WO2014000440A1 - 逆变器控制方法、装置和逆变器 - Google Patents

逆变器控制方法、装置和逆变器 Download PDF

Info

Publication number
WO2014000440A1
WO2014000440A1 PCT/CN2013/070727 CN2013070727W WO2014000440A1 WO 2014000440 A1 WO2014000440 A1 WO 2014000440A1 CN 2013070727 W CN2013070727 W CN 2013070727W WO 2014000440 A1 WO2014000440 A1 WO 2014000440A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
working group
high frequency
sine wave
wave period
Prior art date
Application number
PCT/CN2013/070727
Other languages
English (en)
French (fr)
Inventor
张彦忠
郭新
胡宣春
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13729579.6A priority Critical patent/EP2698907B1/en
Publication of WO2014000440A1 publication Critical patent/WO2014000440A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/5388Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Embodiments of the present invention relate to electrical control techniques, and more particularly to an inverter control method, apparatus, and inverter. Background technique
  • An inverter is a common device that inverts direct current into alternating current for feeding into an alternating current grid. For example, if a solar panel generates DC power after power generation, it needs to pass through the inverter to form an AC power and feed it into the AC grid.
  • the existing typical inverter structure includes two high frequency bridge arms and corresponding high frequency inductors, which constitute two inverter modules, which are respectively connected in parallel with the charging capacitor through the power frequency bridge arm to charge the charging capacitor.
  • the charging capacitor is connected in series with the charging inductor to feed the charging capacitor to the AC grid.
  • the basic working principle is: controlling two switches in the high frequency bridge arm to alternately conduct during each sine wave period of the power grid to charge the charging capacitor; and simultaneously controlling the switches in the power frequency bridge arm to be alternately turned on, thereby switching the charging capacitor
  • the direction of the current fed to the grid is converted from DC to AC.
  • the above operation mode is that two inverter modules work simultaneously in one sine wave period of the alternating current, and the charging currents are alternately superposed to form a final output current.
  • Embodiments of the present invention provide an inverter control method, apparatus, and inverter to optimize operational performance in an inverter.
  • An embodiment of the present invention provides an inverter control method, including:
  • Controlling the first working group and the second working group to work in a sinusoidal cycle to form an alternating current fed to the power grid wherein the first working group includes m inverter modules, and the second working group includes n Inverse Variable module, and m is less than n.
  • the embodiment of the invention further provides an inverter control device, including:
  • the switching control j ⁇ is configured to control the first working group and the second working group to switch to work in a sine wave period to form an alternating current fed into the power grid, wherein the first working group includes m inverter modules The second working group includes n inverters j ⁇ and m is less than n.
  • An embodiment of the present invention further provides an inverter, including:
  • At least two inverters are connected between the direct T input terminal and the intersection ⁇ ⁇ output end, wherein m work groups are formed into a first work group, n work constitutes a second work group, and m is less than n;
  • the inverter control device provided by any embodiment of the present invention is connected to each of the inverter modules.
  • the inverter control method, device and inverter provided by the embodiments of the present invention switch and control different numbers of inverters in a sine wave period, which can make the inverter damage to the current working state, and optimize The working performance of the inverter.
  • the above technical solution can control the switching ⁇ according to the output current value, thereby reducing the loss of the converter.
  • FIG. 1 is a schematic structural view of a typical inverter suitable for use in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of current variation in an inverter controlled by an inverter control method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an inverter control apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 of the present invention provides an inverter control method, which can be applied to the control of a direct L/AC inverter. For clarity of description, the structure of the controlled inverter is briefly introduced first.
  • the inverter applicable to the embodiment of the present invention includes at least two inverter modules respectively connected between the DC input terminal and the delivery terminal, and the direct input terminal is an input terminal for providing direct current, and the AC output terminal is an alternating current power. Feed to the output of the grid.
  • m jobs constitute the first working group
  • n jobs constitute the second working group
  • m is smaller than n.
  • Inverter ⁇ The working structure and principle of direct/crossing can be realized in various ways.
  • FIG. 1 is a schematic structural diagram of a typical inverter suitable for the embodiment of the present invention.
  • each of the inverter modules includes a high frequency and a high frequency inductor, and the inverter j is connected to the power frequency.
  • Both ends of the charging capacitor C3, the charging capacitor C3 and the charging inductor L3 connected in series are connected in parallel with the AC output terminal, and the AC is fed to the delivery terminal. Electric, AC voltage is recorded as Ug.
  • the two ends of the high frequency bridge arm are connected in parallel with the straight input end. As shown in Fig. 1, the DC input terminal inputs a DC voltage Ubus.
  • Each of the high frequency includes two switching devices, and the two switching devices are alternately connected and disconnected to cause a change in the current in the high frequency inductor to rise and fall, completing charging of the charging capacitor C3.
  • the high-frequency bridge arm composed of the switching devices Q1 and Q2 and the high-frequency inductor L1 form an inverter
  • the high-frequency and high-frequency inductor L2 composed of the switching devices Q3 and Q4 constitute another inverter f-number.
  • the working principle and structure of each inverter j ⁇ are the same.
  • the power frequency also includes two switching devices, and the two switching devices are connected and disconnected to control the direction of current charging to the charging capacitor C3.
  • switching devices Q5 and Q6 form a power frequency bridge arm.
  • the inverter in the first working group is controlled to work in a narrow manner
  • the inverter in the second working group is controlled to work in a narrow manner
  • the operating principle is illustrated by taking the inverter shown in Figure 1 as an example.
  • the first working group includes one inverter module, and the second working group includes two inverter blades.
  • the control unit of the inverter usually determines the magnitude of the alternating current value that should be output as the sine wave changes periodically, based on the AC voltage requirements fed into the grid.
  • the output current value fed into the grid at this moment should be lower than the set threshold igl
  • only one inverter 1 ⁇ is controlled, that is, two switching devices in one high frequency are alternately turned on, which is high.
  • the change of the inverter j ⁇ output current value iL1 of the frequency is shown in Fig. 2.
  • the switching device Q6 When the AC voltage Ug>0, that is, the grid is in a positive half-wave, the switching device Q6 is turned on, and the switching device Q5 is turned off; when the switching device Q1 is turned on, and the switching device Q2 is turned off, the current iL1 of the high-frequency inductor L1 rises; When the device Q1 is turned off, when the switching device Q2 is turned on, the current iL1 on the high-frequency inductor L1 falls. Therefore, the current in the high-frequency inductor L1 is a triangular wave, as shown by the thin solid line in Fig. 2. The envelope of the triangular wave constitutes an output alternating current, and its current value i is ig.
  • the two inverter modules are controlled to operate simultaneously.
  • the high-frequency bridge arms of the switching devices Q3 and Q4 operate similarly to the switching devices Q1 and Q2.
  • the current in the high-frequency inductor L2 is a triangular wave, as shown by the thin dotted line in Figure 2.
  • iLl and iL2 are always staggered by 180 degrees in a high-frequency period for interleaving.
  • the triangular waves of the two currents are superimposed, and their envelopes constitute the output alternating current.
  • n ⁇ igl m ⁇ ig2.
  • ig2 is twice that of igl. Both thresholds are understood as the working process of the positive half wave and the negative half wave.
  • the above technical solution solves the shortcoming that the instantaneous switching current of the grid-connected current is too small, resulting in a high switching frequency of the high-frequency bridge arm. Since the grid-connected current ig changes sinusoidally in a power-frequency cycle (also called a sine wave cycle), there is always a small instantaneous value of the interval current. When the instantaneous value of the grid-connected current ig is too small, the peaks of the currents iL1 and iL2 of the high-frequency inductor are also small, so that the periods of the two high-frequency bridge arms are short, that is, the switching frequency is high.
  • the above technical solution divides the sine wave period of the grid-connected current into two parts: single-bridge arm independent operation and double-bridge arm interleaving.
  • the driving loss can be reduced by reducing the driving frequency of the control device.
  • the switching frequency of the high-frequency bridge arm By reducing the switching frequency of the high-frequency bridge arm to reduce the switching loss, the frequency of the current change in the inductor is also reduced accordingly, so the inductance loss can be reduced, and the loss reduction will inevitably lead to an increase in efficiency.
  • the current threshold value according to the switching time can be comprehensively considered according to the loss efficiency. When the current threshold is used, the single-arm operation is equivalent to the loss of the double-arm operation.
  • the specific values are related to the actual circuit.
  • FIG. 3 is a schematic structural diagram of an inverter control apparatus according to Embodiment 2 of the present invention.
  • the control device can be carried by hardware, and is implemented by software, for example, a digital signal processor (DSP), and the inverter is controlled to realize DC-to-AC conversion.
  • the control device includes: a switching control 1 ⁇ 20 for controlling the first working group and the second working group to switch to work in a sine wave period to form an alternating current fed to the power grid, wherein the first working group Including m inverter modules, the second working group includes n inverters j3 ⁇ 4 ⁇ , and m is smaller than n.
  • the switching control module 20 specifically includes: a current recognizing unit 21, a first switching unit 22, and a second switching unit 23.
  • the current identifying unit 21 is configured to identify the output current value fed into the power grid;
  • the first switching unit 22 is configured to control when the current identifying unit 21 recognizes that the output current value fed into the power grid is lower than the first threshold value ig1
  • the inverter 1 ⁇ operates in the first working group;
  • the technical solution of the embodiment can implement the inverter control method provided by the embodiment of the present invention, and has the corresponding function, and can control the flexibility of the inverter by controlling different numbers of inverters 1 ⁇ . In particular, it is possible to reduce the switching frequency of the switch in accordance with the current variation and reduce the device loss.
  • the third embodiment of the present invention provides an inverter, where the inverter includes at least two inverter modules connected between the DC input end and the AC output end, wherein m work constitutes the first working group. n jobs form the second working group, and m is less than n.
  • the inverter further includes an inverter control device provided by an embodiment of the present invention, and is connected to each inverter; Working groups with different ⁇ : inversions switch to work, and inverter j ⁇ can be assigned to different working groups.
  • each inverter module may include a high frequency bridge arm composed of two switches and a high frequency inductor, and the high frequency bridge arm is connected to the DC input end, and each inverse The variable module is connected to the AC output through the power frequency bridge arm.
  • the specific structure of the inverter module is not limited to this, and the inverter circuit capable of realizing DC-to-AC conversion can be used as the inverter module.
  • the technical solution of the embodiment of the present invention can be implemented without changing the circuit structure and modifying only the control strategy.
  • the steps can be completed by the hardware associated with the program instructions.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the steps including the foregoing method embodiments are performed; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种逆变器控制方法、装置和逆变器。该方法包括在一个正弦波周期内,控制第一工作组和第二工作组切换地工作,以形成馈入电网的交流电。其中,第一工作组包括m个逆变模块,第二工作组包括n个逆变模块,且m小于n。在一个正弦波周期内,切换控制不同数量的逆变模块工作,能够使得逆变器的损耗适应于当前工作状态,优化逆变器的工作性能。

Description

逆变器控制方法、 装置和逆变器
技术领域
本发明实施例涉及电气控制技术, 尤其涉及一种逆变器控制方法、 装 置和逆变器。 背景技术
逆变器是将直流电逆变成交流电, 以便馈入交流电网的常用设备。 例 如, 太阳能电池板发电后产生直流电, 就需要经过逆变器的作用, 形成交 流电再馈入交流电网。
现有典型的逆变器结构是包括两个高频桥臂和对应的高频电感, 构成 两个逆变模块, 分别经工频桥臂与充电电容并联, 向充电电容充电。 充电 电容与充电电感串联,将充电电容的电量馈入交流电网。基本工作原理是: 在电网每个正弦波周期内控制高频桥臂中的两个开关交替导通, 从而向充 电电容充电; 同时控制工频桥臂中的开关交替导通, 从而切换充电电容向 电网馈电的电流方向, 实现直流到交流的转换。 上述工作方式是在交流电 的一个正弦波周期内由两个逆变模块同时工作, 且充电电流交错叠加形成 最终的输出电流。
但上述全波交错工作方式的逆变器存在一定的技术缺陷, 当需要馈入 电网的瞬时电流过小时, 为获得适当的电流值, 需要以较高的开关频率控 制高频桥臂中的开关连通和断开, 电流方向变化切换频繁, 这导致逆变器 中的开关和电感等器件损耗均较大。 发明内容 本发明实施例提供一种逆变器控制方法、 装置和逆变器, 以优化逆变 器中的工作性能。
本发明实施例提供了一种逆变器控制方法, 包括:
在一个正弦波周期内, 控制第一工作组和第二工作组切换地工作, 以形成馈入 电网的交流电, 其中, 所述第一工作组包括 m个逆变模 , 第二工作组包括 n个逆 变模块, 且 m小于 n。
本发明实施例还提供了一种逆变器控制装置, 包括:
切换控制 j 夬, 用于在一个正弦波周期内, 控制第一工作组和第二工作组切换 地工作, 以形成馈入电网的交流电, 其中, 所述第一工作组包括 m个逆变模块, 第 二工作组包括 n个逆变 j 夬, 且 m小于 n。
本发明实施例还提供了一种逆变器, 包括:
至少两个逆变才 夬, 连接在直 ^ T入端和交^ ^出端之间, 其中, m个工作组 成第一工作组, n个工作组成第二工作组, 且 m小于 n;
本发明任意实施例提供的逆变器控制装置, 与各所述逆变模块相连。
本发明实施例提供的逆变器控制方法、 装置和逆变器, 在一个正弦波周期 内, 切换控制不同数量的逆变 ^夬工作, 能够使得逆变器的损 应于当前工作状 态, 优化逆变器的工作性能。 上述技术方案尤其可以根据输出电流值来控制此切换 才 乍, 从而降 变器的损耗。 附图说明
图 1为适用于本发明实施例的典型逆变器结构示意图;
图 2为本发明实施一所提供逆变器控制方法控制下逆变器中的电流变化曲线图; 图 3为本发明实施例二提供的逆变器控制装置的结构示意图。 具体实施方式 实施例一
本发明实施例一提供了一种逆变器控制方法,可适用于直 L/交流逆变器的控制, 为表述清楚, 首先简单介绍所控制的逆变器的结构。
本发明实施例所适用的逆变器包括至少两个逆变模块, 分别连接在直流输入端 和交 出端之间, 直 ^入端是提供直流电的输入端, 交 ^出端即是将交流电 馈入电网的输出端。其中, m个工作组成第一工作组, n个工作组成第二工作组,且 m小于 n。 逆变 夬进行直^ /交^ 换的工作结构和原理可釆用多种方式来实现。
图 1为适用于本发明实施例的典型逆变器结构示意图, 如图 1所示, 每个逆变 模块均包括一高频 ^和一高频电感,逆变 j 夬经工频 ^并联到充电电容 C3的两 端, 串联的充电电容 C3和充电电感 L3与交流输出端并联, 向交 出端馈入交流 电, 交流电电压记为 Ug。 高频桥臂的两端与直 入端并联, 如图 1所示, 直流输 入端输入直流电压 Ubus。 每个高频 ^包括两个开关器件, 两个开关器件交替地连 通和断开, 以使得高频电感中的电流发生升高和下降的变化,完成向充电电容 C3充 电。 如图 1所示, 开关器件 Q1和 Q2构成的高频桥臂与高频电感 L1组成一个逆变 , 开关器件 Q3和 Q4构成的高频 ^与高频电感 L2组成另一个逆变 f數。 各 逆变 j 夬的工作原理和结构相同。 工频 ^也包括两个开关器件, 两个开关器件交 ^地连通和断开, 用于控制向充电电容 C3充电的电流方向。如图 1所示, 开关器件 Q5和 Q6构成工频桥臂。 当电网交流电压的正弦波处于正半波, 即 Ug>0时, Q6 连通, Q5断开, 当电网交流电压的正弦波处于负半波, 即 Ug<0时, Q5连通, Q6 断开。 本领域技术人员可以理解, 实现直 交 u 换的逆变 j 夬结构并不限于此。
基于图 1所示的典型逆变器结构, 本实施例所提供的逆变器控制方法包括如下 步骤: 在一个正弦波周期内, 控制第一工作组和第二工作组切换地工作, 以形成馈 入电网的交流电, 其中, 第一工作组包括 m个逆变模 , 第二工作组包括 n个逆变 夬, 且 m小于 n。 即, 在一个正弦波周期内, 同时工作的逆变 1 夬的数量不同。 例如图 1所示的逆变器, 在某一段时间内, 两个逆变 j 夬^工作, 在另一段时间 内, 义有一个逆变才^:工作, 即 m=l , n=2„
釆用本实施例的技术方案, 可才艮据正弦波周期内不同的需求控制不同数量的逆 变;^夬工作, 增加了逆变器控制的灵活性。 该技术方案尤其适用于当正弦波周期内 输出电流不同时, 可选择不同数量的逆变 1 夬工作, 即才艮据^:责入电网的输出电流值 的变化, 控制第一工作组和第二工作组切换地工作。 从而适当降 变模 中的开 关器件通断频率, 从而减小器件损耗, 提高逆变器的寿命和工作效率。
是, 根据馈入电网的输出电流值的变化, 控制第一工作组和第二工作组切 换地工作的操作包 ·fe。下步骤:
当识别到馈入电网的输出电流值低于第 殳定门限值 igl时,控制第一工作组中 的逆变才狭工作;
当识别到馈入电网的输出电流值高于第二设定门限值 ig2时,控制第二工作组中 的逆变才狭工作;
其中, n · igl=m · ig2。
以图 1所示逆变器为例说明工作原理。 第一工作组包括一个逆变模 , 第二工 作组包括两个逆变撒。 逆变器的控制装置通常根据馈入电网的交流电压要求来确定随正弦波周期变化 而应输出的交流电流值大小。 当识别到此刻馈入电网的输出电流值应低于设定门限 值 igl时,则仅控制一个逆变 1 夬工作,即控制一个高频 ^中的两个开关器件交替 导通, 该高频 ^的逆变 j 夬输出电流值 iLl的变化如图 2所示。
当交流电压 Ug>0, 即电网处于正半波时, 开关器件 Q6开通, 开关器 件 Q5关断; 当开关器件 Q1开通, 开关器件 Q2关断时, 高频电感 L1的 电流 iLl上升; 当开关器件 Q1关断, 开关器件 Q2开通时, 高频电感 L1 上的电流 iLl下降。 因此, 高频电感 L1 中的电流为三角波, 如图 2中的 细实线所示。 该三角波的包络线构成输出交流电, 其电流值 i己为 ig。
当识别到馈入电网的输出电流值应高于第二设定门限值 ig2时,则控制两个逆变 模块同时工作。 开关器件 Q3和 Q4的高频桥臂其工作过程与开关器件 Q1和 Q2类 似, 高频电感 L2 中的电流为三角波, 如图 2 中的细虚线所示。 通过控制 两个高频桥臂的工作节拍,使得 iLl和 iL2总是在一个高频周期内错开 180 度, 实现交错工作。 两个电流的三角波叠加, 其包络线构成输出交流电。
为使不同数量逆变模块的输出电流满足输出交流电压的要求, 电流值 满足 n · igl=m · ig2的关系, 如图 2所示, ig2为 igl的两倍。 两个门限值均理解为 正半波和负半波的工作过程呈镜 ^于称。
上述技术方案解决了现有技术中并网电流瞬时值过小时导致高频桥 臂的开关频率高的缺点。 由于并网电流 ig在一个工频周期(也称为正弦波 周期) 内以正弦规律变化, 因此总是会有一段区间电流的瞬时值较小。 当 并网电流 ig瞬时值太小时, 高频电感的电流 iLl、 iL2的峰值也小, 因此 两个高频桥臂的周期短, 即开关频率高。 上述技术方案将并网电流的正弦 波周期分割成单桥臂独立工作和双桥臂交错工作两部分, 通过选择合适的 单双桥臂切换点, 能够通过减少控制装置的驱动频率来降低驱动损耗, 通 过降低高频桥臂的开关频率减少开关损耗, 电感中的电流变化频率也相应 减少, 所以可减少电感损耗, 损耗的降低必然导致效率提升。 切换时所依 据的电流门限值大小可根据损耗情 逆变效率来综合考虑设定。一 在电流门限 值时, 单桥臂工作与双桥臂工作的损耗相当, 具体数值与实际电路有关。
当然, 本领域技术人员可以理解, 控制工作组切换的依据并不限于为 输出电流值,还可以根据输出电压值、输入电压值等其他参数变化来控制。 实施例二
图 3为本发明实施例二提供的逆变器控制装置的结构示意图。 该控制装置可以 由硬件来承载, 通过软件实现, 例如数字信号处理器(Digital Singinal Processor, 简 称 DSP )等, 对逆变器进行控制来实现直流向交流的转换。 该控制装置包括: 切换 控制 1 夬 20,用于在一个正弦波周期内,控制第一工作组和第二工作组切换地工作, 以形成馈入电网的交流电, 其中, 所述第一工作组包括 m个逆变模块, 第二工作组 包括 n个逆变 j¾^, 且 m小于 n。
优选是该切换控制模块 20具体包括: 电流识别单元 21、 第一切换单元 22 和第二切换单元 23。其中, 电流识别单元 21用于识别馈入电网的输出电流值; 第一 切换单元 22用于当电流识别单元 21识别到馈入电网的输出电流值低于第 殳定门 限值 igl时, 控制第一工作组中的逆变 1 夬工作; 第二切换单元 23用于当电流识别 单元 21识别到馈入电网的输出电流值高于第二设定门限值 ig2时, 控制第二工作组 中的逆变 1 夬工作, 其中, n · igl=m · ig2。
本实施例的技术方案可以执行本发明实施例所提供的逆变器控制方法, 具备相 应的功^ j 夬, 通过控制不同数量的逆变 1 夬工作, 能够提高逆变器的控制灵活性, 尤其是可以根据电流变化情况降^ £变才數中开关的通断频率, 减少器件损耗。
实施例三
本发明实施例三提供了一种逆变器, 该逆变器包括至少两个逆变模块, 连接在 直流输入端和交 ^ T出端之间,其中, m个工作组成第一工作组, n个工作组成第二 工作组, 且 m小于 n。 该逆变器还包括本发明实施例所提供的逆变器控制装置, 与 各逆变; 1 夬相连。 不同^:量逆变 的工作组切换地工作, 逆变 j 夬可以被分配到 不同的工作组中。
可参见图 1所示, 该逆变器中, 每个逆变模块可包括由两个开关构成 的高频桥臂和一个高频电感, 高频桥臂与所述直流输入端连接, 各逆变模 块通过工频桥臂与交流输出端连接。 当然, 逆变模块的具体结构并不限于 此, 能够实现直流交流转换的逆变电路均可以作为逆变模块。 不改变其电路结构, 仅修改控制策略, 就可以实现本发明实施例的技术方 案。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种逆变器控制方法, 其特征在于, 包括:
在一个正弦波周期内, 控制第一工作组中的逆变 1 夬工作, 以形成馈入电网的 交流电;
在同一所ti弦波周期内, 控制由第一工作组切换至第二工作组中的逆变 1 夬 工作, 以形成馈入电网的交流电, 其中, 所述第一工作组包括 m个逆变模夬, 第二 工作组包括 n个逆变才 夬, 且 m小于 n。
2、 根据权利要求 1所述的逆变器控制方法, 其特征在于, 控制由第一 工作组切换至第二工作组的逆变 j 夬工作包括:
根据馈入电网的输出电流值的变化, 控制由第一工作组切换至第二工作组中的 逆变才狭工作。
3、 根据权利要求 2所述的逆变器控制方法, 其特征在于:
在一个正弦波周期内, 控制第一工作组中的逆变 j 夬工作包括: 在一个正弦波 周期内, 当识别到馈入电网的输出电流值低于第 殳定门限值 igl时,控制第一工作 组中的逆变才 夬工作;
在同一所ti弦波周期内, 根据馈入电网的输出电流值的变化, 控制由第一工 作组切换至第二工作组中的逆变 j 夬工作包括: 在同一所 弦波周期内, 当识别 到馈入电网的输出电流值高于第二设定门限值 ig2时,控制第二工作组中的逆变 ^夬 工作;
其中, n · igl=m · ig2。
4、 根据权利要求 1或 2或 3所述的逆变器控制方法, 其特征在于: m 等于 1 , n等于 2。
5、 根据权利要求 1或 2或 3所述的逆变器控制方法, 其特征在于, 每 个逆变模块包括由两个开关构成的高频桥臂和一个高频电感, 高频桥臂与 直流输入端连接, 各逆变模块通过工频桥臂与交流输出端连接,
则在一个正弦波周期内, 控制第一工作组中的逆变 夬工作包括: 在一个正弦 波周期内, 产生用于控制高频 ^的两个开关交替工作的驱动信号, 将驱动信号分 别发送给所述第一工作组中各逆变模块的高频桥臂, 以控制第一工作组中的各逆变 微工作;
在同一所ti弦波周期内, 控制由第一工作组切换至第二工作组中的逆变 1 夬 工作包括: 在同一所ti弦波周期内, 产生用于控制高频 ^的两个开关交替工作 的驱动信号, 将驱动信号分别发送给所述第二工作组中各逆变模块的高频桥臂, 以 控制第一工作组切换至第二工作组中的各逆变 1 夬工作。
6、 一种逆变器控制装置, 于, 包括:
第一控制 j 夬, 用于在一个正弦波周期内,控制第一工作组中的逆变 1 夬工作, 以形成 4责入电网的交流电;
第 空制 j 夬, 用于在同一所ti弦波周期内, 控制由第一工作组切换至第二 工作组中的逆变 1 夬工作, 以形成馈入电网的交流电, 其中, 所述第一工作组包括 m个逆变 j 夬, 第二工作组包括 n个逆变 j 夬, 且 m小于 n。
7、 根据权利要求 6所述的逆变器控制装置, 其特征在于:
还包括电流识别才 夬, 用于识别馈入电网的输出电流值;
所述第一控制 j 夬还用于在一个正弦波周期内, 当电流识别才 夬识别到^:责入电 网的输出电流值低于第 殳定门限值 igl时, 控制第一工作组中的逆变才狭工作; 所述第 空制 j¾i夬还用于在同一所ti弦波周期内, 当电流识别 j 夬识别到馈 入电网的输出电流值高于第二设定门限值 ig2时, 控制第二工作组中的逆变 j 夬工 作;
其中, n · igl=m · ig2。
8、 根据权利要求 6或 7所述的逆变器控制装置, 其特征在于, 每个逆 变模块包括由两个开关构成的高频桥臂和一个高频电感, 高频桥臂与直流 输入端连接, 各逆变模块通过工频桥臂与交流输出端连接,
则所述第一控制微包括:
第 言号产生单元, 用于在一个正弦波周期内, 产生用于控制高频 ^的两个 开关交替工作的驱动信号;
第二信号发送单元, 用于将驱动信号分别发送给所述第一工作组中各逆变 1 夬 的高频 以控制第一工作组中的各逆变 1 夬工作;
所述第 空制微包括:
第二信号产生单元, 用于产生用于控制高频桥臂的两个开关交替工作的驱动信 号;
第二信号发送单元, 用于将驱动信号分别发送给所述第二工作组中各逆变 1 夬 的高频 以控制第一工作组切换至第二工作组中的各逆变 1 夬工作。
9、 一种逆变器, 于, 包括:
至少两个逆变才 夬, 连接在直 ^入端和交^ ^出端之间, 其中, m个逆变模 成第一工作组, n个逆变 j 夬组成第二工作组, 且 m小于 n;
权利要求 6-8 ^^所述的逆变器控制装置, 与各所述逆变 ^夬相连。
10、 根据权利要求 9所述的逆变器, 其特征在于:
每个逆变模块包括由两个开关构成的高频桥臂和一个高频电感, 高频 桥臂与所述直流输入端连接, 各逆变模块通过工频桥臂与交流输出端连 接。
11、 根据权利要求 9或 10所述的逆变器, 其特征在于: m等于 1 , n 等于 2。
PCT/CN2013/070727 2012-06-27 2013-01-18 逆变器控制方法、装置和逆变器 WO2014000440A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13729579.6A EP2698907B1 (en) 2012-06-27 2013-01-18 Inverter control method and device, and inverter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210215692.2 2012-06-27
CN201210215692 2012-06-27
CN201210227609.3 2012-07-03
CN201210227609.3A CN102761283B (zh) 2012-06-27 2012-07-03 逆变器控制方法、装置和逆变器

Publications (1)

Publication Number Publication Date
WO2014000440A1 true WO2014000440A1 (zh) 2014-01-03

Family

ID=47055625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070727 WO2014000440A1 (zh) 2012-06-27 2013-01-18 逆变器控制方法、装置和逆变器

Country Status (3)

Country Link
EP (1) EP2698907B1 (zh)
CN (1) CN102761283B (zh)
WO (1) WO2014000440A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112440768A (zh) * 2019-09-05 2021-03-05 比亚迪股份有限公司 充电控制方法、充电控制模块及其存储介质
CN112440767A (zh) * 2019-08-30 2021-03-05 比亚迪股份有限公司 充电控制方法、系统及其存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761283B (zh) * 2012-06-27 2015-11-25 华为技术有限公司 逆变器控制方法、装置和逆变器
CN106990309B (zh) * 2017-04-28 2023-07-07 荣信汇科电气股份有限公司 一种采用交流试验电源的换流阀稳态运行试验装置及方法
CN107204720B (zh) * 2017-07-03 2018-08-21 珠海英搏尔电气股份有限公司 一种交直流变换电路、交直流变换器及其控制方法
CN109217345B (zh) * 2018-11-01 2020-06-26 东莞市新瑞能源技术有限公司 一种自然能源与储能设备结合的离网供电系统充放电时对igbt的保护控制方法
CN113224964B (zh) * 2021-06-16 2021-11-12 南通大学 一种单相单级式升压逆变器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225489A (ja) * 2008-03-13 2009-10-01 Omron Corp パワーコンディショナの運転制御装置および太陽光発電システム
CN102067429A (zh) * 2008-05-14 2011-05-18 国家半导体公司 用于智能型转换器数组的系统及方法
CN102255331A (zh) * 2011-06-18 2011-11-23 江苏艾索新能源股份有限公司 一种无变压器的单边电感并网逆变电路
CN102437765A (zh) * 2011-10-17 2012-05-02 华为技术有限公司 一种逆变器拓扑电路、逆变方法和一种逆变器
CN102761283A (zh) * 2012-06-27 2012-10-31 华为技术有限公司 逆变器控制方法、装置和逆变器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1531538T3 (pl) * 2003-11-11 2014-09-30 Kostal Leopold Gmbh & Co Kg Sposób sterowania przetwornicą zwiększającą napięcie i wielokanałowa przetwornica napięcia oraz jej zastosowanie
US8503199B1 (en) * 2010-01-29 2013-08-06 Power-One, Inc. AC/DC power converter with active rectification and input current shaping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225489A (ja) * 2008-03-13 2009-10-01 Omron Corp パワーコンディショナの運転制御装置および太陽光発電システム
CN102067429A (zh) * 2008-05-14 2011-05-18 国家半导体公司 用于智能型转换器数组的系统及方法
CN102255331A (zh) * 2011-06-18 2011-11-23 江苏艾索新能源股份有限公司 一种无变压器的单边电感并网逆变电路
CN102437765A (zh) * 2011-10-17 2012-05-02 华为技术有限公司 一种逆变器拓扑电路、逆变方法和一种逆变器
CN102761283A (zh) * 2012-06-27 2012-10-31 华为技术有限公司 逆变器控制方法、装置和逆变器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698907A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112440767A (zh) * 2019-08-30 2021-03-05 比亚迪股份有限公司 充电控制方法、系统及其存储介质
CN112440768A (zh) * 2019-09-05 2021-03-05 比亚迪股份有限公司 充电控制方法、充电控制模块及其存储介质
CN112440768B (zh) * 2019-09-05 2022-07-15 比亚迪股份有限公司 充电控制方法、充电控制模块及其存储介质

Also Published As

Publication number Publication date
CN102761283B (zh) 2015-11-25
CN102761283A (zh) 2012-10-31
EP2698907A1 (en) 2014-02-19
EP2698907A4 (en) 2014-12-03
EP2698907B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2014000440A1 (zh) 逆变器控制方法、装置和逆变器
JP6227041B2 (ja) マルチレベルインバータ
CN101964590B (zh) 电力变换装置
JP6284081B2 (ja) インバータ装置
JP2019134665A (ja) 光起電力ソリッドステート変圧器、光起電力インバータシステム及び双方向高電圧変流器
CN104868764A (zh) 逆变装置及其电源转换方法
US9203323B2 (en) Very high efficiency uninterruptible power supply
US20140301124A1 (en) Cascade Bridge-type DC-AC Power Conversion Method and Converter Device Thereof
TW201025789A (en) Device, system, and method for managing an application of power from photovoltaic arrays
KR100911122B1 (ko) 복수의 dc 전원을 교류로 변환하는 개선된 전력변환장치
US9960711B2 (en) Single phase inverters cooperatively controlled to provide one, two, or three phase unipolar electricity
CN105453414A (zh) 电动机控制器
CN111835221A (zh) 一种dc/ac电力变换装置
CN104052083A (zh) 一种并网逆变器混合调制装置及其调制方法
CN212588279U (zh) 一种dc/ac电力变换装置结构
WO2016004896A1 (zh) 光伏逆变器及空调器
US20140268962A1 (en) Hybrid dc/ac inverter
WO2010139187A1 (zh) 直流电压转换成交流电压的电路
KR101697855B1 (ko) H-브리지 멀티 레벨 인버터
JP2016208810A (ja) 電力変換装置
JP6601672B2 (ja) 電力変換装置
CN109245580B (zh) 一种带有储能系统的多电平逆变器及其控制方法
CN102664572A (zh) 一种中高压无换向器电机的无位置传感器控制装置
CN103326397B (zh) 一种混合频率控制的统一电能质量控制器
CN105337325A (zh) 一种ups电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013729579

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE