WO2013191003A1 - Fluid processing device - Google Patents

Fluid processing device Download PDF

Info

Publication number
WO2013191003A1
WO2013191003A1 PCT/JP2013/065653 JP2013065653W WO2013191003A1 WO 2013191003 A1 WO2013191003 A1 WO 2013191003A1 JP 2013065653 W JP2013065653 W JP 2013065653W WO 2013191003 A1 WO2013191003 A1 WO 2013191003A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz sleeve
fluid
ultraviolet
external
lamp
Prior art date
Application number
PCT/JP2013/065653
Other languages
French (fr)
Japanese (ja)
Inventor
信乃夫 南齋
英典 渡邊
幸治 田川
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2013191003A1 publication Critical patent/WO2013191003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention by ultraviolet irradiation, inactivates various organic substances (TOC; total organic carbon) in a fluid to be treated such as water, and inactivates bacteria, viruses, fungi, mold spores, protozoa and similar microorganisms. Or it is related with the fluid processing apparatus which performs sterilization.
  • TOC organic substances
  • FIG. 5 is a cross-sectional view along the tube axis direction of the outer wall of the reactor, showing an outline of the configuration of an example of a conventional fluid processing apparatus.
  • 6 is an enlarged cross-sectional view taken along line AA in FIG.
  • This fluid processing apparatus (hereinafter referred to as “reactor”) is, for example, a cylindrical reactor outer wall (external housing) 30 made of stainless steel, and ultraviolet rays disposed inside the reactor outer wall 30.
  • a rod-shaped ultraviolet lamp 31 that emits, a cylindrical inner quartz sleeve 32 disposed between the reactor outer wall 30 and the ultraviolet lamp 31, and a cylindrical shape made of quartz glass disposed outside the inner quartz sleeve 32.
  • the external quartz sleeve 35 is provided.
  • the ultraviolet lamp 31, the inner quartz sleeve 32, and the outer quartz sleeve 35 are all arranged coaxially with the tube axis C of the reactor outer wall 30.
  • An ultraviolet reflecting sheet 38 made of, for example, PTFE (polytetrafluoroethylene) is provided on the outer quartz of the outer quartz sleeve 35 and on the inner surface of the reactor outer wall (outer housing) 30, for example, the inner peripheral surface of the reactor outer wall 30.
  • the air layer S is provided between the sleeve 35 and the sleeve 35.
  • a fluid to be processed such as water (indicated by a hatched arrow in FIG.
  • W to be irradiated with ultraviolet rays is a space formed between the inner quartz sleeve 32 and the outer quartz sleeve 35.
  • the ultraviolet lamp 31 flows in the (fluid flow passage R) and is separated from the fluid W to be processed.
  • white arrows indicate the ultraviolet rays from the ultraviolet lamp 31 and the ultraviolet rays reflected by the ultraviolet reflecting sheet 38, and the wave-shaped arrow indicates the heat generation from the ultraviolet lamp 31.
  • a reactor having such a structure is disclosed in Patent Document 1, for example.
  • the ultraviolet reflection sheet 38 is provided on the inner surface of the reactor outer wall 30, and the external quartz sleeve 35 is further provided between the ultraviolet reflection sheet 38 and the internal quartz sleeve 32. Therefore, the ultraviolet reflecting sheet 38 does not come into contact with the water to be processed W. Therefore, there is no problem that the ultraviolet reflecting sheet 38 applied to the inner surface of the reactor outer wall 30 is peeled off, and it is not necessary to use a waterproof material as the ultraviolet reflecting sheet 38. Further, by using the ultraviolet reflecting sheet 38, the ultraviolet density inside the reactor can be increased without increasing the input of the ultraviolet lamp 31, and the processing efficiency of the fluid W to be processed such as sterilization efficiency can be improved. It is supposed to be possible.
  • the outer surface of the external quartz sleeve 35 comes into contact with, for example, water (running water) that is the fluid W to be treated, it is cooled by heat exchange with the running water.
  • water running water
  • the temperature of the air layer S existing between the external quartz sleeve 35 and the ultraviolet reflecting sheet 38 increases as the temperature of the external quartz sleeve 35 rises. Due to the heat-retaining effect, the cooling effect due to heat exchange with the flowing water of the external quartz sleeve 35 is reduced.
  • the input to the ultraviolet lamp 31 is that the intensity of the ultraviolet rays emitted from the ultraviolet lamp 31 does not significantly reduce the ultraviolet transmittance of the inner quartz sleeve 32 and the outer quartz sleeve 35, and the ultraviolet reflecting sheet 38 does not melt. I had to adjust it to a value like this. That is, there is a problem that the input of the ultraviolet lamp 31 cannot be increased sufficiently and it is difficult to improve the processing efficiency of the fluid W to be processed such as sterilization efficiency.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a fluid processing apparatus capable of processing a fluid to be processed with high processing efficiency.
  • the fluid treatment apparatus of the present invention includes a rod-shaped lamp that emits ultraviolet rays, an internal quartz sleeve that is provided so as to cover the periphery of the outer peripheral surface of the lamp, and an internal quartz sleeve that is provided outside the internal quartz sleeve, An external quartz sleeve that forms a cylindrical fluid flow path between the two, and a fluid processing apparatus that irradiates ultraviolet rays to a fluid to be processed that is circulated in the fluid flow path
  • the external quartz sleeve has an ultraviolet reflectivity.
  • the external quartz sleeve is preferably made of a quartz tube in which light scattering fine particles are present in a dispersed state inside the tube wall.
  • the light-scattering fine particles can be composed of bubbles, ceramic fine particles, or silica fine particles.
  • an ultraviolet reflective film is formed on the outer peripheral surface of the external quartz sleeve.
  • the external quartz sleeve itself has ultraviolet reflectivity, the proportion of the ultraviolet rays emitted from the lamp absorbed by the external quartz sleeve can be reduced. As a result, it is possible to increase the ultraviolet density inside the fluid processing apparatus (reactor) without increasing the input of the lamp, and thus it is possible to process the fluid to be processed with high processing efficiency.
  • the external quartz sleeve is made of a quartz tube having an ultraviolet reflective film formed on the outer peripheral surface, the ultraviolet light transmitted through the external quartz sleeve is reflected by the ultraviolet reflective film and is efficiently used from the lamp. be able to.
  • the ultraviolet reflection film is formed without an air layer between the external quartz sleeve and the heat insulation effect by the air layer does not occur, the temperature of the external quartz sleeve is prevented from rising. can do. As a result, the proportion of ultraviolet rays absorbed by the external quartz sleeve can be suppressed to a low level, and therefore the processing efficiency of the fluid to be processed can be further improved.
  • FIG. 2 is an enlarged sectional view taken along line AA in FIG. 1. It is sectional drawing along the pipe-axis direction of the reactor outer wall which shows the outline of the structure in the other example of the fluid processing apparatus of this invention.
  • FIG. 4 is an enlarged sectional view taken along line AA in FIG. 3. It is sectional drawing along the pipe-axis direction of the reactor outer wall which shows the outline of a structure in an example of the conventional fluid processing apparatus.
  • FIG. 6 is an enlarged sectional view taken along line AA in FIG. 5.
  • FIG. 1 is a cross-sectional view taken along the tube axis direction of the outer wall of a reactor, showing an outline of the configuration of an example of a fluid processing apparatus of the present invention.
  • FIG. 2 is an enlarged sectional view taken along line AA in FIG.
  • This fluid processing apparatus (hereinafter referred to as “reactor”) includes a cylindrical reactor outer wall (external housing) 10 made of, for example, stainless steel, and a rod-shaped ultraviolet ray that is disposed inside the reactor outer wall 10 and emits ultraviolet rays.
  • a cylindrical external quartz sleeve 15 that forms a cylindrical fluid flow passage R through which the fluid W flows is provided.
  • the ultraviolet lamp 11, the inner quartz sleeve 12 and the outer quartz sleeve 15 are arranged coaxially with the tube axis C of the reactor outer wall 10.
  • a hatched arrow indicates the fluid W to be processed for convenience.
  • white arrows indicate ultraviolet rays from the ultraviolet lamp 11 and ultraviolet rays reflected by an external quartz sleeve 15 described later, and a wave-shaped arrow in FIG. 2 indicates heat generation from the ultraviolet lamp 11.
  • the reason why the ultraviolet lamp 11 is disposed inside the inner quartz sleeve 12 is to separate the ultraviolet lamp 11 from the fluid W to be treated such as water.
  • a power supply line to the ultraviolet lamp 11 from a power source that supplies power to the ultraviolet lamp 11 (not shown) a power supply line that can occur when the power supply terminal of the ultraviolet lamp 11 contacts the fluid R, It is possible to avoid the occurrence of electrical breakdown in the power supply terminal and the like.
  • the ultraviolet lamp 11 for example, a lamp that emits ultraviolet light including light having a wavelength range of 150 to 350 nm is used.
  • the external quartz sleeve 15 in this example is constituted by a quartz tube in which light scattering fine particles P exist in a dispersed state inside the tube wall.
  • the external quartz sleeve 15 itself functions as a reflecting member that reflects the ultraviolet rays emitted from the ultraviolet lamp 11.
  • the external quartz sleeve 15 is preferably opaque with respect to ultraviolet rays having a wavelength region of 254 nm, for example, and has an ultraviolet reflection function.
  • the light scattering fine particles P include bubbles, ceramic fine particles, and silica fine particles.
  • the particle diameter of the light scattering fine particles P is preferably 0.1 to 5 ⁇ m, for example.
  • the “particle diameter” refers to the width of a particle that maximizes the interval between parallel lines when the projected image of the particle is sandwiched between two parallel lines.
  • the density of the light-scattering fine particles P dispersed in the quartz material constituting the external quartz sleeve 15 is preferably 1.0 ⁇ 10 9 or more in 1 mm 3 of quartz material, for example, and more preferably , 1.3 ⁇ 10 9 or more in 1 mm 3 of quartz material. With the external quartz sleeve 15 having such a configuration, the ultraviolet ray in a specific wavelength range emitted from the ultraviolet lamp 11 has a sufficiently high reflectance (for example, 70% or more).
  • a quartz tube in which bubbles are dispersed as the light scattering fine particles P can be manufactured as follows. That is, after flat glass (for example, glass made of sand, soda ash, silicate, alumina, or the like) is pulverized, carbon particles are mixed with the glass powder and heated in a high-temperature kiln. As a result, a quartz tube forming material is obtained in which carbon dioxide generated by oxidation of carbon particles is contained in the molten glass material. When this quartz tube forming material is formed into a tube and cooled, carbon dioxide remains in the form of bubbles in the glass, so that the quartz tube constituting the external quartz sleeve 15 can be obtained.
  • flat glass for example, glass made of sand, soda ash, silicate, alumina, or the like
  • a quartz tube in which ceramic particles and silica particles are dispersed as the light-scattering fine particles P can be obtained by using ceramic particles or silica particles instead of carbon particles in the above production process.
  • the fluid W to be treated for example water
  • the fluid W to be treated is introduced into the fluid flow path R and is circulated through the fluid flow path W, and the fluid W to be treated is released from the ultraviolet lamp 11. Processed by UV light.
  • the external quartz sleeve 15 is constituted by a quartz tube in which the light scattering fine particles P exist in a dispersed state inside the tube wall, and the external quartz sleeve 15 itself has ultraviolet reflectivity.
  • the external quartz sleeve 15 itself is configured to have a low ultraviolet absorption rate. Therefore, according to the reactor described above, the cooling effect caused by the flow of the fluid W to be processed in the fluid flow path R can suppress the degree of temperature rise of the external quartz sleeve 15 to be small. It is possible to suppress an increase in the absorption rate of ultraviolet rays accompanying a temperature increase of 15. Therefore, the UV density inside the reactor can be increased without increasing the input of the UV lamp 11, and the fluid W to be processed can be processed with high processing efficiency.
  • FIG. 3 is a cross-sectional view taken along the tube axis direction of the outer wall of the reactor, showing an outline of the configuration of another example of the fluid processing apparatus of the present invention.
  • 4 is an AA cross-sectional enlarged view of FIG.
  • the reactor in this example is the same as the reactor shown in FIGS. 1 and 2, except that a quartz tube having an ultraviolet reflection film 20 further provided on the outer surface is used as the external quartz sleeve 15. 1 and the reactor shown in FIG. 3 and 4, the same components as those in the reactor shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the ultraviolet reflection film 20 is formed of, for example, a metal reflection film.
  • the ultraviolet reflection film 20 is formed of an aluminum vapor deposition film having a thickness of 1 to 20 ⁇ m, for example, and is opaque to ultraviolet light having a wavelength region of, for example, 254 nm, that is, has an ultraviolet reflection function.
  • the ultraviolet reflecting film 20 can be formed by heating and evaporating aluminum by an electron beam or high frequency induction in a high vacuum state, and attaching the vapor to the surface of the object.
  • the ultraviolet rays emitted from the ultraviolet lamp 11 are basically reflected by the external quartz sleeve 15 and the ultraviolet rays transmitted through the external quartz sleeve 15 are fluidized by the ultraviolet reflecting film 20. Since it is reflected toward the flow path R, the ultraviolet rays emitted from the ultraviolet lamp 11 can be used efficiently.
  • the ultraviolet reflection film 20 is formed in a state where no air layer is interposed between the ultraviolet reflection film 20 and the external quartz sleeve 15, the heat retention effect by the air layer does not occur.
  • the temperature rise of the external quartz sleeve 15 can be suppressed by the cooling effect of the fluid W to be processed, and as a result, the proportion of ultraviolet rays absorbed by the external quartz sleeve 15 can be reduced. Therefore, the processing efficiency of the fluid W to be processed can be further improved.

Abstract

The purpose of the present invention is to provide a fluid processing device that can process a fluid to be processed at high processing efficiency. This fluid processing device is constituted so as to be provided with a rod-shaped lamp that discharges ultraviolet rays, an internal quartz sleeve provided so as to cover the periphery of the outer peripheral surface of this lamp, and an outer quartz sleeve that is provided on the outside of this inner quartz sleeve and forms a cylindrical fluid flow path with the inner quartz sleeve and so as to irradiate the fluid to be treated, which flows within the fluid flow path, with ultraviolet rays. The outer quartz sleeve is constituted so as to have ultraviolet ray reflectivity.

Description

流体処理装置Fluid processing equipment
 本発明は、紫外線照射により、例えば水などの被処理流体中の各種有機物(TOC;トータルオーガニックカーボン)の分解、バクテリア、ウィルス、菌類、カビ胞子、原虫類および同種の微生物を不活性化する、あるいは殺菌を行う流体処理装置に関する。 The present invention, by ultraviolet irradiation, inactivates various organic substances (TOC; total organic carbon) in a fluid to be treated such as water, and inactivates bacteria, viruses, fungi, mold spores, protozoa and similar microorganisms. Or it is related with the fluid processing apparatus which performs sterilization.
 現在、例えば水等の被処理流体中の各種有機物(TOC;トータルオーガニックカーボン)の分解、バクテリア、ウィルス、菌類、カビ胞子、原虫類および同種の微生物を不活性化するために、あるいは殺菌するために、被処理流体に対して紫外線を照射する技術が知られている。 Currently, for example, decomposition of various organic substances (TOC; total organic carbon) in fluids to be treated such as water, inactivation of bacteria, viruses, fungi, mold spores, protozoa and similar microorganisms, or for sterilization In addition, a technique for irradiating a fluid to be processed with ultraviolet rays is known.
 図5は、従来の流体処理装置の一例における構成の概略を示す、リアクター外壁の管軸方向に沿った断面図である。図6は、図5におけるA-A線断面拡大図である。
 この流体処理装置(以下、「リアクター」と称することにする。)は、例えば、ステンレスよりなる円筒状のリアクター外壁(外部筐体)30と、このリアクター外壁30の内部に配置された、紫外線を放出する棒状の紫外線ランプ31と、リアクター外壁30と紫外線ランプ31との間に配置された円筒状の内部石英スリーブ32と、この内部石英スリーブ32の外側に配置された、石英ガラスからなる円筒状の外部石英スリーブ35とを具えている。紫外線ランプ31、内部石英スリーブ32および外部石英スリーブ35は、いずれも、リアクター外壁30の管軸Cと同軸上に配置されている。外部石英スリーブ35の外側であってリアクター外壁(外部筐体)30の内側、例えばリアクター外壁30の内周面には、例えばPTFE(ポリテトラフルオロエチレン:Polytetrafluoroethylene)からなる紫外線反射シート38が外部石英スリーブ35との間に空気層Sが介在する状態で設けられている。
 このリアクターにおいては、紫外線照射処理する例えば水などの被処理流体(図5において便宜上斜線を付した矢印で示す。)Wは、内部石英スリーブ32と外部石英スリーブ35との間に形成された空間(流体流通路R)内を流れ、紫外線ランプ31が被処理流体Wから分離された構成とされている。なお、図5および図6において、白抜きの矢印は、紫外線ランプ31からの紫外線および紫外線反射シート38により反射された紫外線を示し、波型の矢印は紫外線ランプ31からの発熱を示す。
 このような構造を有するリアクターは、例えば特許文献1に開示されている。
FIG. 5 is a cross-sectional view along the tube axis direction of the outer wall of the reactor, showing an outline of the configuration of an example of a conventional fluid processing apparatus. 6 is an enlarged cross-sectional view taken along line AA in FIG.
This fluid processing apparatus (hereinafter referred to as “reactor”) is, for example, a cylindrical reactor outer wall (external housing) 30 made of stainless steel, and ultraviolet rays disposed inside the reactor outer wall 30. A rod-shaped ultraviolet lamp 31 that emits, a cylindrical inner quartz sleeve 32 disposed between the reactor outer wall 30 and the ultraviolet lamp 31, and a cylindrical shape made of quartz glass disposed outside the inner quartz sleeve 32. The external quartz sleeve 35 is provided. The ultraviolet lamp 31, the inner quartz sleeve 32, and the outer quartz sleeve 35 are all arranged coaxially with the tube axis C of the reactor outer wall 30. An ultraviolet reflecting sheet 38 made of, for example, PTFE (polytetrafluoroethylene) is provided on the outer quartz of the outer quartz sleeve 35 and on the inner surface of the reactor outer wall (outer housing) 30, for example, the inner peripheral surface of the reactor outer wall 30. The air layer S is provided between the sleeve 35 and the sleeve 35.
In this reactor, a fluid to be processed such as water (indicated by a hatched arrow in FIG. 5 for convenience) W to be irradiated with ultraviolet rays is a space formed between the inner quartz sleeve 32 and the outer quartz sleeve 35. The ultraviolet lamp 31 flows in the (fluid flow passage R) and is separated from the fluid W to be processed. 5 and 6, white arrows indicate the ultraviolet rays from the ultraviolet lamp 31 and the ultraviolet rays reflected by the ultraviolet reflecting sheet 38, and the wave-shaped arrow indicates the heat generation from the ultraviolet lamp 31.
A reactor having such a structure is disclosed in Patent Document 1, for example.
 図5および図6に示すリアクターによれば、リアクター外壁30の内表面に紫外線反射シート38が設けられ、さらに紫外線反射シート38と内部石英スリーブ32との間に外部石英スリーブ35が設けられているので、紫外線反射シート38が被処理流体Wである水と接触しない。そのため、リアクター外壁30の内表面に施した紫外線反射シート38が剥がれるといった不具合は発生せず、また紫外線反射シート38として防水性を有するものを用いる必要がない。
 また、紫外線反射シート38を使用することにより、紫外線ランプ31の入力を増大させることなく、リアクター内部の紫外線密度を増大させることができ、殺菌効率等の被処理流体Wの処理効率を向上させることが可能となる、とされている。
5 and 6, the ultraviolet reflection sheet 38 is provided on the inner surface of the reactor outer wall 30, and the external quartz sleeve 35 is further provided between the ultraviolet reflection sheet 38 and the internal quartz sleeve 32. Therefore, the ultraviolet reflecting sheet 38 does not come into contact with the water to be processed W. Therefore, there is no problem that the ultraviolet reflecting sheet 38 applied to the inner surface of the reactor outer wall 30 is peeled off, and it is not necessary to use a waterproof material as the ultraviolet reflecting sheet 38.
Further, by using the ultraviolet reflecting sheet 38, the ultraviolet density inside the reactor can be increased without increasing the input of the ultraviolet lamp 31, and the processing efficiency of the fluid W to be processed such as sterilization efficiency can be improved. It is supposed to be possible.
米国特許第7511281号明細書US Pat. No. 7511281
 しかしながら、このような構造では、紫外線ランプ31からの紫外線の一部が外部石英スリーブ35に吸収されるので、外部石英スリーブ35の温度が上昇する。この外部石英スリーブ35からの発熱は、外部石英スリーブ35と紫外線反射シート38との間に存在する空気層Sを介して、紫外線反射シート38に伝達される。これにより、例えばPTFEからなる紫外線反射シート38が溶けるなどのダメージが発生し、結果的に紫外線反射率が低下してしまうおそれがある。
 また、外部石英スリーブ35の温度上昇により、外部石英スリーブ35によって紫外線が吸収される割合が高くなり、紫外線反射シート38から反射される紫外線の強度が低下するという問題があった。
However, in such a structure, a part of the ultraviolet rays from the ultraviolet lamp 31 is absorbed by the external quartz sleeve 35, so that the temperature of the external quartz sleeve 35 rises. The heat generated from the external quartz sleeve 35 is transmitted to the ultraviolet reflection sheet 38 via the air layer S existing between the external quartz sleeve 35 and the ultraviolet reflection sheet 38. Thereby, for example, damage such as melting of the ultraviolet reflective sheet 38 made of PTFE may occur, and as a result, the ultraviolet reflectance may be lowered.
Further, due to the temperature rise of the external quartz sleeve 35, there is a problem that the proportion of ultraviolet rays absorbed by the external quartz sleeve 35 increases, and the intensity of ultraviolet rays reflected from the ultraviolet reflecting sheet 38 decreases.
 さらにまた、次のような問題がある。すなわち、外部石英スリーブ35はその外表面が被処理流体Wである例えば水(流水)と接触するので、流水との熱交換により冷却される。しかしながら、図5および図6から明らかなように、外部石英スリーブ35と紫外線反射シート38との間に存在する空気層Sの温度が外部石英スリーブ35の温度上昇に伴い上昇するので、空気層Sによる保温効果により、外部石英スリーブ35の流水との熱交換による冷却効果は小さくなる。従って、紫外線ランプ31への入力は、紫外線ランプ31から放出される紫外線の強度が、内部石英スリーブ32や外部石英スリーブ35の紫外線透過率があまり低下せず、かつ、紫外線反射シート38が溶けないような値となるように調整せざるを得なかった。すなわち、紫外線ランプ31の入力を十分に増大させることができず、殺菌効率等の被処理流体Wの処理効率を向上させることが困難となるという問題があった。 Furthermore, there are the following problems. That is, since the outer surface of the external quartz sleeve 35 comes into contact with, for example, water (running water) that is the fluid W to be treated, it is cooled by heat exchange with the running water. However, as is apparent from FIGS. 5 and 6, the temperature of the air layer S existing between the external quartz sleeve 35 and the ultraviolet reflecting sheet 38 increases as the temperature of the external quartz sleeve 35 rises. Due to the heat-retaining effect, the cooling effect due to heat exchange with the flowing water of the external quartz sleeve 35 is reduced. Therefore, the input to the ultraviolet lamp 31 is that the intensity of the ultraviolet rays emitted from the ultraviolet lamp 31 does not significantly reduce the ultraviolet transmittance of the inner quartz sleeve 32 and the outer quartz sleeve 35, and the ultraviolet reflecting sheet 38 does not melt. I had to adjust it to a value like this. That is, there is a problem that the input of the ultraviolet lamp 31 cannot be increased sufficiently and it is difficult to improve the processing efficiency of the fluid W to be processed such as sterilization efficiency.
 本発明は、このような問題を解決するためになされたものであって、その目的は、被処理流体を高い処理効率で処理することのできる流体処理装置を提供することにある。 The present invention has been made to solve such a problem, and an object thereof is to provide a fluid processing apparatus capable of processing a fluid to be processed with high processing efficiency.
 本発明の流体処理装置は、紫外線を放出する棒状のランプと、このランプの外周面の周囲を覆うよう設けられた内部石英スリーブと、この内部石英スリーブの外側に設けられて当該内部石英スリーブとの間に筒状の流体流通路を形成する外部石英スリーブとを具えており、前記流体流通路内を流通される被処理流体に紫外線を照射する流体処理装置において、
 前記外部石英スリーブが紫外線反射性を有することを特徴とする。
The fluid treatment apparatus of the present invention includes a rod-shaped lamp that emits ultraviolet rays, an internal quartz sleeve that is provided so as to cover the periphery of the outer peripheral surface of the lamp, and an internal quartz sleeve that is provided outside the internal quartz sleeve, An external quartz sleeve that forms a cylindrical fluid flow path between the two, and a fluid processing apparatus that irradiates ultraviolet rays to a fluid to be processed that is circulated in the fluid flow path
The external quartz sleeve has an ultraviolet reflectivity.
 本発明の流体処理装置においては、前記外部石英スリーブは、管壁の内部に光散乱性微小粒子が分散状態で存在する石英管よりなることが好ましい。
 このような構成のものにおいては、前記光散乱性微小粒子は、気泡、セラミック微粒子またはシリカ微粒子により構成することができる。
In the fluid processing apparatus of the present invention, the external quartz sleeve is preferably made of a quartz tube in which light scattering fine particles are present in a dispersed state inside the tube wall.
In such a structure, the light-scattering fine particles can be composed of bubbles, ceramic fine particles, or silica fine particles.
 また、本発明の流体処理装置においては、前記外部石英スリーブの外周面に、紫外線反射膜が形成された構成とされていることが好ましい。 In the fluid treatment apparatus of the present invention, it is preferable that an ultraviolet reflective film is formed on the outer peripheral surface of the external quartz sleeve.
 本発明の流体処理装置によれば、外部石英スリーブ自体が紫外線反射性を有することにより、ランプから放出される紫外線が当該外部石英スリーブによって吸収される割合を小さく抑制することができる。その結果、ランプの入力を増大させることなく、流体処理装置(リアクター)内部の紫外線密度を増大させることができ、従って、被処理流体を高い処理効率で処理することができる。 According to the fluid treatment apparatus of the present invention, since the external quartz sleeve itself has ultraviolet reflectivity, the proportion of the ultraviolet rays emitted from the lamp absorbed by the external quartz sleeve can be reduced. As a result, it is possible to increase the ultraviolet density inside the fluid processing apparatus (reactor) without increasing the input of the lamp, and thus it is possible to process the fluid to be processed with high processing efficiency.
 また、外部石英スリーブが、外周面に紫外線反射膜が形成された石英管よりなることにより、外部石英スリーブを透過する紫外線が紫外線反射膜によって反射されてランプから放出される紫外線を効率よく利用することができる。しかも、紫外線反射膜が外部石英スリーブとの間に空気層が介在しない状態で形成されることにより、当該空気層による保温効果が生ずることがないため、外部石英スリーブの温度が上昇することを抑制することができる。その結果、外部石英スリーブによって吸収される紫外線の割合を小さく抑制することができ、従って、被処理流体の処理効率を一層向上させることができる。 In addition, since the external quartz sleeve is made of a quartz tube having an ultraviolet reflective film formed on the outer peripheral surface, the ultraviolet light transmitted through the external quartz sleeve is reflected by the ultraviolet reflective film and is efficiently used from the lamp. be able to. In addition, since the ultraviolet reflection film is formed without an air layer between the external quartz sleeve and the heat insulation effect by the air layer does not occur, the temperature of the external quartz sleeve is prevented from rising. can do. As a result, the proportion of ultraviolet rays absorbed by the external quartz sleeve can be suppressed to a low level, and therefore the processing efficiency of the fluid to be processed can be further improved.
本発明の流体処理装置の一例における構成の概略を示す、リアクター外壁の管軸方向に沿った断面図である。It is sectional drawing along the pipe-axis direction of the reactor outer wall which shows the outline of a structure in an example of the fluid processing apparatus of this invention. 図1におけるA-A線断面拡大図である。FIG. 2 is an enlarged sectional view taken along line AA in FIG. 1. 本発明の流体処理装置の他の例における構成の概略を示す、リアクター外壁の管軸方向に沿った断面図である。It is sectional drawing along the pipe-axis direction of the reactor outer wall which shows the outline of the structure in the other example of the fluid processing apparatus of this invention. 図3におけるA-A線断面拡大図である。FIG. 4 is an enlarged sectional view taken along line AA in FIG. 3. 従来の流体処理装置の一例における構成の概略を示す、リアクター外壁の管軸方向に沿った断面図である。It is sectional drawing along the pipe-axis direction of the reactor outer wall which shows the outline of a structure in an example of the conventional fluid processing apparatus. 図5におけるA-A線断面拡大図である。FIG. 6 is an enlarged sectional view taken along line AA in FIG. 5.
 以下、本発明の実施の形態について詳細に説明する。
 図1は、本発明の流体処理装置の一例における構成の概略を示す、リアクター外壁の管軸方向に沿った断面図である。また、図2は、図1におけるA-A線断面拡大図である。 この流体処理装置(以下、「リアクター」という。)は、例えばステンレスよりなる円筒状のリアクター外壁(外部筐体)10と、このリアクター外壁10の内部に配置された、紫外線を放出する棒状の紫外線ランプ11と、この紫外線ランプ11の外周面の周囲を覆うよう配置された円筒状の内部石英スリーブ12と、この内部石英スリーブ12の外側に設けられて当該内部石英スリーブ12との間に被処理流体Wが流通される筒状の流体流通路Rを形成する円筒状の外部石英スリーブ15とを具えている。紫外線ランプ11、内部石英スリーブ12および外部石英スリーブ15は、リアクター外壁10の管軸Cと同軸上に配置されている。図1において、便宜上斜線を付した矢印は、被処理流体Wを示す。また、図1および図2において、白抜きの矢印は、紫外線ランプ11からの紫外線および後述する外部石英スリーブ15により反射された紫外線を示し、図2における波型の矢印は紫外線ランプ11からの発熱を示す。
 紫外線ランプ11を内部石英スリーブ12の内側に配置するのは、紫外線ランプ11を例えば水等の被処理流体Wから分離するためである。このような構造により、図示を省略した紫外線ランプ11へ電力を供給する電源から紫外線ランプ11への給電線、紫外線ランプ11の給電端子等が被処理流体Rと接触した際に起こり得る給電線、給電端子等における電気的な絶縁破壊の発生を回避することが可能となる。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a cross-sectional view taken along the tube axis direction of the outer wall of a reactor, showing an outline of the configuration of an example of a fluid processing apparatus of the present invention. FIG. 2 is an enlarged sectional view taken along line AA in FIG. This fluid processing apparatus (hereinafter referred to as “reactor”) includes a cylindrical reactor outer wall (external housing) 10 made of, for example, stainless steel, and a rod-shaped ultraviolet ray that is disposed inside the reactor outer wall 10 and emits ultraviolet rays. A lamp 11, a cylindrical inner quartz sleeve 12 disposed so as to cover the periphery of the outer peripheral surface of the ultraviolet lamp 11, and an object to be processed between the inner quartz sleeve 12 provided outside the inner quartz sleeve 12 A cylindrical external quartz sleeve 15 that forms a cylindrical fluid flow passage R through which the fluid W flows is provided. The ultraviolet lamp 11, the inner quartz sleeve 12 and the outer quartz sleeve 15 are arranged coaxially with the tube axis C of the reactor outer wall 10. In FIG. 1, a hatched arrow indicates the fluid W to be processed for convenience. 1 and 2, white arrows indicate ultraviolet rays from the ultraviolet lamp 11 and ultraviolet rays reflected by an external quartz sleeve 15 described later, and a wave-shaped arrow in FIG. 2 indicates heat generation from the ultraviolet lamp 11. Indicates.
The reason why the ultraviolet lamp 11 is disposed inside the inner quartz sleeve 12 is to separate the ultraviolet lamp 11 from the fluid W to be treated such as water. With such a structure, a power supply line to the ultraviolet lamp 11 from a power source that supplies power to the ultraviolet lamp 11 (not shown), a power supply line that can occur when the power supply terminal of the ultraviolet lamp 11 contacts the fluid R, It is possible to avoid the occurrence of electrical breakdown in the power supply terminal and the like.
 紫外線ランプ11としては、例えば150~350nmの波長域の光を含む紫外線を放射するものが用いられる。 As the ultraviolet lamp 11, for example, a lamp that emits ultraviolet light including light having a wavelength range of 150 to 350 nm is used.
 この例における外部石英スリーブ15は、管壁の内部に光散乱性微小粒子Pが分散状態で存在する石英管により構成されている。このような構成とされていることにより、外部石英スリーブ15自体が紫外線ランプ11から放射される紫外線を反射する反射部材として機能する。具体的には例えば、外部石英スリーブ15は、例えば254nmの波長域の紫外線に対して不透明であること、すなわち紫外線反射機能を備えたものであることが好ましい。 The external quartz sleeve 15 in this example is constituted by a quartz tube in which light scattering fine particles P exist in a dispersed state inside the tube wall. With this configuration, the external quartz sleeve 15 itself functions as a reflecting member that reflects the ultraviolet rays emitted from the ultraviolet lamp 11. Specifically, for example, the external quartz sleeve 15 is preferably opaque with respect to ultraviolet rays having a wavelength region of 254 nm, for example, and has an ultraviolet reflection function.
 光散乱性微小粒子Pとしては、例えば、気泡、セラミック微粒子またはシリカ微粒子を例示することができる。
 光散乱性微小粒子Pの粒子径は、例えば0.1~5μmであることが好ましい。ここに、「粒子径」とは、粒子の投影像を2本の平行線で挟んだとき、平行線の間隔が最大となる粒子の幅をいう。
 また、外部石英スリーブ15を構成する石英材料中に分散される光散乱性微小粒子Pの密度は、例えば石英材料1mm中に1.0×10個以上であることが好ましく、より好ましくは、石英材料1mm中に1.3×10個以上である。
 外部石英スリーブ15がこのような構成とされていることにより、紫外線ランプ11から放射される特定の波長域の紫外線について十分に高い反射率(例えば70%以上)を有するものとなる。
Examples of the light scattering fine particles P include bubbles, ceramic fine particles, and silica fine particles.
The particle diameter of the light scattering fine particles P is preferably 0.1 to 5 μm, for example. Here, the “particle diameter” refers to the width of a particle that maximizes the interval between parallel lines when the projected image of the particle is sandwiched between two parallel lines.
The density of the light-scattering fine particles P dispersed in the quartz material constituting the external quartz sleeve 15 is preferably 1.0 × 10 9 or more in 1 mm 3 of quartz material, for example, and more preferably , 1.3 × 10 9 or more in 1 mm 3 of quartz material.
With the external quartz sleeve 15 having such a configuration, the ultraviolet ray in a specific wavelength range emitted from the ultraviolet lamp 11 has a sufficiently high reflectance (for example, 70% or more).
 例えば、光散乱性微小粒子Pとして気泡が分散されてなる石英管は、次のようにして作製することができる。すなわち、板ガラス(例えばサンド、ソーダ灰、シリケートまたはアルミナ等でできたガラス)を粉々に粉砕した後、当該ガラス粉末にカーボン粒子を混ぜ合わせ、高温の窯の中で加熱する。これにより、カーボン粒子が酸化されることにより発生する二酸化炭素が、溶融されたガラス材料中に含まれてなる石英管形成材料を得る。この石英管形成材料を管状に成形して冷却することにより二酸化炭素がガラス中に泡状に残留され、以って、外部石英スリーブ15を構成する石英管を得ることができる。ここに、ガラス粉末に混入するカーボン粒子の量を調整することにより、得られる石英管の紫外線反射率を調整することができる。
 また、光散乱性微小粒子Pとしてセラミック粒子やシリカ粒子が分散されてなる石英管は、上記の作製工程において、カーボン粒子に代えてセラミック粒子やシリカ粒子を用いることにより得ることができる。
For example, a quartz tube in which bubbles are dispersed as the light scattering fine particles P can be manufactured as follows. That is, after flat glass (for example, glass made of sand, soda ash, silicate, alumina, or the like) is pulverized, carbon particles are mixed with the glass powder and heated in a high-temperature kiln. As a result, a quartz tube forming material is obtained in which carbon dioxide generated by oxidation of carbon particles is contained in the molten glass material. When this quartz tube forming material is formed into a tube and cooled, carbon dioxide remains in the form of bubbles in the glass, so that the quartz tube constituting the external quartz sleeve 15 can be obtained. Here, by adjusting the amount of carbon particles mixed in the glass powder, the ultraviolet reflectance of the resulting quartz tube can be adjusted.
In addition, a quartz tube in which ceramic particles and silica particles are dispersed as the light-scattering fine particles P can be obtained by using ceramic particles or silica particles instead of carbon particles in the above production process.
 上記のリアクターにおいては、処理すべき被処理流体W例えば水が流体流通路R内に導入されて当該流体流通路W内を流通される過程において、被処理流体Wが紫外線ランプ11から放出される紫外線によって処理される。 In the reactor described above, the fluid W to be treated, for example water, is introduced into the fluid flow path R and is circulated through the fluid flow path W, and the fluid W to be treated is released from the ultraviolet lamp 11. Processed by UV light.
 而して、上記構成のリアクターは、外部石英スリーブ15が管壁の内部に光散乱性微小粒子Pが分散状態で存在する石英管により構成されており、外部石英スリーブ15自体が紫外線反射性を有することにより、外部石英スリーブ15それ自体が紫外線の吸収率が小さいものとして構成されている。従って、上記のリアクターによれば、流体流通路R内に被処理流体Wが流通されることによる冷却効果によって、外部石英スリーブ15の温度上昇の程度を小さく抑制することができるため、外部石英スリーブ15の温度上昇に伴う紫外線の吸収率が増大することを小さく抑制することができる。従って、紫外線ランプ11の入力を増大させることなく、リアクター内部の紫外線密度を増大させることができ、被処理流体Wを高い処理効率で処理することができる。 Thus, in the reactor configured as described above, the external quartz sleeve 15 is constituted by a quartz tube in which the light scattering fine particles P exist in a dispersed state inside the tube wall, and the external quartz sleeve 15 itself has ultraviolet reflectivity. Thus, the external quartz sleeve 15 itself is configured to have a low ultraviolet absorption rate. Therefore, according to the reactor described above, the cooling effect caused by the flow of the fluid W to be processed in the fluid flow path R can suppress the degree of temperature rise of the external quartz sleeve 15 to be small. It is possible to suppress an increase in the absorption rate of ultraviolet rays accompanying a temperature increase of 15. Therefore, the UV density inside the reactor can be increased without increasing the input of the UV lamp 11, and the fluid W to be processed can be processed with high processing efficiency.
 以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
 図3は、本発明の流体処理装置の他の例における構成の概略を示す、リアクター外壁の管軸方向に沿った断面図である。また、図4は、図3におけるA-A断面拡大図である。
 この例におけるリアクターは、図1および図2に示すリアクターにおいて、外部石英スリーブ15として、外表面に紫外線反射膜20がさらに設けられた石英管が用いられた構成とされたことの他は、図1および図2に示すリアクターと同一の構成を有する。図3および図4において、図1および図2に示すリアクターと同一の構成部材には、同一の符号が付してあり、その説明を省略する。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.
FIG. 3 is a cross-sectional view taken along the tube axis direction of the outer wall of the reactor, showing an outline of the configuration of another example of the fluid processing apparatus of the present invention. 4 is an AA cross-sectional enlarged view of FIG.
The reactor in this example is the same as the reactor shown in FIGS. 1 and 2, except that a quartz tube having an ultraviolet reflection film 20 further provided on the outer surface is used as the external quartz sleeve 15. 1 and the reactor shown in FIG. 3 and 4, the same components as those in the reactor shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
 紫外線反射膜20は、例えば金属反射膜により形成されている。具体的には、紫外線反射膜20は、例えば厚さが1~20μmとなるアルミニウム蒸着膜により形成されており、例えば254nmの波長域の紫外線に対して不透明、すなわち紫外線反射機能を備えている。
 この紫外線反射膜20は、アルミニウムを高真空状態で電子ビームや高周波誘導などによって加熱蒸発させ、その蒸気を対象物の表面に付着させることにより形成することができる。
The ultraviolet reflection film 20 is formed of, for example, a metal reflection film. Specifically, the ultraviolet reflection film 20 is formed of an aluminum vapor deposition film having a thickness of 1 to 20 μm, for example, and is opaque to ultraviolet light having a wavelength region of, for example, 254 nm, that is, has an ultraviolet reflection function.
The ultraviolet reflecting film 20 can be formed by heating and evaporating aluminum by an electron beam or high frequency induction in a high vacuum state, and attaching the vapor to the surface of the object.
 而して、上記構成のリアクターによれば、基本的には、紫外線ランプ11から放出される紫外線が外部石英スリーブ15によって反射されると共に外部石英スリーブ15を透過する紫外線が紫外線反射膜20によって流体流通路Rに向かって反射されるので、紫外線ランプ11から放出される紫外線を効率よく利用することができる。しかも、紫外線反射膜20が外部石英スリーブ15との間に空気層が介在しない状態で形成されることにより、当該空気層による保温効果が生ずることがない。このため、被処理流体Wによる冷却効果によって、外部石英スリーブ15の温度上昇を小さく抑制することができる結果、当該外部石英スリーブ15によって吸収される紫外線の割合を小さく抑制することができる。従って、被処理流体Wの処理効率を一層向上させることができる。 Thus, according to the reactor configured as described above, the ultraviolet rays emitted from the ultraviolet lamp 11 are basically reflected by the external quartz sleeve 15 and the ultraviolet rays transmitted through the external quartz sleeve 15 are fluidized by the ultraviolet reflecting film 20. Since it is reflected toward the flow path R, the ultraviolet rays emitted from the ultraviolet lamp 11 can be used efficiently. In addition, since the ultraviolet reflection film 20 is formed in a state where no air layer is interposed between the ultraviolet reflection film 20 and the external quartz sleeve 15, the heat retention effect by the air layer does not occur. For this reason, the temperature rise of the external quartz sleeve 15 can be suppressed by the cooling effect of the fluid W to be processed, and as a result, the proportion of ultraviolet rays absorbed by the external quartz sleeve 15 can be reduced. Therefore, the processing efficiency of the fluid W to be processed can be further improved.
 10 リアクター外壁(外部筐体)
 11 紫外線ランプ
 12 内部石英スリーブ
 15 外部石英スリーブ
 20 紫外線反射膜
 30 リアクター外壁(外部筐体)
 31 紫外線ランプ
 32 内部石英スリーブ
 35 外部石英スリーブ
 38 紫外線反射シート
  P 光散乱性微小粒子
  W 被処理流体
  R 流体流通路
  S 空気層
  C リアクター外壁の管軸
10 Reactor outer wall (external housing)
11 UV lamp 12 Internal quartz sleeve 15 External quartz sleeve 20 UV reflective film 30 Reactor outer wall (external housing)
31 UV lamp 32 Internal quartz sleeve 35 External quartz sleeve 38 UV reflection sheet P Light scattering fine particles W Processed fluid R Fluid flow path S Air layer C Reactor outer wall tube axis

Claims (4)

  1.  紫外線を放出する棒状のランプと、このランプの外周面の周囲を覆うよう設けられた内部石英スリーブと、この内部石英スリーブの外側に設けられて当該内部石英スリーブとの間に筒状の流体流通路を形成する外部石英スリーブとを具えており、前記流体流通路内を流通される被処理流体に紫外線を照射する流体処理装置において、
     前記外部石英スリーブが紫外線反射性を有することを特徴とする流体処理装置。
    A rod-shaped lamp that emits ultraviolet rays, an internal quartz sleeve provided so as to cover the periphery of the outer peripheral surface of the lamp, and a cylindrical fluid flow between the internal quartz sleeve and the external quartz sleeve An external quartz sleeve that forms a path, and in a fluid treatment apparatus that irradiates ultraviolet rays to a fluid to be treated that is circulated in the fluid flow path,
    The fluid processing apparatus, wherein the external quartz sleeve has ultraviolet reflectivity.
  2.  前記外部石英スリーブは、管壁の内部に光散乱性微小粒子が分散状態で存在する石英管よりなることを特徴とする請求項1に記載の流体処理装置。 The fluid processing apparatus according to claim 1, wherein the external quartz sleeve is made of a quartz tube in which light scattering fine particles exist in a dispersed state inside a tube wall.
  3.  前記光散乱性微小粒子が、気泡、セラミック微粒子またはシリカ微粒子であることを特徴とする請求項2に記載の流体処理装置。 3. The fluid processing apparatus according to claim 2, wherein the light scattering fine particles are bubbles, ceramic fine particles, or silica fine particles.
  4.  前記外部石英スリーブの外周面に、紫外線反射膜が形成されていることを特徴とする請求項2または請求項3に記載の流体処理装置。 4. The fluid processing apparatus according to claim 2, wherein an ultraviolet reflecting film is formed on an outer peripheral surface of the external quartz sleeve.
PCT/JP2013/065653 2012-06-22 2013-06-06 Fluid processing device WO2013191003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140456 2012-06-22
JP2012140456A JP2014004506A (en) 2012-06-22 2012-06-22 Fluid treatment apparatus

Publications (1)

Publication Number Publication Date
WO2013191003A1 true WO2013191003A1 (en) 2013-12-27

Family

ID=49768604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065653 WO2013191003A1 (en) 2012-06-22 2013-06-06 Fluid processing device

Country Status (2)

Country Link
JP (1) JP2014004506A (en)
WO (1) WO2013191003A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771399B2 (en) * 2017-02-02 2020-10-21 日機装株式会社 Irradiation device
EP3546431A1 (en) * 2018-03-28 2019-10-02 Ovivo Inc. Apparatus and method for providing ultrapure water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315692U (en) * 1989-01-31 1991-02-18
JPH0648882U (en) * 1992-12-14 1994-07-05 株式会社イワキ UV sterilizer for seawater and drinking water
JPH06285459A (en) * 1993-04-06 1994-10-11 Nec Corp Light irradiation apparatus
JPH0769674A (en) * 1993-08-31 1995-03-14 Shinetsu Quartz Prod Co Ltd Production of opaque quartz glass
JP2010513198A (en) * 2006-12-22 2010-04-30 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Quartz glass member having a reflective layer and method for producing the same
US20120086324A1 (en) * 2009-06-17 2012-04-12 Heraeus Noblelight Gmbh Lamp unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315692U (en) * 1989-01-31 1991-02-18
JPH0648882U (en) * 1992-12-14 1994-07-05 株式会社イワキ UV sterilizer for seawater and drinking water
JPH06285459A (en) * 1993-04-06 1994-10-11 Nec Corp Light irradiation apparatus
JPH0769674A (en) * 1993-08-31 1995-03-14 Shinetsu Quartz Prod Co Ltd Production of opaque quartz glass
JP2010513198A (en) * 2006-12-22 2010-04-30 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Quartz glass member having a reflective layer and method for producing the same
US20120086324A1 (en) * 2009-06-17 2012-04-12 Heraeus Noblelight Gmbh Lamp unit

Also Published As

Publication number Publication date
JP2014004506A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2017064950A1 (en) Fluid sterilization device and fluid sterilization method
TW201604140A (en) A method, system and apparatus for treatment of fluids
CN111320229B (en) Fluid sterilization device
JP2007157583A (en) Light illumination device
JP2011110492A (en) Ultraviolet irradiation apparatus
WO2013008843A1 (en) Ultraviolet light irradiation device
JP5765504B1 (en) Light irradiation device
JP2014032325A (en) Liquid crystal panel manufacturing device and liquid crystal panel manufacturing method
KR101379737B1 (en) Uv sterilization lamp and system for waste water disposal
WO2013191003A1 (en) Fluid processing device
TWI487973B (en) Liquid crystal panel manufacturing apparatus and method for manufacturing the liquid crystal panel
JP5519329B2 (en) Method for heating parts in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP2010274173A (en) Uv ray irradiation apparatus
JP4696736B2 (en) Light heating device
JP2008235678A (en) Ultraviolet irradiator, ultraviolet irradiation device and film reforming method
JP2008226806A (en) Light source for uv irradiation
JP2013013871A (en) Ultraviolet irradiation apparatus
JP2008130302A (en) Light irradiation device
US20090218924A1 (en) Light source for ultraviolet ray irradiation
JP6171632B2 (en) Liquid crystal panel manufacturing apparatus and liquid crystal panel manufacturing method
JP4329629B2 (en) Excimer lamp
JP4769688B2 (en) UV sterilizer
JP5928848B2 (en) Light irradiation device and long arc type discharge lamp
JP6439351B2 (en) UV irradiation equipment
JP2006252784A (en) Infrared uniform heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807825

Country of ref document: EP

Kind code of ref document: A1