WO2014001004A1 - Elektrischer energiespeicher - Google Patents

Elektrischer energiespeicher Download PDF

Info

Publication number
WO2014001004A1
WO2014001004A1 PCT/EP2013/060842 EP2013060842W WO2014001004A1 WO 2014001004 A1 WO2014001004 A1 WO 2014001004A1 EP 2013060842 W EP2013060842 W EP 2013060842W WO 2014001004 A1 WO2014001004 A1 WO 2014001004A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
channels
electrode
partitions
air
Prior art date
Application number
PCT/EP2013/060842
Other languages
English (en)
French (fr)
Inventor
Wolfgang Drenckhahn
Horst Greiner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US14/411,348 priority Critical patent/US9722290B2/en
Publication of WO2014001004A1 publication Critical patent/WO2014001004A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrical energy store according to claim 1.
  • ROB Rechargeable Oxide Battery
  • ROBs are usually operated at temperatures between 600 ° C and 800 ° C.
  • oxygen which is supplied to a (positive) air electrode of the electric cell is converted into oxygen ions, transported by a solid electrolyte and brought to the opposite negative electrode.
  • the object of the invention is therefore to provide an electrical energy storage on the basis of a ROB, which compared to the prior art, a cost-effective, easy assembly and temperature-resistant construction of a Guaranteed stacks or a memory cell and to be able to control its electrochemical processes more accurate.
  • the solution of the problem consists in an electrical energy storage with a memory cell according to claim 1.
  • the memory cell to an air electrode, which communicates with an air supply device.
  • the memory cell has a storage electrode, wherein the storage electrodes are adjacent to channels for receiving a storage medium.
  • the memory cell of the energy storage is characterized in that partitions are provided, which serve to separate the channels with each other. The intermediate spaces between the partitions thus form the described channels, wherein the partitions are configured such that they have at least one undercut in the region of the storage electrode.
  • This undercut causes a storage medium, which is inserted into the channels and stores by chemical conversion processes, which will be discussed in more detail, stores electrical energy, not directly abut the storage electrode.
  • the undercuts clamp the storage elements and there remains a gap through which, if necessary, a purge gas can flow.
  • This unimpeded flow of a purge gas or a gaseous redox couple used during operation of the memory cell, which produces a material exchange between the storage material and the storage electrode serves to always set the desired concentration of the purge gas or the gaseous redox couple in the region between the storage electrode and the storage medium.
  • the spacing of the storage medium from the storage electrode by the undercuts according to the invention thus makes it possible to better meter the chemical processes taking place during the operation of the storage cell and thus to increase the effectiveness of the storage cell. It has been found to be expedient if the undercuts of the partitions L-shaped or T-shaped configuration. Furthermore, it is expedient to arrange the channel-forming partitions on a so-called interconnector plate, which is designed in its planar extent so that on one side of the channels for receiving the storage medium are arranged and in turn air ducts are applied to an air supply device on its back. This in turn leads to a compact design of the electrical energy storage, so that several memory cells in the form of a
  • Stacks can be stacked on top of each other.
  • the partitions are arranged perpendicular to the interconnector plate. In this case, they in turn have preferred end faces which are plane-parallel with respect to the plane of the interconnector plate and on which an electrode structure comprising at least the storage electrode rests plane-parallel.
  • the channels run parallel, which simplifies the production process of the corresponding interconnector plate.
  • a transverse groove at the ends of the parallel channels into which a locking device, for example in the form of a locking bolt or a locking plate can be introduced to prevent longitudinal displacement of the storage medium in the channel.
  • FIG. 1 shows a schematic representation of a cell of a rechargeable oxide battery
  • FIG. 2 shows an exploded view of a stack from above
  • FIG. 3 is an exploded view of the stack of FIG. 2 viewed from below;
  • Figure 4 is a three-dimensional view of a bottom plate of a
  • FIG. 5 shows a plan view of a base plate according to FIG. 4,
  • Figure 6 shows a cross section through the bottom plate of FIG. 5 along the line VI and
  • Figure 7 is a view of the bottom plate of FIG. 5 in the direction of arrow VII.
  • a common structure of a ROB is that at a positive electrode 6, which is also referred to as an air electrode, a process gas, in particular air, is blown through a gas supply 22, wherein the
  • Electrode 10 This is connected via a gaseous redox pair, for example a hydrogen-steam mixture, to the porous storage medium in the channel structure.
  • a gaseous redox pair for example a hydrogen-steam mixture
  • a storage structure 9 of porous material on the negative electrode as the energy storage medium, which contains a functionally active oxidizable material as an active storage material, preferably in the form of iron and iron oxide.
  • a gaseous redox couple for example H 2 / H 2 O
  • the oxygen ions transported by the solid electrolyte 7, after being discharged at the negative electrode in the form of water vapor through pore channels of the porous storage structure 9, which is the active Storage material 9 comprises transported.
  • the metal or the metal oxide (iron / iron oxide) is oxidized or reduced and the oxygen required for this is supplied by the gaseous redox couple H 2 / H 2 O or transported back to the solid electrolyte.
  • Oxygen transport via a redox couple is referred to as a shuttle mechanism.
  • iron as oxidizable material, ie as active storage material 9
  • quiescent voltage of about 1 V as the redox couple H 2 / H 2 O at a partial pressure ratio of 1, otherwise there is an increased resistance to oxygen transport through the diffusing components of this redox couple.
  • the diffusion of the oxygen ions through the solid electrolyte 7 requires a high operating temperature of 600 to 800 ° C of the described ROB, but also for the optimal composition of the redox pair H 2 / H 2 0 in equilibrium with the storage material, this temperature range is advantageous.
  • the structure of the electrodes 6 and 10 and the electrolyte 7 a high thermal load out but also the memory structure 9, which comprises the active storage material.
  • the active storage material tends to sinter, meaning that the individual grains are increasingly merging with each other through diffusion processes, the reactive surface sinks, and the continuous open pore structure required for gas transport disappears.
  • the redox couple H 2 / H 2 0 can no longer reach the active surface of the active storage material 6, so that even after a partial discharge of the memory, the internal resistance of the battery is very high, which prevents further technically meaningful discharge.
  • ROB Reliable and Low-power
  • FIG. 2 shows the structure of a stack, which is viewed from above and is assembled in the order from bottom to top.
  • the stack 2 initially comprises a bottom plate 24, which is optionally composed of a plurality of individual plates, which in turn have functional structures and depressions, for example, for air guidance. This composition of individual plates, which is not described here in detail, to the bottom plate 24, for example, by a brazing process.
  • the base plate 24 has an air supply 20 and an air discharge 22. As already described, the composition of individual plates in the bottom plate 24 is not here visible channels integrated for air supply. Furthermore, the bottom plate 24 has centering pins 29, by means of which further components of the stack 2 can now be centered.
  • a seal 26 which consists for example of a high-temperature-resistant glass frit, which seals the individual plates of the stack 2 at the operating temperatures of the battery.
  • the next following plate is a so-called interconnector plate 27, which has two functionally effective sides.
  • the air supply channels not shown here are adjacent to the positive electrode 6 of a storage cell 4.
  • the interconnector plate 27 On its upper side (memory side 32), the interconnector plate 27 has channels 12, into which the storage medium 9 is introduced.
  • the top of the interconnector plate 27 in Figure 2 has the same structure as the top of the base plate 24. Again, the channels 12 are provided for introducing the storage medium 9. This side with the channels 12 is respectively facing the storage electrode 10 of the memory cell 4.
  • FIG. 2 shows a further plane of the sequence of electrode structure 25, seal 26 under a closure plate 28 for the overall construction of the stack 2.
  • a number of further levels of these components can follow, so that a stack usually has between 10 and more layers of memory cells 4.
  • FIG. 3 the same stack 2, which is described in FIG. 2, is shown in the opposite direction.
  • the interconnector plate 27 is now also visible from below, in which case the view is directed to the air side 34, which faces the air electrode (air side 34).
  • four separate areas on the air side 34 are shown on the interconnector plate, which correspond to a division into four individual memory cells 4 per stack level (this division into four memory cells is to be regarded as purely exemplary).
  • the memory cell 4 is thus composed in this example of a quarter of the surface of the respective interconnector plate or the base plate 24 and the cover plate 28 together.
  • the respective cell 4 is formed by a sequence of the respective air side 34, seal 26, electrode structure 25 and again in each case a fourth of the memory side 32 of the base plate 24 or the interconnector plate 27.
  • the air side 34 is supplied with air by the process gas by a stack-internal air distribution device 8 (also called a manifold), which is not shown here, which comprises a plurality of levels of the stack.
  • FIG. 4 shows a three-dimensional representation of a base plate 24, in which the structure of the partition walls 14 forming the channels 12 is explained in greater detail.
  • Partitions 14 in this case have a characteristic T-structure, as shown even more clearly in the cross-sectional view of Figure 6, which shows a cross section along the line VI in Figure 5, is shown.
  • Holes 19 can also be seen in FIG. 5, which, on the one hand, serve to equip the channels 12 with the storage medium 9, as shown schematically in the plan view of the bottom plate 24 in FIG.
  • the storage medium 9 is thus spaced by the undercuts 16 of the voltage applied to end surfaces 18 of the partition walls 14 storage electrode 10. It thus forms another channel 38 which has the height of the undercuts 16 and is arranged between the channel 12 and the storage electrode 10.
  • This channel 38 is designed by its cross-sectional geometry so that always enough shuttlegas H 2 0 / H 2 between the storage medium 9 and the storage electrode 10 can be introduced.
  • This shuttlegas is preferably introduced through the holes 19 in the memory cell 4.
  • a purge gas for example nitrogen, can also be conducted through the channels 38 in preparation for the operation of the storage cell 4 or of the energy store.
  • the channels 38 thus serve to provide sufficient shuttl gas in the area of the storage medium and to regulate its concentration for optimal electrochemical operation of the energy store.
  • the described T-shaped or L-shaped profiles of the partitions 14 can be produced relatively easily by a stepped end mill manufacturing technology.
  • the illustrated channel structure or partition wall structure of the base plate or in an analogous configuration on an interconnector plate 27 is favorable in terms of process technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)

Abstract

Die Erfindung betrifft einen elektrischen Energiespeicher mit einer Speicherzelle, die wiederum eine Luftelektrode, die mit einer Luftzufuhrvorrichtung in Verbindung steht und eine Speichervorrichtung umfasst. Hierbei liegen an der Speicherelektrode Kanäle zur Aufnahme eines Speichermediums an. Ferner sind Trennwände zum Abtrennen der Kanäle untereinander vorgesehen. Die Erfindung zeichnet sich dadurch aus, dass die Trennwände im Bereich der Speicherelektrode eine Hinterschneidung aufweisen. Diese Hinterschneidung dient dazu, das Speichermedium von der Speicherelektrode zu beabstanden.

Description

Beschreibung
Elektrischer Energiespeicher Die Erfindung betrifft einen elektrischen Energiespeicher nach Anspruch 1.
Zur Speicherung von überschüssigem elektrischem Strom, der beispielsweise bei der Stromerzeugung durch erneuerbare Ener- giequellen oder durch Kraftwerke anfällt, die im Bereich des optimalen Wirkungsgrades betrieben werden und für den temporär kein Bedarf im Netz besteht, werden verschiedene technische Alternativen angewandt. Eine davon ist die wieder auf- ladbare Metall-Luftbatterie (Rechargeable Oxide Battery, ROB) . ROBs werden üblicherweise bei Temperaturen zwischen 600°C und 800°C betrieben. Hierbei wird Sauerstoff, der an einer (positiven) Luftelektrode der elektrischen Zelle zugeführt wird in Sauerstoffionen umgewandelt, durch einen Festkörperelektrolyten transportiert und zur gegenüberliegenden negativen Elektrode gebracht. Dort findet eine Reaktion mit einem gasförmigen Redoxpaar statt, die je nach Lade- oder Entladeprozess Elektronen aufnimmt oder abgibt, wobei der von dem gasförmigen Redoxpaar aufgenommene oder abgegebene Sauerstoff durch Diffusion der Komponenten des Redoxpaares auf ein poröses, also gasdurchlässiges und ebenfalls oxidierbares und reduzierbares Speichermedium übertragen wird. Aufgrund der hohen benötigten Temperaturen für diesen Prozess ist die Werkstoffauswahl für die verwendeten Zellenwerkstoffe und die Konstruktion der Zellenteile sowie die Anordnung des Spei- chermediums sehr komplex. Insbesondere leiden die einzelnen Komponenten nach mehreren Redoxzyklen, die bei den besagten Betriebstemperaturen betrieben werden.
Aufgabe der Erfindung ist es daher, einen elektrischen Ener- giespeicher auf Basis einer ROB bereitzustellen, der gegenüber dem Stand der Technik einen kostengünstigen, montagetechnisch einfachen und temperaturbeständigen Aufbau eines Stacks bzw. einer Speicherzelle gewährleistet und dessen elektrochemischen Abläufe genauer steuern zu können.
Die Lösung der Aufgabe besteht in einem elektrischen Energie- Speicher mit einer Speicherzelle nach Anspruch 1. Dabei weist die Speicherzelle eine Luftelektrode auf, die mit einer Luftzufuhrvorrichtung in Verbindung steht. Ferner weist die Speicherzelle eine Speicherelektrode auf, wobei die Speicherelektroden an Kanäle zur Aufnahme eines Speichermediums an- grenzen. Die Speicherzelle des Energiespeichers zeichnet sich dadurch aus, dass Trennwände vorgesehen sind, die zum Abtrennen der Kanäle untereinander dienen. Die Zwischenräume zwischen den Trennwänden bilden somit die beschriebenen Kanäle, wobei die Trennwände so ausgestaltet sind, dass sie im Be- reich der Speicherelektrode mindestens eine Hinterschneidung aufweisen .
Diese Hinterschneidung führt dazu, dass ein Speichermedium, das in die Kanäle eingelegt wird und das durch chemische Um- Wandlungsprozesse, auf die noch genauer eingegangen wird, elektrische Energie speichert, nicht direkt an der Speicherelektrode anliegen. Die Hinterschneidungen klemmen die Speicherelemente fest und es bleibt ein Spalt bestehen, durch den gegebenenfalls ein Spülgas fließen kann. Dieses ungehinderte Fließen eines Spülgases bzw. eines bei Betrieb der Speicherzelle eingesetzten gasförmigen Redoxpaares, das einen Materialaustausch zwischen Speichermaterial und der Speicherelektrode herstellt, dient dazu, stets die gewünschte Konzentration des Spülgases oder des gasförmigen Redoxpaares im Bereich zwischen der Speicherelektrode und dem Speichermedium einzustellen. Durch die Beabstandung des Speichermediums von der Speicherelektrode durch die erfindungsgemäßen Hinterschneidungen ist es somit möglich, die während des Betriebes der Speicherzelle ablaufenden chemischen Prozesse besser zu do- sieren und somit die Effektivität der Speicherzelle zu erhöhen . Es hat sich dabei als zweckmäßig herausgestellt, wenn die Hinterschneidungen der Trennwände L- förmig oder T- förmig ausgestaltet sind. Ferner ist es zweckmäßig, die kanalbildenden Trennwände auf einer sogenannten Interkonnektorplatte anzuordnen, die in ihrer flächigen Ausdehnung so ausgestaltet ist, dass auf der einen Seite die Kanäle zur Aufnahme des Speichermediums angeordnet sind und auf ihrer Rückseite wiederum Luftkanäle für eine Luftzufuhrvorrichtung aufgebracht sind. Dies wiederum führt zu einer kompakten Bauweise des elektrischen Energiespeichers, so dass mehrere Speicherzellen in Form eines
Stacks übereinander gestapelt werden können. In einer vorteilhaften Ausgestaltungsform der Erfindung sind die Trennwände senkrecht auf der Interkonnektorplatte angeordnet. Dabei weisen sie wiederum bevorzugte Stirnflächen auf, die bezüglich der Ebene der Interkonnektorplatte planparallel sind und auf der eine Elektrodenstruktur, die zumin- dest die Speicherelektrode umfasst, planparallel anliegt.
Ferner ist es zweckmäßig, dass die Kanäle parallel verlaufen, was den Herstellungsprozess der entsprechenden Interkonnektorplatte vereinfacht .
Im Weiteren hat es sich als zweckmäßig herausgestellt, an den Enden der parallel verlaufenden Kanäle eine Quernut einzufügen, in die eine Sperrvorrichtung, beispielsweise in Form eines Sperrbolzens oder eines Sperrbleches eingebracht werden kann, um ein längsseitiges Verschieben des Speichermediums im Kanal zu verhindern.
Weitere Merkmale und weitere vorteilhafte Ausgestaltungsformen der Erfindung sind anhand der folgenden Figuren näher er- läutert. Hierbei handelt es sich lediglich um beispielhafte Ausgestaltungsformen, die keine Einschränkung des Schutzum- fangs darstellen. Dabei zeigen:
Figur 1 eine schematische Darstellung einer Zelle einer Re- chargeable Oxide Battery,
Figur 2 eine Explosionsdarstellung eines Stacks von oben betrachtet ,
Figur 3 eine Explosionsdarstellung des Stacks aus Figur 2 von unten betrachtet,
Figur 4 eine dreidimensionale Ansicht einer Bodenplatte eines
Stacks mit T- förmigen Trennwänden zwischen den Kanälen,
Figur 5 einer Draufsicht auf eine Bodenplatte nach Fig. 4,
Figur 6 einen Querschnitt durch die Bodenplatte nach Fig. 5 entlang der Linie VI und
Figur 7 eine Sicht auf die Bodenplatte nach Fig. 5 in Richtung des Pfeils VII.
Anhand von Figur 1 soll zunächst schematisch die Wirkungswei - se einer Rechargeable Oxide Batterie (ROB) beschrieben werden, insoweit dies für die vorliegende Beschreibung der Erfindung notwendig ist. Ein üblicher Aufbau einer ROB besteht darin, dass an einer positiven Elektrode 6, die auch als Luftelektrode bezeichnet wird, ein Prozessgas, insbesondere Luft, über eine Gaszufuhr 22 eingeblasen wird, wobei beim
Entladen (Stromkreis auf der rechten Bildseite) der Luft Sauerstoff entzogen wird. Der Sauerstoff gelangt in Form von Sauerstoffionen O2" durch einen an der positiven Elektrode anliegenden Feststoffelektrolyten 7, zu einer negativen
Elektrode 10. Diese steht über ein gasförmiges Redoxpaar, z.B. ein Wasserstoff-Wasserdampf-Gemisch mit dem porösen Speichermedium in der Kanalstruktur in Verbindung. Würde an der negativen Elektrode 10 eine dichte Schicht des aktiven Speichermaterials vorliegen, so würde die Ladekapazität der Batterie schnell erschöpft werden.
Aus diesem Grund ist es zweckmäßig, an der negativen Elektro- de als Energiespeichermedium eine Speicherstruktur 9 aus porösem Material einzusetzen, das ein funktional wirkendes oxi- dierbares Material als ein aktives Speichermaterial, bevorzugt in Form von Eisen und Eisenoxid enthält. Über ein, beim Betriebszustand der Batterie gasförmiges Re- doxpaar, beispielsweise H2/H20, werden die, durch den Festkörperelektrolyten 7 transportierten Sauerstoffionen nach ihrer Entladung an der negativen Elektrode in Form von Wasserdampf durch Porenkanäle der porösen Speicherstruktur 9, die das aktive Speichermaterial 9 umfasst, transportiert. Je nachdem, ob ein Entlade- oder Ladevorgang vorliegt, wird das Metall bzw. das Metalloxid (Eisen/Eisenoxid) oxidiert oder reduziert und der hierfür benötigte Sauerstoff durch das gasförmige Redoxpaar H2/H20 angeliefert oder zum Festkörper- elektrolyten zurück transportiert. Dieser Mechanismus des
Sauerstofftransportes über ein Redoxpaar wird als Shuttlemechanismus bezeichnet.
Der Vorteil des Eisens als oxidierbares Material, also als aktives Speichermaterial 9, besteht darin, dass es bei seinem Oxidationsprozess in etwa dieselbe Ruhespannung von etwa 1 V aufweist, wie das Redoxpaar H2/H20 bei einem Partialdruckver- hältnis von 1, andernfalls ergibt sich ein erhöhter Widerstand für den Sauerstofftransport durch die diffundierenden Komponenten dieses Redoxpaares.
Die Diffusion der Sauerstoffionen durch den Feststoffelektrolyten 7 benötigt eine hohe Betriebstemperatur von 600 bis 800 °C der beschriebenen ROB, aber auch für die optimale Zu- sammensetzung des Redoxpaares H2/H20 in Gleichgewicht mit dem Speichermaterial ist dieser Temperaturbereich vorteilhaft. Hierbei ist nicht nur die Struktur der Elektroden 6 und 10 und des Elektrolyten 7 einer hohen thermischen Belastung aus- gesetzt, sondern auch die Speicherstruktur 9, die das aktive Speichermaterial umfasst. Bei den stetigen Zyklen von Oxida- tion und Reduktion neigt das aktive Speichermaterial dazu, zu versintern, das bedeutet, dass die einzelnen Körner immer mehr miteinander durch Diffusionsprozesse verschmelzen, die reaktive Oberfläche sinkt und die für den Gastransport erforderliche durchgehend offene Porenstruktur verschwindet. Bei einer geschlossenen Porenstruktur kann das Redoxpaar H2/H20 die aktive Oberfläche des aktiven Speichermaterials 6 nicht mehr erreichen, so dass bereits nach einer Teilentladung des Speichers der Innenwiderstand der Batterie sehr hoch wird, was eine weitere technisch sinnvolle Entladung verhindert.
Ein Vorteil der ROB besteht darin, dass sie durch ihre kleinste Einheit, nämlich die Speicherzelle modular nahezu unbegrenzt erweiterbar ist. Somit ist eine kleine Batterie für den stationären Hausgebrauch ebenso darstellbar wie eine großtechnische Anlage zur Speicherung der Energie eines
Kraftwerkes .
Mehrere der in Figur 1 beschriebenen Speicherzellen 4 sind zu einem sogenannten Stack 2 zusammengefasst . Der Aufbau eines Stacks 2 und die Anordnung der Speicherzellen 4 in dem Stack 2 ist anhand der Explosionsdarstellungen in Figur 2 und Figur 3 veranschaulicht. In Figur 2 ist der Aufbau eines Stacks dargestellt, der von oben betrachtet ist und hierbei in der Reihenfolge von unten nach oben zusammengesetzt wird. Der Stack 2 umfasst zunächst eine Bodenplatte 24, die gegebenenfalls aus mehreren Einzelplatten, die wiederum funktionale Strukturierungen und Vertiefungen beispielsweise zur Luftführung aufweisen, zusammengesetzt ist. Diese Zusammensetzung von Einzelplatten, die hier nicht näher beschrieben ist, zur Bodenplatte 24 erfolgt beispielsweise durch ein Hartlotverfahren .
Die Grundplatte 24 weist eine Luftzufuhr 20 sowie eine Luftabfuhr 22 auf. Wie bereits beschrieben, sind durch die Zusammensetzung von Einzelplatten in der Bodenplatte 24 hier nicht sichtbare Kanäle zur Luftzufuhr integriert. Ferner weist die Bodenplatte 24 Zentrierbolzen 29 auf, durch die nun weitere Komponenten des Stacks 2 zentriert aufgebracht werden können. Als nächste Schicht folgt eine Elektrodenstruktur 25, die insbesondere die bereits beschriebene positive Elektrode 6, den Festkörperelektrolyten 7 sowie die Speicherelektrode 10 umfasst. Hierbei handelt es sich um eine selbsttragende keramische Struktur, auf die die einzelnen funktionalen Bereiche wie die Elektroden bzw. Festkörperelektrolyt in einem Dünn- schichtverfahren aufgebracht sind.
Als weitere Schicht folgt eine Dichtung 26, die beispielsweise aus einer hochtemperaturbeständigen Glasfritte besteht, die die einzelnen Platten des Stacks 2 bei den Betriebstempe- raturen der Batterie abdichtet. Die nächste folgende Platte ist eine sogenannte Interkonnektorplatte 27, die zwei funktional wirkende Seiten aufweist. An ihrer bezüglich Figur 2 gesehenen unteren Seite 34 befinden sich die hier nicht näher dargestellten Luftzufuhrkanäle die an die positive Elektrode 6 einer Speicherzelle 4 grenzen. Auf ihrer Oberseite (Speicherseite 32) weist die Interkonnektorplatte 27 Kanäle 12 auf, in die das Speichermedium 9 eingebracht ist. Die Oberseite der Interkonnektorplatte 27 in Figur 2 weist dieselbe Struktur auf wie die Oberseite der Grundplatte 24. Auch hier sind die Kanäle 12 zur Einbringung des Speichermediums 9 vorgesehen. Diese Seite mit den Kanälen 12 ist jeweils der Speicherelektrode 10 der Speicherzelle 4 zugewandt.
Exemplarisch ist in Figur 2 eine weitere Ebene der Folge von Elektrodenstruktur 25, Dichtung 26 unter einer Abschlussplatte 28 zum Gesamtaufbau des Stacks 2 dargestellt. Grundsätzlich können selbstverständlich noch eine Reihe weiterer Ebenen dieser Bauteile folgen, so dass ein Stack üblicherweise zwischen 10 und mehr Schichten von Speicherzellen 4 aufweist.
In Figur 3 ist derselbe Stack 2, der in der Figur 2 beschrieben ist, in umgekehrter Blickrichtung dargestellt. In Figur 3 blickt man von unten auf die Grundplatte 24, es folgt wieder- um die Elektrodenstruktur 25 und die Dichtung 26. Die Interkonnektorplatte 27 ist nun ebenfalls von unten sichtbar, wobei hierbei der Blick auf die Luftseite 34 gelenkt ist, die der Luftelektrode zugewandt ist (Luftseite 34) . In diesem Beispiel sind auf der Interkonnektorplatte vier getrennte Bereiche auf der Luftseite 34 dargestellt, die einer Unterteilung in vier einzelne Speicherzellen 4 pro Stackebene entsprechen (wobei diese Unterteilung in vier Speicherzellen als rein exemplarisch anzusehen ist) . Die Speicherzelle 4 setzt sich somit in diesem Beispiel aus einem Viertel der Fläche der jeweiligen Interkonnektorplatte bzw. der Grundplatte 24 bzw. der Deckplatte 28 zusammen. Ferner wird die jeweilige Zelle 4 durch eine Abfolge der jeweiligen Luftseite 34, Dichtung 26, Elektrodenstruktur 25 und wiederum jeweils ein Vier- tel der Speicherseite 32 der Grundplatte 24 bzw. der Interkonnektorplatte 27 gebildet. Die Luftseite 34 wird hierbei durch eine hier nicht näher dargestellte stackinterne Luftverteilungsvorrichtung 8 (auch Manifold genannt) , die mehrere Ebenen des Stacks umfasst, mit dem Prozessgas Luft versorgt.
In Figur 4 ist eine dreidimensionale Darstellung einer Bodenplatte 24 gegeben, in der die Struktur der von Trennwänden 14, die die Kanäle 12 bilden, näher erläutert sind. Die
Trennwände 14 weisen hierbei eine charakteristische T- Struktur auf, wie dies noch deutlicher in der Querschnittdarstellung nach Figur 6, die einen Querschnitt entlang der Linie VI in Figur 5 abbildet, dargestellt ist.
In Figur 5 sind ferner Bohrungen 19 zu erkennen, die einer- seits dazu dienen, die Kanäle 12 mit dem Speichermedium 9 zu bestücken, wie dies in der Draufsicht auf die Bodenplatte 24 in Figur 5 schematisch dargestellt ist. Die Hinterscheidungen 16 an den Trennwänden 14, die in diesem vorliegenden Beispiel T-förmig ausgestaltet sind, dienen dazu, dass das Speicherme- dium fest in den Kanälen 12 eingebracht ist. Das Speichermedium 9 ist somit durch die Hinterscheidungen 16 von der auf Stirnflächen 18 der Trennwände 14 anliegenden Speicherelektrode 10 beabstandet. Es bildet somit ein weiterer Kanal 38 aus, der die Höhe der Hinterschneidungen 16 aufweist und zwischen dem Kanal 12 und der Speicherelektrode 10 angeordnet ist. Dieser Kanal 38 ist von seiner Querschnittsgeometrie so ausgestaltet, dass stets genügend Shuttlegas H20/H2 zwischen das Speichermedium 9 und der Speicherelektrode 10 eingebracht werden kann. Dieses Shuttlegas wird bevorzugt durch die Bohrungen 19 in die Speicherzelle 4 eingebracht. Ferner kann durch die Kanäle 38 auch in der Vorbereitung des Betriebs der Speicherzelle 4 bzw. des Energiespeichers ein Spülgas, bei- spielsweise Stickstoff, geleitet werden.
Die Kanäle 38 dienen somit dazu, stets genügendes Shuttlegas im Bereich des Speichermediums bereitzuhalten und dessen Konzentration für einen optimalen elektrochemischen Betrieb des Energiespeichers zu regeln.
Die beschriebenen T- förmigen bzw. auch L- förmigen Profile der Trennwände 14 lassen sich fertigungstechnisch verhältnismäßig leicht durch einen abgestuften Fingerfräser herstellen. Somit ist die dargestellte Kanalstruktur bzw. Trennwandstruktur der Bodenplatte bzw. in analoger Ausgestaltung auf einer Inter- konnektorplatte 27 prozesstechnisch günstig herzustellen.

Claims

Patentansprüche
1. Elektrischer Energiespeicher mit einer Speicherzelle (4), die wiederum eine Luftelektrode (6), die mit einer Luftzu- fuhrvorrichtung (20) in Verbindung steht und eine Speicherelektrode (10) umfasst, wobei die Speicherelektrode (10) an Kanäle (12) zur Aufnahme eines Speichermediums (9) angrenzt, dadurch gekennzeichnet, dass Trennwände (14) zum Abtrennen der Kanäle (12) untereinander vorgesehen sind, wobei die Trennwände (14) im Bereich der Speicherelektrode (10) eine Hinterschneidung (16) aufweisen.
2. Energiespeicher nach Anspruch 1, dadurch gekennzeichnet, dass die Trennwände (14) einen L- förmigen oder T- förmigen Querschnitt aufweisen.
3. Energiespeicher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die kanalbildenden Trennwände (14) auf einer Interkonnektorplatte (27) angeordnet sind, auf deren Rücksei- te die Luftkanäle (21) einer weiteren Speicherzelle angeordnet sind.
4. Energiespeicher nach Anspruch 3, dadurch gekennzeichnet, dass die Trennwände (14) senkrecht auf der Interkonnek- torplatte verlaufen.
5. Energiespeicher nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Speicherelektrode (10) planparallel an Stirnflächen (18) der Trennwände (14) anliegt.
6. Energiespeicher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kanäle (12) parallel verlaufen .
7. Energiespeicher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Quernut (36) die parallel verlaufenden Kanäle (12) begrenzt.
PCT/EP2013/060842 2012-06-29 2013-05-27 Elektrischer energiespeicher WO2014001004A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/411,348 US9722290B2 (en) 2012-06-29 2013-05-27 Electrical energy store

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012211318.5 2012-06-29
DE102012211318.5A DE102012211318A1 (de) 2012-06-29 2012-06-29 Elektrischer Energiespeicher

Publications (1)

Publication Number Publication Date
WO2014001004A1 true WO2014001004A1 (de) 2014-01-03

Family

ID=48570108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/060842 WO2014001004A1 (de) 2012-06-29 2013-05-27 Elektrischer energiespeicher

Country Status (3)

Country Link
US (1) US9722290B2 (de)
DE (1) DE102012211318A1 (de)
WO (1) WO2014001004A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211318A1 (de) 2012-06-29 2014-01-02 Siemens Aktiengesellschaft Elektrischer Energiespeicher

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020942A1 (de) * 1997-05-14 2000-07-19 SANYO ELECTRIC Co., Ltd. Festpolymer-brennstoffzelle, geeignet zur stabilen realisierung hervorragender leistungserzeugungsmermalen
JP2003100321A (ja) * 2001-09-25 2003-04-04 Toyota Motor Corp 燃料電池用セパレータとその製造方法
US6649297B1 (en) * 1998-11-12 2003-11-18 Commissariat A L'energie Atomique Bipolar plates for fuel cell and fuel cell comprising same
US20090023029A1 (en) * 2005-05-13 2009-01-22 Toshihiro Matsumoto Fuel Cell
DE102008009377A1 (de) * 2008-02-14 2009-08-20 Behr Gmbh & Co. Kg Bipolarplatte mit einer Kanalstruktur und Verfahren zum Herstellen einer Bipolarplatte
DE102009057720A1 (de) * 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Batterie und Verfahren zum Betreiben einer Batterie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958405B4 (de) * 1999-12-03 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrochemische Zelle
JP2010102904A (ja) * 2008-10-22 2010-05-06 Seikoh Giken Co Ltd 燃料電池用セパレータ及びこれを用いて形成された燃料電池。
DE102010041019A1 (de) * 2010-09-20 2012-03-22 Siemens Aktiengesellschaft Wiederaufladbare Energiespeichereinheit
DE102012211318A1 (de) 2012-06-29 2014-01-02 Siemens Aktiengesellschaft Elektrischer Energiespeicher

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020942A1 (de) * 1997-05-14 2000-07-19 SANYO ELECTRIC Co., Ltd. Festpolymer-brennstoffzelle, geeignet zur stabilen realisierung hervorragender leistungserzeugungsmermalen
US6649297B1 (en) * 1998-11-12 2003-11-18 Commissariat A L'energie Atomique Bipolar plates for fuel cell and fuel cell comprising same
JP2003100321A (ja) * 2001-09-25 2003-04-04 Toyota Motor Corp 燃料電池用セパレータとその製造方法
US20090023029A1 (en) * 2005-05-13 2009-01-22 Toshihiro Matsumoto Fuel Cell
DE102008009377A1 (de) * 2008-02-14 2009-08-20 Behr Gmbh & Co. Kg Bipolarplatte mit einer Kanalstruktur und Verfahren zum Herstellen einer Bipolarplatte
DE102009057720A1 (de) * 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Batterie und Verfahren zum Betreiben einer Batterie

Also Published As

Publication number Publication date
US9722290B2 (en) 2017-08-01
US20150340748A1 (en) 2015-11-26
DE102012211318A1 (de) 2014-01-02

Similar Documents

Publication Publication Date Title
EP0876686B1 (de) Flüssigkeitsgekühlte brennstoffzelle mit verteilungskanälen
EP2510573B1 (de) Batterie
DE102016107906A1 (de) Bipolarplatte aufweisend Reaktantengaskanäle mit variablen Querschnittsflächen, Brennstoffzellenstapel sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE10040792C2 (de) Polymerelektrolytmembran-Brennstoffzellensystem mit Kühlmedium-Verteilungsraum und-Sammelraum und mit Kühlung durch fluide Medien
DE2926776A1 (de) Elektroden fuer eine brennstoff- und/oder elektrolyse-zelle
WO2013093607A2 (de) Modifizierte planarzelle und stapel von elektrochemischen einrichtungen auf ihrer basis sowie verfahren zur herstellung der planarzelle und des stapels und eine form für die fertigung der planarzelle
EP2956981B1 (de) Energiewandlerzelle mit elektrochemischer wandlereinheit
DE112015005276T5 (de) Hochtemperatur-Brennstoffzellenstapel zur Erzeugung der elektrischen Energie
DE102009037148B4 (de) Festoxid-Brennstoffzellen-System
EP2810332B1 (de) Elektrischer energiespeicher
WO2018165682A1 (de) Poröses formteil für elektrochemisches modul
EP2789038B1 (de) Stack für einen elektrischen energiespeicher
DE102012205077A1 (de) Elektrischer Energiespeicher
WO2014001004A1 (de) Elektrischer energiespeicher
WO2013110509A2 (de) Elektrischer energiespeicher
EP2885836B1 (de) Elektrischer energiespeicher
DE60306916T2 (de) Elektrochemischer generator mit einer bipolarplatte, welche eine vielzahl von der verteilung der gase dienenden löchern aufweist
EP2850687B1 (de) Elektrischer energiespeicher
WO2014000984A1 (de) Elektrischer energiespeicher
DE102012012255A1 (de) Brennstoffzellensystem, insbesondere für ein Fahrzeug
EP1082770A2 (de) Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle
DE102005060616A1 (de) Bipolarplatte sowie Brennstoffzelle mit einer Bipolarplatte
DE102012223794A1 (de) Wiederaufladbarer elektrischer Energiespeicher, insbesondere in Form eines Metalloxid-Luft-Energiespeichers, mit wenigstens einem wenigstens ein Speichermaterial zur Speicherung elektrischer Energie umfassenden Speicherelement
WO2005027253A2 (de) Brennstoffzelle und brennstoffzellenmodul hierzu
EP2926394A1 (de) Wiederaufladbarer elektrischer energiespeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13726487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13726487

Country of ref document: EP

Kind code of ref document: A1