WO2014000383A1 - 工程机械参数监控系统及方法 - Google Patents

工程机械参数监控系统及方法 Download PDF

Info

Publication number
WO2014000383A1
WO2014000383A1 PCT/CN2012/085996 CN2012085996W WO2014000383A1 WO 2014000383 A1 WO2014000383 A1 WO 2014000383A1 CN 2012085996 W CN2012085996 W CN 2012085996W WO 2014000383 A1 WO2014000383 A1 WO 2014000383A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
engineering
engineering device
working mode
monitoring
Prior art date
Application number
PCT/CN2012/085996
Other languages
English (en)
French (fr)
Inventor
袁爱进
郜健
王杏
Original Assignee
湖南三一智能控制设备有限公司
上海华兴数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 上海华兴数字科技有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2014000383A1 publication Critical patent/WO2014000383A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of monitoring systems, and in particular to a monitoring system and method for engineering machinery parameters. Background technique
  • the engineering machine will upload the main working condition data (such as operating parameters, fault information, etc.) and GPS positioning data to the monitoring center server through SMS or GPRS communication module.
  • the server will These data are collected and analyzed to enable remote monitoring and management of the equipment.
  • the existing remote monitoring mode mainly has the following disadvantages:
  • the present invention provides a construction machinery parameter monitoring system and method.
  • An engineering machinery parameter monitoring system comprising: an engineering device and a monitoring device, The engineering device is connected to the monitoring device; the monitoring device is configured to monitor and modify mechanical parameter data of the engineering device;
  • the engineering device includes a data acquisition module and a control module, wherein the data acquisition module and the control module are respectively connected to the monitoring device, and the data collection module is connected to the control module; the data acquisition module is configured to collect The mechanical parameter data in the engineering device is sent to the monitoring device, and the control module is configured to switch an operating mode of the engineering device according to an instruction of the monitoring device;
  • the monitoring device includes an operation module and a display module, the operation module is connected to the display module, and is connected to the engineering device; the operation module is configured for a user to send an operation instruction, and the display module is configured to receive and display Mechanical parameter data on the engineering device.
  • the engineering device further includes a first communication module, and the data acquisition module and the control module are respectively connected to the monitoring device through the first communication module.
  • control module further includes a timing component, and the timing component is connected to the data acquisition module, and configured to set a period in which the data acquisition module sends the mechanical parameter data.
  • the above construction machinery parameter monitoring system wherein the first communication module is a GPRS communication module.
  • the monitoring device further includes a second communication module, wherein the operation module is connected to the first communication module through the second communication module, thereby connecting the control module;
  • a communication module is connected to the monitoring device via the second communication module.
  • the monitoring device further includes a fault diagnosis module, wherein the fault diagnosis module is connected to the first communication module through the second communication module, and further connected to the control module;
  • the fault diagnosis module is configured to be according to the data acquisition module
  • the transmitted mechanical parameter data diagnoses whether the engineering device has a fault, and transmits the diagnostic result to the control module through the second communication module.
  • a monitoring method applied to the above-mentioned engineering machinery parameter system comprising the following steps: Step a, the engineering device is in a default working state, and the data collecting module collects mechanical parameter data of the engineering device, and sends the data to the The fault diagnosis module;
  • Step b if the fault diagnosis module diagnoses that the engineering device has a fault according to the mechanical parameter data, sending the mechanical parameter data to the display module, and the user may send a switching instruction to the operation module to The control module;
  • Step c the control module switches the working state to the master-slave mode directly controlled by the monitoring device after receiving the switching instruction;
  • Step d The user sends an instruction through the operation module to modify the mechanical parameter data in the engineering device to repair the fault problem.
  • step b if the fault diagnosis module diagnoses that the engineering device does not have a fault according to the mechanical parameter data, the control module will not receive the Switching the instruction while transmitting the mechanical parameter data to the display module and returning to the step &.
  • the monitoring machine realizes real-time monitoring data and analyzes and processes the fault diagnosis result
  • the system can switch the engineering machine to the master-slave working mode and modify it through remote communication, which can reduce the workload of the service engineer and improve the fault repair efficiency.
  • FIG. 1 is a schematic structural view of a construction machinery parameter monitoring system in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a flow chart showing an implementation method of a construction machinery parameter monitoring system according to a preferred embodiment of the present invention
  • FIG. 3 is still another flow chart of a method for implementing a construction machinery parameter monitoring system in accordance with a preferred embodiment of the present invention
  • FIG. 4 is a flow chart showing an implementation method of a construction machinery parameter monitoring system in accordance with a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other without conflict.
  • the invention is further illustrated by the following figures and preferred embodiments, but is not to be construed as limiting.
  • the monitoring system in this embodiment includes an engineering device and a monitoring device connected to each other, wherein the engineering device includes a data acquisition module and a control module connected to each other, and the data acquisition module is configured to collect mechanical parameter data in the engineering device. And transmitting to the monitoring device; the monitoring device is configured to receive the mechanical parameter data, and determine the working mode of the engineering device according to the mechanical parameter data, and send the working mode switching instruction to the control module when the working mode needs to be switched; the control module is configured to receive the work The mode switching instruction switches the operating mode of the engineering device according to the working mode switching instruction; the working mode includes a default working mode and a master-slave mode.
  • the default working mode is the default mode of the engineering device.
  • the master-slave mode is the mode in which the monitoring device controls the engineering device. When the engineering device is in the master-slave mode, the monitoring device can modify the mechanical parameter data in the engineering device.
  • the monitoring device in the embodiment of the invention can control the engineering device to be in the master-slave mode, not only Now it can remotely monitor the engineering equipment. At the same time, it can remotely control the engineering equipment and modify the mechanical parameter data of the engineering equipment, so that the staff does not need to go to the site for data maintenance, which greatly reduces the workload of the staff.
  • the monitoring device may further include a fault diagnosis module and an operation module connected to each other.
  • the fault diagnosis module is configured to receive the mechanical parameter data, and determine whether the engineering device is in a fault state according to the mechanical parameter data, and send a master-slave mode switching instruction to the control module through the operation module when the engineering device is in a fault state, so that the engineering device In the master-slave mode; the operating module is also used to send the modified mechanical parameter data to the control module when the engineering device is in the master-slave mode.
  • the fault diagnosis module determines that the engineering device is in a fault state
  • the fault diagnosis module sends an operation mode switching instruction to the control module in the engineering device through the operation module, and the control module controls the engineering device to work in the master-slave working mode, and
  • the fault diagnosis module sends the modified mechanical parameter data to the control module through the operation module to remotely process the fault of the engineering device.
  • the monitoring device may further include a display module.
  • the display module is connected to the fault diagnosis module and configured to receive and display mechanical parameter data, so that the staff can know the working state of the engineering device in time.
  • the engineering device further includes a first communication module
  • the monitoring device further includes a second communication module, wherein each of the modules connected between the engineering device and the monitoring device communicates through the first communication module and the second communication module.
  • data or command transmission is performed through the first communication module and the second communication module.
  • control module may further include a timing component, and the timing component is connected to the data collection module, and configured to set a period in which the data acquisition module sends the mechanical parameter data.
  • FIG. Figure 1 shows a construction machinery parameter monitoring system, including engineering equipment and monitoring equipment, engineering equipment and monitoring equipment connection; monitoring equipment is used to monitor the working parameters of the working equipment and modify.
  • the engineering device comprises a data acquisition module, a first communication module and a control module, wherein the data acquisition module and the control module are respectively connected to the monitoring device through the first communication module, the control module is connected to the data acquisition module, and the first communication module can be a GPRS communication module;
  • the module is used to collect the mechanical parameter data in the engineering device and send it to the monitoring device.
  • the working mode of the engineering device can be switched between the default mode and the master-slave mode by the control module, the default mode is the default mode, and the master-slave mode is monitored.
  • the device controls the mode of operation of the engineering device.
  • the control module further includes a timing component, and the timing component is connected to the data acquisition module for setting a period in which the data acquisition module sends the mechanical parameter data.
  • control module controls the data acquisition module to periodically update and collect valid mechanical parameter data (mainly including engine speed, power supply voltage, water temperature, oil temperature, oil pressure, working time, longitude and latitude, fault code, etc.), the first communication
  • the module uses GPRS wireless communication technology to remotely transmit the collected data information to the monitoring device and receive operation instructions from the monitoring device.
  • the monitoring device includes an operation module, a second communication module, a fault diagnosis module and a display module.
  • the second communication module is connected to the engineering device through the first communication module, the operation module is connected to the display module, and the engineering device is connected through the second communication module, and the fault diagnosis is performed.
  • the module is connected to the control module through the second communication module; the operation module is configured for the user to send an operation instruction, the display module is configured to receive and display the mechanical parameter data on the engineering device, and the fault diagnosis module diagnoses whether the engineering device is faulty according to the received mechanical parameter data. .
  • the user here is a controller, a device, and the like that are directed to the operation module to send an operation instruction.
  • the fault diagnosis module is referred to.
  • the second communication module and the first communication module can be wirelessly connected through a TCP data communication protocol, and are mainly responsible for receiving, parsing, and transmitting the switching parameters of the data parameters.
  • the present invention also provides a monitoring method for engineering machinery parameters, and the method
  • the method includes the following steps: Step SI, collecting mechanical parameter data of the engineering device, and determining whether the engineering device is in a fault state according to the mechanical parameter data; Step S2, if the engineering device is in a fault state, sending a working mode switching instruction to the engineering device, so that The engineering device is in the master-slave mode, and proceeds to step S3; if the engineering device is in the normal working state, it returns to step S1; and in step S3, the modified mechanical parameter data is sent to the engineering device.
  • the engineering device fails, the engineering device is first controlled in the master-slave mode, and then the working parameters of the problem are corrected, and the fault is remotely processed, which reduces the workload of the staff and improves Work efficiency.
  • step a further includes displaying the mechanical parameter data of the collected engineering device, so that the staff can know the working state of the engineering device in time.
  • an implementation method of a construction machinery parameter monitoring system includes the following steps: Step a, the system is in a default working state, and the data acquisition module collects mechanical parameter data of the engineering device, and according to a preset time of the timing component The interval is periodically sent to the fault diagnosis module through the communication module;
  • Step b if the fault diagnosis module diagnoses whether the engineering device has a fault according to the mechanical parameter data, and sends the parameter data to the display module;
  • Step c if there is a fault in the diagnosis, the user will send a switching instruction to the control module through the operation module to switch the working state of the engineering device to the master-slave mode directly controlled by the monitoring device; if there is no fault, return to step a;
  • Step d the user sends an instruction through the operation module to modify the mechanical parameter data in the engineering device to repair the fault problem.
  • the engineering machinery parameter monitoring system and method provided by the invention can control the engineering device to be in the master-slave working mode, not only realize remote monitoring of the engineering device, but also remotely control the engineering device and modify the mechanical parameter data of the engineering device. , so that the staff does not have to go to the site for data maintenance, greatly reducing the workload of the staff. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种工程机械参数监控系统,包括相互连接的工程装置和监控装置。工程装置包括相互连接的数据采集模块和控制模块,数据采集模块配置为采集工程装置中的机械参数数据并发送至监控装置;监控装置配置为接收机械参数数据,并根据机械参数数据确定工程装置的工作模式,以及在工作模式需要切换时向控制模块发送工作模式切换指令;控制模块配置为接收工作模式切换指令,并根据工作模式切换指令切换工程装置的工作模式。监控装置可以控制工程装置处于主从模式,不仅实现了对工程装置的远程监控,同时还可以远程控制工程装置,修改工程装置的机械参数数据,使工作人员不用到现场进行数据维护,大大地减少了工作人员的工作量。同时还公开了一种工程机械参数监控方法。

Description

工程 *1*^«控系统及方法 本申请要求于 2012 年 6 月 26 日提交中国专利局、 申请号为 201210211962.2 、发明名称为"一种可切换模式的工程机械参数监控系统及 实现方法 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请。 技术领域
本发明涉及监控系统技术领域, 具体涉及一种工程机械参数监控系统 及方法。 背景技术
目前的工程机械远程监控系统大多采用以下监控模式: 工程机将采集 到的主要工况数据(如作业参数、 故障信息等)和 GPS定位数据通过短信 或 GPRS通讯模块主动上传监控中心服务器, 服务器将这些数据进行收集、 分析, 以实现对设备的远程监控和管理。
但是现有的远程监控模式主要存在以下缺点:
1 )工程机大多具有主动上传参数的功能, 但模式较为单一, 只是根据 预设程序设定上传参数;
2 )设备发生故障后, 掌握参数错误信息却不能进行远程参数修改, 仍 然需要工程技术人员去现场进行修改, 因此造成了人力资源的浪费, 修复 故障效率低下, 无法满足企业工程服务的要求。 发明内容
针对目前监控系统技术存在的上述问题, 本发明提供了一种工程机械 参数监控系统及方法。
一种工程机械参数监控系统, 其中, 包括工程装置和监控装置, 所述 工程装置与所述监控装置相连接; 所述监控装置配置为监控及修改所述工 程装置的机械参数数据;
所述工程装置包括数据采集模块以及控制模块, 所述数据采集模块与 所述控制模块分别连接所述监控装置, 所述数据采集模块与所述控制模块 相连接; 所述数据采集模块配置为采集所述工程装置中的机械参数数据并 发送至所述监控装置, 所述控制模块配置为根据所述监控装置的指令切换 所述工程装置的工作模式;
所述监控装置包括操作模块以及显示模块, 所述操作模块与所述显示 模块相连接, 并连接所述工程装置; 所述操作模块供使用者发送操作指令, 所述显示模块配置为接收并显示所述工程装置上的机械参数数据。
上述的工程机械参数监控系统, 其中, 所述工程装置还包括第一通信 模块, 所述数据采集模块和所述控制模块分别通过所述第一通信模块连接 所述监控装置。
上述的工程机械参数监控系统, 其中, 所述控制模块中还包括定时部 件, 所述定时部件与所述数据采集模块相连接, 配置为设定所述数据采集 模块发送机械参数数据的周期。
上述的工程机械参数监控系统, 其中, 所述第一通信模块是 GPRS通 信模块。
上述的工程机械参数监控系统, 其中, 所述监控装置还包括第二通信 模块, 所述操作模块通过所述第二通信模块连接所述第一通信模块, 从而 连接所述控制模块; 所述第一通信模块通过所述第二通信模块连接所述监 控装置。
上述的工程机械参数监控系统, 其中, 所述监控装置还包括故障诊断 模块, 所述故障诊断模块通过所述第二通信模块与所述第一通信模块连接, 进而连接所述控制模块; 所述故障诊断模块配置为根据所述数据采集模块 发送的机械参数数据诊断所述工程装置是否存在故障, 并将诊断结果通过 所述第二通信模块发送至所述控制模块。
一种应用于上述工程机械参数系统的监控方法, 其中, 包括以下步骤: 步骤 a, 所述工程装置处于缺省工作状态, 所述数据采集模块采集所述 工程装置的机械参数数据, 并发送至所述故障诊断模块;
步骤 b ,若所述故障诊断模块根据所述机械参数数据诊断所述工程装置 存在故障, 则将所述机械参数数据发送至所述显示模块, 同时使用者可以 通过所述操作模块发送切换指令至所述控制模块;
步骤 c ,所述控制模块接收到切换指令后将工作状态切换至由所述监控 装置直接控制的主从模式;
步骤 d,使用者通过所述操作模块发送指令修改所述工程装置中的机械 参数数据, 修复故障问题。
上述的工程机械参数监控系统的实现方法, 其中, 所述步骤 b 中, 若 所述故障诊断模块根据所述机械参数数据诊断所述工程装置不存在故障, 则所述控制模块将不会接受到切换指令, 同时将所述机械参数数据发送至 所述显示模块, 并返回所述步骤&。
上述技术方案的有益效果:
1 )系统在正常条件下主动上传机械参数数据,上传间隔由工程机确定, 易于故障的诊断;
2 )监控机实现实时监控数据并分析处理, 得出故障诊断结果;
3 )故障发生后, 系统可通过远程通信将工程机切换至主从工作模式并 进行修改工作, 可优先减少服务工程师的工作量, 提高故障修复效率。 附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解, 本发明 的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1 是依据本发明一优选实施例的, 一种工程机械参数监控系统的结 构示意图;
图 2为依据本发明一优选实施例的, 一种工程机械参数监控系统的实 现方法的流程图;
图 3 为依据本发明一优选实施例的, 一种工程机械参数监控系统的实 现方法的又一流程图;
图 4是依据本发明一优选实施例的, 一种工程机械参数监控系统的实 现方法的流程示意图。 具体实施方式 需要说明的是, 在不沖突的情况下, 本发明中的实施例及实施例中的 特征可以相互组合。 下面结合附图和优选实施例对本发明作进一步说明, 但不作为本发明的限定。
参见图 1 , 图中示出了本发明工程机械参数监控系统的优选实施例。如 图所示, 本实施例中的监控系统包括相互连接的工程装置和监控装置, 其 中, 工程装置包括相互连接的数据采集模块和控制模块, 数据采集模块配 置为采集工程装置中的机械参数数据并发送至监控装置; 监控装置配置为 接收机械参数数据, 并根据机械参数数据确定工程装置的工作模式, 以及 在工作模式需要切换时向控制模块发送工作模式切换指令; 控制模块配置 为接收该工作模式切换指令, 并根据该工作模式切换指令切换工程装置的 工作模式; 工作模式包括缺省工作模式和主从模式。
其中, 缺省工作模式即工程装置的默认模式, 主从模式是由监控装置 控制工程装置的模式, 即工程装置处于主从模式时, 监控装置可以修改工 程装置中的机械参数数据。
本发明实施例中的监控装置可以控制工程装置处于主从模式, 不仅实 现了对工程装置的远程监控, 同时, 还可以远程控制工程装置, 修改工程 装置的机械参数数据, 使工作人员不用到现场进行数据维护, 大大地减少 了工作人员的工作量。
上述实施例中, 监控装置可以进一步包括相互连接的故障诊断模块和 操作模块。 其中, 故障诊断模块配置为接收机械参数数据, 并根据机械参 数数据判断工程装置是否处于故障状态, 以及在工程装置处于故障状态时 通过操作模块向控制模块发送主从模式切换指令, 以使工程装置处于主从 模式; 操作模块还用于在工程装置处于主从模式时向控制模块发送修改后 的机械参数数据。
本实施例中, 当故障诊断模块判断工程装置处于故障状态时, 故障诊 断模块通过操作模块向工程装置中的控制模块发送工作模式切换指令, 控 制模块控制该工程装置工作在主从工作模式, 并且, 故障诊断模块通过操 作模块向控制模块发送修改后的机械参数数据, 对工程装置的故障进行远 程处理。
上述各实施例中, 监控装置还可以包括显示模块。 其中, 显示模块与 故障诊断模块相连, 配置为接收并显示机械参数数据, 以使工作人员可以 及时了解工程装置的工作状态。
上述各实施例中, 工程装置还包括第一通信模块, 监控装置还包括第 二通信模块, 工程装置与监控装置内相连的各模块之间均通过第一通信模 块和第二通信模块进行通信。
例如, 数据采集模块与故障诊断模块之间、 控制模块与操作模块之间, 均通过第一通信模块和第二通信模块进行数据或命令传送。
上述各实施例中, 控制模块还可以包括定时部件, 定时部件与数据采 集模块相连, 配置为设定数据采集模块发送机械参数数据的周期。
下面结合图 1对本发明的优选实施例作更为详细的说明。 如图 1所示为一种工程机械参数监控系统, 包括工程装置和监控装置, 工程装置与监控装置连接; 监控装置用于监控工作装置的工作参数并修改。
工程装置包括数据采集模块、 第一通信模块以及控制模块, 数据采集 模块与控制模块通过第一通信模块分别连接监控装置, 控制模块连接数据 采集模块, 第一通信模块可以是 GPRS通信模块; 数据采集模块用于采集 工程装置中的机械参数数据并发送至监控装置, 工程装置的工作模式可由 控制模块在缺省模式和主从模式之间切换, 缺省模式即默认模式, 主从模 式即由监控装置控制工程装置工作的模式。
控制模块中还包括定时部件, 定时部件连接数据采集模块, 用于设定 数据采集模块发送机械参数数据的周期。
在缺省工作模式下, 控制模块控制数据采集模块定时更新采集有效机 械参数数据 (主要包括发动机转速、 电源电压、 水温、 油温、 机油压力、 工作时间、 经纬度、 故障码等) , 第一通信模块采用 GPRS无线通信技术, 将采集到的数据信息远程发送至监控装置, 并从监控装置接收操作指令。
监控装置包括操作模块、 第二通信模块、 故障诊断模块以及显示模块, 第二通信模块通过第一通信模块连接工程装置, 操作模块与显示模块连接, 并通过第二通信模块连接工程装置, 故障诊断模块通过第二通信模块与控 制模块连接; 操作模块供使用者发送操作指令, 显示模块配置为接收并显 示工程装置上的机械参数数据, 故障诊断模块根据接收的机械参数数据诊 断工程装置是否存在故障。
本领域人应当理解, 此处的使用者是指向操作模块发送操作指令的控 制器、 设备等, 本实施例中是指故障诊断模块。
第二通信模块与第一通信模块可以通过 TCP数据通信协议无线连接, 主要负责数据参数的接收、 解析和切换指令的发送。
参见图 2、 图 3 , 本发明还提供了一种工程机械参数监控方法, 该方法 包括如下步骤: 步骤 SI , 采集工程装置的机械参数数据, 并根据机械参数 数据判断工程装置是否处于故障状态; 步骤 S2, 若工程装置处于故障状态, 则向工程装置发送工作模式切换指令, 以使工程装置处于主从模式, 并转 至步骤 S3; 若工程装置处于正常工作状态, 则返回步骤 S1 ; 步骤 S3, 向 工程装置发送修改后的机械参数数据。
可以看出, 当工程装置故障时, 先控制该工程装置处于主从模式, 然 后再对出现问题的工作参数进行修正, 对故障进行远程处理, 该种处理方 式降低了工作人员的工作量, 提高了工作效率。
上述实施例中, 步骤 a 中还包括将采集的工程装置的机械参数数据进 行显示, 以使工作人员可以及时了解工程装置的工作状态。
下面结合图 4对本实施例中的监控方法实施例进行更为详细的说明。 如图 4所示为一种工程机械参数监控系统的实现方法, 包括以下步骤: 步骤 a, 系统处于缺省工作状态, 数据采集模块采集工程装置的机械参 数数据, 并根据定时部件的预设时间间隔, 通过通信模块定时发送至故障 诊断模块;
步骤 b , 若故障诊断模块根据机械参数数据诊断工程装置是否存在故 障, 同时将参数数据发送至显示模块;
步骤 c, 若诊断存在故障, 则使用者将通过操作模块向控制模块发送切 换指令将工程装置的工作状态切换成由监控装置直接控制的主从模式; 若 不存在故障, 则返回步骤 a;
步骤 d, 使用者通过操作模块发送指令修改工程装置中的机械参数数 据, 修复故障问题。
需要说明的是, 本发明中的监控系统和监控方法原理相似, 相关之处 可以相互参照。
以上所述仅为本发明较佳的实施例, 并非因此限制本发明的申请专利 范围, 所以凡运用本发明说明书及图示内容所作出的等效结构变化, 均包 含在本发明的保护范围内。 工业实用性
本发明提供的一种工程机械参数监控系统及方法, 能够控制工程装置 处于主从工作模式, 不仅实现了对工程装置的远程监控, 同时, 还可以远 程控制工程装置, 修改工程装置的机械参数数据, 使工作人员不用到现场 进行数据维护, 大大地减少了工作人员的工作量。 因此, 本发明具有工业 实用性。

Claims

权利要求书
1、 一种工程机械参数监控系统, 其特征在于, 包括相互连接的工程装 置和监控装置, 其中,
所述工程装置包括相互连接的数据采集模块和控制模块, 所述数据采 集模块配置为采集所述工程装置中的机械参数数据并发送至所述监控装 置;
所述监控装置配置为接收所述机械参数数据, 并根据所述机械参数数 据确定所述工程装置的工作模式, 以及在所述工作模式需要切换时向所述 控制模块发送工作模式切换指令;
所述控制模块配置为接收所述工作模式切换指令, 并根据所述工作模 式切换指令切换所述工程装置的工作模式;
所述工作模式包括缺省工作模式和主从工作模式。
2、 根据权利要求 1所述的工程机械参数监控系统, 其特征在于, 所述 监控装置包括相互连接的故障诊断模块和操作模块; 其中,
所述故障诊断模块配置为接收所述机械参数数据, 并根据所述机械参 数数据判断所述工程装置是否处于故障状态, 以及在所述工程装置处于故 障状态时通过所述操作模块向所述控制模块发送主从模式切换指令;
所述操作模块还配置为在所述工程装置处于所述主从模式时向所述控 制模块发送修改后的机械参数数据。
3、 根据权利要求 2所述的工程机械参数监控系统, 其特征在于, 所述 监控装置还包括显示模块; 其中,
所述显示模块与所述故障诊断模块相连, 配置为接收并显示所述机械 参数数据。
4、 根据权利要求 3所述的工程机械参数监控系统, 其特征在于, 所述 工程装置还包括第一通信模块, 所述监控装置还包括第二通信模块, 所述 工程装置与所述监控装置内相连的各模块之间均通过所述第一通信模块和 所述第二通信模块进行通信。
5、 根据权利要求 4所述的工程机械参数监控系统, 其特征在于, 所述 第一通信模块是 GPRS通信模块。
6、 根据权利要求 1所述的工程机械参数监控系统, 其特征在于, 所述 控制模块还包括定时部件, 所述定时部件与所述数据采集模块相连, 配置 为设定所述数据采集模块发送机械参数数据的周期。
7、 一种工程机械参数监控方法, 其特征在于, 包括如下步骤: 步骤 S1 , 采集工程装置的机械参数数据, 并根据所述机械参数数据判 断所述工程装置是否处于故障状态;
步骤 S2, 若所述工程装置处于故障状态, 则向所述工程装置发送工作 模式切换指令, 以使所述工程装置处于主从工作模式, 并转至步骤 S3; 若 所述工程装置处于正常工作状态, 则返回步骤 S1 ;
PCT/CN2012/085996 2012-06-26 2012-12-06 工程机械参数监控系统及方法 WO2014000383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210211962.2A CN102707700B (zh) 2012-06-26 2012-06-26 一种可切换模式的工程机械参数监控系统及实现方法
CN201210211962.2 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014000383A1 true WO2014000383A1 (zh) 2014-01-03

Family

ID=46900592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085996 WO2014000383A1 (zh) 2012-06-26 2012-12-06 工程机械参数监控系统及方法

Country Status (2)

Country Link
CN (1) CN102707700B (zh)
WO (1) WO2014000383A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111645A (zh) * 2014-07-03 2014-10-22 同济大学 基于b/s结构的工程机械远程监测方法及其系统
CN104749982A (zh) * 2015-03-26 2015-07-01 桂林电子科技大学 基于gps/gis的工程机械电子控制器及控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676913A (zh) * 2013-12-27 2014-03-26 恒天创丰重工有限公司 工程机械电气参数保护方法
CN111637115B (zh) * 2020-05-29 2022-04-01 上海华兴数字科技有限公司 一种液压系统异常的检测方法、检测装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109111A (en) * 1997-02-14 2000-08-29 Racine Federated Inc. Concrete vibrator monitor
CN1854461A (zh) * 2005-04-28 2006-11-01 Dbt有限公司 刨煤装置和用来控制刨煤装置的方法
CN201410909Y (zh) * 2009-05-31 2010-02-24 长沙中联重工科技发展股份有限公司 混凝土泵车监控系统
CN102455694A (zh) * 2010-10-27 2012-05-16 西安扩力机电科技有限公司 混凝土泵车用智能型调控系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993039A (en) * 1997-03-26 1999-11-30 Avalon Imagining, Inc. Power-loss interlocking interface method and apparatus
CN1627332A (zh) * 2003-12-12 2005-06-15 三一重工股份有限公司 远程数据传送和实时监控系统
US20080082196A1 (en) * 2006-09-29 2008-04-03 Wiese Gregory S Manufacturing System and Method
CN101135907A (zh) * 2007-09-29 2008-03-05 北京博创兴工科技有限公司 工程机械远程监控系统
CN101716663A (zh) * 2009-09-17 2010-06-02 杭州谱诚泰迪实业有限公司 一种连铸大包下渣检测远程监控系统及方法
CN102147615B (zh) * 2011-05-23 2012-11-21 湖南开启时代电子信息技术有限公司 一种工程机械车辆远程管理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109111A (en) * 1997-02-14 2000-08-29 Racine Federated Inc. Concrete vibrator monitor
CN1854461A (zh) * 2005-04-28 2006-11-01 Dbt有限公司 刨煤装置和用来控制刨煤装置的方法
CN201410909Y (zh) * 2009-05-31 2010-02-24 长沙中联重工科技发展股份有限公司 混凝土泵车监控系统
CN102455694A (zh) * 2010-10-27 2012-05-16 西安扩力机电科技有限公司 混凝土泵车用智能型调控系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111645A (zh) * 2014-07-03 2014-10-22 同济大学 基于b/s结构的工程机械远程监测方法及其系统
CN104749982A (zh) * 2015-03-26 2015-07-01 桂林电子科技大学 基于gps/gis的工程机械电子控制器及控制方法
CN104749982B (zh) * 2015-03-26 2017-10-20 桂林电子科技大学 基于gps/gis的工程机械电子控制器及控制方法

Also Published As

Publication number Publication date
CN102707700B (zh) 2015-05-20
CN102707700A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN108803552B (zh) 一种设备故障的监测系统及监测方法
JP2021077380A (ja) フィールドデバイス
US9285803B2 (en) Scheduling function in a wireless control device
WO2014000383A1 (zh) 工程机械参数监控系统及方法
CN101923759A (zh) 一种自助办税终端设备故障短信监控报警方法
CN111158327A (zh) 一种生产设备的生产监控系统
CN110300055B (zh) 异构现场总线用网关系统
KR20090132200A (ko) 주파수 공용 통신망을 이용한 실시간 교통신호 제어시스템, 장치 및 방법
CN109672976B (zh) 一种分布式蓝牙定位系统
CN102360205A (zh) 波纹管生产线的电气控制系统
JP2007318328A (ja) 設備管理システム
CN203786880U (zh) 一种基于ZigBee的智能无线消防网络系统
CN111176171A (zh) 一种基于分布式云架构的楼宇物联网数据采集装置
CN109915218A (zh) 一种deh系统电液转换部件故障诊断系统
CN108966287B (zh) 数据传输方法及系统
CN205066038U (zh) 中央空调的上位集成监控系统
KR101377461B1 (ko) 이종장치 및 시스템에 대한 원격 유지보수 및 모니터링 서비스 프레임워크
JP2008060808A (ja) 空港設備遠隔監視制御システム
KR20090063504A (ko) Oma―dm 시스템, 장치 관리 서버 및 단말 장치
KR102123941B1 (ko) Profinet 시스템 및 profinet 시스템에 대해 보조적인 제2 시스템을 특징으로하는 자동화 시스템 및 그 통신 방법
CN201557109U (zh) 基于web方式的载波通信管理装置
CN210983084U (zh) 一种大型工程设备远程监控及维护系统
TWI830261B (zh) 具無線收發能力的電梯管理系統
CN110995794B (zh) 一种电力数据的远程获取方法
JP2011071619A (ja) フィールド制御ネットワーク構築補助装置およびこれを備えたフィールド制御ネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879831

Country of ref document: EP

Kind code of ref document: A1