WO2014002131A1 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
WO2014002131A1
WO2014002131A1 PCT/JP2012/004107 JP2012004107W WO2014002131A1 WO 2014002131 A1 WO2014002131 A1 WO 2014002131A1 JP 2012004107 W JP2012004107 W JP 2012004107W WO 2014002131 A1 WO2014002131 A1 WO 2014002131A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
supply load
unit
load data
Prior art date
Application number
PCT/JP2012/004107
Other languages
English (en)
French (fr)
Inventor
隆也 山本
川岸 元彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280074253.2A priority Critical patent/CN104412046B/zh
Priority to JP2014522222A priority patent/JP5818985B2/ja
Priority to PCT/JP2012/004107 priority patent/WO2014002131A1/ja
Priority to EP12880263.4A priority patent/EP2873931B1/en
Priority to US14/406,858 priority patent/US9702591B2/en
Publication of WO2014002131A1 publication Critical patent/WO2014002131A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1063Arrangement or mounting of control or safety devices for water heating systems for domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks

Definitions

  • the present invention relates to a hot water supply system.
  • the hot water supply system has a heat source device such as a heat pump and a boiler, and a hot water storage tank that stores hot water, and can store hot water in the hot water storage tank using the heat of the heat medium heated by the heat source device. is there.
  • the hot water stored in the hot water storage tank is used for hot water supply such as a shower, bath or kitchen.
  • the hot water stored in the hot water storage tank is generated by a direct heating method in which the hot water heated by the heat source device is directly stored in the hot water storage tank, and between the refrigerant or heat medium heated by the heat source device and the hot water in the hot water storage tank.
  • the direct heating hot water supply system includes a hot water supply system that uses a heat pump with high energy efficiency, has a large-capacity hot water storage tank, and boils a large amount of hot water at midnight when the unit price of electricity is low.
  • the indirect heating hot water supply system has a water heat exchanger that exchanges heat between the refrigerant flowing through the primary circuit and the water flowing through the secondary circuit, and the temperature of the refrigerant heated by the heat source device is
  • a water heat exchanger that exchanges heat between the refrigerant flowing through the primary circuit and the water flowing through the secondary circuit, and the temperature of the refrigerant heated by the heat source device is
  • the technology described in Patent Document 1 is to replenish the amount of heat in the water when the amount of heat in the hot water storage tank is insufficient, but on that day, based on the actual load for the past 7 days
  • the difference between the actual load and the predicted load at the current time is replenished as an additional heat storage amount.
  • the hot water supply load generation time is before the predicted time zone, the amount of reheating can be adjusted appropriately, so that unnecessary reheating operation is suppressed and the energy saving performance of the hot water supply system is reduced. Can be improved.
  • JP 2010-32212 A (see, for example, FIGS. 1 to 5)
  • Patent Document 1 The technique described in Patent Document 1 is based on the premise that all or most of the total amount of heat required in a day predicted from past performance loads is heated up at midnight. And in order to reduce the risk of running out of hot water, in many cases, there is a high possibility that boiling is performed excessively at the time of boiling at midnight. For this reason, when the performance of the hot water supply load on the day of control falls below the prediction of the hot water supply load, there is a problem that energy saving performance is impaired.
  • This invention was made in order to solve the above problems, and it aims at providing the hot water supply system which implement
  • a hot water supply system includes a hot water storage tank that stores water, a boiling unit that is a heating source that heats water stored in the hot water storage tank, and a heater that heats water stored in the hot water storage tank.
  • a controller that determines the amount of heat generated in the raising section for each time zone, and the controller is a hot water supply generated by at least the temperature of water flowing into the hot water storage tank and the temperature and flow rate of water flowing out of the hot water storage tank
  • Hot water load data storage unit for storing load data for a plurality of days, hot water load data analysis unit for analyzing hot water load data for a plurality of days stored in the hot water load data storage unit, and hot water load data storage unit
  • An operation plan for predicting a hot water supply load on a predetermined day prior to a plurality of performed days based on an analysis of the hot water supply load data analysis unit and generating an operation plan for the heating unit on the predetermined day based on the prediction result After the start of operation according to the drafting plan and the operation plan,
  • the subsequent operation plan on the predetermined day generated by the operation plan planning unit is changed based on the re-predicted hot water supply load and the remaining hot water storage capacity of the hot water storage tank, energy saving is improved. Can be made.
  • FIG. 1 is a configuration diagram of a hot water supply system 100 according to the first embodiment.
  • the structure of the hot water supply system 100 is demonstrated.
  • the hot water supply system 100 according to the first embodiment when the actual hot water supply load on the day of control falls below the prediction of the hot water supply load, in the case of a hot water supply system with a small capacity of the hot water storage tank, the capacity of the heat source machine is low and hot water storage is performed at a high temperature. Even in the case where the hot water supply system 100 cannot be used, an improvement that can improve the energy saving performance of the hot water supply system 100 is added.
  • the hot water supply system 100 is configured to carry water by storing a hot water storage tank 1 that can store water, a boiling unit 2 that generates hot water, a heat exchange unit 8 that exchanges heat between supplied water, and water.
  • the hot water supply system 100 is a circuit on the heat source side, and includes a primary side circuit A configured by connecting the boiling unit 2, the heat exchange unit 8, and the primary side pump 20A, and a circuit on the usage side.
  • the heat exchanging unit 8 and the secondary side circuit B configured to be connected to the secondary side pump 20B.
  • water flows through the primary side circuit A, but it may be a refrigerant, a brine, a heat medium, or the like.
  • the hot water storage tank 1 is capable of storing the water heated by the heat exchange unit 8 and is connected to the water inflow side of the secondary pump 20B and the water outflow side of the heat exchange unit 8.
  • the hot water storage tank 1 is configured such that tap water is supplied into the hot water storage tank 1 as indicated by an arrow C in FIG.
  • the hot water storage tank 1 can supply the water stored in the hot water storage tank 1 to a shower, a kitchen, etc. as shown by the arrow D of FIG.
  • the temperature of the water which flows out from the hot water storage tank 1 is mixed with a low temperature tap water, and can be adjusted to the temperature which a user requires.
  • the boiling unit 2 is a heat source machine configured with, for example, a heat pump or a boiler.
  • the boiling unit 2 warms the low-temperature primary return water returned from the heat exchange unit 8 and supplies the warm water to the heat exchange unit 8 as primary side hot water.
  • the heat exchange unit 8 exchanges heat between the water in the primary circuit A supplied from the boiling unit 2 and the hot water in the secondary circuit B supplied from the hot water storage tank 1 (hereinafter also referred to as hot water storage). It is what makes you.
  • the heat exchanging unit 8 may be constituted by a double pipe heat exchanger that can exchange heat between water flowing through the primary circuit A and water flowing through the secondary circuit B, for example.
  • the primary side pump 20A conveys the water in the primary side circuit A. That is, the primary side pump 20 ⁇ / b> A flows out from the heat exchanging unit 8, and heat-exchanges in the heat exchanging unit 8 and transports the water whose temperature has decreased (primary return water) to the boiling unit 2.
  • the secondary pump 20B conveys the water in the secondary circuit B. That is, the secondary pump 20 ⁇ / b> B flows out of the hot water storage tank 1, and heat-exchanged in the heat exchanging unit 8 and transported to the boiling unit 2.
  • the position where the primary pump 20A is provided is not limited to the pipe through which the primary return water flows, but may be a pipe through which the primary hot water flows.
  • the position where the primary pump 20 ⁇ / b> A is provided may be downstream of the heat exchange unit 8 and upstream of the heat exchange unit 8.
  • the position where the secondary pump 20B is provided is not limited to the pipe through which the water flowing out from the hot water storage tank 1 flows. That is, the position where the secondary pump 20 ⁇ / b> B is provided may be downstream of the heat exchange unit 8 and upstream of the hot water storage tank 1.
  • Control device 99 The control device 99 generates an operation plan for the boiling unit 2, the primary pump 20A, and the secondary pump 20B based on the water temperature and flow rate indicated by the arrow D shown in FIG. 1 and the water temperature indicated by the arrow C. And the control apparatus 99 controls the boiling part 2, the primary side pump 20A, and the secondary side pump 20B based on this produced
  • the operation plan generated by the control device 99 is obtained by the control device 99 analyzing past hot water supply load data and calculating a hot water supply load pattern typical for the user.
  • the control device 99 has a function of changing the generated operation plan based on a predetermined rule. The detailed configuration of the control device 99 will be described with reference to FIG.
  • control device 99 may supply makeup water (low-temperature tap water) to the hot water storage tank 1 so that the hot water storage tank 1 is always full, or replenishment after the water level of the hot water storage tank 1 has dropped to a predetermined water level.
  • Water low-temperature tap water
  • a flow rate adjustment valve or the like is installed in the tap water pipe to the hot water storage tank 1, and the water level control of the hot water storage tank 1 is performed from the control device 99. In the following description, it is assumed that the hot water storage tank 1 is always kept full unless otherwise specified.
  • FIG. 2 is a block diagram showing a functional configuration of the control device 99 shown in FIG. A detailed configuration of the control device 99 will be described with reference to FIG.
  • the control device 99 includes a data measurement unit 9 that measures water temperature and the like, a hot water supply load data calculation unit 10 that performs predetermined calculations based on data stored in a hot water supply load data storage unit 3 to be described later, It has a hot water supply load data storage unit 3 for storing calculation results of the hot water supply load data calculation unit 10 and the like. Further, the control device 99 boils up based on the analysis result of the hot water supply load data analysis unit 6 and the hot water supply load data analysis unit 6 that analyzes the calculation result of the hot water supply load data calculation unit 10 based on the time zone.
  • the operation plan correction unit 5 that reviews the operation plan generated by the operation plan planning unit 4, and the operation plan revisited by the operation plan correction unit 5
  • a boiling operation unit 7 that adjusts the amount of the boiling unit 2 is provided.
  • the data measuring unit 9 is a sensor that measures water temperature and flow rate. More specifically, the data measuring unit 9 is water that has flowed out of the hot water storage tank 1 and has not been merged with tap water as data necessary for calculating the hot water supply load data in the hot water supply load data calculation unit 10 ( A supply hot water temperature T1 and a hot water flow rate W1 (water temperature indicated by an arrow D in FIG. 1) are measured at a predetermined cycle. Further, the data measuring unit 9 measures the water temperature T2 (water temperature indicated by the arrow C in FIG. 1) of the tap water supplied to the hot water storage tank 1 at a predetermined cycle.
  • the data measuring unit 9 is configured to measure the hot water flow rate W1, for example, by measuring the hot water tank water level.
  • the measurement cycle of the supply hot water temperature T1, the hot water flow rate W1, and the water temperature T2 is set to a cycle shorter than the time increment for calculating the hot water supply load data in the hot water supply load data calculation unit 10 such as 10 seconds or 1 minute.
  • the control device 99 controls the hot water tank 1 so that the amount of water in the hot water storage tank 1 is always full, instead of measuring the hot water flow rate W1, the flow rate of tap water supplied to the hot water storage tank 1 is measured, and hot water supply load data is obtained.
  • the amount of water supplied to the hot water storage tank 1 and the amount of water flowing out of the hot water storage tank 1 have the same flow rate.
  • the estimated value of the water temperature at each time may be set in advance by the user, or other measurements collected by the control device 99 such as the outside air temperature, for example. You may enable it to calculate automatically based on data.
  • the data measuring unit 9 measures the hot water temperature inside the hot water tank 1 at a plurality of locations, measures the flow rate of the secondary hot water shown in FIG. 1 flowing through the pipe, and the water temperature before and after heating in the heat exchange unit 8. By doing so, the calculation of hot water supply load data in the hot water supply load data calculation unit 10 to be described later may be configured to be able to be calculated with a more accurate calculation formula.
  • the hot water supply load data calculation unit 10 calculates the amount of heat supplied from the hot water storage tank 1 to the hot water supply based on the data measured by the data measurement unit 9. In the following description, this calculation result is also referred to as hot water supply load data.
  • the hot water supply load data calculation unit 10 calculates the amount of heat supplied from the hot water storage tank 1 to the hot water supply at predetermined time intervals.
  • the predetermined time increment may be determined according to the time increment required for hot water supply load analysis in the hot water supply load data analysis unit 6. Although it may be the same as the time step performed in the hot water supply load analysis, it is desirable to make it shorter. Further, the predetermined time increment may be set and changed by providing an input unit in the hot water supply system 100.
  • a method for obtaining the hot water supply load data by calculating the amount of heat supplied from the hot water storage tank 1 to the hot water supply will be described by taking as an example the case where the value of the predetermined time increment is 30 minutes.
  • the hot water temperature T1 supplied from the hot water storage tank 1 to the hot water supply, the hot water flow rate W1, and the tap water supplied to the hot water storage tank 1 The water temperature T2 can be calculated by the following formula.
  • Q (T1-T2) ⁇ W1
  • description of unit conversion and constant multiplication was omitted.
  • the hot water supply load data can be calculated by another calculation formula using these measurement data. Good.
  • the value of the 1-minute cycle calculated using the measurement data may be integrated for 30 minutes. That is, the sum total of the hot water supply load obtained by integrating the value of the supplied heat amount in one minute period for 30 minutes is calculated as the hot water supply load data.
  • the hot water supply load data storage unit 3 stores hot water supply load data calculated by the data measuring unit 9, the hot water supply load data calculation unit 10, the hot water supply load data analysis unit 6, the operation plan planning unit 4 and the operation plan correction unit 5. is there.
  • the hot water supply load data storage unit 3 stores hot water supply load data for a predetermined period (for example, one day) calculated by the hot water supply load data calculation unit 10 for a plurality of predetermined periods (plurality). (For example, 100 days).
  • a predetermined period for example, one day
  • predetermined periods for example, plural.
  • hot water supply load data storage unit 3 stores hot water load data for a plurality of days.
  • the hot water supply load data storage unit 3 may also store the measurement data measured by the data measurement unit 9 together.
  • the hot-water supply load data analysis unit 6 classifies the hot-water supply load data for a plurality of days stored in the hot-water supply load data storage unit 3 into a plurality of groups based on time zones when the hot-water supply load is maximum.
  • the analysis result of the hot water supply load data analysis unit 6 is stored in the hot water supply load data storage unit 3.
  • this classified group is also referred to as a cluster.
  • a cluster generation method of the hot water supply load data analysis unit 6 will be described later with reference to FIG.
  • the operation plan planning unit 4 predicts the hot water supply load on the next day once a day based on the analysis result in the hot water supply load data analysis unit 6, and generates an operation plan for the boiling unit 2 based on the prediction result. It is. More specifically, the operation planning unit 4 plans for 24 hours what kind of command value (for example, heat pump frequency, output, etc.) is used for boiling the boiling unit 2 from what time to how many minutes.
  • operation plan planning part 4 demonstrated as what estimates the hot water supply load on the next day for convenience, it is not limited to it.
  • prediction and planning for 24 hours from 3 o'clock on the day of control execution of the boiling unit 2 to 3 o'clock on the next day may be performed at 1 o'clock or 2 o'clock on the day.
  • the operation plan generated by the operation plan planning unit 4 is stored in the hot water supply load data storage unit 3.
  • the operation plan correction unit 5 reviews the operation plan generated by the operation plan planning unit 4 based on the actual hot water supply load. More specifically, the operation plan correction unit 5 reviews the operation plan generated by the operation plan planning unit 4 every predetermined time based on the actual hot water supply load. In the present embodiment, the case where the predetermined time is 3 hours will be described as an example, but the present invention is not limited to this.
  • the operation plan reviewed by the operation plan correction unit 5 is stored in the hot water supply load data storage unit 3.
  • the already reviewed operation plan shall be called a correction plan. If there is this correction plan, the operation plan correction unit 5 does not maintain the execution of the correction plan, but reviews the content of the correction plan again.
  • the boiling operation unit 7 controls the amount of boiling in the boiling unit 2 based on the correction plan generated by the operation plan correction unit 5.
  • the amount of heat that the boiling operation unit 7 raises in 3 hours is the predicted hot water supply load for 3 hours. Therefore, the boiling time planned in the operation plan or the correction plan and the boiling time actually performed at the time of control, such as when a hot water supply load occurs during the boiling operation unit 7 being heated, Different results may occur.
  • a backup heater is often installed in the piping section or the hot water storage tank 1.
  • the setting and the energy saving can be improved in consideration of the starting condition of the backup heater.
  • FIG. 3 is a flowchart showing a processing flow of hot water supply load data analysis unit 6 shown in FIG.
  • FIG. 4 is an example of a simulation result of the hot water supply load for each hour.
  • FIG. 5 is an example of totaling hot water supply load data.
  • FIG. 6 is an example of a simulation result of clustering.
  • FIG. 5A shows the totaling result of the hot water supply load data
  • FIG. 5B shows the result of clustering the totaling result described later.
  • FIG. 6A shows the simulation result in the cluster of the first peak (C) and the second peak (B).
  • FIG. 6B shows the first peak (B) in FIG. It is a simulation result in the cluster of C).
  • the operation of the hot water supply load data analysis unit 6 will be described with reference to FIGS.
  • Step S1 The hot water supply load data analysis unit 6 reads the hot water supply load data for a plurality of days stored in the hot water supply load data storage unit 3.
  • Step S2 The hot water supply load data analysis unit 6 divides the hot water supply load data of each day read in step S1 into two time zones.
  • the hot water supply load data analysis unit 6 divides the hot water supply load data of each day into a hot water supply load from 3 to 15:00 and a hot water supply load from 15:00 to 3 o'clock the next day. Therefore, in FIG. 3, “data from 3 o'clock to 15:00 (for 100 days)” and “data from 15:00 to 3 o'clock the next day (for 100 days)” are described.
  • FIG. 4 is an example of a simulation result of hot water supply load for 100 days under a predetermined condition.
  • the hot water supply load data analysis unit 6 divides the hot water supply load data and analyzes each of the divided data. In the following description, the description of the “hot water supply load from 3 o'clock to 15 o'clock” will be omitted, and the analysis of “hot water supply load from 15:00 to 3 o'clock the next day” will be described.
  • Step S3-1 The hot water supply load data analysis unit 6 aggregates the data from 15:00 to 3 o'clock on each day divided in step S2 in predetermined analysis time increments.
  • the predetermined analysis time increment is set to 3 hours.
  • the hot water supply load data analysis unit 6 integrates the hot water supply load data for 3 hours measured by the hot water supply load data calculation unit 10 in units of 30 minutes.
  • the hot water supply load data analysis unit 6 has a predetermined analysis time increment of 3 hours, so that 12 hours from 15:00 to 3 o'clock the next day are four time zones (A) 15 to 18:00, (B) 18 -11: 00, (C) 21-24, and (D) 24-3. That is, the hot water supply load data analysis unit 6 integrates the hot water load data for 3 hours measured by the hot water supply load data calculation unit 10 in units of 30 minutes in four time zones (A) to (D) (FIG. 5 (a) state).
  • Step S3-2 The maximum hot water supply load when viewed in units of 3 hours is called the first peak, the time zone is called the first peak time zone, the second largest hot water supply load is called the second peak, and the time zone is called the second peak time zone. .
  • the hot water supply load on a certain day is “(A) 5 kWh, (B) 10 kWh, (C) 20 kWh, (D) 3 kWh” in each time zone (A) to (D)
  • the first peak time zone is In (C)
  • the second peak time zone is (B)
  • “(A) 5 kWh, (B) 20 kWh, (C) 10 kWh, (D) 3 kWh” the first peak time zone is (B).
  • the second peak time zone is (C).
  • step S 3-2 the hot water supply load data analysis unit 6 performs grouping (clustering) on the data aggregated in step S 3-1 with the same first peak time zone and second peak time zone. Note that the data collected in step S3-1 is for every 30 minutes in each time zone (A) to (D).
  • Cluster 1 first peak (C), second peak (B), frequency of occurrence 50% (50 during 100 days).
  • Cluster 2 first peak (B), second peak (D), frequency of occurrence 30% (30 during 100 days).
  • Cluster 3 first peak (B), second peak (D), frequency of occurrence 10% (10 out of 100 days).
  • Cluster 4 1st peak (C), 2nd peak (D), frequency of occurrence 8% (8 days out of 100).
  • Cluster 5 1st peak (A), 2nd peak (B), occurrence frequency 2% (2 days in 100 days)
  • hot water supply load data (simulation results) classified into cluster 1 and cluster 2 is shown as an example.
  • the hot water supply load data of FIG. 6A is a simulation result that is grouped into clusters of the first peak (C) and the second peak (B) by being analyzed by the hot water supply load data analysis unit 6.
  • FIG. 6B shows a simulation result that is grouped into clusters of the first peak (B) and the second peak (C) by being analyzed by the hot water supply load data analysis unit 6. .
  • Step S3-3 The hot water supply load data analysis unit 6 obtains the average and standard deviation of the hot water supply loads in each time zone (3 hours) for each cluster in step S3-2. These data are statistical data used by the operation plan planning unit 4 and the operation plan correction unit 5.
  • Step S4-1 to step S3-3 the hot water supply load data analysis unit 6 performed an operation on the data from 15:00 to 3 o'clock on the next day divided in step S2.
  • steps S4-1 to S4-3 the hot water supply load data analysis unit 6 corresponds to the data of 3:00 to 15:00 on each day divided in step S2 with steps S3-1 to S3-3. Perform the operation to be performed.
  • Step S5 The hot water supply load data analysis unit 6 stores the analysis results from step S1 to step S4-3 in the hot water supply load data storage unit 3.
  • step S3-2 and step S4-2 clustering is performed by focusing on the first peak and the second peak.
  • clustering may be performed by focusing only on the first peak.
  • Clustering may be performed by paying attention to the third peak and the fourth peak. For example, in a home where daily life patterns hardly change, a very large first peak (hot water supply load) occurs in the same time zone every day, and there is no significant difference in the hot water supply load amount from the second peak to the fourth peak. become. In such a case, it is not particularly necessary to consider the second peak, and it can be said that clustering may be performed focusing on only the first peak.
  • the analysis method in which the data for a plurality of days stored in the hot water supply load data storage unit 3 is not particularly distinguished by day has been described, but the analysis method is not limited thereto.
  • the days may be divided into different groups for analysis, such as weekdays and holidays. In this way, when the next day is a weekday, only past weekday data can be used, and when the next day is a holiday, only past holiday data can be used for data analysis. Can do.
  • the hot water supply load data analysis part 6 demonstrated as an example that this predetermined
  • a 12-hour division is divided into “(A) 3 to 6 o'clock, (B) 6 to 10 o'clock (4 hours), (C) 10 to 13 o'clock, (D) 13:00 to 15:00 (2 hours) ".
  • 1 hour before and after 12:00 when lunch preparation and clean-up occur are the same time zone (C), and the operation planning unit 4 may be able to perform more appropriate clustering.
  • the time for dividing one day may be set to another time instead of 3:00 and 15:00. In either case, it can be dealt with by changing the time unit and time exemplified in the description of the hot water supply load data analysis unit 6 and the hot water supply load data storage unit 3. About the setting value of these various setting items, a user, an installer, etc. may change a setting by providing the hot water supply system 100 with an input means.
  • FIG. 7 is a flowchart showing a processing flow of the operation plan planning unit 4.
  • FIG. 8 is an image diagram of an operation plan. With reference to FIG.7 and FIG.8, operation
  • the operation of the hot water supply load data analysis unit 6 described above is “3 to 15:00 (steps S4-1 to S4-3)” and “15:00 to 3:00 the next day (steps S3-1 to S3-3)”.
  • the operation of the operation planning unit 4 is also divided into “3 to 15:00 (steps S12-1 to S12-3)” and “15:00 to 3:00 the next day (steps S11-1 to Step S11-3) ”.
  • Step S11-1) The operation planning unit 4 selects one of a plurality of clusters (target: 15:00 to 3 o'clock the next day) generated by the hot water supply load data analysis unit 6.
  • a cluster with the highest occurrence frequency may be selected, or a cluster with the highest occurrence frequency may be selected from the clusters in the time zone with the earliest first peak.
  • the latter is a selection method for reducing the possibility of the risk of running out of hot water.
  • cluster 1 is selected by the former selection method and cluster 2 is selected by the latter selection method.
  • a cluster with low occurrence frequency may be regarded as an exceptional hot water supply load pattern and excluded from the target cluster.
  • the cluster 1 when the cluster 1 is divided into the cluster 5 described in the operation description of the hot water supply load data analysis unit 6, the cluster 5 having the occurrence frequency of 5% or less may be excluded.
  • Step S11-2) The operation planning unit 4 predicts the hot water supply load every 3 hours on the next day for the cluster selected in step S11-2.
  • a predictive method is adopted.
  • the adjustment coefficient is a setting parameter introduced to avoid the risk of running out of hot water, and is set to 1.0 or 1.5, for example.
  • Step S11-3 The operation plan drafting unit 4 drafts an operation plan for every three hours of the boiling unit 2 so as to supply the predicted hot water supply load for every three hours predicted in step S11-2.
  • the predicted hot water supply load of “(A) 15 to 18:00, (B) 18 to 21:00, (C) 21 to 24:00, (D) 24 to 3 o'clock” is “(A) 5 kWh, (B) 10 kWh, (C) 20 kWh, (D) 3 kWh ”(see FIG. 8A).
  • the operation plan at this time is as follows. The following (A) to (D) show the operation plans corresponding to the above time zones.
  • (A) Start boiling at 15:00, and stop boiling when 5 kWh of heat is supplied.
  • (B) Start boiling at 18:00, and stop boiling at the stage where 10 kWh of heat is supplied.
  • (C) Start boiling at 21:00, and stop boiling at the stage when 20 kWh of heat is supplied.
  • (D) Start boiling at 24:00 and stop boiling at the stage where 3 kWh heat is supplied.
  • the operation plan is as follows. (A) From 15:00 to 15:25: Operation (5kWh heat supply) 15:25 to 18:00: Stop (B) 18:00 to 18:50: Operation (10kWh heat supply) 18: 50-21: 00: Stop (C) 21: 00-22: 40: Operation (20kWh heat supply) 22: 40-24: Stop (D) 24: 00-24: 15: Operation (3kWh heat supply) 24: 15-3: Stop
  • the command value to the boiling part 2 does not need to be constant. That is, the amount of heat generated in the boiling unit 2 may be varied. For example, the command value may be varied in accordance with the characteristics of the boiling unit 2 when supplying the amount of heat corresponding to 10 kWh from 18:00 to 18:50.
  • the operation planning unit 4 heats up the predicted hot water supply load for each time zone (every 3 hours) during the predicted time zone so as to avoid heat loss as much as possible. To plan. For example, as shown in FIG. 8B, in the time zone of (A), boiling is performed for 25 minutes, but this boiling is planned to be performed in the time zone of (A). is there. Further, in this step S11-3, as shown in FIG. 8 (b), the operation planning unit 4 performs boiling at the beginning of each time period so as to avoid hot water as much as possible.
  • Step S12-1) to (Step S12-3) In steps S11-1 to S11-3, the operation plan planning unit 4 created an operation plan for the data at 3 o'clock the next day.
  • Steps S12-1 to S12-3 the operation plan planning unit 4 performs the processing corresponding to Steps S11-1 to S11-3 on the data from 3 o'clock to 15 o'clock to create the operation plan. create.
  • the operation plan planning unit 4 stores the operation plans created in steps S11-1 to S11-3 and steps S12-2 to S12-3 in the hot water supply load data storage unit 3, respectively.
  • FIG. 9 is a flowchart showing a process flow of the operation plan correction unit 5.
  • FIG. 10 is an example of a cluster review method. With reference to FIG.9 and FIG.10, operation
  • Step S21 The operation plan correction unit 5 determines whether or not the current time is the following (1) to (4). (1) 3 o'clock, (2) 6 o'clock, 9 o'clock or 12 o'clock, (3) 15 o'clock, (4) 18 o'clock, 21 o'clock or 24 o'clock. If the operation plan correction
  • step S22 determines the calorie
  • Step S22 The operation plan correction unit 5 determines the amount of heat Q to be boiled in the next 3 hours, and proceeds to step S23.
  • amendment part 5 implements the determination method of the calorie
  • Q1, Q0, and Q_base are defined as follows.
  • the heat quantity from 3 o'clock to 6 o'clock planned by the operation planning unit 4 is Q1
  • the heat amount from 15:00 to 18:00 planned by the operation planning unit 4 is set to Q1 at 15:00, and at 18:00, 21:00 or 24:00, prediction is made in step S28 described later.
  • the next 3 hours hot water supply load prediction is defined as Q1.
  • the current remaining hot water storage amount is defined as Q0.
  • the amount of heat that is desirably left in the hot water storage tank 1 when the operation plan is reviewed is defined as a reference hot water storage amount Q_base.
  • the amount of heat Q to be boiled in the next three hours is given by the following equation using the reference hot water storage remaining amount Q_base.
  • the operation plan correction unit 5 determines the amount of heat Q to be boiled in the next 3 hours.
  • step S22 the difference between the reference hot water storage remaining amount at the time of correction and Q_base is added to the boiling amount for the next 3 hours, thereby absorbing the error of the actual hot water supply load and the prediction in the previous 3 hours. can do. That is, when the actual hot water supply load is lower than the operation plan predicted in advance, the controller 99 boils the heat so as to reduce the amount of heat generated in the heating unit 2 for each time zone in the operation plan predicted in advance. The raising unit 2 is controlled. In addition, when the actual hot water supply load exceeds the operation plan predicted in advance, the controller 99 raises the amount of heat generated by the heating unit 2 for each time zone in the operation plan predicted in advance. Part 2 is controlled. In addition, when the performance of the hot water supply load for the next 3 hours matches with the prediction, the remaining hot water storage at the time after 3 hours matches the reference remaining hot water storage Q_base.
  • Step S23 The operation plan correction unit 5 generates a correction plan for the amount of heat Q to be boiled in the next three hours, and proceeds to step S23.
  • the correction plan starts boiling at the current time and stops boiling at the time when the heating of the heat quantity Q is completed.
  • step S23 the cluster is newly changed when shifting from step S26 or step S28.
  • Step S24 The operation plan correction unit 5 stores the correction plan generated in step S23 in the hot water supply load data storage unit 3.
  • Step S25 The operation plan correction unit 5 reviews the selected cluster.
  • amendment part 5 totals the hot water supply load performance from 3 o'clock to the present time (9 o'clock) every 3 hours.
  • amendment part 5 calculates the square error of the total load performance and the average hot water supply load for every 3 hours in each cluster.
  • the operation plan correction unit 5 newly selects a cluster having the smallest sum of square errors among all the clusters.
  • a specific example of the method for determining a newly selected cluster in step S25 will be described in step S27 described later.
  • Step S26 The operation plan correction unit 5 predicts the hot water supply load for the next three hours (9:00 to 12:00) for the newly selected cluster.
  • the hot water supply load prediction method of the operation plan correction unit 5 is the same as the prediction method in the operation plan planning unit 4.
  • Step S27 The operation plan correction unit 5 reviews the selected cluster.
  • the operation plan correction unit 5 determines a cluster to be newly selected by, for example, a procedure similar to the procedure in step S25.
  • amendment part 5 totals the hot water supply load performance from 15:00 to the present time (21:00) every 3 hours.
  • amendment part 5 calculates the square error of the total load performance and the average hot water supply load for every 3 hours in each cluster. Then, the operation plan correction unit 5 newly selects a cluster having the smallest sum of square errors among all the clusters.
  • amendment part 5 is demonstrated concretely.
  • the operation plan correction unit 5 since the current time is 21:00, the operation plan correction unit 5 totals load results at 15:00 to 18:00 and from 18:00 to 21:00. The load record from 15:00 to 18:00 is “3”, and the load record from 18:00 to 21:00 is “12”.
  • the operation plan correction unit 5 calculates a square error between the load result from 15:00 to 18:00 and the average hot water supply load from 15:00 to 18:00 of the cluster generated by the clustering performed in step S3-2.
  • the operation plan correction unit 5 calculates the square error between the load record from 18:00 to 21:00 and the average hot water supply load from 18:00 to 21:00 of the cluster.
  • step S3-2 a case where a total of three clusters 1 to 3 are generated by clustering in step S3-2 is described as an example.
  • the operation plan correction unit 5 newly selects the cluster 1 because the sum of the square errors of the cluster 1 is the smallest among the clusters 1 to 3.
  • the operation plan correction unit 5 has been described as performing processing based on the square error in steps S25 and S27.
  • the present invention is not limited to this, and an absolute value of the error is employed. May be.
  • a cluster to be selected may be determined using a square error multiplied by a weighting factor that can be set for each cluster, instead of the square error itself.
  • the currently selected cluster may be preferentially selected by applying the maximum weight, or a weighting factor corresponding to the frequency of occurrence of each cluster may be applied.
  • review the cluster if the previous three hours are predicted to be the cluster that is the first peak, and the actual hot water load is within the estimated average ⁇ standard deviation of the cluster, review the cluster. It may not be performed.
  • the operation plan correction unit 5 predicts the hot water supply load for the next three hours (9:00 to 12:00) for the newly selected cluster.
  • the hot water supply load prediction method of the operation plan correction unit 5 is the same as the prediction method in the operation plan planning unit 4.
  • one day is divided into two analysis time zones, and analysis, planning, and correction are performed individually (see FIG. 4), but they may not be separated.
  • FIG. 11 is a modification of hot water supply system 100 according to the first embodiment.
  • the heat exchange unit 8 is installed inside the hot water storage tank 1.
  • the heat exchange unit 8 is, for example, a heat transfer coil.
  • the configuration of FIG. 11 unlike the configuration shown in FIG. 1, it is not necessary to provide a secondary side hot water pipe or pump. Even if it is the structure of FIG. 11, the effect similar to the hot water supply system 100 shown in FIG. 1 can be acquired.
  • the hot water supply load data analysis unit 6 clusters past hot water supply load data by feature analysis (steps S3-2 and S4-2), and the operation planning unit 4 is typical for the user.
  • An operation plan composed of a typical hot water supply load pattern is generated (steps S11-1 to S13), and the operation plan correction unit 5 changes the generated operation plan (steps S22, S23, S25 to S28).
  • Embodiment 2 the difference from the first embodiment will be mainly described.
  • an input means is provided so that an operation for the purpose of minimizing running cost can be selected. That is, in the second embodiment, when the electricity rate unit price is a charge by time zone, the operation plan considering the electricity rate unit price is changed and the operation plan is changed, and the operation for the purpose of minimizing the running cost is selected. It is something that can be done.
  • the operation plan creation method that is, [operation of hot water supply load data analysis unit 6] is the same as in the first embodiment.
  • the boiling method every 3 hours that is, [the operation of the operation planning unit 4] is different from the first embodiment.
  • the boiling plan is corrected by the following procedure.
  • the plan for 6-9 is changed. If the electricity bill unit price at 6-9 is lower than or equal to the electricity bill unit price at 3-6, the plan is not changed. If the electricity unit price at 6-9 is larger than the unit price at 3-6, the plan is changed so that the boiling amount originally planned at 6-9 is heated up at 3-6. Therefore, if the maximum amount that can be heated is exceeded at 3 to 6 o'clock, the maximum amount that can be heated is set to 3 to 6 o'clock, and the boiling amount originally planned at 6 to 9 o'clock is 6 to 9 o'clock. Boil the remaining amount changed from 3 to 6 o'clock.
  • the plan for 9 to 12 o'clock is changed.
  • the plan is not changed if the electricity unit price at 9-12 o'clock is smaller than or the same as the electricity unit price at 3-6 o'clock and 6-9 o'clock. If the electricity bill unit price at 9-12 o'clock is smaller than the electricity bill unit price at 3-6 am and the electricity bill unit price at 6-9 am is also large, the boiling amount originally planned at 9-12 o'clock is 6-6 Change the plan to boil at 9 o'clock. Therefore, if the maximum amount that can be heated is exceeded at 6 to 9 o'clock, the maximum amount that can be heated is set to 6 to 9 o'clock, and 9 to 12 o'clock is originally from 9 to 12 o'clock.
  • the plan can be revised depending on the unit price of electricity bills at 3-6pm and 6-9pm. Different. If the electricity bill unit price at 3 to 6 o'clock is smaller, the plan is changed so that the boiling amount originally planned at 9 to 12 o'clock is raised to 3 to 6 o'clock. As a result, when the maximum amount that can be heated is exceeded at 3 to 6 o'clock, the maximum amount that can be heated is set at 3 to 6 o'clock.
  • the remaining amount changed from 3 to 6 o'clock from the boiling amount originally planned at 9 to 12 o'clock is boiled up. Further, the boiling amount at 9 to 12 o'clock changed as described above is changed to 6 to 9 o'clock. As a result, if the maximum amount that can be heated is exceeded at 6 to 9 o'clock, the maximum amount that can be heated is set to 6 to 9 o'clock. At 9-12 o'clock, the remaining amount changed from 6-9 o'clock is heated up from the boiling amount at 9-12 o'clock changed by the above.
  • the boiling rate originally planned at 9-12 o'clock is 6-9 o'clock. Change to boil up. As a result, if the maximum amount that can be heated is exceeded at 6 to 9 o'clock, the maximum amount that can be heated is set to 6 to 9 o'clock. At 9 to 12 o'clock, the remaining amount changed from 6 to 9 o'clock from the boiling amount originally planned at 9 to 12 o'clock is boiled. Further, the boiling amount at 9-12 o'clock changed as described above is changed to be raised at 3-6 o'clock.
  • the heating up every 3 hours is shifted to a time zone in which the unit price is smaller in the time before the time planned by the method of the first embodiment.
  • the time zone setting for prediction / planning / correction should not be fixed every 3 hours, but should be set according to the electricity rate unit price for each time zone.
  • the cluster is reviewed by the correction method described in the first embodiment. Further, the amount of boiling after the current time is changed based on the same idea as the plan correction method considering the unit price of electric charges described in the second embodiment.
  • the hot water supply system according to the second embodiment reduces the running cost by changing the operation plan in consideration of the unit price of electricity and the operation plan. Can do.
  • FIG. 12 is a configuration diagram of a hot water supply and heating system 200 according to the third embodiment.
  • the hot water supply system 100 according to the first and second embodiments relates to hot water supply for hot water supply, but the third embodiment relates to the hot water supply and heating system 200.
  • an operation plan or correction on the hot water supply side may be made. Basically, priority may be given to either the hot water supply operation or the heating operation, but when the room temperature is very low, the heating operation must be prioritized.
  • the hot water supply operation is temporarily interrupted while the control based on the method described in the first and second embodiments is being executed. However, even if interrupted, the heating operation unit 7 performs control so that the predicted hot water supply load every 3 hours is heated in the predicted 3 hours.
  • the hot water supply and heating system 200 according to the third embodiment is configured to use the heat generated by the boiling unit 2 not for hot water supply but for heating, but is similar to the hot water supply system 100 of the first and second embodiments. There is an effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 運転計画による運転の開始後、所定日の給湯負荷の実績に基づいて、所定日のその後の給湯負荷を予測し、予測し直した給湯負荷及び貯湯タンクの貯湯残量に基づいて、運転計画立案部で生成した所定日におけるその後の運転計画を変更する運転計画補正部とを有する。

Description

給湯システム
 本発明は、給湯システムに関するものである。
 給湯システムは、ヒートポンプやボイラなどの熱源機と、温水を貯留する貯湯タンクとを有し、熱源機によって加温した熱媒体の熱を利用して貯湯タンクに温水を蓄えることが可能なものである。貯湯タンクに蓄えられた温水は、シャワーや風呂あるいは台所などの給湯用途に使用される。
 貯湯タンクに蓄える温水の生成方法としては、熱源機により加熱された温水を直接貯湯タンクに蓄える直接加熱方式と、熱源機により加熱された冷媒や熱媒体と貯湯タンク内の温水との間で熱交換を行う間接加熱方式とがある。
 そして、直接加熱方式の給湯システムには、エネルギー効率の高いヒートポンプを熱源機とし、大容量の貯湯タンクを備え、電気料金単価が低額である深夜に大量の温水を沸き上げる給湯システムがある。
 また、間接加熱方式の給湯システムには、一次側回路を流れる冷媒と、二次側回路を流れる水とを熱交換させる水熱交換器を有し、熱源機により加熱された冷媒の温熱を水熱交換器を介して二次側回路を流れる水に伝達させて温水を生成させるものが提案されている(たとえば、特許文献1参照)。
 特許文献1に記載の技術は、貯湯タンク内の熱量が不足したときに水に熱量を追い焚きを実施するものであるが、その追い焚きにあたり、過去7日分の実績負荷をもとに当日の給湯負荷を予測し、さらに、制御当日、実績負荷が4時間後の予測負荷よりも大きくなったときに、実績負荷と現在時刻の予測負荷との差を追加蓄熱量として追い焚きを行う。これにより、給湯負荷発生時間帯が、予測した時間帯よりも前の時間帯であったときに、追い焚き量を適正にできるため、不必要な追い焚き運転を抑制し、給湯システムの省エネ性を向上させることができるようになっている。
特開2010-32212号公報(たとえば、図1~図5参照)
 特許文献1に記載の技術は、過去の実績負荷から予測した1日に必要な総熱量の全てあるいは大半を、深夜に沸き上げることを前提としている。そして、湯切れリスクを低減するために、多くの場合、深夜沸き上げの時点で過剰に沸き上げが行われている可能性が高い。このため、制御当日の給湯負荷の実績が給湯負荷の予測を下回った場合、省エネルギー性が損なわれてしまうという課題があった。
 また、貯湯タンクの容量が小さい給湯システムや、熱源機の能力が低く高温での貯湯ができないような給湯システムの場合には、1日に必要な総熱量の全てあるいは大半を、一度に沸き上げることは困難であり、1日に何度も沸き上げ又は追い焚きを行う必要があり、その分省エネルギー性が損なわれてしまうという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、省エネルギー性を向上させることを実現した給湯システムを提供することを目的としている。
 本発明に係る給湯システムは、水を貯留する貯湯タンクと、貯湯タンクに貯留される水を加熱する加熱源である沸き上げ部と、貯湯タンクに貯留される水を加温するために、沸き上げ部で生成する熱量を時間帯ごとに決定する制御装置とを備え、制御装置は、少なくとも貯湯タンクに流入する水の水温と、貯湯タンクから流出する水の水温及び流量とにより生成された給湯負荷データを複数の日数分記憶する給湯負荷データ記憶部と、給湯負荷データ記憶部に記憶された複数の日数分の給湯負荷データを分析する給湯負荷データ分析部と、給湯負荷データ記憶部に記憶された複数の日より先の所定日の給湯負荷を、給湯負荷データ分析部の分析に基づいて予測し、その予測結果に基づいて所定日の沸き上げ部の運転計画を生成する運転計画立案部と、運転計画による運転の開始後、所定日の給湯負荷の実績に基づいて、所定日のその後の給湯負荷を予測し、予測し直した給湯負荷及び貯湯タンクの貯湯残量に基づいて、運転計画立案部で生成した所定日におけるその後の運転計画を変更する運転計画補正部と、を有するものである。
 本発明に係る給湯システムによれば、予測し直した給湯負荷及び貯湯タンクの貯湯残量に基づいて、運転計画立案部で生成した所定日におけるその後の運転計画を変更するので、省エネルギー性を向上させることができる。
本発明の実施の形態1に係る給湯システムの構成図である。 図1に示す制御装置の機能構成を示すブロック図である。 図2に示す給湯負荷データ分析部の処理の流れを示すフローチャートである。 時間毎の給湯負荷のシミュレーション結果の一例である。 給湯負荷データの集計の例である。 クラスタリングのシミュレーション結果の一例である。 運転計画立案部の処理の流れを示すフローチャートである。 運転計画のイメージ図である。 運転計画補正部の処理の流れを示すフローチャートである。 クラスタ見直し方法の例である。 本発明の実施の形態1に係る給湯システムの変形例である。 本発明の実施の形態3に係る給湯システムの構成図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、実施の形態1に係る給湯システム100の構成図である。図1を参照して、給湯システム100の構成について説明する。
 本実施の形態1に係る給湯システム100は、制御当日の給湯負荷の実績が給湯負荷の予測を下回った場合、貯湯タンクの容量が小さい給湯システムの場合、熱源機の能力が低く高温での貯湯ができない場合などにおいても、給湯システム100の省エネルギー性を向上させることを可能とする改良が加えられている。
[構成説明]
 給湯システム100は、図1に示すように、水を貯留可能な貯湯タンク1、温水を生成する沸き上げ部2、供給される水同士を熱交換させる熱交換部8と、水を搬送するための一次側ポンプ20A及び二次側ポンプ20Bと、水の流量や給湯温度などを制御する制御装置99とを有している。
 この給湯システム100は、熱源側の回路であり、沸き上げ部2、熱交換部8及び一次側ポンプ20Aが接続されて構成される一次側回路Aと、利用側の回路であり、貯湯タンク1、熱交換部8、及び二次側ポンプ20Bが接続されて構成される二次側回路Bとを有している。なお、以下の説明においては、一次側回路Aに水を流すものとして説明するが、冷媒、ブライン、熱媒体などであってもよい。
(貯湯タンク1)
 貯湯タンク1は、熱交換部8で加温された水を貯留可能なものであり、二次側ポンプ20Bの水流入側及び熱交換部8の水流出側に接続されている。
 また、貯湯タンク1は、図1の矢印Cに示すように、水道水が貯湯タンク1内に供給されるようになっている。さらに、貯湯タンク1は、図1の矢印Dに示すように、貯湯タンク1内に貯留された水をシャワーや台所などに供給可能となっている。なお、図1の矢印Eに示すように、貯湯タンク1から流出する水の温度は、低温の水道水と混合され、ユーザーが必要とする温度に調節可能となっている。
(沸き上げ部2)
 沸き上げ部2は、たとえば、ヒートポンプやボイラなどで構成される熱源機である。この沸き上げ部2は、熱交換部8から戻ってくる低温の一次側戻り水を加温し、一次側温水として熱交換部8に供給する。
(熱交換部8)
 熱交換部8は、沸き上げ部2から供給された一次側回路Aの水と、貯湯タンク1から供給された二次側回路Bの温水(以下、貯湯温水とも称する)との間で熱交換をさせるものである。熱交換部8は、たとえば一次側回路Aを流れる水と二次側回路Bを流れる水との間で熱交換ができるような二重管熱交換器で構成するとよい。
(一次側ポンプ20A及び二次側ポンプ20B)
 一次側ポンプ20Aは、一次側回路A内の水を搬送するものである。すなわち、一次側ポンプ20Aは、熱交換部8から流出し、熱交換部8で熱交換して温度の低下した水(一次側戻り水)を、沸き上げ部2に搬送する。
 二次側ポンプ20Bは、二次側回路B内の水を搬送するものである。すなわち、二次側ポンプ20Bは、貯湯タンク1から流出し、熱交換部8で熱交換して温度の上昇した水を、沸き上げ部2に搬送する。
 なお、一次側ポンプ20Aを設ける位置は、一次側戻り水が流れる配管に限定されるものではなく、一次側温水の流れる配管としてもよい。すなわち、一次側ポンプ20Aを設ける位置は、熱交換部8の下流側であって熱交換部8の上流側でもよい。また、二次側ポンプ20Bを設ける位置は、貯湯タンク1から流出する水が流れる配管に限定されるものではない。すなわち、二次側ポンプ20Bを設ける位置は、熱交換部8の下流側であって貯湯タンク1の上流側でもよい。
(制御装置99)
 制御装置99は、図1に示す矢印Dの水温及び流量と、矢印Cの水温とに基づいて沸き上げ部2、一次側ポンプ20A及び二次側ポンプ20Bの運転計画を生成するものである。そして、制御装置99は、この生成した運転計画に基づいて沸き上げ部2、一次側ポンプ20A及び二次側ポンプ20Bを制御する。
 なお、制御装置99の生成する運転計画は、制御装置99が、過去の給湯負荷のデータを分析し、ユーザーにとって典型的な給湯負荷パターンを算出することで得られるようになっている。そして、この制御装置99は、この生成された運転計画を、所定の規則に基づいて変更する機能を有しているものである。なお、制御装置99の詳しい構成については、図2で述べるものとする。
 なお、制御装置99は、貯湯タンク1が常に満水を維持するようにタンクへ補給水(低温水道水)を供給してもよいし、貯湯タンク1の水位が所定の水位にまで低下した後に補給水(低温水道水)を供給してもよい。後者の場合には、貯湯タンク1への水道水配管に流量調節弁などを設置し、制御装置99から貯湯タンク1の水位制御を行う。以下の説明では、特に断りのない限り、貯湯タンク1は常に満水を維持しているものとして説明する。
 図2は、図1に示す制御装置99の機能構成を示すブロック図である。図2を参照して制御装置99の詳しい構成について説明する。
 制御装置99は、水温などを計測するデータ計測部9と、後述の給湯負荷データ記憶部3に記憶されたデータに基づいて所定の計算をする給湯負荷データ計算部10と、データ計測部9や給湯負荷データ計算部10などの計算結果などを記憶する給湯負荷データ記憶部3とを有している。
 また、制御装置99は、給湯負荷データ計算部10の計算結果に対して時間帯に基づいた分析を行う給湯負荷データ分析部6と、給湯負荷データ分析部6の分析結果に基づいて、沸き上げ部2の運転計画を生成する運転計画立案部4と、運転計画立案部4の生成した運転計画の見直しをする運転計画補正部5と、運転計画補正部5で見直された運転計画に基づいて沸き上げ部2の量を調整する沸き上げ運転部7とを有している。
(データ計測部9)
 データ計測部9は、水温及び流量を計測するセンサーである。より詳細には、データ計測部9は、給湯負荷データ計算部10において給湯負荷データを計算するために必要なデータとして、貯湯タンク1から流出した水であって水道水と合流する前の水(図1の矢印Dの水温)の供給温水温度T1及び温水流量W1を、所定の周期で計測する。また、データ計測部9は、貯湯タンク1に供給する水道水の水温T2(図1の矢印Cの水温)を所定の周期で計測する。
 ここで、データ計測部9は、たとえば貯湯タンク水位を計測することで、温水流量W1を計測するように構成される。また、供給温水温度T1、温水流量W1及び水温T2の計測周期は、たとえば10秒や1分など、給湯負荷データ計算部10において給湯負荷データを計算する時間刻みよりも短い周期とする。
 なお、制御装置99が貯湯タンク1の水量を常に満水となるように制御する場合には、温水流量W1の計測の代わりに、貯湯タンク1に供給する水道水の流量を計測し、給湯負荷データを計算するデータとして採用してもよい。この場合には、貯湯タンク1に供給する水量と貯湯タンク1から流出する水量とが同じ流量となるからである。
 また、水道水の水温T2をセンサーにより計測しない構成としてもよい。この場合には、各時刻の水温の推定値(時刻により変動しない固定値としてもよい)をユーザーがあらかじめ設定できるようにしてもよいし、たとえば外気温などの制御装置99が収集するその他の計測データをもとに自動計算できるようにしてもよい。
 さらに、データ計測部9は、貯湯タンク1の内部の貯湯水温を複数箇所で計測したり、図1に示した二次側温水が配管を流れる流量や熱交換部8における加熱前後の水温を計測したりすることにより、後述する給湯負荷データ計算部10における給湯負荷データの計算を、さらに精度よい計算式で計算できるように構成してもよい。
(給湯負荷データ計算部10)
 給湯負荷データ計算部10は、データ計測部9で計測したデータを基に、貯湯タンク1から給湯へ供給する熱量を計算するものである。なお、以下の説明において、この計算結果は、給湯負荷データとも称する。
 給湯負荷データ計算部10は、所定の時間刻みに、貯湯タンク1から給湯へ供給する熱量を計算している。この所定の時間刻みは、給湯負荷データ分析部6における給湯負荷分析に必要な時間刻みに応じて決定すればよい。給湯負荷分析で行う時間刻みと同じとしてもよいが、より短くすることが望ましい。また、この所定の時間刻みは、本給湯システム100に入力手段を設けることにより、設定変更できるようにしてもよい。
 以下に一例として、所定の時間刻みの値が30分である場合を例として、貯湯タンク1から給湯へ供給する熱量を計算し、給湯負荷データを得る方法について説明する。
 貯湯タンク1から給湯へ供給する熱量(後述の供給熱量Q)の具体的な計算方法としては、貯湯タンク1から給湯への供給温水温度T1と温水流量W1と、貯湯タンク1に供給する水道水の水温T2を用いて、以下の式で計算することができる。
 Q=(T1-T2)×W1
 なお、上式において、単位変換や定数倍については記載を省略した。また、データ計測部9において供給温水温度T1、温水流量W1及び水温T2以外のデータを計測している場合には、これら計測データを用いて、別の計算式により給湯負荷データを計算してもよい。
 データ計測部9における計測周期が1分で、所定の時間刻みが30分の場合は、計測データを用いて計算した1分周期の値を30分積算すればよい。すなわち、1分周期の供給熱量の値を30分積算した給湯負荷の総和が、給湯負荷データとして計算されることになる。
(給湯負荷データ記憶部3)
 給湯負荷データ記憶部3は、データ計測部9、給湯負荷データ計算部10、給湯負荷データ分析部6、運転計画立案部4及び運転計画補正部5で計算された給湯負荷データを記憶するものである。たとえば、給湯負荷データ計算部10において、給湯負荷データ記憶部3は、給湯負荷データ計算部10で計算した所定期間分(たとえば、1日分)の給湯負荷データを、複数の所定期間分(複数の日数分、たとえば100日分)記憶する。
 なお、本実施の形態では、給湯負荷データ記憶部3が複数の日数分の給湯負荷データを記憶しているものとして説明する。また、給湯負荷データ記憶部3は、データ計測部9で計測した計測データも合わせて記憶してもよい。
(給湯負荷データ分析部6)
 給湯負荷データ分析部6は、給湯負荷データ記憶部3に記憶された複数の日数分の給湯負荷データを、給湯負荷が最大となる時間帯に基づいて複数のグループに分類する。給湯負荷データ分析部6の分析結果は、給湯負荷データ記憶部3に記憶される。なお、以下の説明において、この分類されたグループのことをクラスタとも称する。給湯負荷データ分析部6のクラスタの生成方法については後述の図3で説明する。
(運転計画立案部4)
 運転計画立案部4では、給湯負荷データ分析部6における分析結果に基づいて、1日1回、翌日の給湯負荷を予測し、その予測結果に基づいて沸き上げ部2の運転計画を生成するものである。より詳細には、運転計画立案部4は、何時から何分間ずつ、どのような指令値(たとえばヒートポンプ周波数や出力など)で、沸き上げ部2の沸き上げを行うかを24時間分計画する。なお、運転計画立案部4は、便宜上、翌日の給湯負荷を予測するものとして説明したがそれに限定されるものではない。たとえば、沸き上げ部2の制御実行当日の3時から翌日3時までの24時間分の予測と計画を、当日の深夜1時や2時などに行ってもよい。運転計画立案部4で生成された運転計画は、給湯負荷データ記憶部3に記憶される。
(運転計画補正部5)
 運転計画補正部5は、給湯負荷の実績に基づいて、運転計画立案部4が生成した運転計画の見直しを行うものである。より詳細には、運転計画補正部5は、給湯負荷の実績に基づき、所定時間ごとに運転計画立案部4が生成した運転計画の見直しを行う。なお、本実施の形態では、この所定時間が3時間である場合を例に説明するが、それに限定されるものではない。運転計画補正部5で見直した運転計画は、給湯負荷データ記憶部3に記憶される。
 ここで、すでに運転計画補正部5が見直しを実施していたとき、その既に見直しした運転計画を補正計画と称するものとする。運転計画補正部5は、この補正計画がある場合には、補正計画の実施を維持するのではなく、あらためてその補正計画の内容の見直しを行う。
(沸き上げ運転部7)
 沸き上げ運転部7は、運転計画補正部5が生成した補正計画に基づき、沸き上げ部2における沸き上げ量を制御するものである。沸き上げ運転部7が3時間で沸き上げる熱量は、当該3時間の予測給湯負荷分である。したがって、沸き上げ運転部7が沸き上げ途中に給湯負荷が発生したような場合などのように、運転計画や補正計画において計画した沸き上げ時間と、制御時に実際に行われる沸き上げの時間とは異なる結果となることもある。
 また、たとえば貯湯タンク1の貯湯温水の温度と沸き上げ部2からの一次側温水の温度が近づいてきた場合には、熱交換部8による熱交換がほとんどなくなる。このような場合には、たとえ補正計画が運転であったとしても、沸き上げ部2の運転は停止させる。
 この沸き上げ運転部7の停止に伴い、当該3時間で沸き上げ予定であったが沸き上げられなかった熱量分の沸き上げは、所定以上の効率で熱交換が可能となった段階で再開してもよい。
 また、貯湯残量が所定の下限に達した場合には、たとえ補正計画が停止であったとしても、沸き上げ部2の運転を再開させるようにするとよい。一般に、貯湯タンク1の湯切れを回避するために、配管部や貯湯タンク1内にバックアップ用のヒータを設置していることが多い。貯湯残量の所定の下限の設定としては、バックアップ用のヒータの起動条件を考慮して設定と、省エネルギー性を向上させることができる。
[給湯負荷データ分析部6の動作]
 図3は、図2に示す給湯負荷データ分析部6の処理の流れを示すフローチャートである。図4は、時間毎の給湯負荷のシミュレーション結果の一例である。図5は、給湯負荷データの集計の例である。図6は、クラスタリングのシミュレーション結果の一例である。
 なお、図5(a)は給湯負荷データの集計結果を示し、図5(b)はその集計結果を後述するクラスタリングした結果である。また、図6(a)は第1ピーク(C)で第2ピーク(B)のクラスタにおけるシュミレーション結果であり、図6(b)は、図8の第1ピーク(B)で第2ピーク(C)のクラスタにおけるシュミレーション結果である。
 図3~図6を参照して、給湯負荷データ分析部6の動作などについて説明する。
(ステップS1)
 給湯負荷データ分析部6は、給湯負荷データ記憶部3に記憶された複数の日数分の給湯負荷データを読み込む。
(ステップS2)
 給湯負荷データ分析部6は、ステップS1で読み込んだ各日の給湯負荷データを、2つの時間帯に分割する。
 本実施の形態では、分割する時刻として、一般家庭では通常給湯負荷がほとんど発生しないと考えられる深夜3時と、その12時間後であり1日のうちで比較的給湯負荷が小さいと考えられる15時とした場合について説明する。
 すなわち、給湯負荷データ分析部6は、各日の給湯負荷データを、3時~15時の給湯負荷と、15時~翌日3時の給湯負荷とに分割する。このため、図3では、「3時~15時のデータ(100日分)」と「15時~翌日3時のデータ(100日分)」と記載している。
 なお、図4は、所定の条件における100日分の給湯負荷のシミュレーション結果の一例である。この結果からも3時~15時の給湯負荷と、15時~翌日3時の給湯負荷とに分割することが好ましいことが示されているが、それに限定されるものではなく、給湯システム100を導入する家庭の実態などに応じて、別の時刻を設定してもよい。
 このように、給湯負荷データ分析部6は、給湯負荷データを分割し、分割したデータそれぞれに対して分析を行う。以下の説明では、「3時~15時の給湯負荷」の分析の説明については省略し、「15時~翌日3時の給湯負荷」の分析の説明についてするものとする。
(ステップS3-1)
 給湯負荷データ分析部6は、ステップS2で分割した各日の15時~翌日3時のデータを、所定の分析時間刻みで集計する。以下の説明では、一例として、この所定の分析時間刻みは3時間に設定されているものとして説明する。
 まず、給湯負荷データ分析部6は、給湯負荷データ計算部10によって30分単位で計測された3時間分の給湯負荷データを積算する。なお、給湯負荷データ分析部6は、所定の分析時間刻みが3時間であることから、15時~翌日3時の12時間は、4つの時間帯(A)15~18時、(B)18~21時、(C)21~24時、(D)24~3時に分割する。すなわち、給湯負荷データ分析部6は、給湯負荷データ計算部10によって30分単位で計測された3時間分の湯負荷データを、(A)~(D)の4つの時間帯で積算す(図5(a)の状態)。
(ステップS3-2)
 3時間単位でみたときの最大給湯負荷を第1ピーク、その時間帯を第1ピーク時間帯、2番目に大きい給湯負荷を第2ピーク、その時間帯を第2ピーク時間帯と称するものとする。たとえば、ある日の給湯負荷が(A)~(D)の各時間帯において「(A)5kWh、(B)10kWh、(C)20kWh、(D)3kWh」とすると、第1ピーク時間帯は(C)で、第2ピーク時間帯は(B)であり、「(A)5kWh、(B)20kWh、(C)10kWh、(D)3kWh」とすると、第1ピーク時間帯は(B)で、第2ピーク時間帯は(C)である。
 本ステップS3-2において、給湯負荷データ分析部6は、ステップS3-1で集計したデータを、第1ピーク時間帯と第2ピーク時間帯が同じもの同士でグループ分け(クラスタリング)を行う。なお、ステップS3-1で集計したデータは、(A)~(D)の各時間帯における30分ごとのものである。
 たとえば、100日分の午後の給湯負荷は、以下のようにグループ分けされる。
 クラスタ1:第1ピーク(C)、第2ピーク(B)、発生頻度50%(100日中50)。
 クラスタ2:第1ピーク(B)、第2ピーク(D)、発生頻度30%(100日中30)。
 クラスタ3:第1ピーク(B)、第2ピーク(D)、発生頻度10%(100日中10)。
 クラスタ4:第1ピーク(C)、第2ピーク(D)、発生頻度8%(100日中8日)。
 クラスタ5:第1ピーク(A)、第2ピーク(B)、発生頻度2%(100日中2日)
 また、図6(a)及び図6(b)に示すように、クラスタ1とクラスタ2に分類される給湯負荷データ(シミュレーション結果)を一例として示しておく。
 図6(a)の給湯負荷データは、給湯負荷データ分析部6に分析されることによって、第1ピーク(C)で第2ピーク(B)のクラスタにグループ分けされるシュミレーション結果である。
 また、図6(b)は給湯負荷データ分析部6に分析されることによって、第1ピーク(B)で第2ピーク(C)のクラスタにグループ分けされるシュミレーション結果である。。
(ステップS3-3)
 給湯負荷データ分析部6は、ステップS3-2の各クラスタについて、各時間帯(3時間)の給湯負荷の平均と標準偏差を求める。これらのデータは、運転計画立案部4と運転計画補正部5で用いる統計データである。
(ステップS4-1)~(ステップS4-3)
 ステップS3-1~ステップS3-3においては、給湯負荷データ分析部6が、ステップS2で分割した各日の15時~翌日3時のデータに対して演算を実施した。
 本ステップS4-1~ステップS4-3では、給湯負荷データ分析部6が、ステップS2で分割した各日の3時~15時のデータに対して、ステップS3-1~ステップS3-3と対応する演算を実施する。
(ステップS5)
 給湯負荷データ分析部6は、ステップS1~ステップS4-3までの分析結果などを給湯負荷データ記憶部3に記憶する。
 なお、ステップS3-2及びステップS4-2の分析方法では、第1ピークと第2ピークに着目してクラスタリングを行ったが、第1ピークのみに着目してクラスタリングをしてもよいし、第3ピークや第4ピークまでを着目してクラスタリングをしてもよい。
 たとえば、日々の生活パターンがほとんど変わらない家庭では、毎日同じ時間帯に非常に大きい第1ピーク(給湯負荷)が発生し、第2ピークから第4ピークの給湯負荷量に大差がない、という結果になる。このような場合には、第2ピークは考慮する必要は特になく、第1ピークのみに着目してクラスタリングしてもよいといえる。
 さらに、ステップS1~ステップS4-3の分析方法では、給湯負荷データ記憶部3に記憶された複数の日数分のデータを特に日によって区別しない分析方法について説明したが、それに限定されるものではない。たとえば、平日と休日などのように、日について異なるグループに分けておいて分析してもよい。
 このようにすることで、翌日が平日のときは過去の平日のデータのみで、翌日が休日のときは過去の休日のデータのみでデータ分析をすることができ、より適切なデータ分析を行うことができる。
 また、給湯負荷データ分析部6は、一例として、この所定の分析時間刻みは3時間に設定されているものとして説明したがそれに限定されるものではない。たとえば、3時~15時が分析対象のとき、12時間の分割を「(A)3~6時、(B)6~10時(4時間)、(C)10~13時、(D)13~15時(2時間)」などとしてもよい。
 このようにすることで、昼食の準備と後片付けが発生する12時の前後1時間は同じ時間帯(C)となり、運転計画立案部4にとって、より適切なクラスタリングを行える場合がある。12時前後を同じ時間帯にするという視点では、1日を分割する時刻を3時と15時ではなく、他の時刻にしてもよい。
 いずれの場合も、給湯負荷データ分析部6と給湯負荷データ記憶部3の説明で例示した時間単位や時刻などを変更すれば対応可能である。これら各種設定項目の設定値については、給湯システム100に入力手段を設けることにより、ユーザーや設置業者なども設定変更できるようにしてもよい。
[運転計画立案部4の動作]
 図7は、運転計画立案部4の処理の流れを示すフローチャートである。図8は、運転計画のイメージ図である。図7及び図8を参照して、運転計画立案部4の動作などについて説明する。
 上述した給湯負荷データ分析部6の動作は、「3時~15時(ステップS4-1~ステップS4-3)」と「15時~翌日3時(ステップS3-1~ステップS3-3)」とに大別されたが、運転計画立案部4の動作についても、「3時~15時(ステップS12-1~ステップS12-3)」と「15時~翌日3時(ステップS11-1~ステップS11-3)」とに大別される。
(ステップS11-1)
 運転計画立案部4は、給湯負荷データ分析部6で生成した複数のクラスタ(対象:15時~翌日3時)のうち1つを選択する。この選択の基準としては、発生頻度が最大のクラスタを選択してもよいし、第1ピークが最も早い時間帯のクラスタの中から発生頻度が最大のクラスタを選択してもよい。後者は、湯切れリスクが発生する可能性を減らすための選択方法である。給湯負荷データ分析部6の説明で述べたクラスタ1からクラスタ5の分類の例では、前者の選択方法ではクラスタ1を、後者の選択方法ではクラスタ2を選択することになる。
 なお、発生頻度が低いクラスタについては、例外的な給湯負荷パターンであるとみなし、対象とするクラスタから除外してもよい。たとえば、給湯負荷データ分析部6の動作説明で述べたクラスタ1からクラスタ5に分けれた場合において、発生頻度5%以下であるクラスタ5は除外してもよいということである。
(ステップS11-2)
 運転計画立案部4は、ステップS11-2で選択されたクラスタに対する、翌日3時間ごとの給湯負荷を予測する。なお、本実施の形態では、たとえば給湯負荷データ分析部6で計算した3時間ごとの平均と標準偏差を用いて、「給湯負荷予測=平均+標準偏差×調整係数」とすることで給湯負荷を予測する方法を採用している。ここで調整係数とは、湯切れリスクを回避するために導入する設定パラメータであり、たとえば1.0や1.5などと設定する。
(ステップS11-3)
 運転計画立案部4は、ステップS11-2で予測した3時間ごとの予測給湯負荷を供給するように、沸き上げ部2の3時間ごとの運転計画を立案する。
 たとえば、15時~翌日3時「(A)15~18時、(B)18~21時、(C)21~24時、(D)24~3時」の予測給湯負荷が「(A)5kWh、(B)10kWh、(C)20kWh、(D)3kWh」であったとする(図8(a)参照)。このときの運転計画は、以下のようになる。なお、以下の(A)~(D)は、上記の時間帯に対応する運転計画を示している。
(A)15時に沸き上げを開始し、5kWh熱供給した段階で沸き上げを停止する。
(B)18時に沸き上げを開始し、10kWh熱供給した段階で沸き上げを停止する。
(C)21時に沸き上げを開始し、20kWh熱供給した段階で沸き上げを停止する。
(D)24時に沸き上げを開始し、3kWh熱供給した段階で沸き上げを停止する。
 ここで、何分間沸き上げが必要かは、事前に与える沸き上げ部2の特性により決まる。たとえば、給湯システム100の沸き上げ部2が、1kWhの熱量を供給するのに5分間沸き上げが必要であるような熱源であるとすると、運転計画は以下のようになる。
(A)15時~15時25分:運転(5kWh熱供給)
   15時25分~18時:停止
(B)18時~18時50分:運転(10kWh熱供給)
   18時50分~21時:停止
(C)21時~22時40分:運転(20kWh熱供給)
   22時40分~24時:停止
(D)24時~24時15分:運転(3kWh熱供給)
   24時15分~3時:停止
 なお、沸き上げ部2への指令値は、一定である必要はない。すなわち、沸き上げ部2で発生させる熱量については変動させるようにしてもよい。たとえば、上記の18時~18時50分における10kWh相当の熱量を供給するにあたり、沸き上げ部2の特性に応じて、指令値を変動させてもよい。
 また、本ステップS11-3において、運転計画立案部4は、放熱ロスをできる限り回避するよう、各時間帯(3時間ごと)の予測給湯負荷分は、その予測した時間帯に沸き上げを行うように計画する。たとえば、図8(b)に示すように、(A)の時間帯では、25分沸き上げを実施するが、この沸き上げは(A)の時間帯内で実施するように計画するということである。
 さらに、本ステップS11-3において、運転計画立案部4は、図8(b)に示すように、湯切れをできる限り回避するよう、各時間帯の最初に沸き上げを行う。
(ステップS12-1)~(ステップS12-3)
 ステップS11-1~ステップS11-3においては、運転計画立案部4が、翌日3時のデータに対して運転計画を作成した。
 本ステップS12-1~ステップS12-3では、運転計画立案部4が、3時~15時のデータに対して、ステップS11-1~ステップS11-3と対応する処理をして、運転計画を作成する。
(ステップS13)
 運転計画立案部4は、ステップS11-1~ステップS11-3及びステップS12-2~ステップS12-3で作成した運転計画を、それぞれ給湯負荷データ記憶部3に記憶する。
[運転計画補正部5の動作]
 図9は、運転計画補正部5の処理の流れを示すフローチャートである。図10は、クラスタ見直し方法の例である。図9及び図10を参照して、運転計画補正部5の動作などについて説明する。
(ステップS21)
 運転計画補正部5は、現在時刻が次の(1)~(4)であるか否かを判定する。なお、(1)3時、(2)6時、9時又は12時、(3)15時、(4)18時、21時又は24時とする。
 運転計画補正部5は、(1)3時であると判定すると、時間で沸き上げる熱量を決定するステップS22に進む。
 運転計画補正部5は、(2)6時、9時又は12時であると判定するとステップS25に進む。
 運転計画補正部5は、(3)15時であると判定すると、3時間で沸き上げる熱量を決定するステップS22に進む。
 運転計画補正部5は、(4)18時、21時又は24時であると判定すると、選択しているクラスタの見直しを行うステップS27に進む。
 
(ステップS22)
 運転計画補正部5は、次の3時間で沸き上げる熱量Qを決定し、ステップS23に進む。なお、運転計画補正部5は、次の3時間で沸き上げる熱量Qの決定方法は、次のように実施する。
 Q1、Q0及びQ_baseを次のように定義する。
 現在時刻が3時のときは、運転計画立案部4が計画した3時~6時の熱量をQ1とし、6時、9時又は12時のときは後述するステップS26で予測した次の3時間の給湯負荷予測をQ1とし、15時のときは運転計画立案部4が計画した15時~18時の熱量をQ1とし、18時、21時又は24時のときは後述するステップS28で予測した次の3時間の給湯負荷予測をQ1と定義する。また、現在の貯湯残量をQ0と定義する。さらに、湯切れリスクを低減するために、運転計画の見直しの実行時に貯湯タンク1に残っていることが望ましい熱量を、基準貯湯残量Q_baseと定義する。
 このとき、次の3時間で沸き上げる熱量Qは、基準貯湯残量Q_baseを用いて次式で与える。
 Q=(Q_base-Q0)+Q1
 なお、上式の計算の結果Qが負の値となれば、Q=0とする。
 このように、ステップS22において、運転計画補正部5は、次の3時間で沸き上げる熱量Qの決定する。
 このように、ステップS22では、補正を実行する時点の基準貯湯残量とQ_baseの差分を次の3時間の沸き上げ量に加えることで、直前3時間における給湯負荷の実績と予測の誤差を吸収することができる。
 すなわち、給湯負荷の実績が予め予測した運転計画よりも下回っている場合には、予め予測した運転計画における時間帯ごとの沸き上げ部2で生成する熱量を減少させるように、制御装置99によって沸き上げ部2が制御される。また、給湯負荷の実績が予め予測した運転計画を上回っている場合には、予め予測した運転計画における時間帯ごとの沸き上げ部2で生成する熱量を増加させるように、制御装置99によって沸き上げ部2が制御される。
 なお、次の3時間の給湯負荷の実績が予測と一致した場合には、3時間後の時点での貯湯残量が基準貯湯残量Q_baseと一致することになる。
(ステップS23)
 運転計画補正部5は、次の3時間で沸き上げる熱量Qに対する補正計画を生成し、ステップS23に進む。なお、補正計画は、現在時刻に沸き上げを開始し、熱量Qの沸き上げが完了する時刻で沸き上げを停止する。
 本ステップS23では、ステップS26又はステップS28から移行しているときに、新たにクラスタが変更されている。
(ステップS24)
 運転計画補正部5は、ステップS23で生成した補正計画を給湯負荷データ記憶部3に記憶する。
(ステップS25)
 運転計画補正部5は、選択しているクラスタの見直しを行う。ここで、本ステップS25及び後述するステップS26の説明にあたり、現在時刻が9時である場合を例として説明する。なお、6時及び12時のときも考え方は同様である。
 運転計画補正部5は、たとえば以下の手順により、新たに選択するクラスタを決定する。まず、運転計画補正部5は、3時から現在時刻(9時)までの給湯負荷実績を3時間ごとに集計する。次に、運転計画補正部5は、集計した負荷実績と、各クラスタにおける3時間ごとの平均給湯負荷との二乗誤差を計算する。そして、運転計画補正部5は、全クラスタの中で、二乗誤差の和が最小のクラスタを新たに選択する。本ステップS25における新たに選択するクラスタの決定方法の具体例については、後述するステップS27で説明する。
(ステップS26)
 運転計画補正部5は、新たに選択したクラスタに対する次の3時間(9時~12時)の給湯負荷を予測する。ここで、本ステップS26及び後述するステップS27の説明にあたり、現在時刻が21時である場合を例として説明する。なお、18時及び24時のときも考え方は同様である。
 本実施の形態では、運転計画補正部5の給湯負荷の予測方法は、運転計画立案部4における予測の方法と同一とする。すなわち、給湯負荷の3時間ごとの平均と標準偏差を用いて、「給湯負荷予測=平均+標準偏差×調整係数」とすることで給湯負荷を予測する。
(ステップS27)
 運転計画補正部5は、選択しているクラスタの見直しを行う。
 運転計画補正部5は、たとえば、ステップS25における手順と同様の手順により、新たに選択するクラスタを決定する。
 まず、運転計画補正部5は、15時から現在時刻(21時)までの給湯負荷実績を3時間ごとに集計する。
 次に、運転計画補正部5は、集計した負荷実績と、各クラスタにおける3時間ごとの平均給湯負荷との二乗誤差を計算する。
 そして、運転計画補正部5は、全クラスタの中で、二乗誤差の和が最小のクラスタを新たに選択する。
 ここで、図10を参照して運転計画補正部5のクラスタの決定方法について具体的に説明する。
 まず、運転計画補正部5は、現在時刻が21時であることから、15時~18時と、18時~21時とにおける負荷実績を集計する。なお、15時~18時の負荷実績は、「3」であり、18時~21時の負荷実績は「12」である。
 次に、運転計画補正部5は、15時~18時の負荷実績と、ステップS3-2で行ったクラスタリングによって生成したクラスタの15時~18時における平均給湯負荷との二乗誤差を計算する。同様に、運転計画補正部5は、18時~21時の負荷実績と、クラスタの18時~21時における平均給湯負荷との二乗誤差を計算する。なお、この図10の説明の例では、ステップS3-2のクラスタリングでクラスタ1~3の計3つが生成された場合を例に説明している。
 そして、運転計画補正部5は、クラスタ1~3の中で、クラスタ1の二乗誤差の和が最小であるので、このクラスタ1を新たに選択する。
 なお、本実施の形態では、運転計画補正部5は、ステップS25及びS27において、二乗誤差に基づいた処理をするものとして説明したが、それに限定されるものではなく、誤差の絶対値などを採用してもよい。
 また、二乗誤差そのものではなく、クラスタごとに設定可能な重み係数をかけた二乗誤差を用いて、選択するクラスタを決定してもよい。たとえば、現在選択されているクラスタには最大の重みをかけて優先的に選択されるようにしてもよいし、各クラスタの発生頻度に応じた重み係数をかけてもよい。
 さらに、直前の3時間が第1ピークであるクラスタであると予測している場合に、給湯負荷の実績が、予測したクラスタの平均±標準偏差程度の範囲にある場合には、クラスタの見直しを行わないなどとしてもよい。
(ステップS28)
 運転計画補正部5は、新たに選択したクラスタに対する次の3時間(9時~12時)の給湯負荷を予測する。
 本実施の形態では、運転計画補正部5の給湯負荷の予測方法は、運転計画立案部4における予測の方法と同一とする。すなわち、給湯負荷の3時間ごとの平均と標準偏差を用いて、「給湯負荷予測=平均+標準偏差×調整係数」とすることで給湯負荷を予測する。
(その他)
 なお、本実施の形態1では、1日を2つの分析時間帯に分離して、それぞれ個別に分析や計画・補正を行ったが(図4参照)、分離しないでもよい。
[変形例]
 図11は、実施の形態1に係る給湯システム100の変形例である。この構成では、熱交換部8は、貯湯タンク1の内部に設置する。熱交換部8はたとえば伝熱コイルなどとなる。この図11の構成の場合には、図1に示す構成とは異なり、二次側温水用の配管やポンプを設ける必要はない。図11の構成であっても、図1に示す給湯システム100と同様の効果を得ることができる。
[実施の形態1に係る給湯システム100の有する効果]
 実施の形態1に係る給湯システム100は、給湯負荷データ分析部6が過去の給湯負荷データを特徴分析によりクラスタリングし(ステップS3-2、ステップS4-2)、運転計画立案部4がユーザーにとって典型的な給湯負荷パターンからなる運転計画を生成し(ステップS11-1~ステップS13)、運転計画補正部5がこの生成された運転計画を変更する(ステップS22、S23、S25~S28)。
 これにより、制御装置99の制御当日の給湯負荷の実績が、選択したクラスタに分類されるような給湯負荷パターンのときには、予測精度が高い給湯負荷予測に基づく運転計画に従う運転により、省エネを実現することができる。
 また、制御当日の給湯負荷の実績が、選択したクラスタに分類されるような給湯負荷パターンでなかったときでも、実際の給湯負荷パターンに合わせた補正計画に従う運転により、省エネを実現することができる。
実施の形態2.
 本実施の形態2では、実施の形態1との相違点を中心に説明するものとする。実施の形態2では、入力手段を設け、ランニングコスト最小化を目的とした運転を選択できるようにしたものである。すなわち、本実施の形態2では、電気料金単価が時間帯別料金である場合に、電気料金単価を考慮した運転計画とその運転計画の変更を行い、ランニングコスト最小化を目的とした運転を選択できるようにしたものである。
 運転計画の作成方法、すなわち[給湯負荷データ分析部6の動作]については、実施の形態1と同様である。
 一方、3時間ごとの沸き上げ方法、すなわち[運転計画立案部4の動作]については、実施の形態1とは異なる。実施の形態2では、沸き上げ計画を以下の手順で修正する。
 まず、3~6時の計画はそのままとする。
 次に、6~9時の計画を変更する。
 6~9時の電気料金単価が3~6時の電気料金単価よりも小さい場合、又は同じ場合には、計画を変更しない。
 6~9時の電気料金単価が3~6時の電気料金単価よりも大きい場合には、もともと6~9時に計画していた沸き上げ量を3~6時に沸き上げるように計画を変更する。これにより、3~6時に沸き上げ可能な最大量を超える場合には、3~6時は沸き上げ可能な最大量とし、6~9時はもともと6~9時に計画していた沸き上げ量から3~6時に変更した残りの分を沸き上げる。
 次に、9~12時の計画を変更する。
 9~12時の電気料金単価が3~6時と6~9時の電気料金単価のどちらよりも小さい場合、又は同じ場合には、計画を変更しない。
 9~12時の電気料金単価が3~6時の電気料金単価よりも小さく、6~9時の電気料金単価も大きい場合には、もともと9~12時に計画していた沸き上げ量を6~9時に沸き上げるように計画を変更する。これにより、6~9時に沸き上げ可能な最大量を超える場合には、6~9時は沸き上げ可能な最大量とし、9~12時はもともと9~12時に計画していた沸き上げ量から6~9時に変更した残りの分を沸き上げる。
 9~12時の電気料金単価が3~6時の電気料金単価よりも大きく、6~9時の電気料金単価も小さい場合には、もともと9~12時に計画していた沸き上げ量を3~6時に沸き上げるように計画を変更する。これにより、3~6時に沸き上げ可能な最大量を超える場合には、3~6時は沸き上げ可能な最大量とし、9~12時はもともと9~12時に計画していた沸き上げ量から3~6時に変更した残りの分を沸き上げる。
 9~12時の電気料金単価が3~6時と6~9時の電気料金単価のどちらよりも大きい場合には、3~6時と6~9時の電気料金単価により計画の修正方法が異なる。
 3~6時の電気料金単価の方が小さい場合には、もともと9~12時に計画していた沸き上げ量を3~6時に沸き上げるように計画を変更する。これにより、3~6時に沸き上げ可能な最大量を超える場合には、3~6時は沸き上げ可能な最大量とする。
 9~12時はもともと9~12時に計画していた沸き上げ量から3~6時に変更した残りの分を沸き上げる。さらに、上記により変更された9~12時の沸き上げ量を6~9時に沸き上げるように変更する。これにより、6~9時に沸き上げ可能な最大量を超える場合には、6~9時は沸き上げ可能な最大量とする。
 9~12時は上記により変更された9~12時の沸き上げ量から6~9時に変更した残りの分を沸き上げる。
 9~12時の電気料金単価の方が3~6時と6~9時の電気料金単価のどちらよりも小さい場合には、もともと9~12時に計画していた沸き上げ量を6~9時に沸き上げるように変更する。これにより、6~9時に沸き上げ可能な最大量を超える場合には、6~9時は沸き上げ可能な最大量とする。
 9~12時はもともと9~12時に計画していた沸き上げ量から6~9時に変更した残りの分を沸き上げる。
 さらに、上記により変更された9~12時の沸き上げ量を3~6時に沸き上げるように変更する。これにより、3~6時に沸き上げ可能な最大量を超える場合には、3~6時は沸き上げ可能な最大量とする。9~12時は上記により変更された9~12時の沸き上げ量から3~6時に変更した残りの分を沸き上げる。
 12時以降についても同様の手順で、3時間ごとの沸き上げを、実施の形態1の方法で計画した時刻よりも前の時刻の中で単価が小さい時間帯にシフトしていく。予測・計画・補正の時間帯設定を3時間ごとに固定せず、時間帯別の電気料金単価に応じた設定とするとよい。
 なお、補正の方法、すなわち[運転計画補正部5の動作]についてであるが、実施の形態1で述べた補正方法により、クラスタの見直しを行う。さらに、実施の形態2で述べた電気料金単価を考慮した計画の修正方法と同じ考え方で、現在時刻以降の沸き上げ量を変更する。
[実施の形態2に係る給湯システムの有する効果]
 実施の形態2に係る給湯システムは、実施の形態1に係る給湯システムの有する効果に加えて、電気料金単価を考慮した運転計画とその運転計画の変更をすることで、ランニングコストを低減することができる。
実施の形態3.
 図12は、実施の形態3に係る給湯暖房システム200の構成図である。本実施の形態3では、実施の形態1、2との相違点を中心に説明するものとする。実施の形態1、2の給湯システム100は給湯向けの温水供給に関するものであったが、実施の形態3では給湯暖房システム200に関するものである。
 この場合、任意の時刻に給湯側の温水供給をすることができるとは限らない。暖房側の要求(たとえば室温制御)と連動して、給湯側の運転計画立案や補正を行ってもよい。
 なお、基本的には給湯運転と暖房運転のどちらを優先してもよいが、室温が非常に低下している場合などは暖房運転を優先して行わなければならない。このような場合には、実施の形態1、2で述べた方法に基づいた制御を実行中に、給湯運転が一時的に中断されることになる。しかし、中断されたとしても、3時間ごとの予測給湯負荷の分は、予測した3時間で沸き上げるように、沸き上げ運転部7で制御を行う。
[実施の形態3に係る給湯暖房システム200の有する効果]
 実施の形態3に係る給湯暖房システム200は、沸き上げ部2で生成される熱を給湯でなく暖房に用いるように構成したものであるが、実施の形態1、2の給湯システム100と同様の効果を奏する。
 1 貯湯タンク、2 沸き上げ部、3 給湯負荷データ記憶部、4 運転計画立案部、5 運転計画補正部、6 給湯負荷データ分析部、7 沸き上げ運転部、8 熱交換部、9 データ計測部、10 給湯負荷データ計算部、20A 一次側ポンプ、20B 二次側ポンプ、99 制御装置、100 給湯システム、200 給湯暖房システム、A 一次側回路、B 二次側回路。

Claims (10)

  1.  水を貯留する貯湯タンクと、
     前記貯湯タンクに貯留される水を加熱する加熱源である沸き上げ部と、
     前記貯湯タンクに貯留される水を加温するために、前記沸き上げ部で生成する熱量を時間帯ごとに決定する制御装置と
     を備え、
     前記制御装置は、
     少なくとも前記貯湯タンクに流入する水の水温と、前記貯湯タンクから流出する水の水温及び流量とにより生成された給湯負荷データを複数の日数分記憶する給湯負荷データ記憶部と、
     前記給湯負荷データ記憶部に記憶された複数の日数分の給湯負荷データを分析する給湯負荷データ分析部と、
     前記給湯負荷データ記憶部に記憶された複数の日より先の所定日の給湯負荷を、前記給湯負荷データ分析部の分析に基づいて予測し、その予測結果に基づいて前記所定日の前記沸き上げ部の運転計画を生成する運転計画立案部と、
     前記運転計画による運転の開始後、前記所定日の給湯負荷の実績に基づいて、前記所定日のその後の給湯負荷を予測し、予測し直した給湯負荷及び前記貯湯タンクの貯湯残量に基づいて、前記運転計画立案部で生成した前記所定日におけるその後の前記運転計画を変更する運転計画補正部と、
     を有する
     ことを特徴とする給湯システム。
  2.  前記運転計画補正部は、
     前記所定日の給湯負荷の実績が予め予測した前記運転計画よりも下回った場合に、
     予め予測した前記運転計画における時間帯ごとの前記沸き上げ部で生成する熱量を減少させ、
     前記所定日の給湯負荷の実績が予め予測した前記運転計画よりも上回った場合に、
     予め予測した前記運転計画における時間帯ごとの前記沸き上げ部で生成する熱量を増加させる
     ことを特徴とする請求項1に記載の給湯システム。
  3.  前記給湯負荷データ分析部は、
     前記給湯負荷データ記憶部に記憶された複数の日数分の給湯負荷データを複数のグループに分類し、
     前記運転計画立案部は、
     この分類した複数のグループのうち、所定の確率より発生頻度の高い給湯負荷データに基づいて前記沸き上げ部の運転計画を生成し、
     前記運転計画補正部は、
     前記運転計画による運転の開始後の前記所定日の給湯負荷の実績との誤差が小さい前記給湯負荷データを選択し、その選択した前記給湯負荷データに基づいて、前記所定日のその後の運転計画を生成する
     ことを特徴とする請求項1又は2に記載の給湯システム。
  4.  連続する複数の時間帯から構成される時間帯を分析時間帯とし、
     前記分析時間帯を構成する複数の時間帯の各々における給湯負荷を分析時間帯内給湯負荷データとしたとき、
     前記給湯負荷データ記憶部は、
     前記分析時間帯内給湯負荷データを複数の日数分記憶し、
     前記給湯負荷データ分析部は、
     前記給湯負荷データ記憶部に記憶された複数の日数分の前記分析時間帯内給湯負荷データを、時間帯ごとの給湯負荷の大きさに基づいて複数のグループに分類し、
     前記運転計画立案部は、
     前記複数のグループの中から前記分析時間帯内給湯負荷データの発生頻度に基づいて選択されるグループに対して前記所定日の分析時間帯内の給湯負荷を予測し、その予測結果に基づいて前記所定日の分析時間帯内における運転計画を生成し、
     前記運転計画補正部は、
     前記運転計画による運転の開始後、前記所定日の前記分析時間帯内の少なくとも1つの時間帯における給湯負荷の実績に基づいて、前記所定日の前記分析対象期間内のその後の他の時間帯における運転計画を生成する
     ことを特徴とする請求項1~3のいずれか一項に記載の給湯システム。
  5.  前記給湯負荷データ分析部は、
     前記給湯負荷データ記憶部が記憶する複数の日数分の分析時間帯内給湯負荷データを、各分析時間帯内給湯負荷データの給湯負荷が最大となる時間帯に基づいて、複数のグループに分類する
     ことを特徴とする請求項4に記載の給湯システム。
  6.  前記給湯負荷データ分析部は、
     前記給湯負荷データ記憶部が記憶する複数の日数分の分析時間帯内給湯負荷データを、各分析時間帯内給湯負荷データの給湯負荷が最大となる時間帯及び2番目に給湯負荷が大きい時間帯に基づいて、複数のグループに分類する
     ことを特徴とする請求項4に記載の給湯システム。
  7.  前記運転計画補正部は、
     前記所定日の給湯実績との2乗誤差と前記グループの重みとに基づいて、前記給湯負荷データ分析部が分析した複数のグループの中から重みつき二乗誤差の少ないグループを選択し、当該選択されたグループの給湯負荷に基づいて、前記所定日のその後の給湯負荷を変更する
     ことを特徴とする請求項1~6のいずれか一項に記載の給湯システム。
  8.  前記給湯負荷データ記憶部は、
     前記給湯負荷データとして記憶する前記所定日を平日とし、
     前記給湯負荷データ分析部、前記運転計画立案部及び前記運転計画補正部は、
     この平日の前記給湯負荷データに基づいて演算する
     ことを特徴とする請求項1~7のいずれか一項に記載の給湯システム。
  9.  前記給湯負荷データ記憶部は、
     前記給湯負荷データとして記憶する前記所定日を休日とし、
     前記給湯負荷データ分析部、前記運転計画立案部及び前記運転計画補正部は、
     この休日の前記給湯負荷データに基づいて演算する
     ことを特徴とする請求項1~7のいずれか一項に記載の給湯システム。
  10.  前記制御装置は、
     1日を複数の前記分析時間帯に分割し、各分析時間帯ごとに給湯負荷データの分析、運転計画立案を行う
     ことを特徴とする請求項4~9に記載の給湯システム。
PCT/JP2012/004107 2012-06-25 2012-06-25 給湯システム WO2014002131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280074253.2A CN104412046B (zh) 2012-06-25 2012-06-25 热水供应系统
JP2014522222A JP5818985B2 (ja) 2012-06-25 2012-06-25 給湯システム
PCT/JP2012/004107 WO2014002131A1 (ja) 2012-06-25 2012-06-25 給湯システム
EP12880263.4A EP2873931B1 (en) 2012-06-25 2012-06-25 Hot water supply system
US14/406,858 US9702591B2 (en) 2012-06-25 2012-06-25 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004107 WO2014002131A1 (ja) 2012-06-25 2012-06-25 給湯システム

Publications (1)

Publication Number Publication Date
WO2014002131A1 true WO2014002131A1 (ja) 2014-01-03

Family

ID=49782374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004107 WO2014002131A1 (ja) 2012-06-25 2012-06-25 給湯システム

Country Status (5)

Country Link
US (1) US9702591B2 (ja)
EP (1) EP2873931B1 (ja)
JP (1) JP5818985B2 (ja)
CN (1) CN104412046B (ja)
WO (1) WO2014002131A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101900A (ja) * 2015-12-04 2017-06-08 株式会社デンソー 給湯システム
JP2017121175A (ja) * 2017-03-09 2017-07-06 三菱電機株式会社 コントローラ、スケジュール作成方法、及びプログラム
JP2018080856A (ja) * 2016-11-14 2018-05-24 株式会社東芝 制御装置、制御システム、制御方法及び制御プログラム
JP2019100689A (ja) * 2017-12-08 2019-06-24 株式会社デンソー 給湯システム
JP7433131B2 (ja) 2020-05-15 2024-02-19 三菱電機株式会社 給湯機制御装置、給湯機制御システム、稼働スケジュール生成方法およびプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405964B2 (ja) * 2009-09-28 2014-02-05 パナソニック株式会社 ヒートポンプ給湯システム
US9719687B2 (en) * 2014-01-21 2017-08-01 Intellihot, Inc. Multi-temperature output fluid heating system
JP6592858B2 (ja) * 2015-04-14 2019-10-23 三菱重工サーマルシステムズ株式会社 制御装置、制御方法及びプログラム
JP6584524B2 (ja) * 2015-11-27 2019-10-02 三菱電機株式会社 給湯器
CN107062589A (zh) * 2017-03-29 2017-08-18 广州鼎富电子科技有限公司 一种空气能热泵与燃气炉组合加热系统及方法
CN109028601B (zh) * 2018-07-17 2020-05-29 广东万家乐燃气具有限公司 一种热水智能加热方法及装置
JP2020067254A (ja) * 2018-10-26 2020-04-30 株式会社ノーリツ 給湯装置
CN111609560B (zh) * 2020-04-20 2022-05-31 芜湖美的厨卫电器制造有限公司 燃气热水器的控制方法、燃气热水器和计算机可读存储介质
EP3971483A1 (en) * 2020-09-17 2022-03-23 Vaillant GmbH Water heating system with smart tank loadng

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317038A (ja) * 2003-04-17 2004-11-11 Osaka Gas Co Ltd 貯湯式給湯システム
JP2005076968A (ja) * 2003-08-29 2005-03-24 Sharp Corp 貯湯式給湯機および貯湯式給湯機の制御方法
JP2007032879A (ja) * 2005-07-22 2007-02-08 Chofu Seisakusho Co Ltd 熱負荷予測装置及び熱負荷予測方法
JP2010032212A (ja) 2009-11-16 2010-02-12 Daikin Ind Ltd 貯湯式給湯機の運転制御装置
JP2012097950A (ja) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp 貯湯式給湯システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP427998A0 (en) * 1998-06-24 1998-07-16 Aquabeat Pty Ltd Electric water heater control
US6293471B1 (en) * 2000-04-27 2001-09-25 Daniel R. Stettin Heater control device and method to save energy
JP2004251491A (ja) * 2003-02-18 2004-09-09 Osaka Gas Co Ltd 貯湯式給湯システム
US20050061003A1 (en) * 2003-09-18 2005-03-24 Matsushita Electric Industrial Co., Ltd. Cogeneration system
US7015432B2 (en) * 2004-06-05 2006-03-21 Avista Technologies, Llc Water heater control system and method for controlling temperature with same
US7167813B2 (en) * 2005-01-31 2007-01-23 Honeywell International Inc. Water heater performance monitoring system
US9151516B2 (en) * 2006-01-27 2015-10-06 Emerson Electric Co. Smart energy controlled water heater
JP5203855B2 (ja) * 2007-10-10 2013-06-05 パナソニック株式会社 貯湯式給湯装置、運転計画装置及び運転計画方法
JP4525820B2 (ja) * 2007-11-30 2010-08-18 ダイキン工業株式会社 給湯装置
JP4525744B2 (ja) 2007-11-30 2010-08-18 ダイキン工業株式会社 貯湯式給湯機の運転制御装置
JP5207873B2 (ja) * 2008-08-07 2013-06-12 パナソニック株式会社 貯湯式給湯装置、運転計画装置及び運転計画方法
JP2010203633A (ja) 2009-02-27 2010-09-16 Daikin Ind Ltd 貯湯式給湯装置
CN102985936A (zh) * 2010-03-08 2013-03-20 松下电器产业株式会社 开始利用区间预测装置及开始利用区间预测方法
WO2012037604A1 (en) * 2010-09-21 2012-03-29 Planet Intellectual Property Enterprises Pty Ltd Improved heat pump
JP5025835B2 (ja) * 2010-12-27 2012-09-12 パナソニック株式会社 運転計画方法、及びヒートポンプ式給湯暖房システムの運転方法
US20130327313A1 (en) * 2012-06-11 2013-12-12 George R. Arnold High efficiency water heater
US9702590B2 (en) * 2013-02-07 2017-07-11 Haier Us Appliance Solutions, Inc. Method for operating a water heater appliance
US9535434B2 (en) * 2013-03-15 2017-01-03 International Business Machines Corporation Managing hot water storage and delivery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317038A (ja) * 2003-04-17 2004-11-11 Osaka Gas Co Ltd 貯湯式給湯システム
JP2005076968A (ja) * 2003-08-29 2005-03-24 Sharp Corp 貯湯式給湯機および貯湯式給湯機の制御方法
JP2007032879A (ja) * 2005-07-22 2007-02-08 Chofu Seisakusho Co Ltd 熱負荷予測装置及び熱負荷予測方法
JP2010032212A (ja) 2009-11-16 2010-02-12 Daikin Ind Ltd 貯湯式給湯機の運転制御装置
JP2012097950A (ja) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp 貯湯式給湯システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2873931A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101900A (ja) * 2015-12-04 2017-06-08 株式会社デンソー 給湯システム
JP2018080856A (ja) * 2016-11-14 2018-05-24 株式会社東芝 制御装置、制御システム、制御方法及び制御プログラム
JP2017121175A (ja) * 2017-03-09 2017-07-06 三菱電機株式会社 コントローラ、スケジュール作成方法、及びプログラム
JP2019100689A (ja) * 2017-12-08 2019-06-24 株式会社デンソー 給湯システム
JP7433131B2 (ja) 2020-05-15 2024-02-19 三菱電機株式会社 給湯機制御装置、給湯機制御システム、稼働スケジュール生成方法およびプログラム

Also Published As

Publication number Publication date
US9702591B2 (en) 2017-07-11
JP5818985B2 (ja) 2015-11-18
EP2873931A4 (en) 2016-03-23
US20150159913A1 (en) 2015-06-11
CN104412046A (zh) 2015-03-11
CN104412046B (zh) 2016-11-23
EP2873931A1 (en) 2015-05-20
JPWO2014002131A1 (ja) 2016-05-26
EP2873931B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP5818985B2 (ja) 給湯システム
Tang et al. Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids
Liu et al. Pricing-based demand response for a smart home with various types of household appliances considering customer satisfaction
Ding et al. Game-theoretic demand side management of thermostatically controlled loads for smoothing tie-line power of microgrids
Kilkki et al. Optimized control of price-based demand response with electric storage space heating
US20150378381A1 (en) Systems and methods for energy cost optimization
CN105240897B (zh) 一种用于供热系统的蓄热调峰装置
CA3044873A1 (en) Forward-looking transactive pricing schemes for use in a market-based resource allocation system
JP6467216B2 (ja) 熱源システム管理装置、熱源システム管理方法、及びプログラム
JPH11282503A (ja) エネルギ―蓄積媒体の実時間価格設定制御装置
JP5203855B2 (ja) 貯湯式給湯装置、運転計画装置及び運転計画方法
Hua et al. Blockchain enabled decentralized local electricity markets with flexibility from heating sources
JP2018152961A (ja) 電力管理システム
Wen et al. Thermal and electrical demand response based on robust optimization
Hwang et al. Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study
JP5384132B2 (ja) ヒートポンプ給湯のシミュレーションプログラム
CN102359732B (zh) 供热系统及其控制方法
CN111144657B (zh) 协同售用双方的多家庭能源优化方法
Rupnik et al. Distributed energy resource operation analysis using discrete event-simulation
JP2018152962A (ja) 分散型発電システム、及び該システムの運転計画の少なくとも一部を該システムの外部に与える方法
Soares Integrated management of residential energy resources: Models, algorithms and application
JP7083008B2 (ja) 計画システム、計画方法及びプログラム
JP2017062058A (ja) 貯湯式給湯システム
JP2015183927A (ja) 太陽蓄熱制御装置、太陽蓄熱システム、および制御プログラム
Safouri et al. A heuristic algorithm for operation scheduling of electric water heaters under dynamic pricing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522222

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012880263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012880263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14406858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE