WO2013191502A1 - 산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법 - Google Patents

산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법 Download PDF

Info

Publication number
WO2013191502A1
WO2013191502A1 PCT/KR2013/005495 KR2013005495W WO2013191502A1 WO 2013191502 A1 WO2013191502 A1 WO 2013191502A1 KR 2013005495 W KR2013005495 W KR 2013005495W WO 2013191502 A1 WO2013191502 A1 WO 2013191502A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
fuel cell
iii
electrode assembly
edta
Prior art date
Application number
PCT/KR2013/005495
Other languages
English (en)
French (fr)
Inventor
한종인
김동연
김일국
이보미
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120067202A external-priority patent/KR101392736B1/ko
Priority claimed from KR1020120103879A external-priority patent/KR101366183B1/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2013191502A1 publication Critical patent/WO2013191502A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/222Fuel cells in which the fuel is based on compounds containing nitrogen, e.g. hydrazine, ammonia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a redox fuel cell and a method for separating nitrogen monoxide using the same are also provided. Also provided is a method of using isolated nitrogen monoxide or nitric acid produced therefrom.
  • a selective catalytic reduction method for injecting a current step with the reducing agent (such as NH 3) to the catalyst for removing them (Selective catalytic reduction: SCR) and selective non-catalytic reduction (Selective non-catalytic reduction: SNCR), processes using electron beams, and Pulsed corona discharge processes have been researched and developed.
  • SCR selective catalytic reduction
  • SNCR selective non-catalytic reduction
  • Pulsed corona discharge processes have been researched and developed.
  • nitrogen oxides abatement technology the emissions of nitrogen oxides have decreased slightly in recent 10 years, but still only about 30 million tons of nitrogen oxides are emitted annually in the United States.
  • the most common selective catalytic reduction method for removing nitrogen oxides requires an astronomical amount of about $ 24 billion.
  • BioDeNox process which treats nitrogen oxides by using microorganisms, has been newly developed and popularized. Unlike other processes, the Biodinox method is able to treat nitrogen oxides at room temperature using microorganisms, thus significantly reducing energy consumption.
  • the excellent selective binding ability and binding rate to nitrogen monoxide (NO) of dihydric iron-ethylenediaminecacetic acid which in the course of the reaction is reduced by oxygen contained in the nitrogen monoxide-
  • the regeneration process must be included because the acetic acid is converted to the trivalent iron-ethylenediamine acetic acid in its inactive form.
  • the Biodinox method uses a microorganism capable of reducing trivalent iron ions during the regeneration process, but the reduction rate thereof is remarkably low and much energy and cost are consumed in the treatment of nitrogen oxides. Therefore, the Biodinox process There is a problem with the processing speed.
  • the present inventors have made intensive efforts to solve the above problems.
  • trivalent iron-ethylenediamine acetic acid which is capable of selectively collecting nitrogen monoxide simultaneously with the production of electric energy
  • Ethylenediamine acetic acid in which nitrogen monoxide is adsorbed from nitrogen oxides is oxidized in the second membrane-electrode junction, and then, when the nitrogen monoxide-adsorbed bivalent iron-ethylenediamine acetic acid is oxidized in the second membrane- It was confirmed that it could be separated into ethylenediamine acetic acid and nitrogen monoxide and that the fuel cell could be operated without the addition of trivalent iron-ethylenediamine acetic acid, and the present invention was completed.
  • One aspect provides a redox fuel cell using trivalent iron-ethylenediamine acetic acid (Fe (III) -EDTA) capable of selectively collecting nitrogen monoxide simultaneously with the production of electrical energy.
  • Fe (III) -EDTA trivalent iron-ethylenediamine acetic acid
  • Another aspect provides a method for separating nitrogen monoxide from nitrogen oxides using the redox fuel cell.
  • Another improvement provides a method of using nitrogen monoxide produced by the method or nitric acid produced therefrom.
  • One aspect relates to a fuel cell including a first fuel cell including a first membrane-electrode assembly (MEA), and a second fuel cell including a second membrane-electrode assembly connected to the first fuel cell,
  • a fuel cell system comprising:
  • the first fuel cell including the first membrane-electrode assembly includes a nitrogen monoxide-containing sample inlet, a fuel inlet, a ferric-ethylenediamine acetic acid (Fe (III) -EDTA) inlet, a treated nitrogen monoxide- (II) -EDTA-NO) outlet through which nitrogen monoxide is adsorbed, and the first membrane-electrode assembly is provided with an anode, an electrolyte membrane and a cathode, battery,
  • the second fuel cell comprising the second membrane-electrode assembly comprises a nitrogen monoxide outlet, a bivalent iron-ethylenediamine acetic acid (Fe (II) -EDTA-NO) inlet to which nitrogen monoxide is adsorbed, and a trivalent iron-
  • the second membrane-electrode assembly is provided with an outlet of cesium acetic acid (Fe (III) -EDTA)
  • the second membrane-electrode assembly is a second fuel cell having an anode, an electrolyte membrane and a cathode bonded to each other.
  • divalent iron-ethylenediamine acetic acid (Fe (II) -EDTA) and “trivalent iron-ethylenediamine acetic acid (Fe (III) -EDTA)” have a specific binding ability to NO
  • the term “ compound having NO-specific binding potency " and " oxidized form thereof” “Compounds having NO-specific binding ability” and “oxidized form thereof” refer to ferrous-NTA (Fe (II) -NTA) and ferric-NTA ) -NTA) and ferric-MIDA (Fe (III) -MIDA).
  • NTA is nitrilotriacetic acid and MIDA is N-methyliminodiacetic acid.
  • nitrogen monoxide-containing sample may be any phase as long as it contains nitrogen monoxide (NO).
  • the sample may be a gas or a liquid.
  • the sample may include, for example, nitrogen oxides.
  • the nitrogen oxides may be NO, NO2, or combinations thereof.
  • the gas or liquid containing the nitrogen oxide includes exhaust gases such as factory exhaust gas, automobile exhaust gas, power plant, large-sized ship, refinery, ironworks, and transportation means.
  • the nitrogen monoxide-containing sample injection port may be located at the bottom.
  • the nitrogen monoxide-containing sample outlet may be located at the top.
  • Fe (III) -EDTA through the Fe (III) -EDTA inlet The means may be, for example, a pump connected to the injection port. It may also comprise means for controlling the amount of Fe (III) -EDTA injection, for example a valve. It may also include means for discharging Fe (II) -EDTA-NO through the Fe (II) -EDTA-NO outlet.
  • the means may be, for example, a pump connected to the outlet. It may also comprise means for controlling the amount of Fe (II) -EDTA-NO emissions, for example a valve.
  • the anode may further comprise an oxidation catalyst for promoting oxidation of the fuel.
  • the catalyst for the oxidation reaction may be Pt, Ir, IrO2, MnO2, Ru, RuO2, Pt-Ru, Pt-RuO2, or a combination thereof.
  • the catalyst may be supported on carbon.
  • the cathode may comprise a catalyst for promoting the reduction of the oxidizing agent.
  • the electrolyte membrane may be a polyelectrolyte membrane. Or the electrolyte membrane may be an ion exchange membrane.
  • the ion exchange membrane may be a proton exchange membrane (PEM), an anion exchange membrane (AEM), a cation exchange membrane (CEM), or a combination thereof.
  • the electrolyte membrane may selectively transmit cations, anions, or the like containing hydrogen ions.
  • the electrolyte membrane is positioned between the anode electrode and the cathode electrode.
  • the electrolyte membrane may allow movement of a substance of a solution between the anode cell and the cathode cell to only allow movement of a proton, negative charge, or positive charge through the electrolyte membrane.
  • the fuel injected into the anode cell and the Fe (III) -EDTA introduced into the cathode cell can not be mixed.
  • the anode and the cathode may be a commonly used electrode material.
  • the anode and the cathode may independently be carbon, for example, carbon cloth or carbon paper.
  • the cathode may be a carbon cloth or a carbon paper that does not contain a catalyst.
  • the cathode can rapidly reduce Fe (III) -EDTA to Fe (II) -EDTA sufficiently fast.
  • the first fuel cell including the first membrane-electrode assembly may include a current collector.
  • the current collector may be disposed in the thickness direction of the anode electrode.
  • the anode collector may be a known collective material.
  • the anode current collector may include titanium, gold, glassy carbon, or a combination thereof.
  • the anode current collector may be titanium, for example, a titanium mesh.
  • the anode current collector may be attached to the anode electrode.
  • the fuel injection port may be arranged such that the injected fuel is in contact with only the anode electrode and not in direct contact with F (II) -EDTA or F (III) -EDTA.
  • the first fuel cell may have a further CO2 outlet.
  • the CO2 outlet may be arranged to discharge CO2 generated from the fuel contacted with the anode electrode.
  • the fuel may be a low-oxidation material.
  • the fuel may be, for example, a material having a lower oxidation degree than that of CO 2.
  • the fuel may be alcohol, hydrogen, or a combination thereof.
  • the alcohol may be a C1-C10 alcohol.
  • the C1-C10 alcohol includes methanol, ethanol, propanol, butanol, glycerol, or combinations thereof.
  • the nitrogen monoxide outlet may be located at an upper portion. And may further comprise means for injecting Fe (II) -EDTA-NO through the Fe (II) -EDTA-NO inlet.
  • the means may be, for example, a pump connected to the injection port. It may also comprise means for controlling the amount of Fe (II) -EDTA-NO injection, for example a valve. It may also include means for discharging Fe (III) -EDTA through the Fe (III) -EDTA outlet.
  • the means may be, for example, a pump connected to the outlet. It may also include means for controlling the amount of Fe (III) -EDTA emissions, for example, a valve.
  • the cathode may further comprise a catalyst for the reduction reaction.
  • the catalyst for the reduction reaction may be Pt / C, MnO2, Pd / C, Pd-Co / C, Pd-Ni / C, Pd-Au or a combination thereof.
  • the anode may or may not include an oxidation catalyst.
  • the electrolyte membrane may be a polyelectrolyte membrane. Or the electrolyte membrane may be an ion exchange membrane.
  • the ion exchange membrane may be a proton exchange membrane (PEM), an anion exchange membrane (AEM), a cation exchange membrane (CEM), or a combination thereof.
  • the electrolyte membrane is positioned between the anode electrode and the cathode electrode.
  • the anode and the cathode may be a commonly used electrode material.
  • the electrolyte membrane may selectively transmit cations, anions, or the like containing hydrogen ions.
  • the electrolyte membrane may allow movement of a substance of a solution between the anode cell and the cathode cell to only allow movement of a proton, negative charge, or positive charge through the electrolyte membrane.
  • the Fe (II) -EDTA-NO introduced into the anode cell and the oxidizing agent introduced into the cathode cell, such as oxygen or air can not be mixed.
  • the anode and the cathode may independently be carbon, for example, carbon cloth or carbon paper.
  • the anode may be a carbon cloth or carbon paper that does not include a catalyst.
  • the anode electrode can be, for example, a carbon cloth or a carbon paper to which a catalyst is not fixed, and can oxidize Fe (II) -EDTA to Fe (III) -EDTA sufficiently fast without a catalyst.
  • the cathode may be, for example, carbon cloth or carbon paper in which Pt / C (20 wt%) is fixed by a catalyst.
  • Fe (II) -EDTA-NO is oxidized to Fe (III) -EDTA and pure NO is exhausted to gas. Since Fe (III) -EDTA is mostly present in the anode cell because it is converted to Fe (III) -EDTA by about 90% or more and NO is collected by gas, it may not be mixed with the sample or the fuel.
  • the second fuel cell including the second membrane-electrode assembly may include an electron collector.
  • the current collector may be disposed in the thickness direction of the cathode electrode.
  • the cathode current collector may be a known collector material.
  • the cathode current collector may include titanium, gold, glassy carbon, or a combination thereof.
  • the cathode current collector may be titanium, for example, a titanium mesh.
  • the cathode current collector may be attached to the cathode electrode.
  • the second fuel cell including the second membrane-electrode assembly may further include an oxidant inlet port and a water outlet port.
  • the oxidizing agent may be one having an activity of oxidizing Fe (II) -EDTA to Fe (III) -EDTA.
  • the oxidizing agent may be a substance containing O2.
  • the oxidant may be O2, or air.
  • the EDTA outlet may be fluidly connected.
  • the cathode cell may be one in which a cathode current collector, for example, a titanium current collector and a cathode electrode disposed opposite thereto are disposed, and a wall surface of the container includes an electrolyte membrane.
  • a cathode current collector for example, a titanium current collector and a cathode electrode disposed opposite thereto are disposed
  • a wall surface of the container includes an electrolyte membrane.
  • the anode cell may be an anode current collector, for example, a titanium current collector and an anode electrode disposed opposite to the anode current collector, and an electrolyte between the anode current collector and the anode current collector.
  • anode current collector for example, a titanium current collector and an anode electrode disposed opposite to the anode current collector, and an electrolyte between the anode current collector and the anode current collector.
  • the first fuel cell including the first membrane-electrode assembly includes an anode current collector, for example, a titanium current collector, and an anode electrode disposed opposite to the anode current collector. ; And an electrolyte membrane disposed between the anode cell and the cathode cell.
  • an anode current collector for example, a titanium current collector
  • An anode electrode for example, an anode electrode
  • An electrolyte membrane a cathode electrode of the cathode cell, and a cathode current collector, for example, a titanium current collector.
  • the electrolyte membrane may be PEM, AEM, CEM or a combination thereof.
  • the electrolyte membrane is as described above.
  • the second fuel cell including the second membrane-electrode assembly includes a cathode current collector, for example, a titanium current collector, and a cathode electrode disposed opposite to the cathode current collector.
  • a cathode current collector for example, a titanium current collector, and a cathode electrode disposed opposite to the cathode current collector.
  • Cell an electrolyte membrane positioned between the anode cell and the cathode cell.
  • the anode current collector for example, a titanium current collector, an anode electrode, an electrolyte film, a cathode electrode and a cathode current collector, for example, a titanium current collector may be arranged in this order.
  • At least one of the anode and the cathode of the first membrane-electrode assembly and the second membrane-electrode assembly may have a catalyst fixed thereon.
  • the fixation may be fixed on the surface or inside.
  • the oxidation catalyst for promoting the oxidation of the fuel may be fixed to the anode electrode of the first membrane-electrode assembly, and the catalyst for the reduction reaction may be fixed to the cathode electrode of the second membrane-electrode assembly.
  • the oxidation catalyst may be Pt, Ir, IrO2, MnO2, Ru, RuO2, Pt-Ru, Pt-RuO2, or a combination thereof.
  • the catalyst for the oxidation reaction may be supported, for example, supported on carbon.
  • the catalyst for the reduction reaction may be Pt / C.
  • the catalyst for the reduction reaction may include platinum, ruthenium, osmium, palladium, iridium, carbon, a transition metal, or a combination thereof.
  • the catalyst for the reduction reaction may be supported on a support, for example, carbon.
  • the catalyst for the reduction reaction may be a catalyst material different from the catalyst for the oxidation reaction.
  • the oxidation-reduction fuel cell system may further include a fuel supply unit connected to the first membrane-electrode assembly, and an oxidant supply unit connected to the second membrane-electrode assembly.
  • the fuel supply unit and the oxidant supply unit may include at least one of a pump and a valve.
  • FIG. 1 shows a redox fuel cell using trivalent iron-ethylenediamine acetic acid according to the present invention.
  • FIG. 2 is a view showing a first membrane-electrode assembly of a fuel cell according to the present invention.
  • FIG 3 is a view showing a second membrane-electrode assembly of a fuel cell according to the present invention.
  • the redox fuel cell system 500 includes a first fuel cell 100 including a first membrane-electrode assembly, a second fuel cell 200 including a second membrane-electrode assembly, Lt; / RTI >
  • the first fuel cell 100 including the first membrane-electrode assembly may be connected to the fuel supply unit 300.
  • the second fuel cell 200 including the second membrane-electrode assembly may be connected to the oxidizer supply unit 400.
  • the redox fuel cell system 500 includes a first fuel cell 100 including a first membrane-electrode assembly sequentially connected in series, a second fuel cell 200 including a second membrane-electrode assembly,
  • the first fuel cell 100 including the first membrane-electrode assembly and the second fuel cell 200 including the second membrane-electrode assembly are connected to each other by a pipe and a predetermined pumping force, (II) -EDTA-NO) in which the nitrogen monoxide adsorbed on the first fuel cell including the electrode assembly is adsorbed to the second fuel cell 200 including the second membrane- (III) -EDTA) of a second fuel cell comprising a pump and a second membrane-electrode assembly to a first fuel cell comprising a first membrane-electrode assembly 100 for supplying the fuel to the fuel cell.
  • the first fuel cell 100 including the first membrane-electrode assembly includes a fuel inlet 102, a CO2 outlet 104, an anode current collector 106, and an anode electrode 108 An anode cell 10;
  • the second fuel cell 200 including the second membrane-electrode assembly includes a nitrogen monoxide outlet 216, a nitrogen monoxide-adsorbed bivalent iron-ethylenediamine acetic acid (Fe (II) - An anode current collector 206 and an anode electrode 208.
  • the anode electrode 208 and the cathode electrode 208 are connected to each other by a conductive material, ;
  • an electrolyte membrane 210 positioned between the anode cell 30 and the cathode cell 40.
  • the current collectors included in the first and second fuel cells 100 and 200 may be connected to external circuits and used to accumulate electrical energy.
  • the redox fuel cell system can operate as follows.
  • the oxidation / reduction reactions occurring in the first membrane-electrode assembly and the second membrane-electrode assembly may be as follows.
  • the fuel for example, methanol supplied through the fuel inlet 102 of the first fuel cell including the first membrane electrode assembly is oxidized at the anode electrode 108 to generate carbon dioxide, hydrogen ions, and electrons (Scheme 1).
  • the generated electrons can move to the cathode electrode 112 through the electrolyte membrane 110.
  • (III) -EDTA supplied through the Fe (III) -EDTA inlet 122 can be reduced to Fe (II) -EDTA in the cathode electrode 112 by obtaining electrons moved from the anode electrode 108 (Scheme 2).
  • nitrogen monoxide-containing sample is supplied to the nitrogen monoxide-containing sample injection port 118, pure nitrogen monoxide can be adsorbed to generate nitrogen monoxide-adsorbed Fe (II) -EDTA-NO.
  • the nitrogen monoxide-adsorbed Fe (II) -EDTA-NO moves through the outlet 120 to the second fuel cell 200 including the second membrane-electrode assembly, and the nitrogen monoxide-removed nitrogen monoxide Containing sample can be discharged to the discharge port (116).
  • the NO (NO) -EDTA-NO adsorbed by the nitrogen monoxide produced as the final product of the first fuel cell reaction including the first membrane electrode assembly is discharged through the outlet 120 to the second
  • the anode cell 30 of the fuel cell 200 is moved to the nitrogen dioxide-adsorbed divalent iron-ethylenediamine acetic acid (Fe (II) -EDTA-NO) inlet 202 where the cathode cell 40 oxidant Separation of the nitrogen monoxide oxidized and adsorbed to Fe (III) -EDTA in the anode electrode 208 through an electrochemical reaction with the oxidizing agent supplied to the injection port 220, for example, oxygen gas or air may occur.
  • Nitrogen monoxide can be collected purely through the outlet 216.
  • the oxygen gas can obtain electrons and react with water-dissociated hydrogen ions (H 3 O + ) to be reduced to water (Scheme 5). Water may be discharged through outlet 218.
  • the Fe (III) -EDTA remaining in the anode cell 30 of the second fuel cell 200 including the second membrane-electrode assembly is discharged through the outlet 204 into the first membrane- 1 cathode cell 20 of the fuel cell 100 and can be reused.
  • Electrons and hydrogen ions generated in the anode electrode 208 of the second fuel cell 200 including the second membrane-electrode assembly pass through the electrolyte membrane 210 to the cathode electrode 212, It can react with oxygen to generate water and generate electrical energy.
  • the fuel may be one selected from the group consisting of methanol, ethanol, propanol, butanol, glycerol, and hydrogen, although the fuel may be used without limitation as long as it can be used in a fuel cell.
  • methanol or ethanol can be used.
  • the concentration of the fuel supplied to the fuel injection port 102 of the first fuel cell 100 including the first membrane electrode assembly is 1M to 5M, 1M to 4M, 1M to 3M, 1M to 2M, 2M to 5M , 3M to 5M, or 4M to 5M.
  • Fe (III) -EDTA is supplied to the first fuel cell 100 including the first membrane-electrode assembly through a trivalent iron-ethylenediamine acetic acid (Fe (III) -EDTA) .
  • the concentration of Fe (III) EDTA can be from 10 mM to 500 mM, from 100 mM to 500 mM, from 200 mM to 500 mM, from 300 mM to 500 mM, from 400 mM to 500 mM, from 10 mM to 400 mM, from 100 mM to 400 mM, from 200 mM to 400 mM, from 300 mM to 400 mM, have.
  • Fe (III) -EDTA is renewable, and it is possible to operate the fuel cell without additional supply after initial supply.
  • the anode electrodes 108 and 208 of the second fuel cell 200 including the first membrane-electrode assembly or the second membrane-electrode assembly including the second membrane-electrode assembly have an activity to promote oxidation with the electrode substrate ≪ / RTI >
  • the catalyst may be one which promotes the oxidation of a fuel, for example, hydrogen, methanol, ethanol, glycerol or a combination thereof.
  • the catalyst for the oxidation reaction may be platinum, ruthenium, osmium, palladium, iridium, carbon, transition metal, or a mixture thereof.
  • the cathode electrodes 112 and 212 of the second fuel cell 200 including the first membrane-electrode assembly or the second membrane-electrode assembly including the second membrane-electrode assembly are connected to the electrode substrate and the activation ≪ / RTI >
  • the catalyst for the oxidation reaction of the anode electrodes 108 and 208 may be Pt / Ru / C
  • the catalyst for the reduction reaction of the cathode electrodes 112 and 212 may be Pt / C.
  • Another aspect provides a method for separating nitrogen monoxide from a nitrogen monoxide-containing material using the redox fuel cell.
  • One embodiment is an oxidation-reduction fuel cell system comprising a first fuel cell comprising a first membrane-electrode assembly, and a second fuel cell comprising a second membrane-electrode assembly connected to the first fuel cell,
  • the first fuel cell comprising the membrane-electrode assembly is characterized in that it comprises a nitrogen monoxide-containing sample inlet, a fuel inlet, a trivalent iron-ethylenediamine acetic acid (Fe (III) -EDTA) inlet, a treated nitrogen monoxide-
  • the first membrane-electrode assembly comprises a first fuel cell having an anode, an electrolyte membrane and a cathode bonded to each other, and the first membrane-electrode assembly is provided with a bivalent iron-ethylenediamine acetic acid (Fe (II)
  • the second fuel cell comprising the second membrane-electrode assembly comprises a nitrogen monoxide outlet, a bivalent iron-ethylenediamine acetic acid (Fe
  • the method includes introducing the nitrogen monoxide-containing sample through the nitrogen monoxide-containing sample inlet of the redox fuel cell system.
  • the oxidation-reduction fuel cell system is as described above.
  • the nitrogen monoxide-containing sample may be nitrogen monoxide, nitrogen dioxide, nitric acid, or a combination thereof.
  • the nitrogen monoxide-containing sample may be automotive exhaust, factory exhaust, or a combination thereof.
  • the introduction of the exhaust gas may be introduced by a driving force such as a pump.
  • the method includes injecting fuel through the fuel inlet.
  • the injection of the fuel may be introduced by a driving force such as a pump.
  • the fuel may be a low-oxidation material.
  • the fuel may be, for example, a material having a lower oxidation degree than that of CO 2.
  • the fuel may be alcohol, hydrogen, or a combination thereof.
  • the alcohol may be a C1-C10 alcohol.
  • the C1-C10 alcohol includes methanol, ethanol, propanol, butanol, glycerol, or combinations thereof.
  • the method includes injecting an oxidant through the oxidant inlet.
  • the oxidizing agent may be one having an activity of oxidizing Fe (II) -EDTA to Fe (III) -EDTA.
  • the oxidizing agent may be a substance containing O2.
  • the oxidant may be O2, or air.
  • the method includes collecting nitrogen monoxide discharged through the nitrogen monoxide outlet.
  • the collection may be collected by direct connection to an apparatus for treating nitrogen monoxide.
  • the above steps may be carried out in the presence of one or more of the above steps in the presence of Fe (III) -EDTA.
  • the Fe (III) -EDTA is added to the cathode 112 of the first fuel cell 100 including the first membrane-electrode assembly in the range of 10 mM to 500 mM, 100 mM to 500 mM, 200 mM to 500 mM, 300 mM to 500 mM, 400 mM to 500 mM, 10 mM to 400 mM, 100 mM to 400 mM, 200 mM to 400 mM, 300 mM to 400 mM, or 10 mM to 300 mM.
  • Fe (III) -EDTA is renewable, and it is possible to operate the fuel cell without additional supply after initial supply. Fe (III) -EDTA may be injected through the Fe (III) -EDTA inlet.
  • the method comprises introducing Fe (III) -EDTA from the Fe (III) -EDTA outlet of the second membrane-electrode assembly into the first membrane-electrode assembly through the Fe (III) -EDTA inlet of the first membrane- Step < / RTI >
  • the redox fuel cell system using Fe (III) -EDTA according to the present invention and the method for separating nitrogen monoxide using the same make it possible not only to remove nitrogen monoxide but also to recycle it to produce high value added materials such as ammonia fertilizer and nitric acid, .
  • Ammonia fertilizer can be produced by mixing nitric acid and ammonia.
  • NO can be produced by dissolving NO in water and oxidizing.
  • Ostwald process which is a commercially available nitric acid production process, pure NO obtained by reforming ammonia is used. If NO can be selectively separated from the nitrogen monoxide-containing sample, it is possible to eliminate the cost of manufacturing the NO, It is possible to remarkably lower the manufacturing cost of the device.
  • Another aspect of the present invention is a method for the treatment of woody biomass comprising the steps of: pre-treating woody biomass with nitric acid prepared from nitrogen monoxide separated according to the method of separating nitrogen monoxide from the nitrogen monoxide containing sample as described above; Adjusting the pH of the pretreated solution to 4.5 to 5.0, adding a saccharifying enzyme and saccharifying it to prepare a saccharified solution; And culturing an ethanol-producing microorganism in a medium containing the saccharified liquid to produce ethanol.
  • the method includes the step of pretreating woody biomass with nitric acid prepared from nitrogen monoxide which has been separated according to the method of separating nitrogen monoxide from the nitrogen monoxide containing sample as described above.
  • a method for separating nitrogen monoxide from a sample containing nitrogen monoxide is as described above.
  • Known methods for producing nitric acid prepared from nitrogen monoxide can be used. For example, a process for producing nitric acid from NO in the Oswald process for producing nitric acid from ammonia can be used.
  • the process for producing nitric acid from NO can be accomplished by the following procedure. NO reacts with oxygen to produce nitrogen dioxide.
  • the nitrogen dioxide is absorbed into water to become nitric acid and NO.
  • NO (g) is recovered and re-oxidized.
  • the step of pretreating the woody biomass may be by incubating the woody biomass with heating in a nitric acid containing solution.
  • concentration of the nitric acid may be 0.2 wt% to 0.6 wt%.
  • the pretreatment reaction temperature may be 150 to 180 ° C.
  • the pretreatment may be performed under pressure.
  • the woody biomass may be cellulose, lignocellulose, or a combination thereof.
  • the method includes adjusting the pH of the pretreated solution to 4.5 to 5.0, adding a saccharifying enzyme, and saccharifying to prepare a saccharified solution.
  • the saccharifying enzyme may be an enzyme capable of decomposing woody biomass.
  • the saccharifying enzyme may be? -Glucosidase, endoglucanase, exoglucanase, or a mixture thereof.
  • the saccharified liquid may include one or more of nitrate (NO 3 - ), glucose and wood sugar.
  • the method includes culturing an ethanol-producing microorganism in a medium containing the saccharified liquid to produce ethanol.
  • the nitric acid or the nitrate (NO 3 - ) produced from the nitrogen monoxide may be used directly as the nitrogen source in the medium.
  • the ethanol-producing microorganism may be Escherichia coli , Zymomonas Mobilis , Klebsiella oxytoca P2, Brettanomyces curstersii , Saccharomyces cerevisiae, , Saccharomyces uvzrun , Candida brassicae , and Saccharomyces cerevisiae .
  • the culture may be carried out under conditions suitable for ethanol production. The above conditions can be appropriately selected depending on the strain to be selected.
  • the redox fuel cell system can be used to efficiently separate nitrogen monoxide from nitrogen monoxide-containing samples while producing electrical energy.
  • nitrogen monoxide can be efficiently separated from the sample containing nitrogen monoxide.
  • ethanol can be efficiently produced.
  • FIG. 1 shows a redox fuel cell using trivalent iron-ethylenediamine acetic acid according to the present invention.
  • FIG. 2 is a view showing a first membrane-electrode assembly of a fuel cell according to the present invention.
  • FIG 3 is a view showing a second membrane-electrode assembly of a fuel cell according to the present invention.
  • Example 4 is a graph showing the result of operating a fuel cell using the first membrane-electrode assembly manufactured according to Example 1 as an electrode.
  • Example 5 is a graph illustrating the results of operation of a fuel cell using the second membrane-electrode assembly manufactured in Example 1 as an electrode.
  • 6 is a graph showing saccharification efficiency with time.
  • Example 1 Preparation of membrane-electrode assembly of redox fuel cell using Fe (III) -EDTA
  • a first membrane-electrode assembly and a second membrane-electrode assembly were prepared.
  • the first membrane-electrode assembly is composed of an anode coated with a 20% wt Pt / Ru / C catalyst on a carbon cloth, a carbon cloth cathode not containing a catalyst, and an electrolyte membrane.
  • the second membrane-electrode assembly is composed of a cathode coated with a 20% wt Pt / C catalyst, a carbon cloth anode not containing a catalyst, and an electrolyte membrane on a carbon cloth.
  • the first membrane-electrode assembly and the second membrane-electrode assembly were prepared by hot-pressing the electrolyte membrane between two electrodes at about 130 ° C and about 100 kg / cm 2 for 2 minutes.
  • the anode electrode coated with the catalyst and the cathode electrode coated with the catalyst were prepared by spraying.
  • a spray apparatus is equipped with a nano-sized catalyst powder (a 20% wt Pt / C anode catalyst or a 20% wt Pt-Ru (1: 1) / C) cathode catalyst, a Nafion ionomer, and iso- , A 5% (v / v) Nafion ionomer-containing Nafion solution, and iso-propanol in a weight ratio of 1: 3: 10 were injected into the electrode.
  • the aqueous solution was sonicated for one hour before being introduced into the spraying apparatus to disperse the solution evenly.
  • the catalyst was applied.
  • the Nafion ionomer is a fluoropolymer-copolymer based on sulfonated tetrafluoroethylene.
  • the Nafion ionomer is a proton exchange membrane (PEM) and does not exchange anions or electrons.
  • a second fuel cell including a first fuel cell including a first membrane-electrode assembly and a second membrane-electrode assembly as shown in Figs. 2 and 3 was produced.
  • the first membrane-electrode assembly and the second membrane-electrode assembly each have an anode electrode, an anode catalyst layer, an electrolyte membrane-cathode electrode, an anode electrode, an electrolyte membrane, a cathode catalyst layer, And has a layered structure.
  • Example 4 is a graph illustrating the results of operating the first fuel cell using the anode and cathode of the first membrane-electrode assembly manufactured according to Example 1 as an electrode.
  • the voltage is obtained by connecting a circuit to an anode titanium current collector and a cathode titanium current collector, respectively, and measuring a voltage through a voltmeter.
  • the voltage produced by the first membrane-electrode assembly gradually decreased at the initial 0.33 V, and the maximum power density showed an initial maximum value of 785 mV / m 2 . Also, it can be seen that the Fe (III) -EDTA injected into the final electron donor of the cathode was reduced to Fe (II) -EDTA-NO as the operating time elapsed.
  • Example 5 is a result of operating a second fuel cell using the anode and the cathode of the second membrane-electrode assembly manufactured in Example 1 as electrodes.
  • the voltage is obtained by connecting a circuit to an anode titanium current collector and a cathode titanium current collector, respectively, and measuring a voltage through a voltmeter.
  • Fe (II) -EDTA-NO adsorbed with nitrogen monoxide was directly supplied to the Fe (II) -EDTA-NO injector 202 using a pump, And oxygen was supplied through the fuel injecting unit 220.
  • Fe (II) -EDTA-NO adsorbed with nitrogen monoxide
  • a gas containing nitrogen monoxide was added to 200 mL of 10 mM Fe (II) -EDTA, which is the final product of the fuel cell using the first membrane electrode assembly as an electrode in Experimental Example 1
  • Fe (II) -EDTA-NO was selectively adsorbed with nitrogen monoxide by supplying 1% (v / v) NO in nitrogen.
  • Example 2 Pretreatment and saccharification of woody biomass using nitric acid
  • nitric acid was produced from nitrogen monoxide separated in Experimental Example 3 by the following procedure. First, NO reacted with oxygen to produce nitrogen dioxide.
  • the saccharification enzyme mixture (cellulase + ⁇ -glucosidase) was added to the pretreated samples prepared from the untreated and control samples and the nitric acid prepared from the nitrogen monoxide according to the present invention, and the saccharification results were analyzed.
  • the glycation was first adjusted to pH 5.0 by adding sodium citrate buffer to the sample. Next, 1 mL of the saccharification enzyme mixture was added to the pH adjusted sample. Thereafter, the cells were incubated at 50 ° C for 72 hours for saccharification.
  • the concentration of glucose from the reaction mixture was determined by HPLC to determine glycosylation efficiency.
  • the saccharification efficiency is the rate at which glucan is converted to glucose.
  • FIG. 6 is a graph showing saccharification efficiency with time.
  • the horizontal axis represents time (minute), and the vertical axis represents saccharification efficiency (%).
  • the saccharification efficiency of the sample pretreated with sulfuric acid was 80%, and the sample pretreated with nitric acid according to the present invention had the saccharification efficiency of 83%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Energy (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Fuel Cell (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Inert Electrodes (AREA)
  • Biotechnology (AREA)

Abstract

Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA를 이용하는 산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법을 제공한다. 또한, 분리된 일산화질소는 질산을 제조하는데 사용될 수 있고, 제조된 질산은 목질계 바이오매스의 당화에 사용될 수 있다.

Description

산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법
산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법에 관한 것이다. 또한, 분리된 일산화질소 또는 그로부터 제조된 질산을 이용하는 방법을 제공한다.
발전시설, 산업용 보일러, 소각시설 등의 화석연료 사용시설과 자동차 엔진의 연소과정에서는 인체에 유해한 다량의 질소산화물 (NOX)이 발생되고 있다. 이러한 질소산화물의 배출은 산성비, 오존층의 감소 및 광화학적 스모그를 생성하는 등 대기오염에도 큰 영향을 미친다.
현재 이를 제거하기 위한 공정으로는 촉매에 환원제 (NH3 등)를 분사하는 선택적 촉매환원법 (Selective catalytic reduction: SCR)과 선택적 비촉매환원법 (Selective non-catalytic reduction: SNCR), 전자빔을 이용한 공정, 및 펄스 코로나 방전공정이 연구 개발되어 왔다. 질소산화물 저감기술의 개발에 따라 최근 10년 동안 질소산화물의 배출량은 조금 감소하여 왔으나 여전히 미국에서만 매년 약 3000만톤의 질소산화물이 배출되고 있다. 질소산화물을 제거하기 위해 가장 널리 쓰이는 선택적 촉매 환원법을 이용할 경우 약 240억 달러라는 천문학적인 금액이 요구된다.
또한 최근에는 미생물을 이용하여 질소산화물을 처리하는 바이오디녹스 (BioDeNox) 공정이 새롭게 개발되어 각광받고 있다. 바이오디녹스법은 다른 공정들과는 달리 미생물을 이용하여 상온에서도 질소산화물의 처리가 가능하여 에너지 소비가 현저히 적다. 이 기술의 핵심은 2가 철-에틸렌디아민사아세트산의 일산화질소 (NO)에 대한 탁월한 선택적 결합능 및 결합속도에 있는데, 반응 과정에서 일산화질소 함유 시료에 포함되어 있는 산소에 의해 2가 철-에틸렌디아민사아세트산이 산화, 비활성 형태인 3가 철-에틸렌디아민사아세트산으로 되기 때문에 재생 과정이 반드시 포함되어야 한다. 바이오디녹스법은 이 재생과정에 3가 철이온을 환원할 수 있는 미생물을 이용하지만, 그 환원속도가 현저히 느리고, 질소산화물를 처리하는데 많은 에너지와 비용이 소모되므로, 현재 연구개발 중인 바이오디녹스 공정은 처리속도에 문제점이 있다.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 전기에너지의 생산과 동시에 일산화질소를 선택적으로 포집할 수 있는 특성이 있는 3가 철-에틸렌디아민사아세트산을 제1 막-전극 접합체에서 환원시켜 질소산화물로부터 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산를 생성한 다음, 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산을 제2 막-전극 접합체에서 산화시킬 경우, 3가 철-에틸렌디아민사아세트산과 일산화질소로 분리될 수 있고, 3가 철-에틸렌디아민사아세트산의 추가 공급 없이 연료전지를 작동시킬 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
일 양상은 전기에너지의 생산과 동시에 일산화질소를 선택적으로 포집할 수 있는 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA)을 이용하는 산화환원 연료전지를 제공한다.
다른 양상은 상기 산화환원 연료전지를 이용하여 질소산화물로부터 일산화질소를 분리하는 방법을 제공한다.
다른 향상은 상기 방법에 의하여 제조된 일산화질소 또는 그로부터 제조된 질산을 이용하는 방법을 제공한다.
일 양상은 제1 막-전극 접합체 (first membrane-electrode assembly: MEA)를 포함하는 제1 연료전지, 및 제1 연료전지에 연결된 제2 막-전극 접합체를 포함하는 제2 연료전지를 포함한 산화환원 연료전지 시스템으로서,
제1 막-전극 접합체를 포함하는 제1 연료전지는 일산화질소 함유 시료 주입구, 연료 주입구, 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA) 주입구, 처리된 일산화질소 함유 시료 배출구, 및 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 배출구가 구비되어 있고, 제1 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것인 제1 연료전지,
제2 막-전극 접합체를 포함하는 제2 연료전지는 일산화질소 배출구, 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 주입구, 및 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA) 배출구가 구비되어 있고, 제2 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것인 제2 연료전지인 산화환원 연료전지 시스템을 제공한다.
본 명세서에 있어서, "2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA)"과 "3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA)"은 NO에 특이적 결합능을 갖는 화합물과 그의 산화된 형태의 일 예를 나타낸 것으로, 상기 용어는 "NO에 특이적 결합능을 갖는 화합물"과 "그의 산화된 형태"와 교환가능하게 사용가능하다. "NO에 특이적 결합능을 갖는 화합물"과 "그의 산화된 형태"는, ferrous-NTA(Fe(II)-NTA) 및 ferric-NTA(Fe(III)-NTA), ferrous-MIDA (Fe(II)-NTA) 및 ferric-MIDA(Fe(III)-MIDA) 등이 포함될 수 있다. 여기서 NTA는 nitrilotriacetic acid이고, MIDA는 N-methyliminodiacetic acid이다.
본 명세서에 있어서, 용어 "일산화질소 함유 시료"는 일산화질소 (NO)를 포함하는 것이면, 어떤 상 (phase)이어도 된다. 상기 시료는 기체 또는 액체일 수 있다. 상기 시료는 예를 들면, 질소산화물을 포함하는 것일 수 있다. 질소산화물은 NO, NO2, 또는 이들의 조합을 포함하는 것일 수 있다. 상기 질소산화물을 포함하는 기체 또는 액체는 공장 배기 가스, 자동차 배기 가스, 발전소, 대형선박, 정유소, 제철소, 운송수단 등의 배기가스를 포함한다.
제1 막-전극 접합체를 포함하는 제1 연료전지에 있어서, 상기 일산화질소 함유 시료 주입구는 하부에 위치할 수 있다. 상기 일산화질소 함유 시료 배출구는 상부에 위치할 수 있다. Fe(III)-EDTA 주입구를 통하여 Fe(III)-EDTA를 주입하기 위한 수단을 포함할 수 있다. 상기 수단은 예를 들면, 상기 주입구에 연결된 펌프일 수 있다. 또한, Fe(III)-EDTA 주입량을 조절하기 위한 수단, 예를 들면, 밸브를 포함할 수 있다. 또한, Fe(II)-EDTA-NO 배출구를 통하여 Fe(II)-EDTA-NO를 배출하기 위한 수단을 포함할 수 있다. 상기 수단은 예를 들면, 상기 배출구에 연결된 펌프일 수 있다. 또한, Fe(II)-EDTA-NO 배출량을 조절하기 위한 수단, 예를 들면, 밸브를 포함할 수 있다.
막-전극 접합체를 포함하는 제1 연료전지에 있어서, 상기 애노드는 연료의 산화를 촉진시키기 위한 산화 촉매를 더 포함하는 것일 수 있다. 상기 산화반응을 위한 촉매는 Pt, Ir, IrO2, MnO2, Ru, RuO2, Pt-Ru, Pt-RuO2, 또는 이들의 조합일 수 있다. 상기 촉매는 탄소에 담지된 것일 수 있다. 상기 캐소드는 산화제의 환원을 촉진시키기 위한 촉매를 포함할 수 있다. 상기 전해질 막은 고분자 전해질막 (polyelectrolyte membrane)일 수 있다. 또는 상기 전해질 막은 이온교환막일 수 있다. 상기 이온교환막은 양성자 교환막 (proton exchange membrane: PEM), 음이온교환막 (anion exchange membrane: AEM), 양이온교환막 (cation exchange membrane: CEM), 또는 이들의 조합일 수 있다. 상기 전해질 막은 수소 이온을 포함한 양이온, 음이온 또는 이들을 선택적으로 투과시킬 수 있다. 상기 전해질 막은 애노드 전극과 캐소드 전극 사이에 위치한다. 상기 전해질막은 애노드 셀과 캐소드 셀 사이의 용액의 물질의 이동을 상기 전해질막을 통한 양성자, 음전하, 또는 양전하의 이동만가능하도록 할 수 있다. 그 결과, 애노드 셀 도입되는 연료와 캐소드 셀에 도입되는 Fe(III)-EDTA는 혼합될 수 없다. 상기 애노드 및 캐소드는 통상적으로 사용되는 전극 물질일 수 있다. 상기 애노드 및 캐소드는 독립적으로 탄소, 예를 들면, 탄소 천 (carbon cloth) 또는 탄소 종이 (carbon paper)일 수 있다. 상기 캐소드는 촉매를 포함하지 않은 탄소 천 또는 탄소 종이일 수 있다. 상기 캐소드는 Fe(III)-EDTA를 충분히 빠르게 Fe(II)-EDTA로 환원시킬 수 있다.
제1 막-전극 접합체를 포함하는 제1 연료전지는 집전체 (electron collector)를 포함할 수 있다. 상기 집전체는 애노드 전극의 두께 방향에 대하여 배치된 것일 수 있다. 애노드 집전체는 알려진 집전체 물질일 수 있다. 애노드 집전체는 티타늄, 금, 유리 탄소 (glassy carbon), 또는 이들의 조합을 포함할 수 있다. 애노드 집전체, 애노드 및 전해질막의 순서로 배치될 수 있다. 상기 애노드 집전체는 티타늄, 예를 들면, 티타늄 망(mesh)일 수 있다. 상기 애노드 집전체는 상기 애노드 전극에 부착된 것일 수 있다.
제1 연료전지에 있어서, 상기 연료 주입구는 주입되는 연료가 상기 애노드 전극에만 접촉하고 F(II)-EDTA 또는 F(III)-EDTA와는 직접적으로 접촉하지 않도록 배치되어 있는 것일 수 있다. 제1 연료전지는 CO2 배출구가 더 구비된 것일 수 있다. CO2 배출구는 상기 애노드 전극에 접촉된 연료로부터 발생하는 CO2를 배출하도록 배치된 것일 수 있다.
상기 연료는 산화도가 낮은 물질일 수 있다. 상기 연료는 예를 들면, CO2보다 산화도가 낮은 물질일 수 있다. 상기 연료는 알콜, 수소, 또는 그 조합일 수 있다. 상기 알콜은 C1-C10 알콜일 수 있다. C1-C10 알콜은, 메탄올, 에탄올, 프로판올, 부탄올, 글리세롤, 또는 그 조합을 포함한다.
제2 막-전극 접합체를 포함하는 제2 연료전지에 있어서, 상기 일산화질소 배출구는 상부에 위치된 것일 수 있다. Fe(II)-EDTA-NO 주입구를 통하여 Fe(II)-EDTA-NO를 주입하기 위한 수단을 더 포함할 수 있다. 상기 수단은 예를 들면, 상기 주입구에 연결된 펌프일 수 있다. 또한, Fe(II)-EDTA-NO 주입량을 조절하기 위한 수단, 예를 들면, 밸브를 포함할 수 있다. 또한, Fe(III)-EDTA 배출구를 통하여 Fe(III)-EDTA를 배출하기 위한 수단을 포함할 수 있다. 상기 수단은 예를 들면, 상기 배출구에 연결된 펌프일 수 있다. 또한, Fe(III)-EDTA 배출량을 조절하기 위한 수단, 예를 들면, 밸브를 포함할 수 있다.
제2 막-전극 접합체를 포함하는 제2 연료전지에 있어서, 상기 캐소드는 환원 반응을 위한 촉매를 더 포함하는 것일 수 있다. 상기 환원반응을 위한 촉매는 Pt/C, MnO2, Pd/C, Pd-Co/C, Pd-Ni/C, Pd-Au, 또는 이들의 조합일 수 있다. 상기 애노드는 산화 촉매를 포함하거나 포함하지 않을 수 있다. 상기 전해질 막은 고분자 전해질막 (polyelectrolyte membrane)일 수 있다. 또는 상기 전해질 막은 이온교환막일 수 있다. 상기 이온교환막은 양성자 교환막 (proton exchange membrane: PEM), 음이온교환막 (anion exchange membrane: AEM), 양이온교환막 (cation exchange membrane: CEM), 또는 이들의 조합일 수 있다. 상기 전해질 막은 애노드 전극과 캐소드 전극 사이에 위치한다. 상기 애노드 및 캐소드는 통상적으로 사용되는 전극 물질일 수 있다. 상기 전해질 막은 수소 이온을 포함한 양이온, 음이온 또는 이들을 선택적으로 투과시킬 수 있다. 상기 전해질막은 애노드 셀과 캐소드 셀 사이의 용액의 물질의 이동을 상기 전해질막을 통한 양성자, 음전하, 또는 양전하의 이동만가능하도록 할 수 있다. 그 결과, 애노드 셀 도입되는 Fe(II)-EDTA-NO와 캐소드 셀에 도입되는 산화제, 예를 들면 산소 또는 공기는 혼합될 수 없다. 상기 애노드 및 캐소드는 독립적으로 탄소, 예를 들면, 탄소 천 (carbon cloth) 또는 탄소 종이 (carbon paper)일 수 있다. 상기 애노드는 촉매를 포함하지 않은 탄소 천 또는 탄소 종이일 수 있다. 상기 애노드 전극은 예를 들면, 촉매가 고정되지 않은 탄소 천 또는 탄소 종이로서, 촉매 없이도 Fe(II)-EDTA를 충분히 빠르게 Fe(III)-EDTA로 산화시킬 수 있다. 상기 캐소드는 예를 들면, Pt/C (20wt%)가 촉매로 고정된 탄소 천 또는 탄소 종이일 수 있다. 제2 연료전지에서 전기 에너지가 생산되는 반응이 진행됨에 따라, Fe(II)-EDTA-NO가 Fe(III)-EDTA로 산화되고 순수 NO는 가스로 배출되게 되는데, Fe(II)-EDTA는 약 90%이상 Fe(III)-EDTA로 전환되고, NO는 가스로 포집되기 때문에 애노드 셀에는 Fe(III)-EDTA가 대부분 존재하게 됨으로 시료 또는 연료와 혼합되지 않을 수 있다.
제2 막-전극 접합체를 포함하는 제2 연료전지는 집전체 (electron collector)를 포함할 수 있다. 상기 집전체는 캐소드 전극의 두께 방향에 대하여 배치된 것일 수 있다. 캐소드 집전체는 알려진 집전체 물질일 수 있다. 캐소드 집전체는 티타늄, 금, 유리 탄소 (glassy carbon), 또는 이들의 조합을 포함할 수 있다. 전해질막, 애노드, 및 캐소드 집전체의 순서로 배치될 수 있다. 상기 캐소드 집전체는 티타늄, 예를 들면, 티타늄 망(mesh)일 수 있다. 상기 캐소드 집전체는 상기 캐소드 전극에 부착된 것일 수 있다.
제2 막-전극 접합체를 포함하는 제2 연료전지는 산화제 주입구 및 물 배출구가 더 구비된 것일 수 있다. 상기 산화제는 Fe(II)-EDTA를 Fe(III)-EDTA로 산화시키는 활성을 갖는 것일 수 있다. 상기 산화제는 O2를 포함한 물질일 수 있다. 상기 산화제는 O2, 또는 공기일 수 있다.
상기 산화환원 연료전지 시스템에 있어서, 제1 막-전극 접합체를 포함하는 제1 연료전지의 Fe(III)-EDTA 주입구와 제2 막-전극 접합체를 포함하는 제2 연료전지의 Fe(III)-EDTA 배출구는 유체 소통가능하게 연결된 것일 수 있다. 제1 막-전극 접합체를 포함하는 제1 연료전지의 Fe(II)-EDTA-NO 배출구와 제2 막-전극 접합체를 포함하는 제2 연료전지의 Fe(II)-EDTA-NO 주입구는 유체 소통가능하게 연결된 것일 수 있다.
상기 캐소드 셀은 캐소드 집전체, 예를 들면, 티타늄 집전체와 그에 대향하여 배치된 캐소드 전극이 배치되어 있고 사이에 전해질을 포함하는 용기로서 상기 용기의 일 벽면이 전해질막을 포함하는 것일 수 있다.
상기 애노드 셀은 애노드 집전체, 예를 들면, 티타늄 집전체와 그에 대향하여 배치된 애노드 전극이 배치되어 있고 사이에 전해질을 포함하는 용기로서 상기 용기의 일 벽면이 전해질막을 포함하는 것일 수 있다.
상기 산화환원 연료전지 시스템에 있어서, 제1 막-전극 접합체를 포함하는 제1 연료전지는 애노드 집전체, 예를 들면, 티타늄 집전체 및 애노드 집전체에 대향하게 배치된 애노드 전극을 포함하는 애노드 셀; 및 상기 애노드 셀과 상기 캐소드 셀 사이에 위치하는 전해질막 (electrolyte membrane)을 더 포함하는 것일 수 있다. 이 경우, 애노드 집전체, 예를 들면, 티타늄 집전체; 애노드 전극; 전해질막, 캐소드 셀의 캐소드 전극 및 캐소드 집전체, 예를 들면, 티타늄 집전체의 순서로 배열될 수 있다. 상기 전해질막은 PEM, AEM, CEM 또는 이들의 조합일 수 있다. 상기 전해질막은 위에서 기재한 바와 같다.
상기 산화환원 연료전지 시스템에 있어서, 제2 막-전극 접합체를 포함하는 제2 연료전지는 캐소드 집전체, 예를 들면, 티타늄 집전체, 및 캐소드 집전체에 대향하여 배치된 캐소드 전극을 포함하는 캐소드 셀; 및 상기 애노드 셀과 캐소드 셀 사이에 위치하는 전해질막을 더 포함할 수 있다. 이 경우, 애노드 집전체, 예를 들면, 티타늄 집전체, 애노드 전극, 전해질막, 캐소드 전극 및 캐소드 집전체, 예를 들면, 티타늄 집전체의 순서로 배열될 수 있다.
상기 산화환원 연료전지에 있어서, 제1 막-전극 접합체 및 제2 막-전극 접합체의 애노드 전극 및 캐소드 전극 중 하나이상은 촉매가 고정된 것일 수 있다. 상기 고정은 표면 또는 내부에 고정된 것일 수 있다. 예를 들면, 제1 막-전극 접합체의 애노드 전극에는 연료의 산화를 촉진시키는 산화 촉매가 고정되고 제2 막-전극 접합체의 캐소드 전극에는 환원 반응을 위한 촉매가 고정된 것일 수 있다. 상기 산화 촉매는 Pt, Ir, IrO2, MnO2, Ru, RuO2, Pt-Ru, Pt-RuO2, 또는 그 조합일 수 있다. 상기 산화 반응을 위한 촉매는 담지, 예를 들면 탄소에 담지된 것일 수 있다. 상기 환원 반응을 위한 촉매는 Pt/C일 수 있다. 상기 환원반응을 위한 촉매는 백금, 루테늄, 오스뮴, 팔라듐, 이리듐, 탄소, 전이금속, 또는 이들의 조합을 포함하는 것일 수 있다. 상기 환원반응을 위한 촉매는 담지체, 예를 들면, 탄소에 담지된 것일 수 있다. 상기 환원반응을 위한 촉매는 상기 산환반응을 위한 촉매와는 다른 조합의 상기 촉매 물질일 수 있다.
상기 산화환원 연료전지 시스템은 제1 막-전극 접합체에 연결된 연료 공급부, 및 제2 막-전극 접합체에 연결된 산화제 공급부를 더 포함할 수 있다. 상기 연료 공급부 및 산화제 공급부는 펌프 및 밸브 중 하나이상을 포함할 수 있다.
이하, 본 발명의 연료 전지를 도면을 참조하여 상세히 설명한다.
도 1은 본 발명에 따른 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지를 나타낸 도면이다.
도 2는 본 발명에 따른 연료전지의 제1 막-전극 접합체를 나타낸 도면이다.
도 3은 본 발명에 따른 연료전지의 제2 막-전극 접합체를 나타낸 도면이다.
도 1에 나타낸 바와 같이, 상기 산화환원 연료전지 시스템 (500)은 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)와 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)가 연결된 것일 수 있다. 상기 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)는 연료 공급부 (300)에 연결될 수 있다. 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)는 산화제 공급부 (400)에 연결될 수 있다. 상기 산화환원 연료전지 시스템 (500)은 직렬로 순차적으로 연결되어 있는 제1 막-전극 접합체를 포함하는 제1 연료전지 (100) 및 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)를 포함하며, 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)와 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)는 배관 및 소정의 펌핑력에 의해 제1 막-전극 접합체를 포함하는 제1 연료전지의 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO)을 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)에 공급하는 펌프와 제2 막-전극 접합체를 포함하는 제2 연료전지의 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA)을 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)에 공급하는 펌프를 구비할 수 있다.
도 2에 나타난 바와 같이, 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)는 연료 주입구 (102), CO2 배출구 (104), 애노드 집전체 (106) 및 애노드 전극 (108)을 포함하는 애노드셀 (10); 처리된 일산화질소 함유 시료 배출구 (116), 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 배출구 (120), 3가 철-에틸렌디아민사아세트산(Fe(III)EDTA) 주입구 (122), 일산화질소 함유 시료 주입구 (118), 캐소드 집전체 (114) 및 캐소드 전극 (112)을 포함하는 캐소드셀 (20); 및 상기 애노드셀 (10)과 캐소드셀 (20) 사이에 위치하는 전해질막 (110)을 포함한다.
도 3에 나타낸 바와 같이, 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)는 일산화질소 배출구 (216), 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 주입구 (202), 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA) 배출구 (204), 애노드 집전체 (206) 및 애노드 전극 (208)을 포함하는 애노드셀 (30); 물 배출구 (218), 산화제 주입구 (220), 캐소드 집전체 (214) 및 캐소드 전극 (212)을 포함하는 캐소드셀 (40); 및 상기 애노드셀 (30)과 캐소드셀 (40) 사이에 위치하는 전해질막 (210)을 포함한다.
제1 및 제2 연료전지 (100, 200)에 포함된 집전체는 외부 회로에 연결되어, 전기 에너지를 축적하는데 사용될 수 있다.
상기 산화환원 연료전지 시스템은 다음과 같이 작동할 수 있다. 제 1 막-전극 접합체와 2 막-전극 접합체에서 일어나는 산화/환원 반응은 다음과 같을 수 있다.
CH3OH + H2O --> CO2 (g) + 6H+ + 6e- [반응식 1]
6Fe(III)EDTA (aq) + 6e- --> 6Fe(II)EDTA (aq) [반응식 2]
6Fe(II)EDTA (aq) + 6NO (g)--> 6Fe(II)EDTA-NO (aq) [반응식 3]
6Fe(II)EDTA-NO (aq) --> 6Fe(III)EDTA (aq)+ 6e- + 6NO (g) [반응식 4]
6H3O+ + 6e- + 3O2 (g) --> 6H2O [반응식 5]
본 발명에 있어서, 제1 막-전극 접합체를 포함하는 제1 연료전지의 연료 주입구 (102)를 통해 공급되는 연료, 예를 들면, 메탄올은 애노드 전극 (108)에서 산화하여 이산화탄소, 수소이온 및 전자를 생성할 수 있다 (반응식 1). 생성된 전자는 전해질막 (110)을 통하여 캐소드 전극 (112)으로 이동할 수 있다. Fe(III)-EDTA 주입구 (122)를 통해 공급된 Fe(III)-EDTA)는 에노드 전극 (108)에서 이동한 전자를 얻어 캐소드 전극 (112)에서 Fe(II)-EDTA로 환원될 수 있다 (반응식 2).
이때 상기 일산화질소 함유 시료 주입구 (118)로 일산화질소 함유 시료를 공급하여 주면, 순수한 일산화질소를 흡착하여 일산화질소가 흡착된 Fe(II)-EDTA-NO를 생성할 수 있다 (반응식 3). 상기 일산화질소가 흡착된 Fe(II)-EDTA-NO는 배출구 (120)를 통하여 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)로 이동하고, 반응 후의 일산화질소가 제거된 일산화질소 함유 시료는 배출구 (116)로 배출될 수 있다.
제1 막-전극 접합체를 포함하는 제1 연료전지 반응의 최종생산물로 생성되는 일산화질소가 흡착된 Fe(II)-EDTA-NO는 배출구 (120)를 통해 제 2막 전극 접합체를 포함하는 제2 연료전지 (200)의 애노드셀 (30)의 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 주입구 (202)로 이동하며 이곳에서 캐소드셀 (40) 산화제 주입구 (220)에 공급된 산화제, 예를 들면, 산소 기체 또는 공기와 전기화학적 반응을 통하여 애노드 전극 (208)에서 Fe(III)-EDTA로 산화되고 흡착된 일산화질소의 분리가 일어날 수 있다. 일산화질소를 배출구 (216)을 통하여 순수하게 포집할 수 있다. 이와 동시에 캐소드 전극 (212)에서는 산소 기체가 전자를 얻어서 물에 해리된 수소이온 (H3O+)과 반응하여 물로 환원될 수 있다 [반응식 5]. 물은 배출구 (218)을 통하여 배출될 수 있다. 한편, 제 2 막-전극 접합체를 포함하는 제2 연료전지 (200)의 애노드셀 (30)에 남아있는 Fe(III)-EDTA는 배출구 (204)을 통하여 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)의 캐소드셀 (20)로 다시 이동하여 재이용될 수 있다.
또한, 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)의 애노드 전극 (208)에서 생성된 전자 및 수소 이온은 전해질막 (210)을 통과하여 캐소드 전극 (212)으로 이동한 다음, 산소와 반응하여 물을 생성하고 전기에너지를 발생시킬 수 있다.
상기 연료는 연료전지에서 사용할 수 있는 한 특별한 제한 없이 이용될 수 있으나, 메탄올, 에탄올, 프로판올, 부탄올, 글리세롤 및 수소로 이루어진 군에서 선택되는 것일 수 있다. 예를 들면, 메탄올 또는 에탄올을 사용할 수 있다. 이때, 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)의 연료 주입구 (102)에 공급되는 연료의 농도는 1M 내지 5M, 1M 내지 4M, 1M 내지 3M, 1M 내지 2M, 2M 내지 5M, 3M 내지 5M, 또는 4M 내지 5M일 수 있다.
또한, Fe(III)-EDTA는 3가 철-에틸렌디아민사아세트산(Fe(III)-EDTA) 주입구 (122)를 통해 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)에 공급될 수 있다. Fe(III)EDTA의 농도는 10mM 내지 500mM, 100mM 내지 500mM, 200mM 내지 500mM, 300mM 내지 500mM, 400mM 내지 500mM, 10mM 내지 400mM, 100mM 내지 400mM, 200mM 내지 400mM, 300mM 내지 400mM, 또는 10mM 내지 300mM일 수 있다. Fe(III)-EDTA는 재생가능하며, 초기 공급 후 추가적인 공급이 필요 없이 연료전지의 작동이 가능하다.
제1 막-전극 접합체를 포함하는 제1 연료전지 (100) 또는 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)의 애노드 전극(108, 208)은 전극 기재와 산화를 촉진하는 활성을 갖는 촉매를 포함할 수 있다. 상기 촉매는 연료, 예를 들면,수소, 메탄올, 에탄올, 글리세롤 또는 그 조합의 산화를 촉진하는 것일 수 있다. 상기 산환 반응을 위한 촉매는 백금, 루테늄, 오스뮴, 팔라듐, 이리듐, 탄소, 전이금속, 또는 이들의 혼합물일 수 있다. 제1 막-전극 접합체를 포함하는 제1 연료전지 (100) 또는 제2 막-전극 접합체를 포함하는 제2 연료전지 (200)의 캐소드 전극(112, 212)은 전극 기재와 환원을 촉진하는 활성을 갖는 촉매를 포함할 수 있다. 예를 들면, 애노드 전극 (108, 208)의 산화 반응을 위한 촉매는 Pt/Ru/C이고, 캐소드 전극 (112, 212)의 환원반응을 위한 촉매는 Pt/C일 수 있다.
다른 양상은 상기한 산화환원 연료전지를 이용하여 일산화질소 함유 물질로부터 일산화질소를 분리하는 방법을 제공한다.
일 구체예는, 제1 막-전극 접합체를 포함하는 제1 연료전지, 및 제1 연료전지에 연결된 제2 막-전극 접합체를 포함하는 제2 연료전지를 포함한 산화환원 연료전지 시스템으로서, 제1 막-전극 접합체를 포함하는 제1 연료전지는 일산화질소 함유 시료 주입구, 연료 주입구, 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA) 주입구, 처리된 일산화질소 함유 시료 배출구, 및 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 배출구가 구비되어 있고, 제1 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것인 제1 연료전지, 제2 막-전극 접합체를 포함하는 제2 연료전지는 일산화질소 배출구, 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO) 주입구, 및 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA) 배출구가 구비되어 있고, 제2 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것이고,제1 막-전극 접합체를 포함하는 제1 연료전지는 CO2 배출구가 더 구비된 것이고, 제2 막-전극 접합체는 산화제 주입구 및 물 배출구가 더 구비된 것인 산화환원 연료전지 시스템의 일산화질소 함유 시료 주입구를 통하여 일산화질소 함유 시료를 도입하는 단계;
상기 연료 주입구를 통하여 연료를 주입하는 단계;
상기 산화제 주입구를 통하여 산화제를 주입하는 단계; 및
상기 일산화질소 배출구를 통하여 배출되는 일산화질소를 수집하는 단계;를 포함하고, 상기 단계 중 하나 이상은 Fe(III)-EDTA의 존재하에서 수행되는 것인, 일산화질소 함유 시료로부터 일산화질소를 분리하는 방법을 제공한다.
상기 방법은 산화환원 연료전지 시스템의 일산화질소 함유 시료 주입구를 통하여 일산화질소 함유 시료를 도입하는 단계를 포함한다. 상기 산화환원 연료전지 시스템에 대하여는, 위에서 설명한 바와 같다. 일산화질소 함유 시료는 일산화질소, 이산화질소, 질산, 또는 이들의 조합을 포함하는 것일 수 있다. 일산화질소 함유 시료는 자동차 배기가스, 공장 배기가스, 또는 그들의 조합일 수 있다. 상기 배기 가스의 도입은 펌프와 같은 구동력에 의하여 도입될 수 있다.
상기 방법은 상기 연료 주입구를 통하여 연료를 주입하는 단계를 포함한다. 상기 연료의 주입은 펌프와 같은 구동력에 의하여 도입될 수 있다. 상기 연료는 산화도가 낮은 물질일 수 있다. 상기 연료는 예를 들면, CO2보다 산화도가 낮은 물질일 수 있다. 상기 연료는 알콜, 수소, 또는 그 조합일 수 있다. 상기 알콜은 C1-C10 알콜일 수 있다. C1-C10 알콜은, 메탄올, 에탄올, 프로판올, 부탄올, 글리세롤, 또는 그 조합을 포함한다.
상기 방법은 상기 산화제 주입구를 통하여 산화제를 주입하는 단계를 포함한다. 상기 산화제는 Fe(II)-EDTA를 Fe(III)-EDTA로 산화시키는 활성을 갖는 것일 수 있다. 상기 산화제는 O2를 포함한 물질일 수 있다. 상기 산화제는 O2, 또는 공기일 수 있다.
상기 방법은 상기 일산화질소 배출구를 통하여 배출되는 일산화질소를 수집하는 단계를 포함한다. 상기 수집은 일산화질소를 처리하는 장치에 직접적으로 연결함으로써 수집될 수 있다.
상기 단계들은 상기 단계 중 하나 이상은 Fe(III)-EDTA의 존재하에서 수행될 수 있다. Fe(III)-EDTA는 제1 막-전극 접합체를 포함하는 제1 연료전지 (100)의 캐소드 전극 (112)에 10mM 내지 500mM, 100mM 내지 500mM, 200mM 내지 500mM, 300mM 내지 500mM, 400mM 내지 500mM, 10mM 내지 400mM, 100mM 내지 400mM, 200mM 내지 400mM, 300mM 내지 400mM, 또는 10mM 내지 300mM의 농도로 공급될 수 있다. Fe(III)-EDTA는 재생가능하며, 초기 공급 후 추가적인 공급이 필요 없이 연료전지의 작동이 가능하다. Fe(III)-EDTA는 Fe(III)-EDTA 주입구를 통하여 주입된 것일 수 있다.
상기 방법은 제2 막-전극 접합체의 Fe(III)-EDTA 배출구로부터 제1 막-전극 접합체의 Fe(III)-EDTA 유입구를 통하여 Fe(III)-EDTA를 제1 막-전극 접합체로 도입하는 단계를 더 포함하는 것일 수 있다.
상기 방법은 제1 막-전극 접합체의 Fe(II)-EDTA-NO 배출구로부터 제2 막-전극 접합체의 Fe(II)-EDTA-NO 유입구를 통하여 Fe(II)-EDTA-NO를 제2 막-전극 접합체로 도입하는 단계를 더 포함하는 것일 수 있다.
본 발명에 따른 Fe(III)-EDTA를 이용하는 산화환원 연료전지 시스템 및 이를 이용한 일산화질소 분리 방법은 일산화질소를 단순히 제거하는데 그치지 않고 이를 재활용하여 암모니아 비료나 질산 등의 고부가가치의 물질을 만들어 경제성을 확보할 수 있다. 암모니아성 비료는 질산과 암모니아를 혼합하여 제조할 수 있고 질산의 경우는 NO를 물속에 녹여 산화시켜 생산할 수 있다. 현재 상용화된 질산 제조공정인 Ostwald 공정의 경우, 암모니아를 개질 하여 얻어낸 순수한 NO를 사용하는데, 일산화질소 함유 시료로부터 NO만을 선택적으로 분리해 낼 수 있다면 NO의 제조공정에 드는 비용을 없앨 수 있기 때문에 질산의 제조단가를 현저하게 낮출 수 있을 것이다.
본 발명의 다른 양상은 상기한 바와 같은 일산화질소 함유 시료로부터 일산화질소를 분리하는 방법에 따라 분리된 일산화질소로부터 제조된 질산으로 목질계 바이오매스를 전처리시키는 단계; 상기 전처리된 용액의 pH를 4.5 ~ 5.0으로 조절한 다음, 당화 효소를 첨가하고, 당화시켜 당화액을 제조하는 단계; 및 상기 제조된 당화액을 포함한 배지 중에서 에탄올 생성 미생물을 배양하여 에탄올을 생산하는 단계;를 포함하는 에탄올의 제조방법을 제공한다.
상기 방법은 상기한 바와 같은 일산화질소 함유 시료로부터 일산화질소를 분리하는 방법에 따라 분리된 일산화질소로부터 제조된 질산으로 목질계 바이오매스을 전처리시키는 단계를 포함한다. 일산화질소 함유 시료로부터 일산화질소를 분리하는 방법에 대하여는 위에서 기술한 바와 같다. 일산화질소로부터 제조된 질산을 제조하는 방법은 알려진 방법이 사용될 수 있다. 예를 들면, 암모니아로부터 질산을 제조하는 오스활드 공정 (Oswald process) 중 NO로부터 질산을 제조하는 공정이 사용될 수 있다. NO로부터 질산을 제조하는 공정은 다음 과정에 의하여 이루어질 수 있다. NO는 산소와 반응하여 이산화질소를 생성한다.
2NO(g) + O2(g) -> 2NO2 (g)
다음으로, 이산화질소는 물에 흡수되어 질산과 NO로 된다.
3NO2 (g) + H2O (l) -> 2 HNO3 (aq)+NO(g)
NO(g)는 다시 회수되어 재산화된다. 대안적으로, 마지막 단계가 공기 중에서 수행되는 경우, 4NO2 (g) + O2 (g)+2H2O (l) -> 4 HNO3 (aq)+NO(g)
목질계 바이오매스를 전처리시키는 단계는 목질계 바이오매스를 질산 함유 용액 중에서 가열하면서 인큐베이션하는 것일 수 있다. 상기 질산의 농도는 0.2wt% ~ 0.6wt%일 수 있다. 상기 전처리 반응 온도는 150 ~ 180℃인 것일 수 있다. 상기 전처리는 가압하에서 이루어질 수 있다. 상기 목질계 바이오매스는 셀룰로즈, 리그노셀룰로즈, 또는 이들의 조합을 포함하는 것일 수 있다.
상기 방법은 상기 전처리된 용액의 pH를 4.5 ~ 5.0으로 조절한 다음, 당화 효소를 첨가하고, 당화시켜 당화액을 제조하는 단계를 포함한다. 상기 당화 효소는 목질계 바이오매스를 분해시킬 수 있는 효소일 수 있다. 상기 당화 효소는 β-글루코시다제 (β-glucosidase), 엔도글루카나아제 (endoglucanase), 엑소글루카나아제(exoglucanase) 또는 이들의 혼합물일 수 있다. 상기 당화는 선택된 각 효소의 활성에 적합한 온도에서 인큐베이션하는 것일 수 있다. 상기 인큐베이션은 15 내지 37℃에서 수행하는 것일 수 있다. 상기 당화액은 질산염 (NO3 -), 포도당 및 목당 중 하나이상을 포함하는 것일 수 있다. 상기 질산염은 전처리된 용액의 pH 조정의 결과 얻어질 수 있다. 상기 pH의 조정은 산, 예를 들면, 염산, 황산 또는 그 조합이 사용될 수 있다.
상기 방법은 상기 제조된 당화액을 포함한 배지 중에서 에탄올 생성 미생물을 배양하여 에탄올을 생산하는 단계를 포함한다. 상기 일산화질소로부터 제조된 질산 또는 질산염 (NO3 -)은 배지 중의 질소원으로 직접 사용되는 것일 수 있다. 상기 에탄올 생성 미생물은 대장균 (Escherichia coli), 자이모모나스 모빌리스 (Zymomonas Mobilis), 크렙시엘라 옥시토카 (Klebsiella oxytoca) P2, 브레타노마이세스 커스터시 (Brettanomyces curstersii), 사카로마이세스 우브즈런 (Saccharomyces uvzrun), 캔디다 브래시카에 (Candida brassicae) 및 사카로마이세스 세레비제 (Saccharomyces cerevisiae)로 이루어진 군에서 선택되는 것일 수 있다. 상기 배양은 에탄올 생산에 적합한 조건에서 수행될 수 있다. 상기 조건은 선택되는 균주에 따라 적절하게 선택할 수 있다.
일 양상에 따른 산화환원 연료전지 시스템에 의하면, 전기에너지를 생산하면서, 일산화질소 함유 시료로부터 일산화질소를 효율적으로 분리하는데 사용될 수 있다.
다른 양상에 따른 일산화질소 함유 시료로부터 일산화질소를 분리하는 방법에 의하면, 일산화질소 함유 시료로부터 일산화질소를 효율적으로 분리할 수 있다.
일 양상에 따른 에탄올의 제조방법에 의하면, 에탄올을 효율적으로 생산할 수 있다.
도 1은 본 발명에 따른 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지를 나타낸 도면이다.
도 2는 본 발명에 따른 연료전지의 제1 막-전극 접합체를 나타낸 도면이다.
도 3은 본 발명에 따른 연료전지의 제2 막-전극 접합체를 나타낸 도면이다.
도 4는 실시예 1에 의하여 제조된 제1 막-전극 접합체를 전극으로 이용하는 연료전지를 운전한 결과이다.
도 5는 실시예 1에 의하여 제조된 제2 막-전극 접합체를 전극으로 사용한 연료전지를 운전한 결과이다.
도 6은 시간에 따른 당화 효율을 나타낸 도면이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고다 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: Fe(III)-EDTA를 이용하는 산화환원 연료전지의 막-전극 접합체의 제조
본 실시예에서는 제1 막-전극 접합체 및 제2 막-전극 접합체를 제조하였다. 제1 막-전극 접합체는 카본천 (carbon cloth) 위에 20% wt Pt/Ru/C 촉매가 도포된 애노드와 촉매를 포함하지 않은 카본천인 캐소드, 및 전해질막으로 구성이 되어 있다. 제2 막-전극 접합체는 카본천 위에 20% wt Pt/C 촉매가 도포된 캐소드와 촉매를 포함하지 않은 카본천인 애노드, 및 전해질막으로 구성이 되어 있다. 제1 막-전극 접합체 및 제2 막-전극 접합체는 두 전극 사이에 전해질막을 끼우고 약 130℃ 및 약 100kg/cm2에서 2분 동안 핫 프레싱 (hot-pressing)시켜 제조하였다.
상기 촉매가 도포된 애노드 전극과 상기 촉매가 도포된 캐소드 전극은 스프레이법을 이용하여 제조하였다. 구체적으로, 스프레이 장치에 나노사이즈 촉매 분말 (20% w.t.Pt/C 애노드 촉매 또는 20% w.t Pt-Ru (1:1)/C) 캐소드 촉매), Nafion ionomer, 및 이소-프로페놀(Iso-prophenol)을 촉매, 5%(v/v) Nafion ionomer 함유 Nafion solution, 및 이소-프로페놀을 질량비로 1:3:10로 함유한 포함한 수용액을 주입하고, 이를 전극에 분무하였다. 상기 수용액은 분무 장치에 도입되기 전에 한 시간 동안 초음파를 걸어주어 용액을 고르게 분산시켰다. 그 결과, 제1 막-전극 접합체의 애노드 전극 및 제2 막-전극 접합체의 캐소드 전극은 각각 5mg/cm2으로 20% w.t.Pt/C 촉매와 20% wt Pt/Ru/C (Pt:Ru=1:1) 촉매가 도포되었다. 상기 Nafion ionomer는 술폰화된 테트라플루오로에틸렌에 기반한 플루오로폴리머-공중합체이다. 상기 Nafion ionomer는 양성자 교환막 (PEM)이며, 음이온 또는 전자는 교환시키지 않는다.
그 결과, 도 2와 도 3에 나타낸 바와 같은, 제1 막-전극 접합체를 포함하는 제1 연료전지와 제2 막-전극 접합체를 포함하는 제2 연료전지를 제조하였다. 상기 도 2 및 도 3에 나타낸 바와 같이, 제1 막-전극 접합체와 제2 막-전극 접합체는 각각 애노드 전극-애노드 촉매층-전해질막-캐소드 전극과 애노드 전극-전해질막-캐소드 촉매층-캐소드 전극의 층상 구조를 갖는다.
실험예 1 : 제1 막-전극 접합체를 전극으로 이용하는 제1 연료전지 실험
도 4는 실시예 1에 의하여 제조된 제1 막-전극 접합체의 애노드와 캐소드를 전극으로 제1 연료전지를 운전한 결과이다. 전압은 애노드 티타늄 집전체와 캐소드 티타늄 집전체에 각각 회로를 연결하고, 전압계를 통하여 전압을 측정한 것이다.
구체적으로, 도 2의 제1 막-전극 접합체에서, 연료 주입구 (102)에 1M 메탄올 200mL를 애노드 셀에, Fe(III)-EDTA 주입부 (122)에 10mM Fe(III)-EDTA 200mL를 캐소드 셀에 각각 넣어주고 6시간 동안 운전한 결과이다. 상기 운전은 외부 용기로부터 메탄올과 Fe(III)-EDTA를 주입한 것을 제외하고, 외부와의 접촉은 없었다.
도 4에 나타낸 바와 같이, 제1 막-전극 접합체에서 생산된 전압은 초기 0.33V에서 점차 감소하였으며, 최대전력생산량 (maximum power density)은 초기에 최대치인 785mV/m2을 보였다. 또한, 캐소드의 최종 전자 수여체로 주입된 Fe(III)-EDTA는 운전시간이 경과함에 따라 Fe(II)-EDTA-NO)로 환원되었음을 알 수 있다.
실험예 2 : 제2 막-전극 접합체를 전극으로 이용하는 제2 연료전지 실험
도 5는 실시예 1에 의하여 제조된 제2 막-전극 접합체의 애노드와 캐소드를 전극으로 사용한 제2 연료전지를 운전한 결과이다. 전압은 애노드 티타늄 집전체와 캐소드 티타늄 집전체에 각각 회로를 연결하고, 전압계를 통하여 전압을 측정한 것이다.
구체적으로, 도 3의 제2 막-전극 접합체에서, Fe(II)-EDTA-NO 주입부 (202)에 일산화질소가 흡착된 Fe(II)-EDTA-NO를 펌프를 이용하여 직접 공급하였고, 연료 주입부 (220)를 통하여 산소를 공급하였다.
일산화질소가 흡착된 Fe(II)-EDTA-NO는 실험예 1에서 제1 막-전극 접합체를 전극으로 사용한 연료전지의 최종 생산물인 10mM Fe(II)-EDTA 200mL에 일산화질소를 포함하는 가스로서 질소 중 1%(v/v) NO를 공급하여 선택적으로 일산화질소가 흡착된 Fe(II)-EDTA-NO를 사용하였다.
그 결과, 도 5에 나타낸 바와 같이, Fe(II)-EDTA-NO는 대부분이 Fe(III)-EDTA로 산화되었으며, 약 2시간이 소요되었다. 제1 막-전극접합체를 이용한 연료전지와 비교하여 상대적으로 높은 0.56V의 초기전압, 1820mV/m2의 최대전력밀도를 보였다.
실험예 3: 제1 막-전극 접합체와 제2 막-전극 접합체를 사용한 연료전지에서 연료의 색 변화 실험
제1 막-전극 접합체를 포함하는 제1 연료전지와 제2 막-전극 접합체를 포함하는 제2 연료전지가 연결된 도 1에 나타낸 바와 같은 산화환원 연료전지 시스템을 사용하여 연료 전지를 운전한 후, 연료의 색 변화를 확인하였다.
상기 연료 전지 시스템의 운전은 연료 주입부 (102)에 1M 메탄올 용액 250ml를 주입하고, 산화제 주입부 (220)를 통하여 공기를 20cc/min의 속도로 주입하고, Fe(III)-EDTA 주입부 (122)를 통하여 10mM Fe(III)-EDTA 250ml를 주입하고, 일산화질소 함유 시료 주입부 (118)를 통하여 질소 중 1%(w/v) NO 기체를 5cc/min의 속도로 5 분 동안 주입하여, 6시간 동안 전기 에너지를 생산하였다.
그 결과. 제1 막-전극 접합체의 캐소드 전극 (112)에서 황색의 Fe(III)-EDTA은 환원됨에 따라 연한 연두색을 띄는 Fe(II)-EDTA로 전환되었으며, 그 후 일산화질소의 선택적인 흡착에 따라 짙은 검정색으로 바뀌었다. 또한, Fe(II)-EDTA-NO가 다시 제2 막-전극 접합체의 애노드 전극(208)에서 산화되어 Fe(III)-EDTA로 전환되고 흡착된 일산화질소가 분리됨에 따라 연료 용액의 색이 초기의 황색으로 다시 돌아온 것을 볼 수 있었다.
실시예 2: 질산을 이용한 목질계 바이오매스의 전처리 및 당화
(1) 질산의 생산
본 실시예에는 실험예3에서 분리된 일산화질소로부터 질산을 제조하는 공정은 다음 과정에 의하여 이루어졌다. 먼저, NO는 산소와 반응시켜 이산화질소를 생성하였다.
2NO(g) + O2(g) -> 2NO2 (g)
다음으로, 이산화질소는 물에 흡수시켜 질산과 NO를 생성시켰다.
3NO2 (g) + H2O (l) -> 2 HNO3 (aq)+NO(g)
NO(g)는 다시 회수되어 재산화시켰다.
(2) 목질계 바이오매스의 전처리
목질계 바이오매스인 볏짚 5g을 반응기에 넣고 (1)로부터 제조된 질산(HNO3) 용액 50mL를 첨가하였다. 첨가 후, 150℃에서 1분 동안 인큐베이션하였다 (이하 "실험군"이라고도 함). 대조군으로서 0.1M 황산을 160℃에서 20분 동안 인큐베이션하였다. 인큐베이션 후 반응물 중의 글루칸, 자일란, 및 리그닌의 농도를 HPLC를 통하여 분석하였다.
표 1에 나타난 바와 같이, 본 발명에 따른 질소산화물로 제조된 질산을 이용한 실험의 글루칸 (Glucan), 자일란 (Xylan) 및 리그닌 (Lignin)의 회수율은 대조군보다 비교적 짧지만 더 높은 값을 보여주었다. 전처리 후 대부분의 자일란은 분해되어 액체상태로 빠져나갔고, 글루칸은 고체상태로 보존되었다. 여기서, 고체 회수율 (solid recovery)은 최초 목질계 바이오매스의 양에 대한 전치리 후 남은 고체 물질의 양의 비를 나타낸다.
표 1
Untreated 대조군 실험군
Solid Recovery(%) - 45.2 55.2
Glucan(%) 36.80 60.7 56.5
Xylan(%) 18.75 6.7
Lignin(%) 15.95 33.6 27.4
(3) 목질계 바이오매스의 당화
전처리하지 않은 시료와 대조군 시료, 및 본 발명에 따른 일산화질소로부터 제조된 질산을 이용한 전처리 시료에 각각 당화효소 혼합물 (cellulase + β-glucosidase)를 첨가하여 당화시킨 다음 당화 결과를 분석하였다.
당화는 먼저 시료에 구연산 나트륨 완충용액 (sodium citrate buffer)을 첨가하여 pH를 약 5.0으로 조정하였다. 다음으로, 당화효소 혼합물 1mL를 pH가 조정된 시료에 첨가하였다. 그 후, 50℃에서 72 시간 동안 인큐베이션하여 당화시켰다. 반응 혼합물로부터 글루코스의 농도를 HPLC에 의하여 측정하여, 당화 효율을 결정하였다. 여기서, 당화 효율은 글루칸이 글루코스로 전환된 비율이다.
도 6은 시간에 따른 당화 효율을 나타낸 도면이다. 도 6에서 가로축은 시간 (분)을 나타내고, 세로 축은 당화 효율 (%)를 나타낸다. 도 6에 에 나타낸 바와 같이, 황산으로 전처리한 시료는 당화효율 80%, 본 발명에 따른 질산으로 전처리한 시료는 당화 효율 83%를 나타내었다.

Claims (23)

  1. 제1 막-전극 접합체를 포함하는 제1 연료전지, 및 제1 연료전지에 연결된 제2 막-전극 접합체를 포함하는 제2 연료전지를 포함한 산화환원 연료전지 시스템으로서,
    제1 막-전극 접합체를 포함하는 제1 연료전지는 일산화질소 함유 시료 주입구, 연료 주입구, 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA), Fe(III)-NTA, 또는 Fe(III)-MIDA 주입구, 처리된 일산화질소 함유 시료 배출구, 및 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO), Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 배출구가 구비되어 있고, 제1 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것인 제1 연료전지,
    제2 막-전극 접합체를 포함하는 제2 연료전지는 일산화질소 배출구, 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO),Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 주입구, 및 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA), Fe(III)-NTA, 또는 Fe(III)-MIDA 배출구가 구비되어 있고, 제2 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것인 제2 연료전지인 산화환원 연료전지 시스템.
  2. 청구항 1에 있어서, 제1 막-전극 접합체는 CO2 배출구가 더 구비된 것인 산화환원 연료전지 시스템.
  3. 청구항 1에 있어서, 제2 막-전극 접합체는 산화제 주입구 및 물 배출구가 더 구비된 것인 산화환원 연료전지 시스템.
  4. 청구항 1에 있어서, 제1 막-전극 접합체의 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA 주입구와 제2 막-전극 접합체의 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA 배출구는 유체 소통가능하게 연결된 것이고, 제1 막-전극 접합체의 Fe(II)-EDTA-NO,Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 배출구와 제2 막-전극 접합체의 Fe(II)-EDTA-NO,Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 주입구는 유체 소통가능하게 연결된 것인 산화환원 연료전지 시스템.
  5. 청구항 1에 있어서, 제1 막-전극 접합체는 애노드 집전체 및 애노드 집전체에 대향하게 배치된 애노드 전극을 포함하는 애노드 셀; 및
    상기 애노드 셀과 상기 캐소드 셀 사이에 위치하는 전해질막 (electrolyte membrane)을 포함하는 것인 산화환원 연료전지 시스템.
  6. 청구항 1에 있어서, 제2 막-전극 접합체는 캐소드 집전체, 및 캐소드 집전체에 대향하여 배치된 캐소드 전극을 포함하는 캐소드 셀; 및
    상기 애노드 셀과 캐소드 셀 사이에 위치하는 전해질막을 포함하는 것인 산화환원 연료전지 시스템.
  7. 청구항 1에 있어서, 제1 막-전극 접합체 및 제2 막-전극 접합체의 애노드 전극 및 캐소드 전극 중 하나이상은 촉매가 고정된 것인 산화환원 연료전지 시스템.
  8. 청구항 7에 있어서, 애노드 전극 촉매는 연료의 산화를 촉매하는 산화 촉매를 포함하는 것인 산화환원 연료전지 시스템.
  9. 청구항 7에 있어서, 캐소드 전극 촉매는 환원촉매를 포함하는 것인 산화환원 연료전지 시스템.
  10. 청구항 1에 있어서, 제2 막-전극 접합체에 연결된 산화제 공급부를 더 포함하는 것인 산화환원 연료전지.
  11. 제1 막-전극 접합체를 포함하는 제1 연료전지, 및 제1 연료전지에 연결된 제2 막-전극 접합체를 포함하는 제2 연료전지를 포함한 산화환원 연료전지 시스템으로서,
    제1 막-전극 접합체를 포함하는 제1 연료전지는 일산화질소 함유 시료 주입구, 연료 주입구, 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA), Fe(III)-NTA, 또는 Fe(III)-MIDA 주입구, 처리된 일산화질소 함유 시료 배출구, 및 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO),Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 배출구가 구비되어 있고, 제1 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것인 제1 연료전지,
    제2 막-전극 접합체를 포함하는 제2 연료전지는 일산화질소 배출구, 일산화질소가 흡착된 2가 철-에틸렌디아민사아세트산 (Fe(II)-EDTA-NO),Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 주입구, 및 3가 철-에틸렌디아민사아세트산 (Fe(III)-EDTA) 배출구가 구비되어 있고, 제2 막-전극 접합체는 애노드, 전해질 막 및 캐소드가 접합된 것이고,
    제1 막-전극 접합체를 포함하는 제1 연료전지는 CO2 배출구가 더 구비된 것이고,
    제2 막-전극 접합체는 산화제 주입구 및 물 배출구가 더 구비된 것인 산화환원 연료전지 시스템의 일산화질소 함유 시료 주입구를 통하여 일산화질소 함유 시료를 도입하는 단계;
    상기 연료 주입구를 통하여 연료를 주입하는 단계;
    상기 산화제 주입구를 통하여 산화제를 주입하는 단계; 및
    상기 일산화질소 배출구를 통하여 배출되는 일산화질소를 수집하는 단계;를 포함하고,
    상기 단계 중 하나 이상은 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA의 존재하에서 수행되는 것인, 일산화질소 함유 시료로부터 일산화질소를 분리하는 방법.
  12. 청구항 11에 있어서, Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA는 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA 주입구를 통하여 주입된 것인 방법.
  13. 청구항 11에 있어서, 제2 막-전극 접합체의 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA 배출구로부터 제1 막-전극 접합체의 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA 유입구를 통하여 Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA를 제1 막-전극 접합체로 도입하는 단계를 더 포함하는 것인 방법.
  14. 청구항 11에 있어서, 제1 막-전극 접합체의 Fe(II)-EDTA-NO,Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 배출구로부터 제2 막-전극 접합체의 Fe(II)-EDTA-NO,Fe(II)-NTA-NO, 또는 Fe(II)-MIDA-NO 유입구를 통하여 Fe(II)-EDTA-NO를 제2 막-전극 접합체로 도입하는 단계를 더 포함하는 것인 방법.
  15. 청구항 11에 있어서, Fe(III)-EDTA, Fe(III)-NTA, 또는 Fe(III)-MIDA의 농도는 10mM 내지 500mM인 것인 방법.
  16. 제11항에 따른 방법에 따라 분리된 일산화질소로부터 제조된 질산으로 목질계 바이오매스을 전처리시키는 단계;
    상기 전처리된 용액의 pH를 4.5 ~ 5.0으로 조절한 다음, 당화 효소를 첨가하고, 당화시켜 당화액을 제조하는 단계; 및
    상기 제조된 당화액을 포함한 배지 중에서 에탄올 생성 미생물을 배양하여 에탄올을 생산하는 단계;를 포함하는 에탄올의 제조방법.
  17. 제16항에 있어서, 상기 질소산화물은 일산화질소, 이산화질소, 일산화이질소, 삼산화이질소, 사산화이질소, 오산화이질소로 이루어진 군에서 선택되는 것을 특징으로 하는 바이오에탄올의 제조방법.
  18. 제16항에 있어서, 상기 질산의 농도는 0.2wt% ~ 0.6wt%인 것을 방법.
  19. 제16항에 있어서, 상기 전처리 반응 온도는 150 ~ 180℃인 것인 방법.
  20. 제11항에 있어서, 상기 당화액은 질산염 (NO3 -), 포도당 및 목당 중 하나이상을 포함하는 것인 방법.
  21. 제20항에 있어서, 상기 질산염 (NO3 -)은 배지 중의 질소원으로 직접 사용되는 것인 방법.
  22. 제16항에 있어서, 상기 당화 효소는 β-글루코시다제 (β-glucosidase), 엔도글루카나아제 (endoglucanase), 엑소글루카나아제(exoglucanase) 또는 이들의 혼합물인 것인 방법.
  23. 제16항에 있어서, 상기 에탄올 생성 미생물은 대장균 (Escherichia coli), 자이모모나스 모빌리스 (Zymomonas Mobilis), 크렙시엘라 옥시토카 (Klebsiella oxytoca) P2, 브레타노마이세스 커스터시 (Brettanomyces curstersii), 사카로마이세스 우브즈런 (Saccharomyces uvzrun), 캔디다 브래시카에 (Candida brassicae) 및 사카로마이세스 세레비제 (Saccharomyces cerevisiae)로 이루어진 군에서 선택되는 것인 방법.
PCT/KR2013/005495 2012-06-22 2013-06-21 산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법 WO2013191502A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120067202A KR101392736B1 (ko) 2012-06-22 2012-06-22 질소산화물로 제조된 질산을 이용한 목질계 바이오매스 전처리를 포함하는 바이오에탄올의 제조를 위한 통합공정
KR10-2012-0067202 2012-06-22
KR1020120103879A KR101366183B1 (ko) 2012-09-19 2012-09-19 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지 및 이를 이용한 일산화질소 분리방법
KR10-2012-0103879 2012-09-19

Publications (1)

Publication Number Publication Date
WO2013191502A1 true WO2013191502A1 (ko) 2013-12-27

Family

ID=49769030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005495 WO2013191502A1 (ko) 2012-06-22 2013-06-21 산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법

Country Status (1)

Country Link
WO (1) WO2013191502A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974964A (zh) * 2015-07-15 2015-10-14 中国地质大学(武汉) 一株异化铁还原菌及其应用
WO2015163708A1 (ko) * 2014-04-24 2015-10-29 이화여자대학교 산학협력단 신규한 클렙시엘라 속 또는 캔디다 속 균주 및 이를 포함하는 미생물 연료전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980702066A (ko) * 1995-02-06 1998-07-15 페트루스 요한제소 프란시스쿠스마리 해크 질소 산화물을 포함한 연도가스의 정제 방법
US20100297522A1 (en) * 2007-09-24 2010-11-25 Acal Energy Limited Redox fuel cell
KR20110101452A (ko) * 2010-03-08 2011-09-16 한국과학기술원 바이오 매스 전처리 시스템 및 이를 이용한 전처리 방법
KR101103847B1 (ko) * 2010-08-16 2012-01-06 숭실대학교산학협력단 철 산화환원쌍을 이용한 캐소드 전극을 포함하는 연료전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980702066A (ko) * 1995-02-06 1998-07-15 페트루스 요한제소 프란시스쿠스마리 해크 질소 산화물을 포함한 연도가스의 정제 방법
US20100297522A1 (en) * 2007-09-24 2010-11-25 Acal Energy Limited Redox fuel cell
KR20110101452A (ko) * 2010-03-08 2011-09-16 한국과학기술원 바이오 매스 전처리 시스템 및 이를 이용한 전처리 방법
KR101103847B1 (ko) * 2010-08-16 2012-01-06 숭실대학교산학협력단 철 산화환원쌍을 이용한 캐소드 전극을 포함하는 연료전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG, CHUNHUA ET AL.: "Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells", BIORESOURCE TECHNOLOGY, vol. 102, 7 September 2010 (2010-09-07), pages 1131 - 1136 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163708A1 (ko) * 2014-04-24 2015-10-29 이화여자대학교 산학협력단 신규한 클렙시엘라 속 또는 캔디다 속 균주 및 이를 포함하는 미생물 연료전지
CN104974964A (zh) * 2015-07-15 2015-10-14 中国地质大学(武汉) 一株异化铁还原菌及其应用
CN104974964B (zh) * 2015-07-15 2018-05-01 中国地质大学(武汉) 一株异化铁还原菌及其应用

Similar Documents

Publication Publication Date Title
WO2017010814A1 (ko) 이산화탄소를 전기환원시켜 이산화탄소의 환원 생성물을 제조하는 방법 및 장치
AU2011313800B2 (en) Photoelectrochemical cell and method for the solar-driven decomposition of a starting material
CN102386345B (zh) 中低温固体氧化物燃料电池用密封垫及其制备方法和应用
KR101290022B1 (ko) 배기 가스 배출 제어를 위한 전기화학-촉매 컨버터
WO2019164356A1 (ko) 촉매반응을 이용한 바나듐 레독스 흐름전지용 고순도 전해액의 제조방법
WO2014104477A1 (ko) 이산화탄소 환원방법 및 이를 이용한 무격막형 이산화탄소 환원장치
WO2017023029A1 (ko) 기액 접촉 효율이 높은 산성가스 제거를 위한 전기분해 반응기 및 방법
WO2013191502A1 (ko) 산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법
CN106466640A (zh) 低温高效抗中毒催化甲酸制氢的铱催化剂及其制法与应用
CN112030181A (zh) 一种氢氧直接合成过氧化氢装置
Li et al. Deep oxidization of glucose driven by 4-acetamido-TEMPO for a glucose fuel cell at room temperature
KR101366183B1 (ko) 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지 및 이를 이용한 일산화질소 분리방법
CN114373941B (zh) 一种改性抗反极催化剂及其制备方法与应用
WO2016043383A1 (ko) 메탄올 자화균을 이용하여 이산화탄소로부터 개미산을 합성하는 방법
Chen et al. NADH photosynthesis system with affordable electron supply and inhibited NADH oxidation
CN105680058A (zh) 一种锂空气电池用阴极纳米复合催化剂材料的制备方法
CN101250512B (zh) 内切木聚糖酶的仿生亲和纯化方法
CN113426261A (zh) 一种电化学脱除混合气中氧气的方法
CA2288048A1 (en) Improvements in and relating to gas generators
KR101392736B1 (ko) 질소산화물로 제조된 질산을 이용한 목질계 바이오매스 전처리를 포함하는 바이오에탄올의 제조를 위한 통합공정
CN106299422B (zh) 一种电化学尾气回收利用装置
CN104409739A (zh) 用于直接液流甲醇燃料电池阴极的掺氮石墨毡的制备方法
CA2679184C (en) Exhaust gas purification system for a fuel cell or a fuel cell stack
WO2024172198A1 (ko) 산화 전극용 복합 촉매 및 이를 이용한 말레산 또는 그의 유도체의 제조 방법
CN114094242B (zh) 处理脱硫废水同时还原二氧化碳的流动式光电化学电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807321

Country of ref document: EP

Kind code of ref document: A1