内の圧力が1×10-4Paとなるまで排気した。その後、ガラス基板Q1のフロスト処理面上に、下記条件でマグネトロンスパッタ方式により成膜処理を行い、バリア層C1および高抵抗層A1を形成した。 This glass substrate Q1 was put into a vacuum chamber and evacuated until the pressure in the chamber became 1 × 10 −4 Pa. Thereafter, a film forming process was performed on the frosted surface of the glass substrate Q1 by a magnetron sputtering method under the following conditions to form a barrier layer C1 and a high resistance layer A1.
 まず、アルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、Siターゲットを用いて、圧力0.3Pa、周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecの条件でパルススパッタリングを行い、ガラス基板Q1のフロスト処理面上に、ケイ素酸化物(屈折率:1.46)からなる厚さ20nmのバリア層C1を形成した。 First, conditions of pressure 0.3 Pa, frequency 20 kHz, power density 3.8 W / cm 2 , and inversion pulse width 5 μsec using a Si target while introducing a mixed gas obtained by mixing 40 vol% oxygen gas into argon gas. Then, a 20 nm thick barrier layer C1 made of silicon oxide (refractive index: 1.46) was formed on the frosted surface of the glass substrate Q1.
 ついで、アルゴンガスに2体積%の酸素ガスを混合した混合ガスを導入しながら、酸化スズターゲット(AGCセラミックス社製、商品名:GITターゲット)と酸化チタンターゲット(AGCセラミックス社製、商品名:TXOターゲット)を用いて、圧力0.1Paでマグネトロンスパッタ法によりコスパッタリングを行った。
 GITターゲットは、周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecの条件でパルススパッタリングを行い、TXOターゲットは、周波数20kHz、電力密度4W/cm、反転パルス幅5μsecの条件でパルススパッタリングを行った。その結果、ガラス基板Q1表面に、酸化スズ-酸化チタンからなる厚さ20nmの高抵抗層A1が形成された。
Next, a tin oxide target (manufactured by AGC Ceramics, trade name: GIT target) and a titanium oxide target (manufactured by AGC Ceramics, trade name: TXO) were introduced while introducing a mixed gas in which 2% by volume of oxygen gas was mixed with argon gas. Co-sputtering was performed by a magnetron sputtering method at a pressure of 0.1 Pa.
The GIT target performs pulse sputtering under the conditions of a frequency of 20 kHz, a power density of 3.8 W / cm 2 , and an inversion pulse width of 5 μsec. The TXO target is pulsed under the conditions of a frequency of 20 kHz, power density of 4 W / cm 2 , and an inversion pulse width of 5 μsec. Sputtering was performed. As a result, a high resistance layer A1 made of tin oxide-titanium oxide and having a thickness of 20 nm was formed on the surface of the glass substrate Q1.
 この高抵抗層A1の原子組成をESCA(Physical Electronics社製、装置名:Quantera SXM)により分析したところ、原子比率でSn:Ti=9:1であった。また、高抵抗層A1の屈折率を分光透過率と反射率から計算したところ、波長550nmで2.1であった。 When the atomic composition of the high resistance layer A1 was analyzed by ESCA (Physical® Electronics, device name: Quantera® SXM), the atomic ratio was Sn: Ti = 9: 1. Further, the refractive index of the high resistance layer A1 was calculated from the spectral transmittance and the reflectance, and was 2.1 at a wavelength of 550 nm.
 また、上記で得られたガラス基板Q1、バリア層C1、高抵抗層A1の順に積層された積層体について測定装置(三菱化学アナリテック社製、装置名:ハイレスタUP(MCP-HT450型))を用いて高抵抗層A1の表面抵抗値を測定した。上記10cm□の積層体の高抵抗層A1表面の中央にプローブをあて、10Vで10秒間通電して測定したところ、表面抵抗値は50MΩ/□であった。 Further, a measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., device name: Hiresta UP (MCP-HT450 type)) is used for the laminate obtained by laminating the glass substrate Q1, the barrier layer C1, and the high resistance layer A1 obtained in the above order. The surface resistance value of the high resistance layer A1 was measured. When the probe was placed at the center of the surface of the high resistance layer A1 of the 10 cm □ laminate and energized at 10V for 10 seconds, the surface resistance value was 50 MΩ / □.
 次いで、高抵抗層A1の上に、以下の方法で密着処理を行った。
 まず、3-メタクリロキシプロピルトリメトキシシラン(信越化学製、商品名:KBM503)をエタノールで0.1質量%に希釈し、この希釈液を、上記の高抵抗層A1の表面に約1cm滴下した後、スピンコーターにより、回転数1000rpmで10秒間、次いで2000rpmで0.5秒間回転させて塗布した。その後、恒温槽に入れて120℃で30分間保持した。こうして、高抵抗層A1の上に密着処理を行った。
Next, an adhesion treatment was performed on the high resistance layer A1 by the following method.
First, 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM503) was diluted to 0.1% by mass with ethanol, and this diluted solution was dropped about 1 cm 3 on the surface of the high resistance layer A1. After that, the coating was performed with a spin coater while rotating at 1000 rpm for 10 seconds and then at 2000 rpm for 0.5 seconds. Then, it put into the thermostat and hold | maintained for 30 minutes at 120 degreeC. Thus, an adhesion treatment was performed on the high resistance layer A1.
 次に、以下の方法で絶縁層B1を形成した。
 まず、密着処理を施した高抵抗層A1の密着処理表面に、上記で得られた絶縁層形成用組成物b1を約1cm滴下し、スピンコーターにより、回転数200rpmで10秒間、次いで2000rpmで0.5秒間回転させて塗膜を形成した。その後、恒温槽に入れて120℃で10分間保持し、塗膜を乾燥させた。
Next, the insulating layer B1 was formed by the following method.
First, about 1 cm 3 of the composition for forming an insulating layer b1 obtained above is dropped on the adhesion-treated surface of the high-resistance layer A1 that has been subjected to the adhesion treatment, and the spin coater is used for 10 seconds at a rotation speed of 200 rpm, and then at 2000 rpm. The coating film was formed by rotating for 0.5 seconds. Then, it put into the thermostat and hold | maintained at 120 degreeC for 10 minute (s), and dried the coating film.
 次に、乾燥した塗膜が形成された積層体に対し、コンベア付UV照射装置(ウシオ電機製、装置名:UVC-02516S1)を用いて、UV照射の積算値が1000mJ/cm、ピーク値が375mW/cmとなるように、搬送速度とUV強度を調整しながらUV照射を行って、前記乾燥した塗膜を硬化させ、絶縁層形成用組成物b1の硬化体からなる絶縁層B1を形成した。絶縁層B1の厚さは10μmであった。また、絶縁層B1の屈折率を分光透過率と反射率から計算したところ、波長550nmで1.55であった。
 こうして、ガラス基板Q1のフロスト処理面上に、バリア層C1と高抵抗層A1と絶縁層B1とが積層された触覚センサ用前面板1を得た。
Next, with respect to the laminate on which the dried coating film was formed, using a UV irradiation device with a conveyor (manufactured by USHIO INC., Device name: UVC-02516S1), the integrated value of UV irradiation was 1000 mJ / cm 2 , the peak value Is irradiated with UV while adjusting the conveyance speed and the UV intensity so as to be 375 mW / cm 2 , the dried coating film is cured, and the insulating layer B1 made of a cured body of the insulating layer forming composition b1 is formed. Formed. The thickness of the insulating layer B1 was 10 μm. Further, the refractive index of the insulating layer B1 was calculated from the spectral transmittance and the reflectance, and was 1.55 at a wavelength of 550 nm.
In this way, a front panel 1 for a tactile sensor in which the barrier layer C1, the high resistance layer A1, and the insulating layer B1 were laminated on the frosted surface of the glass substrate Q1 was obtained.
[例2]
 まず、例1と同様にしてフロスト処理を行ったガラス基板Q1のフロスト処理面上に、下記条件で成膜処理を行い、高抵抗層A2を形成した。
[Example 2]
First, a high resistance layer A2 was formed on the frosted surface of the glass substrate Q1 that had been frosted in the same manner as in Example 1 under the following conditions.
 すなわち、アルゴンガスに2体積%の酸素ガスを混合した混合ガスを導入しながら、酸化チタンターゲット(AGCセラミックス社製、商品名:TXOターゲット)と酸化ニオブターゲット(AGCセラミックス社製、商品名:NBOターゲット)を用いて、圧力0.1Paでマグネトロンスパッタ法によりコスパッタリングを行った。TXOターゲットは、周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecの条件でパルススパッタリングを行い、NBOターゲットは、周波数20kHz、電力密度1W/cm、反転パルス幅5μsecの条件でパルススパッタリングを行った。その結果、ガラス基板Q1のフロスト処理面上に、酸化チタン-酸化ニオブからなる厚さ20nmの高抵抗層A2が形成された。 That is, while introducing a mixed gas obtained by mixing 2% by volume of oxygen gas into argon gas, a titanium oxide target (manufactured by AGC Ceramics, trade name: TXO target) and a niobium oxide target (manufactured by AGC Ceramics, trade name: NBO) Co-sputtering was performed by a magnetron sputtering method at a pressure of 0.1 Pa. The TXO target performs pulse sputtering under the conditions of a frequency of 20 kHz, a power density of 3.8 W / cm 2 and an inversion pulse width of 5 μsec, and the NBO target is pulsed under the conditions of a frequency of 20 kHz, power density of 1 W / cm 2 and inversion pulse width of 5 μsec. Sputtering was performed. As a result, a high resistance layer A2 made of titanium oxide-niobium oxide and having a thickness of 20 nm was formed on the frosted surface of the glass substrate Q1.
 この高抵抗層A2の原子組成をESCA(Physical Electronics社製、装置名:Quantera SXM)により分析したところ、原子比率でTi:Nb=33:1であった。また、高抵抗層A2の屈折率を分光透過率と反射率から計算したところ、波長550nmで2.4であった。さらに、例1と同様に測定した高抵抗層A2の表面抵抗値は30MΩ/□であった。 When the atomic composition of the high resistance layer A2 was analyzed by ESCA (manufactured by Physical Electronics, device name: Quantera SXM), the atomic ratio was Ti: Nb = 33: 1. Further, the refractive index of the high resistance layer A2 was calculated from the spectral transmittance and the reflectance, and found to be 2.4 at a wavelength of 550 nm. Furthermore, the surface resistance value of the high resistance layer A2 measured in the same manner as in Example 1 was 30 MΩ / □.
 次に、高抵抗層A2上に、例1と同様にして密着処理を施した後、例1と同様にして、厚さ10μmの絶縁層B1を形成した。こうして、ガラス基板Q1のフロスト処理面上に、高抵抗層A2、絶縁層B1が積層された触覚センサ用前面板2を得た。 Next, an adhesion treatment was performed on the high resistance layer A2 in the same manner as in Example 1, and then an insulating layer B1 having a thickness of 10 μm was formed in the same manner as in Example 1. Thus, the touch sensor front plate 2 in which the high resistance layer A2 and the insulating layer B1 were laminated on the frosted surface of the glass substrate Q1 was obtained.
[例3]
 ガラス基板(旭硝子社製、商品名:ドラゴントレイル、縦100mm×横100mm×厚さ1mm)の高抵抗層形成面を、HFエッチングによりフロスト処理を行い、ガラス基板Q2を得た。フロスト処理後のガラス基板Q2のフロスト処理面の表面粗さRaおよびヘイズ値を、例1と同様にして測定したところ、表面粗さRaは0.103μm、ヘイズ値は17.8%であった。このガラス基板Q2を、ガラス基板Q1に代えて用いたこと以外は、例1と同様にして触覚センサ用前面板3を得た。
[Example 3]
A high resistance layer forming surface of a glass substrate (manufactured by Asahi Glass Co., Ltd., trade name: Dragon Trail, length 100 mm × width 100 mm × thickness 1 mm) was frosted by HF etching to obtain a glass substrate Q2. When the surface roughness Ra and haze value of the frosted surface of the glass substrate Q2 after the frost treatment were measured in the same manner as in Example 1, the surface roughness Ra was 0.103 μm and the haze value was 17.8%. . A tactile sensor front plate 3 was obtained in the same manner as in Example 1 except that this glass substrate Q2 was used in place of the glass substrate Q1.
[例4]
 ガラス基板(旭硝子社製、ソーダライムガラス、縦100mm×横100mm×厚さ1mm)の高抵抗層形成面を、HFエッチングにより例1に比べてより深くエッチングされる条件でフロスト処理を行い、ガラス基板Q3を得た。フロスト処理後のガラス基板Q3のフロスト処理面の表面粗さRaおよびヘイズ値を、例1と同様にして測定したところ、表面粗さRaは0.133μm、ヘイズ値は25.8%であった。このガラス基板Q3を、ガラス基板Q1に代えて用いたこと以外は、例1と同様にして触覚センサ用前面板4を得た。
[Example 4]
A glass substrate (manufactured by Asahi Glass Co., Ltd., soda lime glass, length 100 mm × width 100 mm × thickness 1 mm) is subjected to a frost treatment under conditions where the high resistance layer forming surface is etched deeper than in Example 1 by HF etching. A substrate Q3 was obtained. When the surface roughness Ra and haze value of the frosted surface of the glass substrate Q3 after the frost treatment were measured in the same manner as in Example 1, the surface roughness Ra was 0.133 μm and the haze value was 25.8%. . A tactile sensor front plate 4 was obtained in the same manner as in Example 1 except that this glass substrate Q3 was used in place of the glass substrate Q1.
[例5]
 まず、例1と同様にしてフロスト処理を行ったガラス基板Q1のフロスト処理面上に、例1と同様にしてバリア層C1、高抵抗層A1を形成した。その後、高抵抗層A1上に、例1と同様にして密着処理を行った。
[Example 5]
First, the barrier layer C1 and the high resistance layer A1 were formed in the same manner as in Example 1 on the frosted surface of the glass substrate Q1 that had been frosted in the same manner as in Example 1. Thereafter, an adhesion treatment was performed on the high resistance layer A1 in the same manner as in Example 1.
 次に、密着処理を施した高抵抗層A1の密着処理表面に、上記で得られた絶縁層形成用組成物b1を約1cm滴下し、スピンコーターにより、回転数1000rpmで10秒間、次いで2000rpmで0.5秒間回転させて塗膜を形成した。その後、恒温槽に入れて120℃で10分間保持し、塗膜を乾燥させた。 Next, about 1 cm 3 of the composition for forming an insulating layer b1 obtained above is dropped on the adhesion-treated surface of the high-resistance layer A1 that has been subjected to the adhesion treatment, and is applied with a spin coater for 10 seconds at a rotation speed of 1000 rpm and then 2000 rpm. Was rotated for 0.5 seconds to form a coating film. Then, it put into the thermostat and hold | maintained at 120 degreeC for 10 minute (s), and dried the coating film.
 次いで、乾燥した塗膜が形成された積層体に対し、例1と同様にして、搬送速度とUV強度を調整しながらUV照射を行って前記乾燥した塗膜を硬化させ、絶縁層形成用組成物b1の硬化体からなる絶縁層B1を形成した。絶縁層B1の厚さは3μmであった。
 こうして、ガラス基板Q1のフロスト処理面上に、バリア層C1と高抵抗層A1と絶縁層B1とが積層された触覚センサ用前面板5を得た。
Next, the laminate on which the dried coating film was formed was irradiated with UV while adjusting the conveyance speed and UV intensity in the same manner as in Example 1 to cure the dried coating film, thereby forming an insulating layer forming composition. An insulating layer B1 made of a cured product of the object b1 was formed. The thickness of the insulating layer B1 was 3 μm.
Thus, the touch sensor front plate 5 in which the barrier layer C1, the high resistance layer A1, and the insulating layer B1 were laminated on the frosted surface of the glass substrate Q1 was obtained.
[例6]
 ガラス基板Q1に代えて、フロスト処理を行わないガラス基板(旭硝子社製、ソーダライムガラス、縦100mm×横100mm×厚さ1mm)からなるガラス基板Q4を用いたこと以外は、例1と同様にして触覚センサ用前面板6を得た。用いたガラス基板Q4の高抵抗層形成面の表面粗さRaおよびヘイズ値を、例1と同様にして測定したところ、表面粗さRaは0μm、ヘイズ値は0%であった。これは、いずれも測定限界以下、すなわち、表面粗さRaは0.01μm以下、ヘイズ値は0.1%以下であったという意味である。
[Example 6]
Instead of the glass substrate Q1, a glass substrate Q4 made of a glass substrate that is not subjected to frost treatment (manufactured by Asahi Glass Co., Ltd., soda lime glass, vertical 100 mm × horizontal 100 mm × thickness 1 mm) was used in the same manner as in Example 1. Thus, the front plate 6 for tactile sensor was obtained. When the surface roughness Ra and haze value of the high resistance layer forming surface of the glass substrate Q4 used were measured in the same manner as in Example 1, the surface roughness Ra was 0 μm and the haze value was 0%. This means that all are below the measurement limit, that is, the surface roughness Ra is 0.01 μm or less, and the haze value is 0.1% or less.
[例7]
 まず、例1と同様にしてフロスト処理を行ったガラス基板Q1のフロスト処理面上に、例1と同様にしてバリア層C1、高抵抗層A1を形成した。その後、高抵抗層A1上に、例1と同様にして密着処理を行った。
[Example 7]
First, the barrier layer C1 and the high resistance layer A1 were formed in the same manner as in Example 1 on the frosted surface of the glass substrate Q1 that had been frosted in the same manner as in Example 1. Thereafter, an adhesion treatment was performed on the high resistance layer A1 in the same manner as in Example 1.
 次に、密着処理を施した高抵抗層A1の密着処理表面に、上記で得られた絶縁層形成用組成物b1を約1cm滴下し、スピンコーターにより、回転数2000rpmで10秒間、次いで3000rpmで0.5秒間回転させて塗膜を形成した。その後、恒温槽に入れて120℃で10分間保持し、塗膜を乾燥させた。 Next, about 1 cm 3 of the composition b1 for insulating layer formation obtained above is dropped on the adhesion-treated surface of the high resistance layer A1 that has been subjected to the adhesion treatment, and the spin coater is used for 10 seconds at a rotational speed of 2000 rpm, and then 3000 rpm. Was rotated for 0.5 seconds to form a coating film. Then, it put into the thermostat and hold | maintained at 120 degreeC for 10 minute (s), and dried the coating film.
 次に、乾燥した塗膜が形成された積層体に対し、例1と同様にして、搬送速度とUV強度を調整しながらUV照射を行って前記乾燥した塗膜を硬化させ、絶縁層形成用組成物b1の硬化体からなる絶縁層B1を形成した。絶縁層B1の厚さは0.4μmであった。
 こうして、ガラス基板Q1のフロスト処理面上に、バリア層C1と高抵抗層A1と絶縁層B1とが積層された触覚センサ用前面板7を得た。
Next, the laminate on which the dried coating film was formed was irradiated with UV while adjusting the conveyance speed and UV intensity in the same manner as in Example 1 to cure the dried coating film, thereby forming an insulating layer. An insulating layer B1 made of a cured product of the composition b1 was formed. The thickness of the insulating layer B1 was 0.4 μm.
In this way, a front panel 7 for a touch sensor was obtained in which the barrier layer C1, the high resistance layer A1, and the insulating layer B1 were laminated on the frosted surface of the glass substrate Q1.
[触覚センサ用前面板の評価]
 例1~7で得られた触覚センサ用前面板1~7について、視感反射率、視感透過率、表面粗さRa、反射色味の角度依存性、ヘイズ値、および触覚センサの感度を、それぞれ以下に示す方法で測定した。触覚センサ用前面板1~7の各層の構成および特性を表1に示し、触覚センサ用前面板についての上記各特性の測定結果を表2に示す。
 なお、表1において各層の種類や構成については、例えば「ガラス基板Q1」については「Q1」というように、それぞれ略号のみを記載した。
[Evaluation of front plate for tactile sensor]
For the tactile sensor front plates 1 to 7 obtained in Examples 1 to 7, the luminous reflectance, luminous transmittance, surface roughness Ra, angle dependency of the reflection color, haze value, and sensitivity of the tactile sensor were measured. Each was measured by the following method. Table 1 shows the configuration and characteristics of each layer of the front plates 1 to 7 for the tactile sensor, and Table 2 shows the measurement results of the above characteristics for the front plate for the tactile sensor.
In Table 1, for the type and configuration of each layer, only the abbreviations are described, for example, “Q1” for “glass substrate Q1”.
(視感反射率)
 分光光度計(島津製作所社製、装置名:SolidSpec3700)により、各触覚センサ用前面板の絶縁層側の表面における分光反射率を測定し、その反射率から、JIS R3106に準じ、視感反射率(%)を求めた。
 このうち、例1、例3、例6の触覚センサ用前面板についての300~850nmの波長域での反射率の測定結果を、それぞれ図8、図9、図10に示す。
(Luminous reflectance)
Using a spectrophotometer (manufactured by Shimadzu Corporation, device name: SolidSpec3700), the spectral reflectance at the surface on the insulating layer side of the front plate for each tactile sensor is measured, and the luminous reflectance is measured from the reflectance according to JIS R3106. (%) Was calculated.
Among these, the measurement results of the reflectance in the wavelength region of 300 to 850 nm for the front plates for the tactile sensor of Examples 1, 3 and 6 are shown in FIGS. 8, 9 and 10, respectively.
(視感透過率)
 分光光度計(島津製作所社製、装置名:SolidSpec3700)を用いて、各触覚センサ用前面板の分光透過率を測定した。そして、JIS R3106に準じ、視感透過率(%)を求めた。
 このうち、例1、例6の触覚センサ用前面板についての300~850nmの波長域での透過率の測定結果を、それぞれ図11、図12に示す。
(Visibility transmittance)
Using a spectrophotometer (manufactured by Shimadzu Corporation, apparatus name: SolidSpec3700), the spectral transmittance of each tactile sensor front plate was measured. And luminous transmittance (%) was calculated | required according to JISR3106.
Among these, the measurement results of the transmittance in the wavelength region of 300 to 850 nm for the front plates for the tactile sensor of Examples 1 and 6 are shown in FIGS. 11 and 12, respectively.
(表面粗さRa)
 レーザー顕微鏡(株式会社キーエンス社製、製品名「VK-9700」)を用いて、倍率を50倍に設定して、各触覚センサ用前面板の絶縁層側の表面の表面形状を測定し、JIS B0601に則って算出した。
(Surface roughness Ra)
Using a laser microscope (manufactured by Keyence Co., Ltd., product name “VK-9700”), setting the magnification to 50 times, measuring the surface shape of the surface on the insulating layer side of the front plate for each tactile sensor, JIS Calculated according to B0601.
(反射色味の角度依存性)
 各触覚センサ用前面板1~7において、ガラス基板側の表面(ガラス基板の高抵抗層形成面とは反対側の面)を黒色に塗ることで裏面反射を相殺するようにした触覚センサ用前面板を絶縁層側が上に向くようにして机上に配置した。また、机上から40cmの高さに昼色光直管蛍光灯(日本電気株式会社製、3波長形昼白色)のスタンドを配置した。
 この蛍光灯による照射光の下、触覚センサ用前面板の表面(絶縁層面)を種々の角度から目視で観察し、目視する角度による、反射光の色調の変化を評価した。
(Angle dependence of reflection color)
Before each tactile sensor front plate 1-7, the surface on the glass substrate side (the surface opposite to the surface on which the high resistance layer is formed on the glass substrate) is painted black to cancel back reflection. The face plate was placed on a desk with the insulating layer side facing up. Further, a stand of daylight direct fluorescent lamp (manufactured by NEC Corporation, three-wavelength daylight white) was arranged at a height of 40 cm from the desk.
Under the irradiation light from the fluorescent lamp, the surface (insulating layer surface) of the front plate for the tactile sensor was visually observed from various angles, and the change in the color tone of the reflected light depending on the viewing angle was evaluated.
 いずれの角度から目視観察した場合も、触覚センサ用前面板の表面の色調が単色(主に青色等)であったもの、または、目視角度を10度より超えて変化させた場合でも、色調の変化が緩やかであったものを「○」とし、目視角度を10度以下の範囲で変化させたときに、触覚センサ用前面板の表面の色調が変化したものを「×」とした。 Even if the color tone of the front surface of the tactile sensor front plate is a single color (mainly blue, etc.) or when the visual angle is changed more than 10 degrees, the color tone of the tactile sensor front plate is visually observed from any angle. When the change was gradual, “◯” was assigned, and when the visual angle was changed within a range of 10 degrees or less, the change in the color tone of the surface of the front plate for the tactile sensor was assigned “X”.
(ヘイズ値)
 各触覚センサ用前面板のヘイズ値は、ヘイズメータ(スガ試験機株式会社製、製品名「HZ-1」)を用いて測定した。
(Haze value)
The haze value of each tactile sensor front plate was measured using a haze meter (product name “HZ-1” manufactured by Suga Test Instruments Co., Ltd.).
(触覚センサの感度)
 各触覚センサ用前面板1~7において、ガラス基板側の表面の4辺に銅製の導電テープ(銅箔にポリエチレンテレフタレートフィルム(厚さ10μm)を貼り付けたテープ)を貼り、周波数400Hz前後で、2kVの電圧を印加した。
 このような通電状態の触覚センサ用前面板1~7の表面(絶縁層側の表面)を指先でなぞり、指先で感知される触覚の大きさにより、触覚センサ感度を4段階で評価した。
 表2中、0~4は、それぞれ「0:全く感じない」、「1:かすかに感じるが弱い」、「2:感じる」、「3:十分感じる」状態であったことを示す。
(Sensitivity of tactile sensor)
In each of the front plates 1 to 7 for the tactile sensor, a copper conductive tape (a tape in which a polyethylene terephthalate film (thickness 10 μm) is attached to a copper foil) is attached to the four sides of the surface on the glass substrate side, and the frequency is around 400 Hz. A voltage of 2 kV was applied.
The surface of the energized tactile sensor front plates 1 to 7 (the surface on the insulating layer side) was traced with the fingertip, and the tactile sensor sensitivity was evaluated in four stages according to the size of the tactile sensed by the fingertip.
In Table 2, 0 to 4 indicate the states of “0: I don't feel at all”, “1: I feel faint but weak”, “2: I feel”, and “3: I feel enough”, respectively.
 なお、感度評価の印加電圧(2kV)は、以下のとおり決定した。
 触覚センサ用前面板のガラス基板側の表面に設けた導電テープからの供給電圧を、印加電圧750V~100kVの間で調整しながら行ったところ、約2kV程度で触覚が発現したため、この電圧値に基づいてセンサ感度の評価を行った。
The applied voltage (2 kV) for sensitivity evaluation was determined as follows.
When the supply voltage from the conductive tape provided on the surface of the front plate for the tactile sensor on the glass substrate side was adjusted between the applied voltage of 750 V and 100 kV, the tactile sensation was exhibited at about 2 kV. Based on this, sensor sensitivity was evaluated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1、2から明らかなように、例1~5の触覚センサ用前面板では、高抵抗層が1~100MΩ/□の表面抵抗値を有しており、良好なセンサ感度を得られていた。また、例1~5では、各ガラス基板(透明基体)の高抵抗層側の面が0.05~0.5μmの表面粗さRaを有し、かつ触覚センサ用前面板の表面が0.05μm以下の表面粗さRaを有しており、反射色味の変動が少なく、干渉縞の無い良好な外観を有しており、ヘイズ値が1%以下と低く、視感透過率が85%以上で、優れた視認性を有していた。 As is clear from Tables 1 and 2, in the tactile sensor front plates of Examples 1 to 5, the high resistance layer had a surface resistance value of 1 to 100 MΩ / □, and good sensor sensitivity was obtained. . In Examples 1 to 5, the surface of each glass substrate (transparent substrate) on the high resistance layer side has a surface roughness Ra of 0.05 to 0.5 μm, and the surface of the front plate for the tactile sensor is 0. It has a surface roughness Ra of 05 μm or less, has little variation in reflection color, has a good appearance without interference fringes, has a low haze value of 1% or less, and a luminous transmittance of 85%. As described above, it had excellent visibility.
 一方、例6では、ガラス基板(透明基体)の高抵抗層側の面の表面粗さRaが0.05μm未満であり、干渉縞による反射色味の変動が大きく、外観に劣るものであった。また、例7では、触覚センサ用前面板の表面の表面粗さが0.05μmを超えており、ヘイズ値が1%超と高く、また反射色味の変動が生じており、視認性、外観ともに劣るものであった。 On the other hand, in Example 6, the surface roughness Ra of the surface on the high resistance layer side of the glass substrate (transparent substrate) was less than 0.05 μm, the variation in the reflection color due to the interference fringes was large, and the appearance was inferior. . Further, in Example 7, the surface roughness of the front plate for the tactile sensor exceeds 0.05 μm, the haze value is as high as more than 1%, and the reflection color changes, resulting in visibility and appearance. Both were inferior.
 また、図8、9で示されるように、ガラス基板の高抵抗層側の面の表面粗さRaが0.05~0.5μmである、例1および例3の触覚センサ用前面板では、照射光の波長の変化に伴う反射率の変動が抑制されており、干渉縞による外観の低下が生じ難いことが確認された。これに対し、図10で示されるように、ガラス基板の高抵抗層側の面の表面粗さRaが0.05μm未満である例6の触覚センサ用前面板では、照射光の波長の変化に伴う反射率の変動が大きく、回折縞による外観の低下が生じ易いものであった。 Further, as shown in FIGS. 8 and 9, in the front plate for the tactile sensor of Example 1 and Example 3 in which the surface roughness Ra of the surface on the high resistance layer side of the glass substrate is 0.05 to 0.5 μm, It was confirmed that the change in the reflectance with the change in the wavelength of the irradiation light was suppressed, and the appearance was hardly deteriorated by the interference fringes. On the other hand, as shown in FIG. 10, in the front plate for the tactile sensor of Example 6 in which the surface roughness Ra of the surface on the high resistance layer side of the glass substrate is less than 0.05 μm, the wavelength of the irradiated light changes. The accompanying change in reflectance was large, and the appearance was liable to deteriorate due to diffraction fringes.
 また、図11で示されるように、ガラス基板の高抵抗層側の面の表面粗さRaが0.05~0.5μmである例1の触覚センサ用前面板では、照射光の波長の変化に伴う光透過率の変動が抑制されているのに対し、図12で示されるように、ガラス基板の高抵抗層側の面の表面粗さRaが0.05μm未満である例6の触覚センサ用前面板では、照射光の波長の変化に伴う光透過率の変動が大きく、光透過性の安定性に劣るものであった。 Further, as shown in FIG. 11, in the front plate for the tactile sensor of Example 1 in which the surface roughness Ra of the surface on the high resistance layer side of the glass substrate is 0.05 to 0.5 μm, the wavelength change of the irradiation light is changed. 12 is suppressed, whereas the surface roughness Ra of the surface of the glass substrate on the high resistance layer side is less than 0.05 μm, as shown in FIG. The front plate for use had a large variation in light transmittance accompanying a change in the wavelength of irradiation light, and the light transmission stability was poor.
 1…触覚センサ用前面板、2,102…透明基体、3…高抵抗層、4,104…絶縁層、5,100…タッチパネル本体、5a…透明電極、6…撥水層、7…バリア層、101…前面板、103…透明基体102上に形成した層、S1…透明基体2の高抵抗層3側の面、S2…絶縁層4の高抵抗層3側と反対側の面、S3…絶縁層4と高抵抗層3との界面、S4…触覚センサ用前面板1の透明基体2側の面、S5…撥水層6の絶縁層4側と反対側の面、L1,L2,L4,L5…反射光、L3…入射光、X…感覚受容体。 DESCRIPTION OF SYMBOLS 1 ... Front plate for tactile sensors, 2,102 ... Transparent substrate, 3 ... High resistance layer, 4,104 ... Insulating layer, 5,100 ... Touch panel body, 5a ... Transparent electrode, 6 ... Water-repellent layer, 7 ... Barrier layer , 101 ... front plate, 103 ... layer formed on the transparent substrate 102, S1 ... surface of the transparent substrate 2 on the high resistance layer 3 side, S2 ... surface of the insulating layer 4 opposite to the high resistance layer 3 side, S3 ... The interface between the insulating layer 4 and the high-resistance layer 3, S4: the surface on the transparent substrate 2 side of the front plate 1 for tactile sensor, S5: the surface opposite to the insulating layer 4 side of the water repellent layer 6, L1, L2, L4 , L5: reflected light, L3: incident light, X: sensory receptor.

Claims (6)

  1.  透明基体上に、高抵抗層と、電気絶縁性を有する絶縁層とが前記透明基体側からこの順で積層されてなる触覚センサ用前面板であって、
     前記高抵抗層は、表面抵抗値が1~100MΩ/□、屈折率が1.8~2.5、厚さが5~50nmであり、
     前記絶縁層は、屈折率が1.3~1.6、厚さが0.5~15μmであり、
     前記透明基体の前記高抵抗層側の面の表面粗さRaが0.05~0.5μmであり、
     前記触覚センサ用前面板の絶縁層側の表面の表面粗さRaが0.05μm以下であることを特徴とする触覚センサ用前面板。
    On the transparent substrate, a high resistance layer and an electrically insulating insulating layer are laminated in this order from the transparent substrate side, a touch sensor front plate,
    The high resistance layer has a surface resistance value of 1 to 100 MΩ / □, a refractive index of 1.8 to 2.5, and a thickness of 5 to 50 nm.
    The insulating layer has a refractive index of 1.3 to 1.6 and a thickness of 0.5 to 15 μm.
    The surface roughness Ra of the surface of the transparent substrate on the high resistance layer side is 0.05 to 0.5 μm,
    A front plate for a tactile sensor, wherein the surface roughness Ra of the surface on the insulating layer side of the front plate for a tactile sensor is 0.05 μm or less.
  2.  前記絶縁層が、有機樹脂を主成分とする層からなる請求項1記載の触覚センサ用前面板。 The front plate for a tactile sensor according to claim 1, wherein the insulating layer is a layer mainly composed of an organic resin.
  3.  前記高抵抗層が、金属酸化物を主成分とする層からなる請求項1または2記載の触覚センサ用前面板。 The front plate for a tactile sensor according to claim 1 or 2, wherein the high resistance layer is a layer mainly composed of a metal oxide.
  4.  前記透明基体と前記高抵抗層との間にバリア層が介設されてなる請求項1乃至3のいずれか1項記載の触覚センサ用前面板。 4. The front plate for a tactile sensor according to claim 1, wherein a barrier layer is interposed between the transparent substrate and the high resistance layer.
  5.  前記絶縁層が、前記高抵抗層の密着処理された上面に配設されてなる請求項1乃至4のいずれか1項記載の触覚センサ用前面板。 The front plate for a tactile sensor according to any one of claims 1 to 4, wherein the insulating layer is disposed on an upper surface of the high-resistance layer that has been subjected to an adhesion treatment.
  6.  ヘイズ値が1%以下である請求項1乃至5のいずれか1項記載の触覚センサ用前面板。 The front plate for a tactile sensor according to any one of claims 1 to 5, wherein the haze value is 1% or less.
PCT/JP2013/065812 2012-06-25 2013-06-07 Front-surface plate for tactile sensor WO2014002731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522515A JP6076342B2 (en) 2012-06-25 2013-06-07 Tactile sensor front plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142287 2012-06-25
JP2012-142287 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002731A1 true WO2014002731A1 (en) 2014-01-03

Family

ID=49782896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065812 WO2014002731A1 (en) 2012-06-25 2013-06-07 Front-surface plate for tactile sensor

Country Status (2)

Country Link
JP (1) JP6076342B2 (en)
WO (1) WO2014002731A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087359A (en) * 2007-09-18 2009-04-23 Senseg Oy Method and apparatus for sensory stimulation
JP2009211061A (en) * 2008-02-04 2009-09-17 Nippon Zeon Co Ltd Antireflection film
WO2011058225A1 (en) * 2009-11-12 2011-05-19 Senseg Oy Tactile stimulation apparatus having a composite section comprising a semiconducting material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087359A (en) * 2007-09-18 2009-04-23 Senseg Oy Method and apparatus for sensory stimulation
JP2009211061A (en) * 2008-02-04 2009-09-17 Nippon Zeon Co Ltd Antireflection film
WO2011058225A1 (en) * 2009-11-12 2011-05-19 Senseg Oy Tactile stimulation apparatus having a composite section comprising a semiconducting material

Also Published As

Publication number Publication date
JP6076342B2 (en) 2017-02-08
JPWO2014002731A1 (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP2013152714A (en) Front panel for touch sensor
KR101564803B1 (en) Transparent conductive laminate and transparent touch panel
US10858478B2 (en) Perfluoro(poly)ether group containing silane compound
TW200530030A (en) Hard coat film
JP2011098563A (en) Transparent conductive film
JP2003025510A (en) Multilayered laminate having reflection preventing properties and scratch resistance
US9938426B2 (en) Hard coating composition and composition for forming a high refractive index antiblocking layer
US20150140302A1 (en) High-resistance laminate and tactile sensor-use front plate
JP2012196868A (en) Protective film and touch panel display
TWI598418B (en) Anti-fingerprint adhesive and method for producing the same, composition for a hard coat film, base material having a hard coat layer and touch panel
KR100694002B1 (en) Reduced-reflection film having low-refractive-index layer
JP3953829B2 (en) Anti-reflection layer, anti-reflection material, and anti-reflection body with enhanced surface
JP6076342B2 (en) Tactile sensor front plate
JP6356611B2 (en) Tactile sensor front plate
JP2006030837A (en) Antireflective lamination film and display medium using the same
JP2001315262A (en) Antireflection film
CN115812035A (en) Optical film with antifouling layer
JP2002082206A (en) Glare-proof antireflection film
JPH11286078A (en) Transparent conductive laminate and its manufacture
JP2010169963A (en) Reflection preventing film
KR20080009532A (en) An anti-reflection plastic transparent sheet and a method of preparing the same
JP7186334B2 (en) laminate
JP2004196993A (en) Antireflection organic base material
WO2022014573A1 (en) Antifouling layer-equipped optical film
JP2012025065A (en) Transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809685

Country of ref document: EP

Kind code of ref document: A1