WO2022014573A1 - Antifouling layer-equipped optical film - Google Patents

Antifouling layer-equipped optical film Download PDF

Info

Publication number
WO2022014573A1
WO2022014573A1 PCT/JP2021/026251 JP2021026251W WO2022014573A1 WO 2022014573 A1 WO2022014573 A1 WO 2022014573A1 JP 2021026251 W JP2021026251 W JP 2021026251W WO 2022014573 A1 WO2022014573 A1 WO 2022014573A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antifouling layer
antifouling
optical film
inorganic oxide
Prior art date
Application number
PCT/JP2021/026251
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 宮本
智剛 梨木
豊 角田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180049524.8A priority Critical patent/CN115812033B/en
Priority to KR1020227045625A priority patent/KR102521712B1/en
Priority to KR1020237011553A priority patent/KR102548030B1/en
Priority to JP2022536377A priority patent/JP7185102B2/en
Publication of WO2022014573A1 publication Critical patent/WO2022014573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to an optical film with an antifouling layer.
  • an optical film with an antifouling layer is attached to the outer surface of a display such as a touch panel display on the image display side.
  • the optical film with an antifouling layer includes a transparent base material and an antifouling layer arranged on the outermost surface on one side of the transparent base material.
  • the antifouling layer suppresses the adhesion of contaminants such as hand grease on the display surface, and facilitates the removal of the adhered contaminants.
  • Patent Document 1 A technique relating to such an optical film with an antifouling layer is described in, for example, Patent Document 1 below.
  • the present invention provides an optical film with an antifouling layer, which is suitable for suppressing a decrease in antifouling property while ensuring peeling resistance in the antifouling layer.
  • the present invention [1] includes a transparent base material, a hard coat layer, an inorganic oxide base layer, and an antifouling layer in this order, and the antifouling layer is arranged on the inorganic oxide base layer. It is a dry coating film, and the elastic recovery rate measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm on the surface of the antifouling layer opposite to the inorganic oxide base layer.
  • the optical film with an antifouling layer is 76% or more.
  • the present invention [2] includes the optical film with an antifouling layer according to the above [1], wherein the antifouling layer has a thickness of 1 nm or more and 25 nm or less.
  • the present invention [3] includes the optical film with an antifouling layer according to the above [1] or [2], wherein the inorganic oxide base layer contains silicon dioxide.
  • the present invention [4] includes the optical film with an antifouling layer according to any one of the above [1] to [3], wherein the inorganic oxide base layer has a thickness of 50 nm or more.
  • the present invention [5] includes the optical film with an antifouling layer according to any one of the above [1] to [4], wherein the hard coat layer has a thickness of 1 ⁇ m or more and 50 ⁇ m or less.
  • the optical film with an antifouling layer of the present invention is a dry coating film in which the antifouling layer is arranged on the inorganic oxide base layer as described above.
  • Such a configuration is suitable for ensuring a high bonding force of the antifouling layer in the optical film with the antifouling layer, and therefore suitable for ensuring the peeling resistance of the antifouling layer.
  • the optical film with an antifouling layer has an elastic recovery measured by a nanoindentation method on the surface of the antifouling layer opposite to the inorganic oxide underlying layer under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm. The rate is 76% or more.
  • Such a configuration is suitable for suppressing deterioration of the antifouling property of the antifouling layer against the wiping work on the antifouling layer.
  • the optical film F as an embodiment of the optical film with an antifouling layer of the present invention includes a transparent base material 11, a hard coat layer 12, an inorganic oxide base layer 13, and an antifouling layer. 14 and 14 are provided in this order toward one side of the thickness direction T.
  • the optical film F has a transparent base material 11, a hard coat layer 12, an adhesion layer 15, an inorganic oxide base layer 13, and an antifouling layer 14 on one side in the thickness direction T. Prepare in this order.
  • the optical film F has a shape that spreads in a direction (plane direction) orthogonal to the thickness direction T.
  • the transparent base material 11 is a transparent resin film having flexibility.
  • the material of the transparent base material 11 include polyester resin, polyolefin resin, polystyrene resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polysulfone resin, polyamide resin, polyimide resin, cellulose resin, norbornene resin, and polyallylate resin. And polyvinyl alcohol resin.
  • the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate.
  • Polyolefin resins include, for example, polyethylene, polypropylene, and cycloolefin polymers (COPs).
  • the cellulose resin include triacetyl cellulose (TAC).
  • the transparent base material 11 one selected from the group consisting of polyester resin, polyolefin resin, and cellulose resin is used from the viewpoint of transparency and strength, and more preferably, it is composed of PET, COP, and TAC. One selected from the group is used.
  • the surface of the transparent substrate 11 on the hard coat layer 12 side may be surface-modified.
  • Examples of the surface modification treatment include corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
  • the thickness of the transparent substrate 11 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more.
  • the thickness of the transparent base material 11 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, from the viewpoint of handleability.
  • the total light transmittance (JIS K 7375-2008) of the transparent base material 11 is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more. Such a configuration is suitable for ensuring the transparency required for the optical film F when the optical film F is provided on the surface of a display such as a touch panel display.
  • the total light transmittance of the transparent substrate 11 is, for example, 100% or less.
  • the hard coat layer 12 is arranged on one surface of the transparent base material 11 in the thickness direction T.
  • the hard coat layer 12 is a layer for making it difficult for scratches to be formed on the exposed surface (upper surface in FIG. 1) of the optical film F.
  • the hard coat layer 12 is a cured product of the curable resin composition.
  • the curable resin contained in the curable resin composition include polyester resin, acrylic resin, urethane resin, acrylic urethane resin, amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more. From the viewpoint of ensuring high hardness of the hard coat layer 12, an acrylic urethane resin is preferably used as the curable resin.
  • examples of the curable resin composition include an ultraviolet curable resin composition and a thermosetting resin composition.
  • an ultraviolet curable resin composition is preferably used from the viewpoint of helping to improve the production efficiency of the optical film F because it can be cured without heating at a high temperature.
  • the UV curable resin composition contains at least one selected from the group consisting of UV curable monomers, UV curable oligomers, and UV curable polymers.
  • Specific examples of the ultraviolet curable resin composition include the composition for forming a hard coat layer described in JP-A-2016-179686.
  • the curable resin composition may contain fine particles.
  • the formulation of the fine particles in the curable resin composition is useful for adjusting the hardness, adjusting the surface roughness, adjusting the refractive index, and imparting antiglare property in the hard coat layer 12.
  • the fine particles include metal oxide particles, glass particles, and organic particles.
  • Materials for the metal oxide particles include, for example, silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
  • Materials for organic particles include, for example, polymethylmethacrylate, polystyrene, polyurethane, acrylic-styrene copolymers, benzoguanamines, melamines, and polycarbonates.
  • the thickness of the hard coat layer 12 is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, from the viewpoint of ensuring the hardness of the surface of the antifouling layer 14 by ensuring the hardness of the hard coat layer 12.
  • the thickness of the hard coat layer 12 is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 35 ⁇ m or less, and particularly preferably 30 ⁇ m or less, from the viewpoint of ensuring the flexibility of the optical film F.
  • the surface of the hard coat layer 12 on the adhesion layer 15 side may be surface-modified.
  • Examples of the surface modification treatment include plasma treatment, corona treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment. From the viewpoint of ensuring a high adhesion between the hard coat layer 12 and the adhesion layer 15, the surface of the hard coat layer 12 on the adhesion layer 15 side is preferably plasma-treated.
  • the adhesion layer 15 is a layer for ensuring the adhesion of the inorganic oxide layer (in the present embodiment, the inorganic oxide base layer 13) to the transparent base material 11.
  • the adhesion layer 15 is arranged on one surface of the hard coat layer 12 in the thickness direction T.
  • Examples of the material of the adhesion layer 15 include metals such as silicon, indium, nickel, chromium, aluminum, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium, and two or more alloys of these metals. And the oxides of these metals are mentioned.
  • both the adhesion to both the organic layer (specifically, the hard coat layer 12) and the inorganic oxide layer (specifically, the inorganic oxide base layer 13 in this embodiment) and the transparency of the adhesion layer 15 are compatible.
  • the material of the adhesion layer 15 indium tin oxide (ITO) or silicon oxide (SiOx) is preferably used.
  • SiOx having a smaller oxygen content than the stoichiometric composition is preferably used, and more preferably SiOx having x of 1.2 or more and 1.9 or less is used. ..
  • the thickness of the adhesion layer 15 is preferably 1 nm or more and 10 nm or less from the viewpoint of ensuring the adhesion between the hard coat layer 12 and the inorganic oxide base layer 13 and the transparency of the adhesion layer 15. ..
  • the inorganic oxide base layer 13 is a layer for ensuring peeling resistance in the antifouling layer 14.
  • Examples of the material of the inorganic oxide base layer 13 include silicon dioxide (SiO 2 ) and magnesium fluoride, and silicon dioxide is preferably used.
  • the thickness of the inorganic oxide base layer 13 is preferably 50 nm or more, more preferably 65 nm or more, still more preferably 80 nm or more, and particularly preferably 90 nm or more, from the viewpoint of ensuring the peeling resistance of the antifouling layer 14.
  • the thickness of the inorganic oxide base layer 13 is, for example, 300 nm or less.
  • the antifouling layer 14 is a layer having an antifouling function.
  • the antifouling layer 14 is arranged on one surface of the inorganic oxide base layer 13 in the thickness direction T.
  • the antifouling layer 14 has a surface 14a (outer surface) on one side in the thickness direction T.
  • the antifouling function of the antifouling layer 14 includes a function of suppressing the adhesion of contaminants such as hand grease to the exposed surface of the film when the optical film F is used, and a function of facilitating the removal of the adhered contaminants.
  • Examples of the material of the antifouling layer 14 include organic compounds containing a fluorine group.
  • an alkoxysilane compound having a perfluoropolyether group is preferably used.
  • Examples of the alkoxysilane compound having a perfluoropolyether group include a compound represented by the following general formula (1).
  • R 1 is a linear or branched alkyl fluoride group in which one or more hydrogen atoms in the alkyl group are replaced with a fluorine atom (for example, the number of carbon atoms is 1 or more and 20 or less).
  • R 2 represents a structure containing at least one repeating structure of a perfluoropolyether (PFPE) group, and preferably represents a structure containing two repeating structures of a PFPE group.
  • the repeating structure of the PFPE group include a repeating structure of a linear PFPE group and a repeating structure of a branched PFPE group.
  • the repeating structure of the linear PFPE group for example, a structure represented by- (OC n F 2n) p- (n represents an integer of 1 or more and 20 or less, and p is an integer of 1 or more and 50 or less. Represented. The same shall apply hereinafter).
  • Examples of the repeating structure of the branched PFPE group include a structure represented by-(OC (CF 3 ) 2 ) p- and a structure represented by-(OCF 2 CF (CF 3 ) CF 2 ) p-. Can be mentioned.
  • the repeating structure of the PFPE group is preferably a repeating structure of a linear PFPE group, and more preferably- (OCF 2 ) p- and-(OC 2 F 4 ) p- .
  • R 3 represents an alkyl group having 1 or more and 4 or less carbon atoms, and preferably represents a methyl group.
  • X represents an ether group, a carbonyl group, an amino group, or an amide group, and preferably represents an ether group.
  • M represents an integer of 1 or more. Further, m represents an integer of preferably 20 or less, more preferably 10 or less, still more preferably 5 or less.
  • the compound represented by the following general formula (2) is preferably used.
  • q represents an integer of 1 or more and 50 or less
  • r represents an integer of 1 or more and 50 or less
  • alkoxysilane compound having a perfluoropolyether group may be used alone or in combination of two or more.
  • the antifouling layer 14 is a film (dry coating film) formed by the dry coating method.
  • the dry coating method include a sputtering method, a vacuum vapor deposition method, and a CVD method.
  • the antifouling layer 14 is preferably a film (vacuum-film-deposited film) formed by a vacuum-deposited method.
  • the structure in which the material of the antifouling layer 14 contains an alkoxysilane compound having a perfluoropolyether group and the antifouling layer 14 is a dry coating film (preferably a vacuum-deposited film) is an inorganic oxide underlayer. It is suitable for ensuring a high bonding force of the antifouling layer 14 with respect to 13, and therefore suitable for ensuring the peeling resistance of the antifouling layer 14.
  • the high peel resistance of the antifouling layer 14 helps to maintain the antifouling function of the antifouling layer 14.
  • the elastic recovery rate of the surface 14a of the antifouling layer 14 measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76% or more, preferably 80% or more, more preferably. It is 81.5% or more, more preferably 85% or more.
  • Such a configuration is suitable for suppressing the deterioration of the antifouling property of the antifouling layer 14 against the wiping work on the antifouling layer 14.
  • the elastic recovery rate of the surface 14a of the antifouling layer 14 is preferably 100% or less, more preferably 95% or less. Such a configuration is suitable for ensuring the flexibility of the antifouling layer 14, and therefore suitable for ensuring the flexibility of the optical film F.
  • the nanoindentation method is a technique for measuring various physical properties of a sample on a nanometer scale.
  • the nanoindentation method is carried out in accordance with ISO14577.
  • the process of pushing the indenter into the sample set on the stage (load application process) and the process of pulling out the indenter from the sample after that (unloading process) are carried out, and during a series of processes,
  • the load acting between the indenter and the sample and the relative displacement of the indenter with respect to the sample are measured (load-displacement measurement). This makes it possible to obtain a load-displacement curve. From this load-displacement curve, it is possible to obtain various physical properties of the measurement sample based on nanometer-scale measurement.
  • a nanoindenter (trade name "Triboindenter”, manufactured by Hysitron) can be used.
  • the measurement mode is single indentation measurement
  • the measurement temperature is 25 ° C
  • the indenter used is a Berkovich (triangular pyramid) type diamond indenter
  • the maximum indentation depth maximum indentation depth of the indenter with respect to the measurement sample in the load application process.
  • the displacement H1) is 200 nm
  • the pushing speed of the indenter is 20 nm / sec
  • the withdrawal speed of the indenter from the measurement sample in the unloading process is 20 nm / sec.
  • the maximum load Pmax (the load acting on the indenter at the maximum displacement H1) and the contact projection area Ap (the projected area of the contact area between the indenter and the sample at the maximum load).
  • the amount of plastic deformation H2 on the sample surface after the unloading process (the depth of the recess maintained on the sample surface after the indenter is separated from the sample surface) can be obtained.
  • the hardness of the surface 14a of the antifouling layer 14 at 25 ° C. measured by the nanoindentation method is preferably 1.05 GPa or more, more preferably 1.1 GPa or more, still more preferably 1.15 GPa or more, still more preferable. Is 1.2 GPa or more, particularly preferably 1.25 GPa or more, and particularly preferably 1.3 GPa or more. Such a configuration is suitable for suppressing the deterioration of the antifouling property of the antifouling layer 14 against the wiping work on the antifouling layer 14. The hardness of the surface 14a of the antifouling layer 14 at 25 ° C.
  • measured by the nanoindentation method is preferably 30 GPa or less, more preferably 20 GPa or less, still more preferably 15 GPa or less.
  • Such a configuration is suitable for ensuring the flexibility of the antifouling layer 14, and therefore suitable for ensuring the flexibility of the optical film F.
  • the water contact angle (pure water contact angle) of the surface 14a of the antifouling layer 14 is preferably 110 ° or more, preferably 111 ° or more, more preferably 112 ° or more, still more preferably 113 ° or more, and particularly preferably 113 ° or more. It is 114 ° or more.
  • the configuration in which the water contact angle on the surface 14a is as high as this is suitable for realizing high antifouling property in the antifouling layer 14.
  • the water contact angle is, for example, 130 ° or less.
  • the water contact angle is determined by forming water droplets (droplets of pure water) having a diameter of 2 mm or less on the surface 14a (exposed surface) of the antifouling layer 14 and measuring the contact angle of the water droplets with respect to the surface 14a. ..
  • the water contact angle of the surface 14a is determined by, for example, adjusting the composition of the antifouling layer 14, the roughness of the surface 14a, the composition of the hard coat layer 12, and the roughness of the surface of the hard coat layer 12 on the antifouling layer 14 side. , Can be adjusted.
  • the thickness of the antifouling layer 14 is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, and particularly preferably 7 nm or more. Such a configuration is suitable for achieving the above-mentioned surface hardness in the antifouling layer 14.
  • the thickness of the antifouling layer 14 is preferably 25 nm or less, more preferably 20 nm or less, still more preferably 18 nm or less. Such a configuration is suitable for realizing the above-mentioned water contact angle in the antifouling layer 14.
  • the optical film F is produced by preparing the transparent base material 11 and then sequentially forming the hard coat layer 12, the adhesion layer 15, and the antifouling layer 14 on the transparent base material 11, for example, in a roll-to-roll method. can.
  • the hard coat layer 12 can be formed, for example, by applying a curable resin composition on the transparent substrate 11 to form a coating film, and then curing the coating film.
  • the curable resin composition contains an ultraviolet-type resin
  • the coating film is cured by irradiation with ultraviolet rays.
  • the curable resin composition contains a thermosetting resin
  • the coating film is cured by heating.
  • the exposed surface of the hard coat layer 12 formed on the transparent base material 11 is surface-modified, if necessary.
  • plasma treatment for example, argon gas is used as the inert gas.
  • the discharge power in the plasma processing is, for example, 10 W or more, and for example, 10000 W or less.
  • the inorganic oxide base layer 13 is formed by forming a material by a dry coating method.
  • the dry coating method include a sputtering method, a vacuum vapor deposition method, and a CVD method, and a sputtering method is preferably used.
  • a negative voltage is applied to the target placed on the cathode while introducing gas into the sputtering chamber under vacuum conditions.
  • a glow discharge is generated to ionize the gas atom, the gas ion collides with the target surface at high speed, the target material is ejected from the target surface, and the ejected target material is deposited on a predetermined surface.
  • reactive sputtering is preferable as the sputtering method.
  • a metal target is used as the target, and a mixed gas of an inert gas such as argon and oxygen (reactive gas) is used as the above-mentioned gas.
  • Examples of the power supply for carrying out the sputtering method include a DC power supply, an AC power supply, an RF power supply, and an MFAC power supply (AC power supply having a frequency band of several kHz to several MHz).
  • the discharge voltage in the sputtering method is, for example, 200 V or more, and is, for example, 1000 V or less.
  • the film forming pressure in the sputtering chamber where the sputtering method is carried out is preferably 0.01 Pa or more, more preferably 0.05 Pa or more, and further preferably 0.1 Pa or more. Such a configuration is preferable from the viewpoint of forming the antifouling layer 14 in which the material is densely deposited. Further, the film forming pressure is, for example, 2 Pa or less from the viewpoint of discharge stability.
  • the antifouling layer 14 is formed by forming, for example, an organic compound containing a fluorine group on the inorganic oxide base layer 13 by a dry coating method.
  • a dry coating method include a vacuum vapor deposition method, a sputtering method, and a CVD method, and a vacuum vapor deposition method is preferably used.
  • the optical film F can be manufactured as described above.
  • the optical film F is used with the transparent base material 11 side bonded to the adherend via, for example, an adhesive.
  • the adherend include a transparent cover arranged on the image display side of a display such as a touch panel display.
  • the optical film F is a dry coating film in which the antifouling layer 14 is arranged on the inorganic oxide base layer 13.
  • Such a configuration is suitable for ensuring a high bonding force of the antifouling layer 14 in the optical film F, and is therefore suitable for ensuring the peeling resistance of the antifouling layer 14.
  • the high peel resistance of the antifouling layer 14 helps to maintain the antifouling function of the antifouling layer 14.
  • the elastic recovery rate of the surface 14a of the antifouling layer 14 measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76% or more as described above. It is preferably 80% or more, more preferably 81.5% or more, still more preferably 85% or more.
  • Such a configuration is suitable for suppressing the deterioration of the antifouling property of the antifouling layer 14 against the wiping work on the antifouling layer 14.
  • the optical film F is suitable for suppressing the deterioration of the antifouling property while ensuring the peeling resistance in the antifouling layer 14.
  • the optical film F may include a layer having a predetermined optical function (optical functional layer).
  • optical functional layer includes a plurality of layers, it is preferable that the layer on the surface of the antifouling layer 14 side of such an optical functional layer also serves as the above-mentioned inorganic oxide base layer 13.
  • FIG. 2 shows a case where the optical film F includes an optical functional layer 20 between the adhesion layer 15 and the antifouling layer 14.
  • the optical functional layer 20 has a layer that also serves as an inorganic oxide base layer 13 on the surface of the antifouling layer 14 side.
  • the optical functional layer 20 is arranged on one surface of the adhesion layer 15 in the thickness direction T.
  • the optical functional layer 20 is an antireflection layer for suppressing the reflection intensity of external light. That is, the optical film F is an antireflection film with an antifouling layer in this modification.
  • the optical functional layer 20 (antireflection layer) has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index alternately in the thickness direction.
  • the net reflected light intensity is attenuated by the interference action between the reflected light at the plurality of interfaces in the plurality of thin layers (high refractive index layer, low refractive index layer) contained in the same layer.
  • an interference effect for attenuating the reflected light intensity can be exhibited by adjusting the optical film thickness (product of the refractive index and the thickness) of each thin layer.
  • the optical functional layer 20 as such an antireflection layer includes a first high refractive index layer 21, a first low refractive index layer 22, and a second high refractive index layer 23.
  • the first high-refractive index layer 21 and the second high-refractive index layer 23 are each made of a high-refractive index material having a refractive index of preferably 1.9 or more at a wavelength of 550 nm.
  • high refractive index materials include, for example, niobium oxide (Nb 2 O 5 ), titanium oxide, zirconium oxide, tin-doped indium oxide (ITO), and antimony.
  • Dope tin oxide (ATO) is mentioned, and niobium oxide is preferably used.
  • the optical film thickness (product of refractive index and thickness) of the first high refractive index layer 21 is, for example, 20 nm or more, and is, for example, 55 nm or less.
  • the optical film thickness of the second high-refractive index layer 23 is, for example, 60 nm or more, and for example, 330 nm or less.
  • the first low refractive index layer 22 and the second low refractive index layer 24 are each made of a low refractive index material having a refractive index of preferably 1.6 or less at a wavelength of 550 nm.
  • examples of the low refractive index material include silicon dioxide (SiO 2 ) and magnesium fluoride, and silicon dioxide is preferably used. As described above, SiO 2 and magnesium fluoride are also preferable as materials for the inorganic oxide base layer 13.
  • the optical film thickness of the first low refractive index layer 22 is, for example, 15 nm or more, and is, for example, 70 nm or less.
  • the optical film thickness of the second low refractive index layer 24 is, for example, 100 nm or more, and is, for example, 160 nm or less.
  • the first high refractive index layer 21, the first low refractive index layer 22, and the second high refractive index layer 23 can each be formed by forming a material by a dry coating method.
  • the second low refractive index layer 24, which also serves as the inorganic oxide base layer 13, is formed by forming a material by a dry coating method.
  • the dry coating method include a sputtering method, a vacuum vapor deposition method, and a CVD method, and a sputtering method is preferably used.
  • the sputtering method reactive sputtering is preferable from the viewpoint of the film forming speed.
  • the conditions of the sputtering method are the same as those described above as the conditions of the sputtering method relating to the formation of the inorganic oxide base layer 13.
  • the antifouling layer 14 is a dry coating film arranged on the second low refractive index layer 24 (inorganic oxide base layer 13).
  • the elastic recovery rate of the surface 14a of the antifouling layer 14 measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76 as described above. % Or more, preferably 80% or more, more preferably 81.5% or more, still more preferably 85% or more.
  • Such an optical film F is suitable for suppressing a decrease in antifouling property while ensuring peeling resistance in the antifouling layer 14.
  • the present invention will be specifically described below with reference to examples.
  • the present invention is not limited to the examples.
  • the specific numerical values such as the compounding amount (content), the physical property value, the parameter, etc. described below are the compounding amounts corresponding to them described in the above-mentioned "form for carrying out the invention” (forms for carrying out the invention). It can be replaced with the upper limit (numerical value defined as “less than or equal to” or “less than”) or lower limit (numerical value defined as "greater than or equal to” or “greater than or equal to”) such as content), physical property value, and parameter.
  • a hard coat layer was formed on one side of a polyethylene terephthalate (PET) film (thickness 50 ⁇ m) as a transparent substrate (hard coat layer forming step).
  • PET polyethylene terephthalate
  • a butyl acetate solution (trade name "Unidic 17-806") of a mixture of an ultraviolet curable monomer and an oligomer (containing urethane acrylate as a main component), a solid content concentration of 80% by mass, manufactured by DIC, Inc.
  • this coating film was dried by heating and then cured by irradiation with ultraviolet rays.
  • the heating temperature was 90 ° C. and the heating time was 60 seconds.
  • a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 300 mJ / cm 2 .
  • HC hard coat layer
  • the surface of the HC layer of the PET film with the HC layer was plasma-treated in a vacuum atmosphere of 1.0 Pa by a roll-to-roll type plasma processing device.
  • argon gas was used as the inert gas, and the discharge power was set to 780 W.
  • an adhesion layer and an inorganic oxide base layer were sequentially formed on the HC layer of the PET film with the HC layer after the plasma treatment (sputter film formation step).
  • an indium tin oxide (ITO) layer having a thickness of 2.0 nm as an adhesion layer and an inorganic oxide are placed on the HC layer of the PET film with an HC layer by a roll-to-roll type sputter film forming apparatus.
  • Two layers of SiO having a thickness of 165 nm as a base layer were sequentially formed.
  • an ITO target was used, an argon gas as an inert gas and 10 parts by volume of oxygen gas as a reactive gas with respect to 100 parts by volume of the argon gas were used, and the discharge voltage was set to 350 V.
  • the pressure in the film chamber was set to 0.4 Pa, and the ITO layer was formed by MFAC sputtering.
  • a Si target is used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas are used, the discharge voltage is 350 V, the film formation pressure is 0.3 Pa, and SiO 2 is formed by MFAC sputtering. Formed a layer.
  • an antifouling layer was formed (antifouling layer forming step). Specifically, an antifouling layer having a thickness of 12 nm was formed on the inorganic oxide base layer by a vacuum vapor deposition method using an alkoxysilane compound containing a perfluoropolyether group as a vapor deposition source.
  • the vapor deposition source is a solid content obtained by drying "KY1903-1" (perfluoropolyether group-containing alkoxysilane compound, solid content concentration 20% by mass) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the heating temperature of the vapor deposition source in the vacuum vapor deposition method was 260 ° C.
  • the optical film of Example 1 includes a resin film, a hard coat layer, an adhesion layer, an inorganic oxide base layer, and an antifouling layer in this order toward one side in the thickness direction.
  • Example 2 The optical film of Example 2 was produced in the same manner as the optical film of Example 1 except that the thickness of the HC layer was 10 ⁇ m instead of 5 ⁇ m.
  • Example 3 Optical of Example 3 in the same manner as the optical film of Example 1 except that the thickness of the HC layer was changed to 10 ⁇ m instead of 5 ⁇ m and the thickness of the inorganic oxide base layer was changed to 100 nm instead of 165 nm. A film was made.
  • Example 4 The optical film of Example 4 was produced in the same manner as the optical film of Example 1 except that the film forming pressure at the time of forming the inorganic oxide base layer was 0.1 Pa instead of 0.3 Pa.
  • Example 5 Similar to the optical film of Example 1 except that the thickness of the HC layer was changed to 10 ⁇ m instead of 5 ⁇ m, and the film forming pressure at the time of forming the inorganic oxide base layer was changed to 0.1 Pa instead of 0.3 Pa. The optical film of Example 5 was produced.
  • Example 6 The optical film of Example 6 was produced in the same manner as the optical film of Example 1 except that the thickness of the antifouling layer was 8 nm instead of 12 nm.
  • Example 7 The optical film of Example 7 was produced in the same manner as the optical film of Example 1 except that the thickness of the antifouling layer was 6 nm instead of 12 nm.
  • Example 8 The optical film of Example 8 was produced in the same manner as the optical film of Example 1 except that the thickness of the antifouling layer was 16 nm instead of 12 nm.
  • Comparative Example 1 was carried out in the same manner as the optical film of Example 1 except that the thickness of the HC layer was changed to 10 ⁇ m instead of 5 ⁇ m and the thickness of the inorganic oxide base layer was changed to 30 nm instead of 165 nm. An optical film was produced.
  • the load-displacement measurement by the nanoindentation method was performed on the surface of the antifouling layer of each of the optical films of Examples 1 to 8 and Comparative Example 1. Specifically, first, a measurement sample (5 mm ⁇ 5 mm) was cut out from the optical film. Next, using a nano indenter (trade name "Triboindenter", manufactured by Hysitron), load-displacement measurement of the surface of the antifouling layer in the measurement sample was performed in accordance with ISO14577, and a load-displacement curve was obtained.
  • a nano indenter trade name "Triboindenter”, manufactured by Hysitron
  • the measurement mode is single indentation measurement
  • the measurement temperature is 25 ° C
  • the indenter used is a Berkovich (triangular pyramid) type diamond indenter
  • the maximum indentation depth maximum indentation depth of the indenter with respect to the measurement sample during the load application process.
  • the displacement H1) was set to 200 nm
  • the pushing speed of the indenter was set to 20 nm / sec
  • the withdrawal speed of the indenter from the measurement sample in the unloading process was set to 20 nm / sec.
  • the maximum load Pmax (the load acting on the indenter at the maximum displacement H1)
  • the contact projected area Ap (the projected area of the contact area between the indenter and the sample at the maximum load)
  • the amount of plastic deformation H2 on the sample surface after the unloading process (the depth of the recess maintained on the sample surface after the indenter is separated from the sample surface) was obtained.
  • Table 1 shows these surface hardness (GPa) and elastic recovery rate (%).
  • ⁇ Water contact angle> The water contact angle on the surface of the antifouling layer was examined for each of the optical films of Examples 1 to 8 and Comparative Example 1. First, water droplets were formed on the surface of the antifouling layer of the optical film by dropping about 1 ⁇ L of pure water. Next, the angle formed by the surface of the water droplet on the surface of the antifouling layer and the surface of the antifouling layer was measured. A contact angle meter (trade name "DMo-501", manufactured by Kyowa Interface Science Co., Ltd.) was used for the measurement. The measurement results are shown in Table 1 as the initial water contact angle ⁇ 0.
  • ⁇ Eraser sliding test> For each of the optical films of Examples 1 to 8 and Comparative Example 1, the degree of deterioration of the antifouling property on the surface of the antifouling layer by passing through the eraser sliding test was investigated. Specifically, first, a sliding test was carried out in which the eraser was reciprocated while sliding the eraser against the surface of the antifouling layer of the optical film (first eraser sliding test). In this test, an eraser ( ⁇ 6 mm) manufactured by Minoan was used, the load of the eraser on the surface of the antifouling layer was 1 kg / 6 mm ⁇ , and the sliding distance of the eraser on the surface of the antifouling layer (one way in reciprocating movement) was 20 mm.
  • the sliding speed of the eraser was set to 40 rpm, and the number of times the eraser was reciprocated with respect to the surface of the antifouling layer was set to 3000 reciprocations.
  • the water contact angle of the eraser sliding portion on the surface of the antifouling layer of the optical film was measured by the same method as the initial measurement method of the water contact angle ⁇ 0.
  • the measurement results are shown in Table 1 as the water contact angle ⁇ 1 after the first eraser sliding test.
  • FIG. 3 is a graph in which the elastic recovery rate and the water contact angle ⁇ 2 of each of the optical films of Examples 1 to 8 and Comparative Example 1 are plotted.
  • the horizontal axis represents the elastic recovery rate (%), and the vertical axis represents the water contact angle ⁇ 2 (°).
  • plots E1 to E8 represent measurement results in Examples 1 to 8
  • plot C1 represents measurement results in Comparative Example 1.
  • Each of the optical films of Examples 1 to 8 undergoes an eraser sliding test (first eraser sliding test, second eraser sliding test) as compared with the optical film of Comparative Example 1, and is an antifouling layer.
  • the degree of decrease in water contact angle on the surface is significantly small, and therefore the decrease in antifouling property is significantly small (on the surface of the antifouling layer, the smaller the decrease in water contact angle, the smaller the decrease in antifouling property).
  • the optical film with an antifouling layer of the present invention can be applied to, for example, an antireflection film with an antifouling layer, a transparent conductive film with an antifouling layer, and an electromagnetic wave shielding film with an antifouling layer.
  • Optical film (optical film with antifouling layer) 11 Transparent base material 12 Hard coat layer 13 Inorganic oxide base layer 14 Antifouling layer 14a Surface 15 Adhesive layer 20 Optical functional layer 21 First high refractive index layer 22 First low refractive index layer 23 Second high refractive index layer 24 2 Low refractive index layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The antifouling layer-equipped optical film (F) according to the present invention is provided with a transparent base material (11), a hard coat layer (12), an inorganic oxide foundation layer (13), and an antifouling layer (14) in this order. The antifouling layer (14) is a dry coating membrane disposed on the inorganic oxide foundation layer (13). The elastic recovery measured by a nano-indentation method at a temperature of 25°C and a maximum indentation depth of 200 nm in a surface (14a) on the opposite side of the inorganic oxide foundation layer (13) in the antifouling layer (14) is 76% or more.

Description

防汚層付き光学フィルムOptical film with antifouling layer
 本発明は、防汚層付き光学フィルムに関する。 The present invention relates to an optical film with an antifouling layer.
 タッチパネルディスプレイなどのディスプレイにおける画像表示側の外表面には、防汚性の観点から、例えば、防汚層付き光学フィルムが貼り合わせられる。防汚層付き光学フィルムは、透明基材と、当該透明基材の一方面側の最表面に配置された防汚層とを備える。防汚層により、ディスプレイ表面において、手脂などの汚染物質の付着が抑制され、また、付着した汚染物質が除去されやすくなる。このような防汚層付き光学フィルムに関する技術については、例えば下記の特許文献1に記載されている。 From the viewpoint of antifouling property, for example, an optical film with an antifouling layer is attached to the outer surface of a display such as a touch panel display on the image display side. The optical film with an antifouling layer includes a transparent base material and an antifouling layer arranged on the outermost surface on one side of the transparent base material. The antifouling layer suppresses the adhesion of contaminants such as hand grease on the display surface, and facilitates the removal of the adhered contaminants. A technique relating to such an optical film with an antifouling layer is described in, for example, Patent Document 1 below.
特開2020-52221号公報Japanese Unexamined Patent Publication No. 2020-5221
 防汚層付き光学フィルムの使用時において、防汚層に付着した汚染物質は、例えば、拭取り作業によって除去される。しかしながら、防汚層に対する拭取り作業の繰り返しは、防汚層の防汚性低下の原因となり、また、防汚層の剥離の原因となる。防汚層付き光学フィルムの防汚機能の観点から、防汚層の防汚性低下および剥離は、好ましくない。 When using an optical film with an antifouling layer, contaminants adhering to the antifouling layer are removed, for example, by wiping. However, repeated wiping work on the antifouling layer causes deterioration of the antifouling property of the antifouling layer and also causes peeling of the antifouling layer. From the viewpoint of the antifouling function of the optical film with the antifouling layer, deterioration and peeling of the antifouling property of the antifouling layer are not preferable.
 本発明は、防汚層において耐剥離性を確保しつつ防汚性の低下を抑制するのに適した、防汚層付き光学フィルムを提供する。 The present invention provides an optical film with an antifouling layer, which is suitable for suppressing a decrease in antifouling property while ensuring peeling resistance in the antifouling layer.
 本発明[1]は、透明基材と、ハードコート層と、無機酸化物下地層と、防汚層とをこの順で備え、前記防汚層が、前記無機酸化物下地層上に配置されたドライコーティング膜であり、前記防汚層における前記無機酸化物下地層とは反対側の表面の、温度25℃および最大押込み深さ200nmの条件でのナノインデンテーション法により測定される弾性回復率が、76%以上である、防汚層付き光学フィルム。 The present invention [1] includes a transparent base material, a hard coat layer, an inorganic oxide base layer, and an antifouling layer in this order, and the antifouling layer is arranged on the inorganic oxide base layer. It is a dry coating film, and the elastic recovery rate measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm on the surface of the antifouling layer opposite to the inorganic oxide base layer. However, the optical film with an antifouling layer is 76% or more.
 本発明[2]は、前記防汚層が、1nm以上25nm以下の厚さを有する、上記[1]に記載の防汚層付き光学フィルムを含む。 The present invention [2] includes the optical film with an antifouling layer according to the above [1], wherein the antifouling layer has a thickness of 1 nm or more and 25 nm or less.
 本発明[3]は、前記無機酸化物下地層が二酸化ケイ素を含む、上記[1]または[2]に記載の防汚層付き光学フィルムを含む。 The present invention [3] includes the optical film with an antifouling layer according to the above [1] or [2], wherein the inorganic oxide base layer contains silicon dioxide.
 本発明[4]は、前記無機酸化物下地層が、50nm以上の厚さを有する、上記[1]から[3]のいずれか一つに記載の防汚層付き光学フィルムを含む。 The present invention [4] includes the optical film with an antifouling layer according to any one of the above [1] to [3], wherein the inorganic oxide base layer has a thickness of 50 nm or more.
 本発明[5]は、前記ハードコート層が、1μm以上50μm以下の厚さを有する、上記[1]から[4]のいずれか一つに記載の防汚層付き光学フィルムを含む。 The present invention [5] includes the optical film with an antifouling layer according to any one of the above [1] to [4], wherein the hard coat layer has a thickness of 1 μm or more and 50 μm or less.
 本発明の防汚層付き光学フィルムは、上記のように、防汚層が、無機酸化物下地層上に配置されたドライコーティング膜である。このような構成は、防汚層付き光学フィルムにおける防汚層の高い接合力の確保に適し、従って、防汚層の耐剥離性の確保に適する。また、防汚層付き光学フィルムは、防汚層における無機酸化物下地層とは反対側の表面の、温度25℃および最大押込み深さ200nmの条件でのナノインデンテーション法により測定される弾性回復率が76%以上である。このような構成は、防汚層に対する拭取り作業に抗して防汚層の防汚性低下を抑制するのに適する。 The optical film with an antifouling layer of the present invention is a dry coating film in which the antifouling layer is arranged on the inorganic oxide base layer as described above. Such a configuration is suitable for ensuring a high bonding force of the antifouling layer in the optical film with the antifouling layer, and therefore suitable for ensuring the peeling resistance of the antifouling layer. Further, the optical film with an antifouling layer has an elastic recovery measured by a nanoindentation method on the surface of the antifouling layer opposite to the inorganic oxide underlying layer under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm. The rate is 76% or more. Such a configuration is suitable for suppressing deterioration of the antifouling property of the antifouling layer against the wiping work on the antifouling layer.
本発明の光学フィルムの一実施形態の断面模式図である。It is sectional drawing of one Embodiment of the optical film of this invention. 本発明の光学フィルムの変形例の断面模式図である(本変形例では、光学フィルムは反射防止層を備える)。It is sectional drawing of the modified example of the optical film of this invention (in this modified example, an optical film includes an antireflection layer). 実施例1~8および比較例1の各光学フィルムについて測定された弾性回復率(横軸)および第2の消しゴム摺動試験後の水接触角θ(縦軸)の測定結果がプロットされたグラフである。The measurement results of the elastic recovery rate (horizontal axis) measured for each of the optical films of Examples 1 to 8 and Comparative Example 1 and the water contact angle θ 2 (vertical axis) after the second eraser sliding test were plotted. It is a graph.
 本発明の防汚層付き光学フィルムの一実施形態としての光学フィルムFは、図1に示すように、透明基材11と、ハードコート層12と、無機酸化物下地層13と、防汚層14とを、厚さ方向Tの一方側に向かってこの順で備える。光学フィルムFは、本実施形態では、透明基材11と、ハードコート層12と、密着層15と、無機酸化物下地層13と、防汚層14とを、厚さ方向Tの一方側に向かってこの順で備える。また、光学フィルムFは、厚さ方向Tに直交する方向(面方向)に広がる形状を有する。 As shown in FIG. 1, the optical film F as an embodiment of the optical film with an antifouling layer of the present invention includes a transparent base material 11, a hard coat layer 12, an inorganic oxide base layer 13, and an antifouling layer. 14 and 14 are provided in this order toward one side of the thickness direction T. In the present embodiment, the optical film F has a transparent base material 11, a hard coat layer 12, an adhesion layer 15, an inorganic oxide base layer 13, and an antifouling layer 14 on one side in the thickness direction T. Prepare in this order. Further, the optical film F has a shape that spreads in a direction (plane direction) orthogonal to the thickness direction T.
 透明基材11は、可撓性を有する透明な樹脂フィルムである。透明基材11の材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ノルボルネン樹脂、ポリアリレート樹脂、およびポリビニルアルコール樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびシクロオレフィンポリマー(COP)が挙げられる。セルロース樹脂としては、例えば、トリアセチルセルロース(TAC)が挙げられる。これら材料は、単独で用いられてもよいし、二種類以上が併用されてもよい。透明基材11の材料としては、透明性および強度の観点から、ポリエステル樹脂、ポリオレフィン樹脂、およびセルロース樹脂からなる群より選択される一つが用いられ、より好ましくは、PET、COP、およびTACからなる群より選択される一つが用いられる。 The transparent base material 11 is a transparent resin film having flexibility. Examples of the material of the transparent base material 11 include polyester resin, polyolefin resin, polystyrene resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polysulfone resin, polyamide resin, polyimide resin, cellulose resin, norbornene resin, and polyallylate resin. And polyvinyl alcohol resin. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. Polyolefin resins include, for example, polyethylene, polypropylene, and cycloolefin polymers (COPs). Examples of the cellulose resin include triacetyl cellulose (TAC). These materials may be used alone or in combination of two or more. As the material of the transparent base material 11, one selected from the group consisting of polyester resin, polyolefin resin, and cellulose resin is used from the viewpoint of transparency and strength, and more preferably, it is composed of PET, COP, and TAC. One selected from the group is used.
 透明基材11におけるハードコート層12側表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。 The surface of the transparent substrate 11 on the hard coat layer 12 side may be surface-modified. Examples of the surface modification treatment include corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
 透明基材11の厚さは、強度の観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上である。透明基材11の厚さは、取扱い性の観点から、好ましくは300μm以下、より好ましくは200μm以下である。 From the viewpoint of strength, the thickness of the transparent substrate 11 is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. The thickness of the transparent base material 11 is preferably 300 μm or less, more preferably 200 μm or less, from the viewpoint of handleability.
 透明基材11の全光線透過率(JIS K 7375-2008)は、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上である。このような構成は、タッチパネルディスプレイなどのディスプレイの表面に光学フィルムFが備えられる場合に当該光学フィルムFに求められる透明性を、確保するのに適する。透明基材11の全光線透過率は、例えば100%以下である。 The total light transmittance (JIS K 7375-2008) of the transparent base material 11 is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more. Such a configuration is suitable for ensuring the transparency required for the optical film F when the optical film F is provided on the surface of a display such as a touch panel display. The total light transmittance of the transparent substrate 11 is, for example, 100% or less.
 ハードコート層12は、透明基材11の厚さ方向Tの一方面上に配置されている。ハードコート層12は、光学フィルムFの露出表面(図1では上面)に擦り傷が形成されにくくするための層である。 The hard coat layer 12 is arranged on one surface of the transparent base material 11 in the thickness direction T. The hard coat layer 12 is a layer for making it difficult for scratches to be formed on the exposed surface (upper surface in FIG. 1) of the optical film F.
 ハードコート層12は、硬化性樹脂組成物の硬化物である。硬化性樹脂組成物が含有する硬化性樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリルウレタン樹脂、アミド樹脂、シリコーン樹脂、エポキシ樹脂、およびメラミン樹脂が挙げられる。これら硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。ハードコート層12の高硬度の確保の観点からは、硬化性樹脂としては、好ましくはアクリルウレタン樹脂が用いられる。 The hard coat layer 12 is a cured product of the curable resin composition. Examples of the curable resin contained in the curable resin composition include polyester resin, acrylic resin, urethane resin, acrylic urethane resin, amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more. From the viewpoint of ensuring high hardness of the hard coat layer 12, an acrylic urethane resin is preferably used as the curable resin.
 また、硬化性樹脂組成物としては、例えば、紫外線硬化型の樹脂組成物、および、熱硬化型の樹脂組成物が挙げられる。高温加熱せずに硬化可能であるために光学フィルムFの製造効率向上に役立つ観点から、硬化性樹脂組成物としては、好ましくは、紫外線硬化型の樹脂組成物が用いられる。紫外線硬化型の樹脂組成物には、紫外線硬化型モノマー、紫外線硬化型オリゴマー、および紫外線硬化型ポリマーからなる群より選択される少なくとも一種類が含まれる。紫外線硬化型の樹脂組成物の具体例としては、特開2016-179686号公報に記載のハードコート層形成用組成物が挙げられる。 Further, examples of the curable resin composition include an ultraviolet curable resin composition and a thermosetting resin composition. As the curable resin composition, an ultraviolet curable resin composition is preferably used from the viewpoint of helping to improve the production efficiency of the optical film F because it can be cured without heating at a high temperature. The UV curable resin composition contains at least one selected from the group consisting of UV curable monomers, UV curable oligomers, and UV curable polymers. Specific examples of the ultraviolet curable resin composition include the composition for forming a hard coat layer described in JP-A-2016-179686.
 硬化性樹脂組成物は、微粒子を含有してもよい。硬化性樹脂組成物に対する微粒子の配合は、ハードコート層12における硬さの調整、表面粗さの調整、屈折率の調整、および防眩性の付与に、役立つ。微粒子としては、例えば、金属酸化物粒子、ガラス粒子、および有機粒子が挙げられる。金属酸化物粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、および酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル・スチレン共重合体、ベンゾグアナミン、メラミン、およびポリカーボネートが挙げられる。 The curable resin composition may contain fine particles. The formulation of the fine particles in the curable resin composition is useful for adjusting the hardness, adjusting the surface roughness, adjusting the refractive index, and imparting antiglare property in the hard coat layer 12. Examples of the fine particles include metal oxide particles, glass particles, and organic particles. Materials for the metal oxide particles include, for example, silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Materials for organic particles include, for example, polymethylmethacrylate, polystyrene, polyurethane, acrylic-styrene copolymers, benzoguanamines, melamines, and polycarbonates.
 ハードコート層12の厚さは、ハードコート層12の硬度の確保による防汚層14表面の硬度の確保の観点から、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上である。ハードコート層12の厚さは、光学フィルムFの柔軟性確保の観点から、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは35μm以下、特に好ましくは30μm以下である。 The thickness of the hard coat layer 12 is preferably 1 μm or more, more preferably 3 μm or more, still more preferably 5 μm or more, from the viewpoint of ensuring the hardness of the surface of the antifouling layer 14 by ensuring the hardness of the hard coat layer 12. The thickness of the hard coat layer 12 is preferably 50 μm or less, more preferably 40 μm or less, still more preferably 35 μm or less, and particularly preferably 30 μm or less, from the viewpoint of ensuring the flexibility of the optical film F.
 ハードコート層12における密着層15側表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、プラズマ処理、コロナ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。ハードコート層12と密着層15との間において高い密着力を確保する観点からは、ハードコート層12における密着層15側表面は、好ましくはプラズマ処理されている。 The surface of the hard coat layer 12 on the adhesion layer 15 side may be surface-modified. Examples of the surface modification treatment include plasma treatment, corona treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment. From the viewpoint of ensuring a high adhesion between the hard coat layer 12 and the adhesion layer 15, the surface of the hard coat layer 12 on the adhesion layer 15 side is preferably plasma-treated.
 密着層15は、透明基材11に対する無機酸化物層(本実施形態では無機酸化物下地層13)の密着力を確保するための層である。密着層15は、ハードコート層12の厚さ方向Tの一方面上に配置されている。密着層15の材料としては、例えば、シリコン、インジウム、ニッケル、クロム、アルミニウム、錫、金、銀、白金、亜鉛、チタン、タングステン、ジルコニウム、パラジウム等の金属、これら金属の2種類以上の合金、および、これら金属の酸化物が挙げられる。有機層(具体的にはハードコート層12)および無機酸化物層(本実施形態では具体的には無機酸化物下地層13)の両方に対する密着性と、密着層15の透明性との両立の観点からは、密着層15の材料としては、好ましくは、インジウムスズ酸化物(ITO)または酸化シリコン(SiOx)が用いられる。密着層15の材料として酸化シリコンが用いられる場合、好ましくは、化学量論組成よりも酸素量の少ないSiOxが用いられ、より好ましくは、xが1.2以上1.9以下のSiOxが用いられる。 The adhesion layer 15 is a layer for ensuring the adhesion of the inorganic oxide layer (in the present embodiment, the inorganic oxide base layer 13) to the transparent base material 11. The adhesion layer 15 is arranged on one surface of the hard coat layer 12 in the thickness direction T. Examples of the material of the adhesion layer 15 include metals such as silicon, indium, nickel, chromium, aluminum, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium, and two or more alloys of these metals. And the oxides of these metals are mentioned. Both the adhesion to both the organic layer (specifically, the hard coat layer 12) and the inorganic oxide layer (specifically, the inorganic oxide base layer 13 in this embodiment) and the transparency of the adhesion layer 15 are compatible. From the viewpoint, as the material of the adhesion layer 15, indium tin oxide (ITO) or silicon oxide (SiOx) is preferably used. When silicon oxide is used as the material of the adhesion layer 15, SiOx having a smaller oxygen content than the stoichiometric composition is preferably used, and more preferably SiOx having x of 1.2 or more and 1.9 or less is used. ..
 密着層15の厚さは、ハードコート層12と無機酸化物下地層13との間の密着力の確保と、密着層15の透明性との両立の観点から、好ましくは1nm以上10nm以下である。 The thickness of the adhesion layer 15 is preferably 1 nm or more and 10 nm or less from the viewpoint of ensuring the adhesion between the hard coat layer 12 and the inorganic oxide base layer 13 and the transparency of the adhesion layer 15. ..
 無機酸化物下地層13は、防汚層14において、耐剥離性を確保するための層である。無機酸化物下地層13の材料としては、例えば、二酸化ケイ素(SiO)およびフッ化マグネシウムが挙げられ、好ましくは二酸化ケイ素が用いられる。 The inorganic oxide base layer 13 is a layer for ensuring peeling resistance in the antifouling layer 14. Examples of the material of the inorganic oxide base layer 13 include silicon dioxide (SiO 2 ) and magnesium fluoride, and silicon dioxide is preferably used.
 無機酸化物下地層13の厚さは、防汚層14における耐剥離性の確保の観点から、好ましくは50nm以上、より好ましくは65nm以上、更に好ましくは80nm以上、特に好ましくは90nm以上である。無機酸化物下地層13の厚さは、例えば300nm以下である。 The thickness of the inorganic oxide base layer 13 is preferably 50 nm or more, more preferably 65 nm or more, still more preferably 80 nm or more, and particularly preferably 90 nm or more, from the viewpoint of ensuring the peeling resistance of the antifouling layer 14. The thickness of the inorganic oxide base layer 13 is, for example, 300 nm or less.
 防汚層14は、防汚機能を有する層である。防汚層14は、無機酸化物下地層13の厚さ方向Tの一方面上に配置されている。防汚層14は、厚さ方向Tの一方側に表面14a(外表面)を有する。防汚層14の防汚機能には、光学フィルムFの使用時のフィルム露出面に対する手脂などの汚染物質の付着の抑制機能、および、付着した汚染物質を除去しやすくする機能が含まれる。 The antifouling layer 14 is a layer having an antifouling function. The antifouling layer 14 is arranged on one surface of the inorganic oxide base layer 13 in the thickness direction T. The antifouling layer 14 has a surface 14a (outer surface) on one side in the thickness direction T. The antifouling function of the antifouling layer 14 includes a function of suppressing the adhesion of contaminants such as hand grease to the exposed surface of the film when the optical film F is used, and a function of facilitating the removal of the adhered contaminants.
 防汚層14の材料としては、例えば、フッ素基含有の有機化合物が挙げられる。フッ素基含有の有機化合物としては、好ましくは、パーフルオロポリエーテル基を有するアルコキシシラン化合物が用いられる。パーフルオロポリエーテル基を有するアルコキシシラン化合物としては、例えば、下記の一般式(1)で表される化合物が挙げられる。 Examples of the material of the antifouling layer 14 include organic compounds containing a fluorine group. As the fluorine group-containing organic compound, an alkoxysilane compound having a perfluoropolyether group is preferably used. Examples of the alkoxysilane compound having a perfluoropolyether group include a compound represented by the following general formula (1).
 R-R-X-(CH)-Si(OR)   (1) R 1- R 2 -X- (CH 2 ) m- Si (OR 3 ) 3 (1)
 一般式(1)において、Rは、アルキル基における一つ以上の水素原子がフッ素原子に置換された、直鎖状または分岐状のフッ化アルキル基(炭素数は例えば1以上20以下)を表し、好ましくは、アルキル基の水素原子のすべてがフッ素原子に置換されたパーフルオロアルキル基を表す。 In the general formula (1), R 1 is a linear or branched alkyl fluoride group in which one or more hydrogen atoms in the alkyl group are replaced with a fluorine atom (for example, the number of carbon atoms is 1 or more and 20 or less). Represents, preferably a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms.
 Rは、パーフルオロポリエーテル(PFPE)基の繰り返し構造を少なくとも一つ含む構造を表し、好ましくは、PFPE基の繰り返し構造を二つ含む構造を表す。PFPE基の繰り返し構造としては、例えば、直鎖状PFPE基の繰り返し構造、および、分岐状PFPE基の繰り返し構造が挙げられる。直鎖状PFPE基の繰り返し構造としては、例えば、-(OC2n)-で表される構造(nは、1以上20以下の整数を表し、pは、1以上50以下の整数を表す。以下同じ)が挙げられる。分岐状PFPE基の繰り返し構造としては、例えば、-(OC(CF))-で表される構造、および、-(OCFCF(CF)CF)-で表される構造が挙げられる。PFPE基の繰り返し構造としては、好ましくは、直鎖状PFPE基の繰り返し構造が挙げられ、より好ましくは、-(OCF)-および-(OC)-が挙げられる。 R 2 represents a structure containing at least one repeating structure of a perfluoropolyether (PFPE) group, and preferably represents a structure containing two repeating structures of a PFPE group. Examples of the repeating structure of the PFPE group include a repeating structure of a linear PFPE group and a repeating structure of a branched PFPE group. As the repeating structure of the linear PFPE group, for example, a structure represented by- (OC n F 2n) p- (n represents an integer of 1 or more and 20 or less, and p is an integer of 1 or more and 50 or less. Represented. The same shall apply hereinafter). Examples of the repeating structure of the branched PFPE group include a structure represented by-(OC (CF 3 ) 2 ) p- and a structure represented by-(OCF 2 CF (CF 3 ) CF 2 ) p-. Can be mentioned. The repeating structure of the PFPE group is preferably a repeating structure of a linear PFPE group, and more preferably- (OCF 2 ) p- and-(OC 2 F 4 ) p- .
 Rは、炭素数1以上4以下アルキル基を表し、好ましくはメチル基を表す。 R 3 represents an alkyl group having 1 or more and 4 or less carbon atoms, and preferably represents a methyl group.
 Xは、エーテル基、カルボニル基、アミノ基、またはアミド基を表し、好ましくはエーテル基を表す。 X represents an ether group, a carbonyl group, an amino group, or an amide group, and preferably represents an ether group.
 mは、1以上の整数を表す。また、mは、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下の整数を表す。 M represents an integer of 1 or more. Further, m represents an integer of preferably 20 or less, more preferably 10 or less, still more preferably 5 or less.
 このようなパーフルオロポリエーテル基を有するアルコキシシラン化合物のうち、好ましくは、下記の一般式(2)に示される化合物が用いられる。 Among such alkoxysilane compounds having a perfluoropolyether group, the compound represented by the following general formula (2) is preferably used.
 CF-(OCF)-(OC)-O-(CH)-Si(OCH) (2) CF 3- (OCF 2 ) q- (OC 2 F 4 ) r- O- (CH 2 ) 3- Si (OCH 3 ) 3 (2)
 一般式(2)において、qは、1以上50以下の整数を表し、rは、1以上50以下の整数を表す。 In the general formula (2), q represents an integer of 1 or more and 50 or less, and r represents an integer of 1 or more and 50 or less.
 また、パーフルオロポリエーテル基を有するアルコキシシラン化合物は、単独で用いられてもよいし、二種類以上が併用されてもよい。 Further, the alkoxysilane compound having a perfluoropolyether group may be used alone or in combination of two or more.
 防汚層14は、ドライコーティング法で形成された膜(ドライコーティング膜)である。ドライコーティング法としては、スパッタリング法、真空蒸着法、およびCVDが挙げられる。防汚層14は、好ましくは、真空蒸着法で形成された膜(真空蒸着膜)である。 The antifouling layer 14 is a film (dry coating film) formed by the dry coating method. Examples of the dry coating method include a sputtering method, a vacuum vapor deposition method, and a CVD method. The antifouling layer 14 is preferably a film (vacuum-film-deposited film) formed by a vacuum-deposited method.
 防汚層14の材料が、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含有し、且つ、防汚層14が、ドライコーティング膜(好ましくは真空蒸着膜)である構成は、無機酸化物下地層13に対する防汚層14の高い接合力の確保に適し、従って、防汚層14の耐剥離性の確保に適する。防汚層14の耐剥離性が高いことは、防汚層14の防汚機能の維持に役立つ。 The structure in which the material of the antifouling layer 14 contains an alkoxysilane compound having a perfluoropolyether group and the antifouling layer 14 is a dry coating film (preferably a vacuum-deposited film) is an inorganic oxide underlayer. It is suitable for ensuring a high bonding force of the antifouling layer 14 with respect to 13, and therefore suitable for ensuring the peeling resistance of the antifouling layer 14. The high peel resistance of the antifouling layer 14 helps to maintain the antifouling function of the antifouling layer 14.
 防汚層14の表面14aの、温度25℃および最大押込み深さ200nmの条件でのナノインデンテーション法により測定される弾性回復率は、76%以上であり、好ましくは80%以上、より好ましくは81.5%以上、更に好ましくは85%以上である。このような構成は、防汚層14に対する拭取り作業に抗して防汚層14の防汚性低下を抑制するのに適する。防汚層14の表面14aの上記弾性回復率は、好ましくは100%以下、より好ましくは95%以下である。このような構成は、防汚層14の屈曲性を確保するのに適し、従って、光学フィルムFの屈曲性を確保するのに適する。 The elastic recovery rate of the surface 14a of the antifouling layer 14 measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76% or more, preferably 80% or more, more preferably. It is 81.5% or more, more preferably 85% or more. Such a configuration is suitable for suppressing the deterioration of the antifouling property of the antifouling layer 14 against the wiping work on the antifouling layer 14. The elastic recovery rate of the surface 14a of the antifouling layer 14 is preferably 100% or less, more preferably 95% or less. Such a configuration is suitable for ensuring the flexibility of the antifouling layer 14, and therefore suitable for ensuring the flexibility of the optical film F.
 ナノインデンテーション法とは、試料の諸物性をナノメートルスケールで測る技術である。本実施形態において、ナノインデンテーション法は、ISO14577に準拠して実施される。ナノインデンテーション法では、ステージ上にセットされた試料に圧子を押し込む過程(荷重印加過程)と、それより後に試料から圧子を引き抜く過程(除荷過程)とが実施されて、一連の過程中、圧子-試料間に作用する荷重と、試料に対する圧子の相対変位とが測定される(荷重-変位測定)。これにより、荷重-変位曲線を得ることが可能である。この荷重-変位曲線から、測定試料について、ナノメートルスケール測定に基づく諸物性を求めることが可能である。ナノインデンテーション法による防汚層表面の荷重-変位測定には、例えば、ナノインデンター(商品名「Triboindenter」,Hysitron社製)を使用できる。その測定において、測定モードは単一押込み測定とし、測定温度は25℃とし、使用圧子はBerkovich(三角錐)型のダイヤモンド圧子とし、荷重印加過程での測定試料に対する圧子の最大押込み深さ(最大変位H1)は200nmとし、当該圧子の押込み速度は20nm/秒とし、除荷過程での測定試料からの圧子の引抜き速度は20nm/秒とする。本測定によって得られる荷重-変位曲線に基づき、最大荷重Pmax(最大変位H1にて圧子に作用する荷重)、接触投影面積Ap(最大荷重時における圧子と試料との間の接触領域の投影面積)、および、除荷過程後の試料表面における塑性変形量H2(試料表面から圧子を離した後に当該試料表面に維持される凹部の深さ)を得ることができる。そして、最大荷重Pmaxと接触投影面積Apから、防汚層表面の硬度(=Pmax/Ap)を算出することができる。また、最大変位H1と塑性変形量H2から、荷重印加とその後の除荷とを経た防汚層表面の後記の弾性回復率(=(H1-H2)/H1)を算出することができる。 The nanoindentation method is a technique for measuring various physical properties of a sample on a nanometer scale. In this embodiment, the nanoindentation method is carried out in accordance with ISO14577. In the nano-displacement method, the process of pushing the indenter into the sample set on the stage (load application process) and the process of pulling out the indenter from the sample after that (unloading process) are carried out, and during a series of processes, The load acting between the indenter and the sample and the relative displacement of the indenter with respect to the sample are measured (load-displacement measurement). This makes it possible to obtain a load-displacement curve. From this load-displacement curve, it is possible to obtain various physical properties of the measurement sample based on nanometer-scale measurement. For the load-displacement measurement of the antifouling layer surface by the nanoindentation method, for example, a nanoindenter (trade name "Triboindenter", manufactured by Hysitron) can be used. In the measurement, the measurement mode is single indentation measurement, the measurement temperature is 25 ° C, the indenter used is a Berkovich (triangular pyramid) type diamond indenter, and the maximum indentation depth (maximum indentation depth) of the indenter with respect to the measurement sample in the load application process. The displacement H1) is 200 nm, the pushing speed of the indenter is 20 nm / sec, and the withdrawal speed of the indenter from the measurement sample in the unloading process is 20 nm / sec. Based on the load-displacement curve obtained by this measurement, the maximum load Pmax (the load acting on the indenter at the maximum displacement H1) and the contact projection area Ap (the projected area of the contact area between the indenter and the sample at the maximum load). , And the amount of plastic deformation H2 on the sample surface after the unloading process (the depth of the recess maintained on the sample surface after the indenter is separated from the sample surface) can be obtained. Then, the hardness (= Pmax / Ap) of the surface of the antifouling layer can be calculated from the maximum load Pmax and the contact projection area Ap. Further, from the maximum displacement H1 and the amount of plastic deformation H2, the elastic recovery rate (= (H1-H2) / H1) described later on the surface of the antifouling layer after the load application and the subsequent unloading can be calculated.
 防汚層14の表面14aの上記弾性回復率を調整する手法としては、例えば、ハードコート層12の硬度や弾性率の調整、および、無機酸化物下地層13の硬度や弾性率の調整が、挙げられる。 As a method for adjusting the elastic recovery rate of the surface 14a of the antifouling layer 14, for example, adjustment of the hardness and elastic modulus of the hard coat layer 12 and adjustment of the hardness and elastic modulus of the inorganic oxide base layer 13 can be performed. Can be mentioned.
 防汚層14の表面14aの、ナノインデンテーション法により測定される25℃での硬度は、好ましくは1.05GPa以上、より好ましくは1.1GPa以上、より一層好ましくは1.15GPa以上、更に好ましくは1.2GPa以上、殊更に好ましくは1.25GPa以上、特に好ましくは1.3GPa以上である。このような構成は、防汚層14に対する拭取り作業に抗して防汚層14の防汚性低下を抑制するのに適する。防汚層14の表面14aの、ナノインデンテーション法により測定される25℃での硬度は、好ましくは30GPa以下、より好ましくは20GPa以下、更に好ましくは15GPa以下である。このような構成は、防汚層14の屈曲性を確保するのに適し、従って、光学フィルムFの屈曲性を確保するのに適する。防汚層14の表面14aの上記硬度を調整する手法としては、例えば、ハードコート層12の硬度の調整および厚さの調整、並びに、防汚層14にとっての下地層の硬度の調整および厚さの調整が挙げられる。 The hardness of the surface 14a of the antifouling layer 14 at 25 ° C. measured by the nanoindentation method is preferably 1.05 GPa or more, more preferably 1.1 GPa or more, still more preferably 1.15 GPa or more, still more preferable. Is 1.2 GPa or more, particularly preferably 1.25 GPa or more, and particularly preferably 1.3 GPa or more. Such a configuration is suitable for suppressing the deterioration of the antifouling property of the antifouling layer 14 against the wiping work on the antifouling layer 14. The hardness of the surface 14a of the antifouling layer 14 at 25 ° C. measured by the nanoindentation method is preferably 30 GPa or less, more preferably 20 GPa or less, still more preferably 15 GPa or less. Such a configuration is suitable for ensuring the flexibility of the antifouling layer 14, and therefore suitable for ensuring the flexibility of the optical film F. As a method for adjusting the hardness of the surface 14a of the antifouling layer 14, for example, the hardness and the thickness of the hard coat layer 12 are adjusted, and the hardness and the thickness of the base layer for the antifouling layer 14 are adjusted. Adjustment can be mentioned.
 防汚層14の表面14aの水接触角(純水接触角)は、好ましくは110°以上であり、好ましくは111°以上、より好ましくは112°以上、更に好ましくは113°以上、特に好ましくは114°以上である。表面14aにおける水接触角がこの程度に高い構成は、防汚層14において高い防汚性を実現するのに適する。同水接触角は、例えば130°以下である。水接触角は、防汚層14の表面14a(露出表面)に直径2mm以下の水滴(純水の液滴)を形成して、表面14aに対する当該水滴の接触角を測定することにより、求められる。表面14aの水接触角は、例えば、防汚層14の組成、表面14aの粗さ、ハードコート層12の組成、および、ハードコート層12の防汚層14側の表面の粗さの調整によって、調整できる。 The water contact angle (pure water contact angle) of the surface 14a of the antifouling layer 14 is preferably 110 ° or more, preferably 111 ° or more, more preferably 112 ° or more, still more preferably 113 ° or more, and particularly preferably 113 ° or more. It is 114 ° or more. The configuration in which the water contact angle on the surface 14a is as high as this is suitable for realizing high antifouling property in the antifouling layer 14. The water contact angle is, for example, 130 ° or less. The water contact angle is determined by forming water droplets (droplets of pure water) having a diameter of 2 mm or less on the surface 14a (exposed surface) of the antifouling layer 14 and measuring the contact angle of the water droplets with respect to the surface 14a. .. The water contact angle of the surface 14a is determined by, for example, adjusting the composition of the antifouling layer 14, the roughness of the surface 14a, the composition of the hard coat layer 12, and the roughness of the surface of the hard coat layer 12 on the antifouling layer 14 side. , Can be adjusted.
 防汚層14の厚さは、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは5nm以上、特に好ましくは7nm以上である。このような構成は、防汚層14において上記の表面硬度を実現するのに適する。防汚層14の厚さは、好ましくは25nm以下、より好ましくは20nm以下、更に好ましくは18nm以下である。このような構成は、防汚層14において上記の水接触角を実現するのに適する。 The thickness of the antifouling layer 14 is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, and particularly preferably 7 nm or more. Such a configuration is suitable for achieving the above-mentioned surface hardness in the antifouling layer 14. The thickness of the antifouling layer 14 is preferably 25 nm or less, more preferably 20 nm or less, still more preferably 18 nm or less. Such a configuration is suitable for realizing the above-mentioned water contact angle in the antifouling layer 14.
 光学フィルムFは、透明基材11を用意した後、例えばロールトゥロール方式において、透明基材11上にハードコート層12、密着層15、および防汚層14を順次に形成することによって、作製できる。 The optical film F is produced by preparing the transparent base material 11 and then sequentially forming the hard coat layer 12, the adhesion layer 15, and the antifouling layer 14 on the transparent base material 11, for example, in a roll-to-roll method. can.
 ハードコート層12は、例えば、透明基材11上に硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。硬化性樹脂組成物が紫外線化型樹脂を含有する場合には、紫外線照射によって前記塗膜を硬化させる。硬化性樹脂組成物が熱硬化型樹脂を含有する場合には、加熱によって前記塗膜を硬化させる。 The hard coat layer 12 can be formed, for example, by applying a curable resin composition on the transparent substrate 11 to form a coating film, and then curing the coating film. When the curable resin composition contains an ultraviolet-type resin, the coating film is cured by irradiation with ultraviolet rays. When the curable resin composition contains a thermosetting resin, the coating film is cured by heating.
 透明基材11上に形成されたハードコート層12の露出表面は、必要に応じて、表面改質処理される。表面改質処理としてプラズマ処理する場合、不活性ガスとして例えばアルゴンガスを用いる。また、プラズマ処理における放電電力は、例えば10W以上であり、また、例えば10000W以下である。 The exposed surface of the hard coat layer 12 formed on the transparent base material 11 is surface-modified, if necessary. When plasma treatment is performed as the surface modification treatment, for example, argon gas is used as the inert gas. Further, the discharge power in the plasma processing is, for example, 10 W or more, and for example, 10000 W or less.
 無機酸化物下地層13は、ドライコーティング法で材料を成膜することによって形成する。ドライコーティング法としては、スパッタリング法、真空蒸着法、およびCVDが挙げられ、好ましくはスパッタリング法が用いられる。 The inorganic oxide base layer 13 is formed by forming a material by a dry coating method. Examples of the dry coating method include a sputtering method, a vacuum vapor deposition method, and a CVD method, and a sputtering method is preferably used.
 スパッタリング法では、スパッタ室内に真空条件下でガスを導入しつつ、カソード上に配置されたターゲットにマイナスの電圧を印加する。これにより、グロー放電を発生させてガス原子をイオン化し、当該ガスイオンを高速でターゲット表面に衝突させ、ターゲット表面からターゲット材料を弾き出し、弾き出たターゲット材料を所定面上に堆積させる。成膜速度の観点から、スパッタリング法としては、反応性スパッタリングが好ましい。反応性スパッタリングでは、ターゲットとして金属ターゲットを用い、上述のガスとして、アルゴンなどの不活性ガスと酸素(反応性ガス)との混合ガスを用いる。不活性ガスと酸素との流量比(sccm)の調整により、成膜される無機酸化物に含まれる酸素の割合を調整できる。 In the sputtering method, a negative voltage is applied to the target placed on the cathode while introducing gas into the sputtering chamber under vacuum conditions. As a result, a glow discharge is generated to ionize the gas atom, the gas ion collides with the target surface at high speed, the target material is ejected from the target surface, and the ejected target material is deposited on a predetermined surface. From the viewpoint of film formation speed, reactive sputtering is preferable as the sputtering method. In reactive sputtering, a metal target is used as the target, and a mixed gas of an inert gas such as argon and oxygen (reactive gas) is used as the above-mentioned gas. By adjusting the flow rate ratio (sccm) of the inert gas and oxygen, the ratio of oxygen contained in the formed inorganic oxide can be adjusted.
 スパッタリング法を実施するための電源としては、例えば、DC電源、AC電源、RF電源、および、MFAC電源(周波数帯が数kHz~数MHzのAC電源)が挙げられる。スパッタリング法における放電電圧は、例えば200V以上であり、また、例えば1000V以下である。また、スパッタリング法が実施されるスパッタ室内の成膜気圧は、好ましくは0.01Pa以上、より好ましくは0.05Pa以上、更に好ましくは0.1Pa以上である。このような構成は、材料が緻密に堆積した防汚層14を形成する観点から好ましい。また、成膜気圧は、放電安定性の観点から、例えば2Pa以下である。 Examples of the power supply for carrying out the sputtering method include a DC power supply, an AC power supply, an RF power supply, and an MFAC power supply (AC power supply having a frequency band of several kHz to several MHz). The discharge voltage in the sputtering method is, for example, 200 V or more, and is, for example, 1000 V or less. The film forming pressure in the sputtering chamber where the sputtering method is carried out is preferably 0.01 Pa or more, more preferably 0.05 Pa or more, and further preferably 0.1 Pa or more. Such a configuration is preferable from the viewpoint of forming the antifouling layer 14 in which the material is densely deposited. Further, the film forming pressure is, for example, 2 Pa or less from the viewpoint of discharge stability.
 防汚層14は、無機酸化物下地層13上に、例えばフッ素基含有の有機化合物を、ドライコーティング法で成膜することによって形成する。ドライコーティング法としては、例えば、真空蒸着法、スパッタリング法、およびCVDが挙げられ、好ましくは真空蒸着法が用いられる。 The antifouling layer 14 is formed by forming, for example, an organic compound containing a fluorine group on the inorganic oxide base layer 13 by a dry coating method. Examples of the dry coating method include a vacuum vapor deposition method, a sputtering method, and a CVD method, and a vacuum vapor deposition method is preferably used.
 例えば以上のようにして、光学フィルムFを製造できる。光学フィルムFは、透明基材11側が例えば粘着剤を介して被着体に貼り合わされて、使用される。被着体としては、例えば、タッチパネルディスプレイなどのディスプレイにおける画像表示側に配置される透明カバーが挙げられる。 For example, the optical film F can be manufactured as described above. The optical film F is used with the transparent base material 11 side bonded to the adherend via, for example, an adhesive. Examples of the adherend include a transparent cover arranged on the image display side of a display such as a touch panel display.
 光学フィルムFは、上述のように、防汚層14が、無機酸化物下地層13上に配置されたドライコーティング膜である。このような構成は、光学フィルムFにおける防汚層14の高い接合力の確保に適し、従って、防汚層14の耐剥離性の確保に適する。防汚層14の耐剥離性が高いことは、防汚層14の防汚機能の維持に役立つ。 As described above, the optical film F is a dry coating film in which the antifouling layer 14 is arranged on the inorganic oxide base layer 13. Such a configuration is suitable for ensuring a high bonding force of the antifouling layer 14 in the optical film F, and is therefore suitable for ensuring the peeling resistance of the antifouling layer 14. The high peel resistance of the antifouling layer 14 helps to maintain the antifouling function of the antifouling layer 14.
 光学フィルムFでは、防汚層14の表面14aの、温度25℃および最大押込み深さ200nmの条件でのナノインデンテーション法により測定される弾性回復率が、上述のように、76%以上であり、好ましくは80%以上、より好ましくは81.5%以上、更に好ましくは85%以上である。このような構成は、防汚層14に対する拭取り作業に抗して防汚層14の防汚性低下を抑制するのに適する。 In the optical film F, the elastic recovery rate of the surface 14a of the antifouling layer 14 measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76% or more as described above. It is preferably 80% or more, more preferably 81.5% or more, still more preferably 85% or more. Such a configuration is suitable for suppressing the deterioration of the antifouling property of the antifouling layer 14 against the wiping work on the antifouling layer 14.
 以上のように、光学フィルムFは、防汚層14において耐剥離性を確保しつつ防汚性の低下を抑制するのに適する。 As described above, the optical film F is suitable for suppressing the deterioration of the antifouling property while ensuring the peeling resistance in the antifouling layer 14.
 光学フィルムFは、所定の光学的機能を有する層(光学機能層)を備えてもよい。光学機能層が複数の層を含む場合、そのような光学機能層の防汚層14側表面の層は、上述の無機酸化物下地層13を兼ねるのが好ましい。 The optical film F may include a layer having a predetermined optical function (optical functional layer). When the optical functional layer includes a plurality of layers, it is preferable that the layer on the surface of the antifouling layer 14 side of such an optical functional layer also serves as the above-mentioned inorganic oxide base layer 13.
 図2は、光学フィルムFが、密着層15と防汚層14との間に光学機能層20を備える場合を表す。この光学機能層20は、後述のように、無機酸化物下地層13を兼ねる層を防汚層14側表面に有する。 FIG. 2 shows a case where the optical film F includes an optical functional layer 20 between the adhesion layer 15 and the antifouling layer 14. As will be described later, the optical functional layer 20 has a layer that also serves as an inorganic oxide base layer 13 on the surface of the antifouling layer 14 side.
 光学機能層20は、密着層15の厚さ方向Tの一方面上に配置されている。本変形例では、光学機能層20は、外光の反射強度を抑制するための反射防止層である。すなわち、光学フィルムFは、本変形例では、防汚層付き反射防止フィルムである。 The optical functional layer 20 is arranged on one surface of the adhesion layer 15 in the thickness direction T. In this modification, the optical functional layer 20 is an antireflection layer for suppressing the reflection intensity of external light. That is, the optical film F is an antireflection film with an antifouling layer in this modification.
 光学機能層20(反射防止層)は、相対的に屈折率が大きな高屈折率層と、相対的に屈折率が小さな低屈折率層とを、厚さ方向に交互に有する。反射防止層では、同層に含まれる複数の薄層(高屈折率層,低屈折率層)における複数の界面での反射光間の干渉作用により、正味の反射光強度が減衰される。また、反射防止層では、各薄層の光学膜厚(屈折率と厚さとの積)の調整により、反射光強度を減衰させる干渉作用を発現させることができる。このような反射防止層としての光学機能層20は、本実施形態において具体的には、第1高屈折率層21と、第1低屈折率層22と、第2高屈折率層23と、上述の無機酸化物下地層13を兼ねる第2低屈折率層24とを、厚さ方向Tの一方側に向かってこの順で有する。 The optical functional layer 20 (antireflection layer) has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index alternately in the thickness direction. In the antireflection layer, the net reflected light intensity is attenuated by the interference action between the reflected light at the plurality of interfaces in the plurality of thin layers (high refractive index layer, low refractive index layer) contained in the same layer. Further, in the antireflection layer, an interference effect for attenuating the reflected light intensity can be exhibited by adjusting the optical film thickness (product of the refractive index and the thickness) of each thin layer. Specifically, in the present embodiment, the optical functional layer 20 as such an antireflection layer includes a first high refractive index layer 21, a first low refractive index layer 22, and a second high refractive index layer 23. The second low refractive index layer 24, which also serves as the above-mentioned inorganic oxide base layer 13, is provided in this order toward one side in the thickness direction T.
 第1高屈折率層21および第2高屈折率層23は、それぞれ、波長550nmにおける屈折率が好ましくは1.9以上の高屈折率材料からなる。高屈折率と可視光の低吸収性との両立の観点から、高屈折率材料としては、例えば、酸化ニオブ(Nb)、酸化チタン、酸化ジルコニウム、スズドープ酸化インジウム(ITO)、およびアンチモンドープ酸化スズ(ATO)が挙げられ、好ましくは酸化ニオブが用いられる。 The first high-refractive index layer 21 and the second high-refractive index layer 23 are each made of a high-refractive index material having a refractive index of preferably 1.9 or more at a wavelength of 550 nm. From the viewpoint of achieving both high refractive index and low absorption of visible light, high refractive index materials include, for example, niobium oxide (Nb 2 O 5 ), titanium oxide, zirconium oxide, tin-doped indium oxide (ITO), and antimony. Dope tin oxide (ATO) is mentioned, and niobium oxide is preferably used.
 第1高屈折率層21の光学膜厚(屈折率と厚さとの積)は、例えば20nm以上であり、また、例えば55nm以下である。第2高屈折率層23の光学膜厚は、例えば60nm以上であり、また、例えば330nm以下である。 The optical film thickness (product of refractive index and thickness) of the first high refractive index layer 21 is, for example, 20 nm or more, and is, for example, 55 nm or less. The optical film thickness of the second high-refractive index layer 23 is, for example, 60 nm or more, and for example, 330 nm or less.
 第1低屈折率層22および第2低屈折率層24は、それぞれ、波長550nmにおける屈折率が好ましくは1.6以下の低屈折率材料からなる。低屈折率と可視光の低吸収性との両立の観点から、低屈折率材料としては、例えば、二酸化ケイ素(SiO)およびフッ化マグネシウムが挙げられ、好ましくは二酸化ケイ素が用いられる。SiOおよびフッ化マグネシウムは、上述のように、無機酸化物下地層13の材料としても好ましい。 The first low refractive index layer 22 and the second low refractive index layer 24 are each made of a low refractive index material having a refractive index of preferably 1.6 or less at a wavelength of 550 nm. From the viewpoint of achieving both low refractive index and low absorption of visible light, examples of the low refractive index material include silicon dioxide (SiO 2 ) and magnesium fluoride, and silicon dioxide is preferably used. As described above, SiO 2 and magnesium fluoride are also preferable as materials for the inorganic oxide base layer 13.
 第1低屈折率層22の光学膜厚は、例えば15nm以上であり、また、例えば70nm以下である。第2低屈折率層24の光学膜厚は、例えば100nm以上であり、また、例えば160nm以下である。 The optical film thickness of the first low refractive index layer 22 is, for example, 15 nm or more, and is, for example, 70 nm or less. The optical film thickness of the second low refractive index layer 24 is, for example, 100 nm or more, and is, for example, 160 nm or less.
 第1高屈折率層21、第1低屈折率層22、および第2高屈折率層23は、それぞれ、ドライコーティング法で材料を成膜することによって形成できる。無機酸化物下地層13を兼ねる第2低屈折率層24は、ドライコーティング法で材料を成膜することによって形成する。ドライコーティング法としては、スパッタリング法、真空蒸着法、およびCVDが挙げられ、好ましくはスパッタリング法が用いられる。スパッタリング法としては、成膜速度の観点から、反応性スパッタリングが好ましい。スパッタリング法の条件は、無機酸化物下地層13の形成に関するスパッタリング法の条件として上記したのと同様である。 The first high refractive index layer 21, the first low refractive index layer 22, and the second high refractive index layer 23 can each be formed by forming a material by a dry coating method. The second low refractive index layer 24, which also serves as the inorganic oxide base layer 13, is formed by forming a material by a dry coating method. Examples of the dry coating method include a sputtering method, a vacuum vapor deposition method, and a CVD method, and a sputtering method is preferably used. As the sputtering method, reactive sputtering is preferable from the viewpoint of the film forming speed. The conditions of the sputtering method are the same as those described above as the conditions of the sputtering method relating to the formation of the inorganic oxide base layer 13.
 図2に示す光学フィルムFでは、防汚層14が、第2低屈折率層24(無機酸化物下地層13)上に配置されたドライコーティング膜である。図2に示す光学フィルムFでは、防汚層14の表面14aの、温度25℃および最大押込み深さ200nmの条件でのナノインデンテーション法により測定される弾性回復率が、上述のように、76%以上であり、好ましくは80%以上、より好ましくは81.5%以上、更に好ましくは85%以上である。このような光学フィルムFは、防汚層14において耐剥離性を確保しつつ防汚性の低下を抑制するのに適する。 In the optical film F shown in FIG. 2, the antifouling layer 14 is a dry coating film arranged on the second low refractive index layer 24 (inorganic oxide base layer 13). In the optical film F shown in FIG. 2, the elastic recovery rate of the surface 14a of the antifouling layer 14 measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76 as described above. % Or more, preferably 80% or more, more preferably 81.5% or more, still more preferably 85% or more. Such an optical film F is suitable for suppressing a decrease in antifouling property while ensuring peeling resistance in the antifouling layer 14.
 本発明について、以下に実施例を示して具体的に説明する。本発明は実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなど該当記載の上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。 The present invention will be specifically described below with reference to examples. The present invention is not limited to the examples. In addition, the specific numerical values such as the compounding amount (content), the physical property value, the parameter, etc. described below are the compounding amounts corresponding to them described in the above-mentioned "form for carrying out the invention" (forms for carrying out the invention). It can be replaced with the upper limit (numerical value defined as "less than or equal to" or "less than") or lower limit (numerical value defined as "greater than or equal to" or "greater than or equal to") such as content), physical property value, and parameter.
〔実施例1〕
 まず、透明基材としてのポリエチレンテレフタレート(PET)フィルム(厚さ50μm)の片面に、ハードコート層を形成した(ハードコート層形成工程)。具体的には、まず、紫外線硬化型のモノマーおよびオリゴマーの混合物(ウレタンアクリレートを主成分として含む)の酢酸ブチル溶液(商品名「ユニディック17-806」,固形分濃度80質量%,DIC社製)100質量部(固形分換算)と、光重合開始剤(商品名「IRGACURE906」,BASF社製)5質量部と、レベリング剤(商品名「GRANDICPC4100」,DIC社製)0.01質量部とを混合して、混合液を得た。次に、シクロペンタノン(CPN)とプロピレングリコールモノメチルエーテル(PGM)との混合溶媒(CPNとPGMの質量比は45:55)の添加により、混合液の固形分濃度を36%に調整した。これにより、紫外線硬化性の樹脂組成物(ワニス)を調製した。次に、上記PETフィルムの片面に樹脂組成物を塗布して塗膜を形成した。次に、この塗膜を、加熱により乾燥させた後、紫外線照射により硬化させた。加熱の温度は90℃とし、加熱の時間は60秒間とした。紫外線照射では、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算照射光量を300mJ/cmとした。これにより、PETフィルム上に厚さ5μmのハードコート層(HC)を形成した。
[Example 1]
First, a hard coat layer was formed on one side of a polyethylene terephthalate (PET) film (thickness 50 μm) as a transparent substrate (hard coat layer forming step). Specifically, first, a butyl acetate solution (trade name "Unidic 17-806") of a mixture of an ultraviolet curable monomer and an oligomer (containing urethane acrylate as a main component), a solid content concentration of 80% by mass, manufactured by DIC, Inc. ) 100 parts by mass (in terms of solid content), 5 parts by mass of a photopolymerization initiator (trade name "IRGACURE906", manufactured by BASF), and 0.01 parts by mass of a leveling agent (trade name "GRANDICPC4100", manufactured by DIC). Was mixed to obtain a mixed solution. Next, the solid content concentration of the mixed solution was adjusted to 36% by adding a mixed solvent of cyclopentanone (CPN) and propylene glycol monomethyl ether (PGM) (mass ratio of CPN to PGM was 45:55). As a result, an ultraviolet curable resin composition (varnish) was prepared. Next, the resin composition was applied to one side of the PET film to form a coating film. Next, this coating film was dried by heating and then cured by irradiation with ultraviolet rays. The heating temperature was 90 ° C. and the heating time was 60 seconds. In the ultraviolet irradiation, a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 300 mJ / cm 2 . As a result, a hard coat layer (HC) having a thickness of 5 μm was formed on the PET film.
 次に、ロールトゥロール方式のプラズマ処理装置により、HC層付きPETフィルムのHC層表面を、1.0Paの真空雰囲気下でプラズマ処理した。このプラズマ処理では、不活性ガスとしてアルゴンガスを用い、放電電力を780Wとした。 Next, the surface of the HC layer of the PET film with the HC layer was plasma-treated in a vacuum atmosphere of 1.0 Pa by a roll-to-roll type plasma processing device. In this plasma treatment, argon gas was used as the inert gas, and the discharge power was set to 780 W.
 次に、プラズマ処理後のHC層付きPETフィルムのHC層上に、密着層と、無機酸化物下地層とを順次に形成した(スパッタ成膜工程)。具体的には、ロールトゥロール方式のスパッタ成膜装置により、HC層付きPETフィルムのHC層上に、密着層としての厚さ2.0nmのインジウムスズ酸化物(ITO)層と、無機酸化物下地層としての厚さ165nmのSiO層とを、順次に形成した。密着層の形成では、ITOターゲットを用い、不活性ガスとしてのアルゴンガスと、アルゴンガス100体積部に対して10体積部の反応性ガスとしての酸素ガスとを用い、放電電圧を350Vとし、成膜室内の気圧(成膜気圧)を0.4Paとし、MFACスパッタリングによってITO層を成膜した。無機酸化物下地層の形成では、Siターゲットを用い、100体積部のアルゴンガスおよび30体積部の酸素ガスを用い、放電電圧を350Vとし、成膜気圧を0.3Paとし、MFACスパッタリングによってSiO層を形成した。 Next, an adhesion layer and an inorganic oxide base layer were sequentially formed on the HC layer of the PET film with the HC layer after the plasma treatment (sputter film formation step). Specifically, an indium tin oxide (ITO) layer having a thickness of 2.0 nm as an adhesion layer and an inorganic oxide are placed on the HC layer of the PET film with an HC layer by a roll-to-roll type sputter film forming apparatus. Two layers of SiO having a thickness of 165 nm as a base layer were sequentially formed. In the formation of the adhesion layer, an ITO target was used, an argon gas as an inert gas and 10 parts by volume of oxygen gas as a reactive gas with respect to 100 parts by volume of the argon gas were used, and the discharge voltage was set to 350 V. The pressure in the film chamber (deposition pressure) was set to 0.4 Pa, and the ITO layer was formed by MFAC sputtering. In the formation of the inorganic oxide base layer, a Si target is used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas are used, the discharge voltage is 350 V, the film formation pressure is 0.3 Pa, and SiO 2 is formed by MFAC sputtering. Formed a layer.
 次に、防汚層を形成した(防汚層形成工程)。具体的には、パーフルオロポリエーテル基含有のアルコキシシラン化合物を蒸着源として用いた真空蒸着法により、厚さ12nmの防汚層を、無機酸化物下地層上に形成した。蒸着源は、信越化学工業社製の「KY1903-1」(パーフルオロポリエーテル基含有アルコキシシラン化合物,固形分濃度20質量%)を乾燥して得た固形分である。また、真空蒸着法における蒸着源の加熱温度は260℃とした。 Next, an antifouling layer was formed (antifouling layer forming step). Specifically, an antifouling layer having a thickness of 12 nm was formed on the inorganic oxide base layer by a vacuum vapor deposition method using an alkoxysilane compound containing a perfluoropolyether group as a vapor deposition source. The vapor deposition source is a solid content obtained by drying "KY1903-1" (perfluoropolyether group-containing alkoxysilane compound, solid content concentration 20% by mass) manufactured by Shin-Etsu Chemical Co., Ltd. The heating temperature of the vapor deposition source in the vacuum vapor deposition method was 260 ° C.
 以上のようにして、実施例1の光学フィルムを作製した。実施例1の光学フィルムは、樹脂フィルムと、ハードコート層と、密着層と、無機酸化物下地層と、防汚層とを、厚さ方向一方側に向かってこの順で備える。 As described above, the optical film of Example 1 was produced. The optical film of Example 1 includes a resin film, a hard coat layer, an adhesion layer, an inorganic oxide base layer, and an antifouling layer in this order toward one side in the thickness direction.
〔実施例2〕
 HC層の厚さを5μmに代えて10μmとしたこと以外は、実施例1の光学フィルムと同様にして、実施例2の光学フィルムを作製した。
[Example 2]
The optical film of Example 2 was produced in the same manner as the optical film of Example 1 except that the thickness of the HC layer was 10 μm instead of 5 μm.
〔実施例3〕
 HC層の厚さを5μmに代えて10μmとし、且つ無機酸化物下地層の厚さを165nmに代えて100nmとしたこと以外は、実施例1の光学フィルムと同様にして、実施例3の光学フィルムを作製した。
[Example 3]
Optical of Example 3 in the same manner as the optical film of Example 1 except that the thickness of the HC layer was changed to 10 μm instead of 5 μm and the thickness of the inorganic oxide base layer was changed to 100 nm instead of 165 nm. A film was made.
〔実施例4〕
 無機酸化物下地層の形成時の成膜気圧を0.3Paに代えて0.1Paとしたこと以外は、実施例1の光学フィルムと同様にして、実施例4の光学フィルムを作製した。
[Example 4]
The optical film of Example 4 was produced in the same manner as the optical film of Example 1 except that the film forming pressure at the time of forming the inorganic oxide base layer was 0.1 Pa instead of 0.3 Pa.
〔実施例5〕
 HC層の厚さを5μmに代えて10μmとし、且つ無機酸化物下地層の形成時の成膜気圧を0.3Paに代えて0.1Paとしたこと以外は、実施例1の光学フィルムと同様にして、実施例5の光学フィルムを作製した。
[Example 5]
Similar to the optical film of Example 1 except that the thickness of the HC layer was changed to 10 μm instead of 5 μm, and the film forming pressure at the time of forming the inorganic oxide base layer was changed to 0.1 Pa instead of 0.3 Pa. The optical film of Example 5 was produced.
〔実施例6〕
 防汚層の厚さを12nmに代えて8nmとしたこと以外は、実施例1の光学フィルムと同様にして、実施例6の光学フィルムを作製した。
[Example 6]
The optical film of Example 6 was produced in the same manner as the optical film of Example 1 except that the thickness of the antifouling layer was 8 nm instead of 12 nm.
〔実施例7〕
 防汚層の厚さを12nmに代えて6nmとしたこと以外は、実施例1の光学フィルムと同様にして、実施例7の光学フィルムを作製した。
[Example 7]
The optical film of Example 7 was produced in the same manner as the optical film of Example 1 except that the thickness of the antifouling layer was 6 nm instead of 12 nm.
〔実施例8〕
 防汚層の厚さを12nmに代えて16nmとしたこと以外は、実施例1の光学フィルムと同様にして、実施例8の光学フィルムを作製した。
[Example 8]
The optical film of Example 8 was produced in the same manner as the optical film of Example 1 except that the thickness of the antifouling layer was 16 nm instead of 12 nm.
〔比較例1〕
 HC層の厚さを5μmに代えて10μmとし、且つ、無機酸化物下地層の厚さを165nmに代えて30nmとしたこと以外は、実施例1の光学フィルムと同様にして、比較例1の光学フィルムを作製した。
[Comparative Example 1]
Comparative Example 1 was carried out in the same manner as the optical film of Example 1 except that the thickness of the HC layer was changed to 10 μm instead of 5 μm and the thickness of the inorganic oxide base layer was changed to 30 nm instead of 165 nm. An optical film was produced.
〈防汚層表面の硬さと弾性回復率〉
 実施例1~8および比較例1の各光学フィルムの防汚層表面について、ナノインデンテーション法による荷重-変位測定を行った。具体的には、まず、光学フィルムから、測定試料(5mm×5mm)を切り出した。次に、ナノインデンター(商品名「Triboindenter」,Hysitron社製)を使用して、測定試料における防汚層表面の荷重-変位測定をISO14577に準拠して行い、荷重-変位曲線を得た。本測定では、測定モードは単一押込み測定とし、測定温度は25℃とし、使用圧子はBerkovich(三角錐)型のダイヤモンド圧子とし、荷重印加過程での測定試料に対する圧子の最大押込み深さ(最大変位H1)は200nmとし、その圧子の押込み速度は20nm/秒とし、除荷過程での測定試料からの圧子の引抜き速度は20nm/秒とした。得られた荷重-変位曲線に基づき、最大荷重Pmax(最大変位H1にて圧子に作用する荷重)、接触投影面積Ap(最大荷重時における圧子と試料との間の接触領域の投影面積)、および、除荷過程後の試料表面における塑性変形量H2(試料表面から圧子を離した後に当該試料表面に維持される凹部の深さ)を得た。そして、最大荷重Pmaxと接触投影面積Apから、防汚層の表面硬度(=Pmax/Ap)を算出した。また、最大変位H1と塑性変形量H2から、荷重印加とその後の除荷とを経た防汚層表面の弾性回復率(=(H1-H2)/H1)を算出した。これら表面硬度(GPa)および弾性回復率(%)を表1に示す。
<Hardness and elastic recovery rate of antifouling layer surface>
The load-displacement measurement by the nanoindentation method was performed on the surface of the antifouling layer of each of the optical films of Examples 1 to 8 and Comparative Example 1. Specifically, first, a measurement sample (5 mm × 5 mm) was cut out from the optical film. Next, using a nano indenter (trade name "Triboindenter", manufactured by Hysitron), load-displacement measurement of the surface of the antifouling layer in the measurement sample was performed in accordance with ISO14577, and a load-displacement curve was obtained. In this measurement, the measurement mode is single indentation measurement, the measurement temperature is 25 ° C, the indenter used is a Berkovich (triangular pyramid) type diamond indenter, and the maximum indentation depth (maximum indentation depth) of the indenter with respect to the measurement sample during the load application process. The displacement H1) was set to 200 nm, the pushing speed of the indenter was set to 20 nm / sec, and the withdrawal speed of the indenter from the measurement sample in the unloading process was set to 20 nm / sec. Based on the obtained load-displacement curve, the maximum load Pmax (the load acting on the indenter at the maximum displacement H1), the contact projected area Ap (the projected area of the contact area between the indenter and the sample at the maximum load), and , The amount of plastic deformation H2 on the sample surface after the unloading process (the depth of the recess maintained on the sample surface after the indenter is separated from the sample surface) was obtained. Then, the surface hardness (= Pmax / Ap) of the antifouling layer was calculated from the maximum load Pmax and the contact projection area Ap. Further, from the maximum displacement H1 and the amount of plastic deformation H2, the elastic recovery rate (= (H1-H2) / H1) of the antifouling layer surface after the load application and the subsequent unloading was calculated. Table 1 shows these surface hardness (GPa) and elastic recovery rate (%).
〈水接触角〉
 実施例1~8および比較例1の各光学フィルムについて、防汚層表面の水接触角を調べた。まず、光学フィルムの防汚層表面に、約1μLの純水の滴下によって水滴を形成した。次に、防汚層表面上の水滴の表面と防汚層表面とがなす角度を測定した。測定には、接触角計(商品名「DMo-501」,協和界面科学社製)を使用した。その測定結果を、初期の水接触角θとして表1に示す。
<Water contact angle>
The water contact angle on the surface of the antifouling layer was examined for each of the optical films of Examples 1 to 8 and Comparative Example 1. First, water droplets were formed on the surface of the antifouling layer of the optical film by dropping about 1 μL of pure water. Next, the angle formed by the surface of the water droplet on the surface of the antifouling layer and the surface of the antifouling layer was measured. A contact angle meter (trade name "DMo-501", manufactured by Kyowa Interface Science Co., Ltd.) was used for the measurement. The measurement results are shown in Table 1 as the initial water contact angle θ 0.
〈消しゴム摺動試験〉
 実施例1~8および比較例1の各光学フィルムについて、消しゴム摺動試験を経ることによる防汚層表面の防汚性低下の程度を調べた。具体的には、まず、光学フィルムの防汚層表面に対して消しゴムを摺動させつつ往復動させる摺動試験を実施した(第1の消しゴム摺動試験)。この試験では、Minoan社製の消しゴム(Φ6mm)を使用し、防汚層表面に対する消しゴムの荷重を1kg/6mmΦとし、防汚層表面上の消しゴムの摺動距離(往復動における片道)を20mmとし、消しゴムの摺動速度を40rpmとし、防汚層表面に対して消しゴムを往復動させる回数は3000往復とした。次に、光学フィルムの防汚層表面における消しゴム摺動箇所の水接触角を、初期の水接触角θの測定方法と同様の方法で測定した。その測定結果を、第1の消しゴム摺動試験後の水接触角θとして、表1に示す。
<Eraser sliding test>
For each of the optical films of Examples 1 to 8 and Comparative Example 1, the degree of deterioration of the antifouling property on the surface of the antifouling layer by passing through the eraser sliding test was investigated. Specifically, first, a sliding test was carried out in which the eraser was reciprocated while sliding the eraser against the surface of the antifouling layer of the optical film (first eraser sliding test). In this test, an eraser (Φ6 mm) manufactured by Minoan was used, the load of the eraser on the surface of the antifouling layer was 1 kg / 6 mmΦ, and the sliding distance of the eraser on the surface of the antifouling layer (one way in reciprocating movement) was 20 mm. The sliding speed of the eraser was set to 40 rpm, and the number of times the eraser was reciprocated with respect to the surface of the antifouling layer was set to 3000 reciprocations. Next, the water contact angle of the eraser sliding portion on the surface of the antifouling layer of the optical film was measured by the same method as the initial measurement method of the water contact angle θ 0. The measurement results are shown in Table 1 as the water contact angle θ 1 after the first eraser sliding test.
 次に、光学フィルムの防汚層表面に対して、更に消しゴムを摺動させつつ往復動させる摺動試験を実施した(第2の消しゴム摺動試験)。摺動条件は、第1の消しゴム摺動試験と同じである(消しゴムを往復動させる回数は、第1の消しゴム摺動試験とその後の第2の消しゴム摺動試験とで、合計6000往復である)。次に、光学フィルムの防汚層表面における消しゴム摺動箇所の水接触角を、初期の水接触角θの測定方法と同様の方法で測定した。その測定結果を、第2の消しゴム摺動試験後の水接触角θとして、表1に示す。図3は、実施例1~8および比較例1の各光学フィルムの弾性回復率および水接触角θがプロットされたグラフである。図3のグラフでは、横軸は、弾性回復率(%)を表し、縦軸は水接触角θ(°)を表す。図3において、プロットE1~E8は実施例1~8における測定結果を表し、プロットC1は比較例1における測定結果を表す。 Next, a sliding test was conducted in which the eraser was further slid and reciprocated on the surface of the antifouling layer of the optical film (second eraser sliding test). The sliding conditions are the same as in the first eraser sliding test (the number of times the eraser is reciprocated is 6000 reciprocations in total in the first eraser sliding test and the subsequent second eraser sliding test. ). Next, the water contact angle of the eraser sliding portion on the surface of the antifouling layer of the optical film was measured by the same method as the initial measurement method of the water contact angle θ 0. The measurement results are shown in Table 1 as the water contact angle θ 2 after the second eraser sliding test. FIG. 3 is a graph in which the elastic recovery rate and the water contact angle θ 2 of each of the optical films of Examples 1 to 8 and Comparative Example 1 are plotted. In the graph of FIG. 3, the horizontal axis represents the elastic recovery rate (%), and the vertical axis represents the water contact angle θ 2 (°). In FIG. 3, plots E1 to E8 represent measurement results in Examples 1 to 8, and plot C1 represents measurement results in Comparative Example 1.
〈評価〉
 実施例1~8の各光学フィルムでは、比較例1の光学フィルムと比較して、消しゴム摺動試験(第1の消しゴム摺動試験,第2の消しゴム摺動試験)を経ることによる防汚層表面における水接触角の低下の程度が有意に小さく、従って、防汚性の低下が有意に小さい(防汚層表面では、水接触角の低下が小さいほど、防汚性の低下は小さい)。
<evaluation>
Each of the optical films of Examples 1 to 8 undergoes an eraser sliding test (first eraser sliding test, second eraser sliding test) as compared with the optical film of Comparative Example 1, and is an antifouling layer. The degree of decrease in water contact angle on the surface is significantly small, and therefore the decrease in antifouling property is significantly small (on the surface of the antifouling layer, the smaller the decrease in water contact angle, the smaller the decrease in antifouling property).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述の実施形態は本発明の例示であり、当該実施形態によって本発明を限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記の請求の範囲に含まれる。 The above-described embodiment is an example of the present invention, and the present invention should not be construed in a limited manner by the embodiment. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
 本発明の防汚層付き光学フィルムは、例えば、防汚層付き反射防止フィルム、防汚層付き透明導電性フィルム、および、防汚層付き電磁波遮蔽フィルムに適用できる。 The optical film with an antifouling layer of the present invention can be applied to, for example, an antireflection film with an antifouling layer, a transparent conductive film with an antifouling layer, and an electromagnetic wave shielding film with an antifouling layer.
F   光学フィルム(防汚層付き光学フィルム)
11  透明基材
12  ハードコート層
13  無機酸化物下地層
14  防汚層
14a 表面
15  密着層
20  光学機能層
21  第1高屈折率層
22  第1低屈折率層
23  第2高屈折率層
24  第2低屈折率層
F Optical film (optical film with antifouling layer)
11 Transparent base material 12 Hard coat layer 13 Inorganic oxide base layer 14 Antifouling layer 14a Surface 15 Adhesive layer 20 Optical functional layer 21 First high refractive index layer 22 First low refractive index layer 23 Second high refractive index layer 24 2 Low refractive index layer

Claims (5)

  1.  透明基材と、ハードコート層と、無機酸化物下地層と、防汚層とをこの順で備え、
     前記防汚層が、前記無機酸化物下地層上に配置されたドライコーティング膜であり、
     前記防汚層における前記無機酸化物層とは反対側の表面の、温度25℃および最大押込み深さ200nmの条件でのナノインデンテーション法により測定される弾性回復率が、76%以上である、防汚層付き光学フィルム。
    A transparent base material, a hard coat layer, an inorganic oxide base layer, and an antifouling layer are provided in this order.
    The antifouling layer is a dry coating film arranged on the inorganic oxide base layer.
    The elastic recovery rate of the surface of the antifouling layer opposite to the inorganic oxide layer measured by the nanoindentation method under the conditions of a temperature of 25 ° C. and a maximum indentation depth of 200 nm is 76% or more. Optical film with antifouling layer.
  2.  前記防汚層が、1nm以上25nm以下の厚さを有する、請求項1に記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to claim 1, wherein the antifouling layer has a thickness of 1 nm or more and 25 nm or less.
  3.  前記無機酸化物下地層が二酸化ケイ素を含む、請求項1または2に記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to claim 1 or 2, wherein the inorganic oxide base layer contains silicon dioxide.
  4.  前記無機酸化物下地層が、50nm以上の厚さを有する、請求項1から3のいずれか一つに記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to any one of claims 1 to 3, wherein the inorganic oxide base layer has a thickness of 50 nm or more.
  5.  前記ハードコート層が、1μm以上50μm以下の厚さを有する、請求項1から4のいずれか一つに記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to any one of claims 1 to 4, wherein the hard coat layer has a thickness of 1 μm or more and 50 μm or less.
PCT/JP2021/026251 2020-07-13 2021-07-13 Antifouling layer-equipped optical film WO2022014573A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180049524.8A CN115812033B (en) 2020-07-13 2021-07-13 Optical film with antifouling layer
KR1020227045625A KR102521712B1 (en) 2020-07-13 2021-07-13 Optical film with antifouling layer
KR1020237011553A KR102548030B1 (en) 2020-07-13 2021-07-13 Antifouling layer-equipped optical film
JP2022536377A JP7185102B2 (en) 2020-07-13 2021-07-13 Optical film with antifouling layer

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2020-120131 2020-07-13
JP2020120131 2020-07-13
JP2020146144 2020-08-31
JP2020-146144 2020-08-31
JP2020166847 2020-10-01
JP2020-166847 2020-10-01
JP2020-166844 2020-10-01
JP2020166844 2020-10-01
JP2020-190466 2020-11-16
JP2020190466 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022014573A1 true WO2022014573A1 (en) 2022-01-20

Family

ID=79555591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026251 WO2022014573A1 (en) 2020-07-13 2021-07-13 Antifouling layer-equipped optical film

Country Status (5)

Country Link
JP (1) JP7185102B2 (en)
KR (2) KR102548030B1 (en)
CN (1) CN115812033B (en)
TW (1) TW202215073A (en)
WO (1) WO2022014573A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243904A (en) * 2001-02-20 2002-08-28 Toppan Printing Co Ltd Light absorbing antireflection laminated body and liquid crystal display device which uses the same
JP2006134867A (en) * 2004-10-06 2006-05-25 Nitto Denko Corp Transparent conductive film and touch panel
JP2006261091A (en) * 2005-02-18 2006-09-28 Nitto Denko Corp Transparent conductive laminate body and touch panel equipped with above
JP2019032524A (en) * 2017-08-08 2019-02-28 日東電工株式会社 Antireflection film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188102A (en) 1999-12-27 2001-07-10 Toppan Printing Co Ltd Antireflection film
JP5441056B2 (en) * 2008-11-28 2014-03-12 日東電工株式会社 Hard coat layer forming composition, hard coat film, optical element and image display device
CN102791476A (en) * 2010-03-12 2012-11-21 旭硝子株式会社 Laminate and process for production thereof
JP2014041249A (en) * 2012-08-22 2014-03-06 Dainippon Printing Co Ltd Optical film
JP2015024637A (en) * 2013-07-29 2015-02-05 フジコピアン株式会社 Antifouling easily slidable laminated hard coat film
JP6825825B2 (en) * 2015-05-27 2021-02-03 デクセリアルズ株式会社 Laminated thin film and manufacturing method of laminated thin film
CN106432686B (en) * 2016-06-21 2018-12-14 衢州氟硅技术研究院 A kind of novel perfluoropolyether alkoxysilane compound and its synthetic method
JP6746410B2 (en) * 2016-07-13 2020-08-26 大日本印刷株式会社 Optical stack
JP7217118B2 (en) 2018-09-26 2023-02-02 日東電工株式会社 Optical film with protective film
CN109651941B (en) * 2018-12-13 2021-11-23 苏州东杏表面技术有限公司 Wear-resistant type double-hydrophobic coating based on organic silicon modification and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243904A (en) * 2001-02-20 2002-08-28 Toppan Printing Co Ltd Light absorbing antireflection laminated body and liquid crystal display device which uses the same
JP2006134867A (en) * 2004-10-06 2006-05-25 Nitto Denko Corp Transparent conductive film and touch panel
JP2006261091A (en) * 2005-02-18 2006-09-28 Nitto Denko Corp Transparent conductive laminate body and touch panel equipped with above
JP2019032524A (en) * 2017-08-08 2019-02-28 日東電工株式会社 Antireflection film

Also Published As

Publication number Publication date
KR102521712B1 (en) 2023-04-13
CN115812033B (en) 2024-10-15
KR20230011433A (en) 2023-01-20
TW202215073A (en) 2022-04-16
KR102548030B1 (en) 2023-06-26
KR20230053698A (en) 2023-04-21
CN115812033A (en) 2023-03-17
JPWO2022014573A1 (en) 2022-01-20
JP7185102B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2022014568A1 (en) Optical film with anti-fouling layer
WO2022014569A1 (en) Optical film with anti-fouling layer
WO2022014570A1 (en) Optical film with antifouling layer
WO2022014573A1 (en) Antifouling layer-equipped optical film
WO2022014571A1 (en) Antifouling layer-equipped optical film
JP2022079332A (en) Optical film with antifouling layer
JP7186333B2 (en) laminate
JP7219849B2 (en) Optical film with antifouling layer
JP2006039007A (en) Antireflection member
JP7389259B2 (en) Optical film with antifouling layer
JP7538196B2 (en) Optical film with antifouling layer and method for producing same
JP7186334B2 (en) laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536377

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227045625

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841826

Country of ref document: EP

Kind code of ref document: A1