JP2008235678A - Ultraviolet irradiator, ultraviolet irradiation device and film reforming method - Google Patents

Ultraviolet irradiator, ultraviolet irradiation device and film reforming method Download PDF

Info

Publication number
JP2008235678A
JP2008235678A JP2007074835A JP2007074835A JP2008235678A JP 2008235678 A JP2008235678 A JP 2008235678A JP 2007074835 A JP2007074835 A JP 2007074835A JP 2007074835 A JP2007074835 A JP 2007074835A JP 2008235678 A JP2008235678 A JP 2008235678A
Authority
JP
Japan
Prior art keywords
lamp
ultraviolet
water
cooling jacket
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007074835A
Other languages
Japanese (ja)
Inventor
Nozomi Tachika
望 田近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2007074835A priority Critical patent/JP2008235678A/en
Publication of JP2008235678A publication Critical patent/JP2008235678A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet irradiator, an ultraviolet irradiation device and a film reforming method, with which a wider irradiation basin can be irradiated with uniform illuminance, by forming a plurality of cylindrical members toward an inner part of a water cooling jacket in one water cooling jacket while a feature of a lamp with water cooling jacket, which is to reduce effect of heat to an object to be processed from the lamp, is made the most of, arranging a plurality of inner tubes on substantially one outer tube and inserting the lamp into the inner tube. <P>SOLUTION: The ultraviolet irradiator a container 2 having a cooling medium inside, a plurality of cylinder members 24 which are integrally constituted with the container 2 or are separately constituted in an inner direction from a side 22 of the container 2 and the rod-like lamps 1 which are inserted into the cylindrical members 24 and radiate light comprising ultraviolet rays. At least part 23 of the container 24 and the cylindrical members 24 are constituted of materials which transmit the ultraviolet rays. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、紫外線照射器、紫外線照射装置及び膜質改質方法に係わり、特に、広い面積を均一な照度分布で紫外線を照射することのできる紫外線照射器、及びこの紫外線照射器を用いた紫外線照射装置並びに膜質改質方法に関する。   The present invention relates to an ultraviolet irradiator, an ultraviolet irradiator, and a film quality modification method, and in particular, an ultraviolet irradiator capable of irradiating ultraviolet rays over a wide area with a uniform illuminance distribution, and ultraviolet irradiation using the ultraviolet irradiator. The present invention relates to an apparatus and a film quality modification method.

従来、紫外線を含む光を放射するランプを用いて、保護膜、接着剤、インキ、レジスト、樹脂、または配向膜等の硬化、乾燥、溶融、軟化、または改質等を行うことが、各分野で幅広く行われている。例えば、特許文献1ないし特許文献3に記載されているように、上記のような処理を行う際、被処理物への熱の影響を少なくするために、ランプを2重管型の水冷ジャケットで覆うことが行われている。   Conventionally, a protective film, adhesive, ink, resist, resin, or alignment film is cured, dried, melted, softened, or modified by using a lamp that emits light including ultraviolet rays. Has been done widely. For example, as described in Patent Documents 1 to 3, when performing the above-described processing, in order to reduce the influence of heat on the object to be processed, the lamp is a double tube type water cooling jacket. Covering is done.

図11(a)は、従来技術に係る2重管型の水冷ジャケットを備えた紫外線照射器の概略構成を示す斜視図、図11(b)は図11(a)に示す紫外線照射器のA−A断面図である。
これらの図に示すように、棒状のランプ100に2重管型の水冷ジャケット101が取り付けられている。水冷ジャケット101は、円筒状の内管102と外管103とから構成され、冷却水入口108から内管102と外管103との間に冷却媒体、例えば、冷却水が流れ、冷却水出口109から排出されるように構成されている。ランプ100は、紫外線を効率良く放射する、例えば、棒状の高圧水銀ランプやメタルハライドランプが用いられ、ランプ内部の両端に一対の放電電極105、106を備え、電極105、106両端に電力供給線107を介して電力が供給されている。ランプ100は内管102内に挿入され、ランプ100と内管102との間には予め設定された、例えば、1mm程度の空気層108が設けられている。ランプ点灯時、内管102と外管103との水冷層104に冷却水が流れ、ランプ100からの光は、この水冷層104を介して不図示の被処理物に照射される。
FIG. 11A is a perspective view showing a schematic configuration of an ultraviolet irradiator equipped with a double-tube water-cooling jacket according to the prior art, and FIG. 11B is an A of the ultraviolet irradiator shown in FIG. It is -A sectional drawing.
As shown in these drawings, a double tube type water cooling jacket 101 is attached to a rod-shaped lamp 100. The water cooling jacket 101 includes a cylindrical inner tube 102 and an outer tube 103, and a cooling medium, for example, cooling water flows between the inner tube 102 and the outer tube 103 from the cooling water inlet 108, and the cooling water outlet 109. It is configured to be discharged from. The lamp 100 radiates ultraviolet rays efficiently, for example, a rod-shaped high-pressure mercury lamp or metal halide lamp is used. The lamp 100 includes a pair of discharge electrodes 105 and 106 at both ends inside the lamp, and a power supply line 107 at both ends of the electrodes 105 and 106. Power is supplied via The lamp 100 is inserted into the inner tube 102, and a preset air layer 108 of, for example, about 1 mm is provided between the lamp 100 and the inner tube 102. When the lamp is lit, the cooling water flows through the water-cooled layer 104 of the inner tube 102 and the outer tube 103, and the light from the lamp 100 is irradiated to a workpiece (not shown) through the water-cooled layer 104.

このような紫外線照射器において、水冷ジャケット101には2つの働きがある。1つは、点灯中のランプ100を冷却し適切な温度に保つことである。点灯時のランプ100の発光管の温度は、水銀や金属を蒸発させるため500℃〜900℃が適切と言われている。500℃以下になると、ランプ100に封入された水銀等の金属が蒸発しなくなり、不点灯を生じ、また、900℃以上になると、発光管を構成する石英が失透する。ランプ100の熱は、ランプ100と内管102との間の空気層108を介して水冷ジャケット101に伝わり、水冷ジャケット101の内管102と外管103との間に流れる冷却水により冷却される。このように、水冷ジャケット101内を流れる冷却水はランプ100の過熱を防ぐが、空気層108を介して間接的に冷却されるため、発光管の温度を、ランプ内部の金属が蒸発しなくなるような低い温度にまで下げることはなく、水冷ジャケット101を流れる冷却水は、ランプ100の発光管を適切な温度に保つように働く。   In such an ultraviolet irradiator, the water cooling jacket 101 has two functions. One is to cool the lit lamp 100 and keep it at an appropriate temperature. It is said that the temperature of the arc tube of the lamp 100 at the time of lighting is suitably 500 ° C. to 900 ° C. in order to evaporate mercury and metal. When the temperature is 500 ° C. or lower, a metal such as mercury enclosed in the lamp 100 does not evaporate, resulting in non-lighting. When the temperature is 900 ° C. or higher, quartz constituting the arc tube is devitrified. The heat of the lamp 100 is transmitted to the water cooling jacket 101 via the air layer 108 between the lamp 100 and the inner tube 102 and is cooled by the cooling water flowing between the inner tube 102 and the outer tube 103 of the water cooling jacket 101. . In this way, the cooling water flowing in the water cooling jacket 101 prevents overheating of the lamp 100, but is indirectly cooled through the air layer 108, so that the temperature of the arc tube does not evaporate the metal inside the lamp. The cooling water flowing through the water cooling jacket 101 works to keep the arc tube of the lamp 100 at an appropriate temperature.

もう1つの働きは、ランプ100から被処理物への熱の影響を小さくすることである。まず、水冷層104は、上記した500℃〜900℃の発光管からの輻射熱を吸収する。また、ランプ100から放射される光の中に含まれる、紫外線処理に不要な可視から赤外にかけての光の成分を吸収する。この働きにより、被処理物への加熱を小さく抑えることができる。内管102と外管103の間隔、即ち、水冷層104の厚さは、厚いほど被処理物への加熱の影響を小さくすることができるが、厚過ぎると処理に必要な紫外線が透過する率も減るので、これらを考え合わせて適宜設定されている。   Another function is to reduce the influence of heat from the lamp 100 on the workpiece. First, the water-cooled layer 104 absorbs radiant heat from the arc tube at 500 ° C. to 900 ° C. described above. Further, it absorbs light components from visible to infrared, which are unnecessary for the ultraviolet treatment, contained in the light emitted from the lamp 100. By this function, heating to the object to be processed can be suppressed to be small. As the distance between the inner tube 102 and the outer tube 103, that is, the thickness of the water cooling layer 104, the influence of heating on the object to be processed can be reduced as it is thicker. Therefore, it is set appropriately considering these factors.

従来から被処理物に対する紫外線処理は広い分野行われており、その際、被処理物への加熱の影響をより小さく、かつ広い照射領域を均一な照度で処理したいという要望がある。例えば、特許文献4には、半導体製造装置の製造工程において、ウエハに塗布された誘電体膜に紫外線を照射し、その特性を向上させる処理が行われている。
実開昭56−155765号公報 特開昭61−158453号公報 特開平8−148121号公報 特開2006−203191号公報
2. Description of the Related Art Conventionally, ultraviolet treatment of an object to be processed has been performed in a wide range of fields, and at that time, there is a demand for processing the irradiation object to be less affected and to treat a wide irradiation region with uniform illuminance. For example, in Patent Document 4, in a manufacturing process of a semiconductor manufacturing apparatus, a process of irradiating a dielectric film applied to a wafer with ultraviolet rays to improve its characteristics is performed.
Japanese Utility Model Publication No. 56-155765 JP-A-61-158453 JP-A-8-148121 JP 2006-203191 A

しかし、誘電体膜のような被処理物は熱に弱く、微妙な温度制御が必要であるため、紫外線光源からの熱の影響を極力減らすとともに、例えば、誘電体膜が形成されるφ300mmのウエハ全体を均一な紫外線照度で照射処理することが望まれている。紫外線光源からの熱の影響をより小さくするためには、上記のごとく、水冷ジャケット付きのランプを用いることが考えられ、高い紫外線照度で広い範囲を均一に照射しようとすると、図12に示すような構成が考えられる。
図12は、2重管型の水冷ジャケット付きのランプを複数並べて配置した紫外線照射器の光軸に垂直な断面図である。なお、図12に示した符号の構成は図11に示した同符号の構成に対応する。また、同図に示された数値はこの紫外線照射器を構成する各部の寸法の一例である。
However, since the object to be processed such as a dielectric film is vulnerable to heat and requires delicate temperature control, the influence of heat from the ultraviolet light source is reduced as much as possible and, for example, a φ300 mm wafer on which the dielectric film is formed It is desired that the whole is irradiated with uniform ultraviolet illuminance. In order to further reduce the influence of heat from the ultraviolet light source, it is conceivable to use a lamp with a water-cooling jacket as described above. As shown in FIG. Can be considered.
FIG. 12 is a cross-sectional view perpendicular to the optical axis of an ultraviolet irradiator in which a plurality of double-tube type lamps with a water cooling jacket are arranged side by side. The configuration of the reference numerals shown in FIG. 12 corresponds to the configuration of the same reference numerals shown in FIG. Moreover, the numerical value shown in the figure is an example of the dimension of each part which comprises this ultraviolet irradiator.

しかし、図12に示すような2重管型の水冷ジャケット付きのランプ100を並べて紫外線照射器を構成しようとすると、次のような問題がある。
広い範囲を均一に照射する場合、ランプ100同士はその間隔をできるだけ狭くして配置することが考えられる。即ち、ランプ100の間隔を狭くすることにより、複数のランプ100から出射する光によって、この紫外線照射器の下部に配置された不図示の被処理物上において照射される紫外線が十分重なり合って照度の高い領域と低い領域を補い合わせることができるからである。その際、被処理物への熱の影響を小さくするためには、水冷ジャケット101の水冷層104を厚くする必要がある。水冷層104を厚くするということは、水冷ジャケット101の内管102と外管103の間隔を広くすることになる。水冷ジャケット101の内管102と外管103の間隔を広くすると、ランプ100とランプ100の間隔(ランプ100の配置ピッチ)はその分広くなる。即ち、ランプ100の配置ピッチは、水冷ジャケット101の外管103の径より小さくすることはできない。
However, when an ultraviolet irradiator is configured by arranging lamps 100 with a double-tube type water cooling jacket as shown in FIG. 12, there are the following problems.
When irradiating a wide range uniformly, it is conceivable that the lamps 100 are arranged with the interval as narrow as possible. That is, by narrowing the interval between the lamps 100, the light emitted from the plurality of lamps 100 is sufficiently overlapped with the ultraviolet rays irradiated on the workpiece (not shown) disposed below the ultraviolet irradiator. This is because the high region and the low region can be compensated. At that time, in order to reduce the influence of heat on the object to be processed, the water cooling layer 104 of the water cooling jacket 101 needs to be thickened. Increasing the thickness of the water cooling layer 104 widens the distance between the inner tube 102 and the outer tube 103 of the water cooling jacket 101. When the interval between the inner tube 102 and the outer tube 103 of the water cooling jacket 101 is increased, the interval between the lamp 100 and the lamp 100 (the arrangement pitch of the lamps 100) is increased accordingly. That is, the arrangement pitch of the lamps 100 cannot be made smaller than the diameter of the outer tube 103 of the water cooling jacket 101.

例えば、図12に示すように、ランプ100の管径が32mm、ランプ100の内管102の隙間が1mm、内管100の厚さが1.5mm、水冷層104の厚さが10mm、外管103の厚さが2mmとすると、外管103同士を接触させたとしても、ランプ100の配置ピッチは61mmとなり、これ以上接近させることができない。そのため、2重管型の水冷ジャケット101付きのランプ100を複数並べた紫外線照射器においては、ランプ100の配置ピッチが広くなり過ぎて、例えば、φ300mmのウエハに対して、所望の均一度で、例えば、面内照度分布±10%以下で紫外線を照射することは困難である。   For example, as shown in FIG. 12, the tube diameter of the lamp 100 is 32 mm, the gap of the inner tube 102 of the lamp 100 is 1 mm, the thickness of the inner tube 100 is 1.5 mm, the thickness of the water cooling layer 104 is 10 mm, the outer tube If the thickness of 103 is 2 mm, even if the outer tubes 103 are brought into contact with each other, the arrangement pitch of the lamps 100 is 61 mm, and cannot be approached any further. Therefore, in an ultraviolet irradiator in which a plurality of lamps 100 with a double tube type water cooling jacket 101 are arranged, the arrangement pitch of the lamps 100 becomes too wide, for example, with a desired uniformity on a φ300 mm wafer, For example, it is difficult to irradiate ultraviolet rays with an in-plane illuminance distribution of ± 10% or less.

上記のごとく、水冷層の厚さを10mmとすることは、被処理物への熱の影響を少なくするために必要な厚さであり、ランプから被処理物に向かう方向について必要な水冷層の厚さである。一方、それ以外の方向、例えば、ランプ同士が向き合う方向についてはランプ同士が加熱しあっても発光管が900℃以上にならなければよく、実際には水冷層を10mm以下にしてもランプの発光管の温度を適切な範囲に維持することができる。また、ランプに対して被処理物とは反対方向についても同様である。即ち、水冷層の厚さはランプから被処理物に向かう方向以外の方向は、ランプから被処理物に向かう方向に比べて薄くしてもよい。   As described above, setting the thickness of the water-cooled layer to 10 mm is a thickness necessary to reduce the influence of heat on the object to be processed, and the necessary water-cooling layer in the direction from the lamp toward the object to be processed. Is the thickness. On the other hand, in other directions, for example, the directions in which the lamps face each other, even if the lamps are heated, the arc tube does not have to be 900 ° C. or higher. The tube temperature can be maintained in an appropriate range. The same applies to the direction opposite to the object to be processed with respect to the lamp. That is, the thickness of the water-cooled layer may be thinner in the direction other than the direction from the lamp toward the object to be processed as compared with the direction from the lamp toward the object to be processed.

しかし、図12に示すような、円筒形状の内管102と外管103を組み合わせた2重管型の水冷ジャケット101では、ランプ100から被処理物に向かう方向については水冷層104を厚く、ランプ100同士が向き合う方向について薄くすることは難しい。例えば、外観が楕円形状の構造の水冷ジャケットが必要となる。また、そのような構造の水冷ジャケットを製作したとしても、外管の厚さは存在するので、その分はランプを接近させることができない。   However, in the double-tube type water cooling jacket 101 in which the cylindrical inner tube 102 and the outer tube 103 are combined as shown in FIG. 12, the water cooling layer 104 is thick in the direction from the lamp 100 toward the object to be processed. It is difficult to reduce the thickness in the direction in which 100 faces each other. For example, a water cooling jacket having an elliptical appearance is required. Even if a water-cooling jacket having such a structure is manufactured, the thickness of the outer tube is present, so that the lamp cannot be approached accordingly.

本発明の目的は、ランプから被処理物への熱の影響を小さくするという水冷ジャケット付きのランプの特徴を生かしつつ、従来の1本のランプに対して(1つの内管と1つの外管とを備える)1つの水冷ジャケットを設けるような構成でなく、1つの水冷ジャケットに、水冷ジャケットの内部に向かう複数の筒状部材を形成し、実質上1つの外管に複数の内管を設けたような構成とし、その内管内にランプを挿入するように構成して、より広い照射流域を均一な照度で照射することのできる紫外線照射器、紫外線照射装置及び膜質改質方法を提供することにある。   An object of the present invention is to make use of the characteristics of a lamp with a water-cooling jacket that reduces the influence of heat from the lamp to the object to be processed, with respect to one conventional lamp (one inner tube and one outer tube). Not including a single water-cooling jacket), but a single water-cooling jacket is formed with a plurality of cylindrical members facing the inside of the water-cooling jacket, and a plurality of inner tubes are provided substantially as one outer pipe. The present invention provides an ultraviolet irradiator, an ultraviolet irradiator, and a film quality modification method that can irradiate a wider irradiation flow area with a uniform illuminance by inserting a lamp into the inner tube. It is in.

本発明は、前記の課題を解決するために、次のような手段を採用した。
第1の手段は、内部に冷却媒体を有する容器と、該容器の側面から内部方向に向かって該容器と一体または別体に構成された複数の筒状部材と、各筒状部材内に挿入された紫外線を含む光を放射する棒状のランプとからなり、前記容器の少なくとも一部と前記筒状部材が紫外線を透過する材質で構成されていることを特徴とする紫外線照射器である。
第2の手段は、第1の手段において、前記容器は上面板と下面板と側面板を備え、前記側面が前記側面板であり、前記容器の少なくとも一部が前記下面板であることを特徴とする紫外線照射器である。
第3の手段は、第1の手段または第2の手段において、前記容器内に前記ランプからの光を反射する反射ミラーが設けられていることを特徴とする紫外線照射器である。
第4の手段は、第1の手段ないし第3の手段のいずれか1つの手段に記載の紫外線照射器と、該紫外線照射器からの紫外線が照射されて処理される被処理物が載置されるワークステージと、前記紫外線照射器と前記ワークステージとの間に配置され、前記紫外線照射器から照射される紫外線を遮光制御するシャッタとを備えることを特徴とする紫外線照射装置である。
第5の手段は、平面状に配列された複数の棒状のランプから放射される紫外線を含む光を、前記ランプを冷却する冷却媒体を介して、ウエハに形成された誘電体膜に照射し、該誘電体膜の膜質を改質することを特徴とする膜質改質方法である。
The present invention employs the following means in order to solve the above problems.
The first means includes a container having a cooling medium inside, a plurality of cylindrical members formed integrally or separately from the side surface of the container toward the inside, and inserted into each cylindrical member. An ultraviolet irradiator comprising: a rod-shaped lamp that emits light including ultraviolet light, wherein at least a part of the container and the cylindrical member are made of a material that transmits ultraviolet light.
According to a second means, in the first means, the container includes an upper surface plate, a lower surface plate, and a side surface plate, the side surface is the side surface plate, and at least a part of the container is the lower surface plate. It is an ultraviolet irradiator.
A third means is an ultraviolet irradiator characterized in that, in the first means or the second means, a reflection mirror for reflecting light from the lamp is provided in the container.
According to a fourth means, the ultraviolet irradiator according to any one of the first means to the third means, and a workpiece to be processed by being irradiated with ultraviolet rays from the ultraviolet irradiator are placed. And a shutter that is disposed between the ultraviolet irradiator and the work stage and that controls and blocks the ultraviolet rays emitted from the ultraviolet irradiator.
The fifth means irradiates the dielectric film formed on the wafer with light including ultraviolet rays emitted from a plurality of rod-shaped lamps arranged in a plane via a cooling medium for cooling the lamp, A film quality modification method comprising modifying the film quality of the dielectric film.

本発明によれば、ランプから被処理物に向かう方向における水冷層の厚さと、それ以外の方向の水冷層の厚さを異なるように設計することが容易となる。即ち、ランプ同士が向き合う方向の水冷層の厚さを薄くして、ランプ同士を接近して配置することが可能となる。さらに、ランプが向き合う方向には従来技術の水冷ジャケットのような外管を設ける必要がないので、その厚さ分ランプ同士を接近して配置することができる。その結果、被処理物に対する照度の均一度を良くすることができる。
また、水冷ジャケットの光照射に関係ない部分を金属で構成することにができ、加工が容易となり安価となる。また、水冷ジャケットの内部に反射ミラーを設けることができるので、反射ミラーを水冷ジャケットの外側に設ける場合に比べて、紫外線照射器の小型化を図ることができる。
このような紫外線照射器を用いることにより、ウエハに塗布された熱に弱く微妙な温度制御が必要な誘電体膜に紫外線を照射し、その特性を向上させることができる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes easy to design so that the thickness of the water cooling layer in the direction which goes to a to-be-processed object from a lamp | ramp differs from the thickness of the water cooling layer of the other direction. That is, it is possible to reduce the thickness of the water cooling layer in the direction in which the lamps face each other and arrange the lamps close to each other. Furthermore, since it is not necessary to provide an outer tube like a water-cooled jacket of the prior art in the direction in which the lamps face each other, the lamps can be arranged close to each other by the thickness. As a result, it is possible to improve the uniformity of illuminance on the object to be processed.
In addition, the portion of the water-cooled jacket that is not related to light irradiation can be made of metal, which facilitates processing and reduces the cost. In addition, since the reflection mirror can be provided inside the water cooling jacket, the size of the ultraviolet irradiator can be reduced as compared with the case where the reflection mirror is provided outside the water cooling jacket.
By using such an ultraviolet irradiator, it is possible to irradiate the dielectric film which is weak against heat applied to the wafer and which requires delicate temperature control, and to improve its characteristics.

本発明の第1の実施形態を図1ないし図5を用いて説明する。
図1は、本実施形態の発明に係る紫外線照射器の斜視図、図2は図1に示す紫外線照射器のB−B断面図である。
これらの図において、1は紫外線を効率良く放射する、例えば、高圧水銀ランプやメタルハライドランプ等の棒状のランプ、2は全体が紫外線を透過する石英ガラスからなる水冷ジャケット、21は水冷ジャケット2の上面、22は水冷ジャケット2の側面、23は水冷ジャケット2の下面、24は水冷ジャケット2の側面22から内部方向に向かって形成されたランプ1を挿入する筒状部材、25は水冷ジャケット2の外壁、26は水冷ジャケット2に冷却水等の冷却媒体が導入される冷却水入口、27は水冷ジャケット2から冷却水等の冷却媒体が排出される冷却水出口、28は水冷ジャケット2の外壁25と筒状部材24との間に形成される水冷層、29は筒状部材24とランプ1との間に形成される空気層である。なお、筒状部材24は、側面22から連続して水冷ジャケット2と一体に構成され、紫外線を透過する。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view of an ultraviolet irradiator according to the invention of this embodiment, and FIG. 2 is a cross-sectional view of the ultraviolet irradiator shown in FIG.
In these drawings, reference numeral 1 denotes an ultraviolet ray that efficiently radiates, for example, a rod-shaped lamp such as a high-pressure mercury lamp or a metal halide lamp, 2 denotes a water-cooled jacket made of quartz glass that transmits ultraviolet rays as a whole, and 21 denotes an upper surface of the water-cooled jacket 2. , 22 is a side surface of the water cooling jacket 2, 23 is a lower surface of the water cooling jacket 2, 24 is a tubular member into which the lamp 1 formed inward from the side surface 22 of the water cooling jacket 2 is inserted, and 25 is an outer wall of the water cooling jacket 2. , 26 is a cooling water inlet through which a cooling medium such as cooling water is introduced into the water cooling jacket 2, 27 is a cooling water outlet through which the cooling medium such as cooling water is discharged from the water cooling jacket 2, and 28 is an outer wall 25 of the water cooling jacket 2. A water cooling layer 29 formed between the tubular member 24 and an air layer 29 formed between the tubular member 24 and the lamp 1. In addition, the cylindrical member 24 is comprised integrally with the water cooling jacket 2 continuously from the side surface 22, and permeate | transmits an ultraviolet-ray.

これらの図に示すように、水冷ジャケット2は、上面21、下面23及び4つの側面22からなる内部が空洞の1つの容器として構成され、側面22には冷却水入口26と冷却水出口27が設けられており、冷却水入口26から冷却水が空洞内に供給され、空洞内を流れた冷却水は冷却水出口27から排出される。また、水冷ジャケット2の側面22から内部方向に向かって開口する複数の筒状部材24が側面22と一体に形成されており、この筒状部材24は1つの側面22に対向する他の側面22にまで貫通して設けられている。この各筒状部材24内にランプ1が挿入されている。紫外線が照射される不図示の被処理物は、水冷ジャケット2の下面23の下方に配置され、ランプ1からの光は、水冷ジャケット2の水冷層28を介して被処理物に照射される。   As shown in these drawings, the water cooling jacket 2 is configured as a single container having an upper surface 21, a lower surface 23, and four side surfaces 22, and a cooling water inlet 26 and a cooling water outlet 27 are formed on the side surface 22. The cooling water is provided from the cooling water inlet 26 into the cavity, and the cooling water flowing through the cavity is discharged from the cooling water outlet 27. Further, a plurality of cylindrical members 24 that open from the side surface 22 of the water cooling jacket 2 toward the inside are formed integrally with the side surface 22, and the cylindrical member 24 is another side surface 22 that faces one side surface 22. It is provided to penetrate to. The lamp 1 is inserted into each cylindrical member 24. A workpiece (not shown) irradiated with ultraviolet rays is disposed below the lower surface 23 of the water cooling jacket 2, and the light from the lamp 1 is irradiated to the workpiece through the water cooling layer 28 of the water cooling jacket 2.

図2に示すように、水冷ジャケット2の水冷層28の厚さは、ランプ1から被処理物に向かう方向(ランプ1から水冷ジャケット2の下面23方向)については厚く、被処理物を加熱させないために必要な厚さであり、例えば、その厚さは10mmである。一方、ランプ1同士が向き合う方向の厚さは、上記の厚さよりは薄く、例えば、4mmであり、この厚さでもランプ1の発光管の温度を900℃以下に保つことができる。その他の条件を従来のもの(ランプの管径32mm、ランプと内管の隙間1mm、内管の厚さ1.5mm)と同じとすると、ランプ1の配置ピッチは41mmとなる。   As shown in FIG. 2, the thickness of the water cooling layer 28 of the water cooling jacket 2 is thick in the direction from the lamp 1 to the object to be processed (from the lamp 1 toward the lower surface 23 of the water cooling jacket 2), and the object to be processed is not heated. For example, the thickness is 10 mm. On the other hand, the thickness in the direction in which the lamps 1 face each other is thinner than the above thickness, for example, 4 mm. Even at this thickness, the temperature of the arc tube of the lamp 1 can be kept at 900 ° C. or lower. If the other conditions are the same as the conventional one (lamp tube diameter 32 mm, gap between lamp and inner tube 1 mm, inner tube thickness 1.5 mm), the arrangement pitch of lamps 1 is 41 mm.

図3は、ランプの配置ピッチとランプ並び方向の照度分布の関係を示すグラフである。
同図に示す照度分布は、右上図に示すように複数本の棒状ランプからφ300mmの照射領域に対して光を照射した場合の照度分布であり、ランプの配列ピッチ(隣合うランプの中心間距離)Pを40mm、47mm、55mm、65mmとしたときのシミュレーションデータである。なお、ランプ中心から光照射面までの距離は380mmであり、ランプの発光長は125mmである。
FIG. 3 is a graph showing the relationship between the lamp arrangement pitch and the illuminance distribution in the lamp arrangement direction.
The illuminance distribution shown in the figure is an illuminance distribution when light is irradiated from a plurality of rod-shaped lamps to an irradiation area of φ300 mm as shown in the upper right figure, and the arrangement pitch of lamps (distance between centers of adjacent lamps). ) Simulation data when P is 40 mm, 47 mm, 55 mm, 65 mm. In addition, the distance from the lamp center to the light irradiation surface is 380 mm, and the light emission length of the lamp is 125 mm.

図3に示すように、ランプの配列ピッチPを47mm、55mm、65mmとしたときは、ランプと照射領域間に光の利用効率を上げて均一度を良くする反射ミラーを配置しても、照射領域の中央部の照度は低くなり、照度の均一性が悪い。一方、配列ピッチPを40mmとしたときは、中央部の照度も高くなり、照度の均一性が改善される。照度の均一度は、P=40mmの場合±6.4%、P=47mmの場合±9.2%、P=55mmの場合±10.2%、P=65mmの場合±10.9%である。ランプの配列ピッチPを狭くすると照度分布が良くなる理由は、ランプの配列ピッチPが狭くなることにより、各ランプから放射される光が光照射領域で互いに十分重なり合うためと考えられる。   As shown in FIG. 3, when the arrangement pitch P of the lamps is 47 mm, 55 mm, and 65 mm, even if a reflection mirror that increases the light use efficiency and improves the uniformity is arranged between the lamp and the irradiation area, the irradiation is performed. The illuminance at the center of the region is low, and the illuminance uniformity is poor. On the other hand, when the arrangement pitch P is 40 mm, the illuminance at the central portion is also increased, and the uniformity of the illuminance is improved. The illuminance uniformity is ± 6.4% for P = 40 mm, ± 9.2% for P = 47 mm, ± 10.2% for P = 55 mm, and ± 10.9% for P = 65 mm. is there. The reason why the illuminance distribution is improved by narrowing the lamp arrangement pitch P is considered to be that the light emitted from the lamps sufficiently overlap each other in the light irradiation region because the lamp arrangement pitch P becomes narrow.

図11に示した従来技術の個々のランプ100に2重管型水冷ジャケット101を取り付けて並べた場合、水冷層104を10mmとすると、ランプ100の配列ピッチPは最も狭くしても61mmであった。これは、図3において配列ピッチPを65mmとしたときの照度分布にほぼ相当し、照度の均一度は悪い。一方、本実施形態の発明では、図2に示すように、ランプ1の配列ピッチPは41mmであり、この場合の照度分布は、図3において配列ピッチPを40mmとしたときの照度分布にほぼ相当し、従来のものに比べて照度の均一度が良いことが分かる。   When the double-pipe water cooling jacket 101 is attached to the individual lamps 100 of the prior art shown in FIG. 11 and the water cooling layer 104 is 10 mm, the arrangement pitch P of the lamps 100 is 61 mm at the smallest. It was. This substantially corresponds to the illuminance distribution when the arrangement pitch P is 65 mm in FIG. 3, and the illuminance uniformity is poor. On the other hand, in the invention of this embodiment, as shown in FIG. 2, the arrangement pitch P of the lamps 1 is 41 mm, and the illuminance distribution in this case is almost the same as the illuminance distribution when the arrangement pitch P is 40 mm in FIG. Correspondingly, it can be seen that the illuminance uniformity is better than the conventional one.

次に、ランプから被処理物に向かう方向の水冷層の厚さを10mmとした理由を以下に説明する。
図4は、水冷層の厚さと可視から近赤外にかけての光の透過率を示すグラフである。同図において、横軸は波長、縦軸は透過率である。水冷層の厚さを1mm、5mm、10mm、100mmとし、各々の場合の透過率を測定した。
同図に示すように、水冷層の厚い方が可視から近赤外にかけての光の透過率が低くなり、被処理物への熱の影響を少なくすることができる。ちなみに、波長800nm〜1500nmの光のエネルギーは、水冷層の厚さが1mmの場合28%、5mmの場合23%、10mmの場合19%、100mmの場合5.4%各々透過する。
Next, the reason why the thickness of the water-cooled layer in the direction from the lamp toward the workpiece is 10 mm will be described below.
FIG. 4 is a graph showing the thickness of the water-cooled layer and the light transmittance from the visible to the near infrared. In the figure, the horizontal axis represents wavelength and the vertical axis represents transmittance. The thickness of the water-cooled layer was 1 mm, 5 mm, 10 mm, and 100 mm, and the transmittance in each case was measured.
As shown in the figure, the thicker the water-cooled layer has a lower light transmittance from the visible to the near infrared, and the influence of heat on the object to be processed can be reduced. Incidentally, the energy of light having a wavelength of 800 nm to 1500 nm is transmitted through 28% when the thickness of the water-cooled layer is 1 mm, 23% when 5 mm, 19% when 10 mm, and 5.4% when 100 mm.

図5は、水冷層の厚さと紫外領域の光の透過率を示すグラフである。同図において、横軸は波長、縦軸は透過率である。
同図に示すように、水冷層の厚さが1mm、5mm、10mmの場合は、紫外線の透過率はほとんど変化しないが、100mmの厚さになると、特に、200nm以下の波長の光の透過率は低くなる。先に述べたウエハに塗布された誘電体膜に紫外線を照射して処理する場合、誘電体膜の特性を向上させるために必要な紫外線の波長は220nm以下と考えられている。そのため、水冷層の厚さが厚すぎると、誘電体膜の処理に有効な波長の紫外線が減少する。
FIG. 5 is a graph showing the thickness of the water-cooled layer and the light transmittance in the ultraviolet region. In the figure, the horizontal axis represents wavelength and the vertical axis represents transmittance.
As shown in the figure, when the thickness of the water-cooled layer is 1 mm, 5 mm, and 10 mm, the transmittance of ultraviolet rays hardly changes. However, when the thickness is 100 mm, the transmittance of light having a wavelength of 200 nm or less is particularly large. Becomes lower. In the case where the dielectric film coated on the wafer is irradiated with ultraviolet rays for processing, the wavelength of ultraviolet rays necessary for improving the characteristics of the dielectric film is considered to be 220 nm or less. Therefore, if the thickness of the water-cooled layer is too thick, ultraviolet rays having a wavelength effective for processing the dielectric film are reduced.

図4の測定結果と図5の測定結果を勘案すると、波長800nm〜1500nmの光のエネルギーを80%以上除去でき、また、200nm以下の波長の紫外線の減少を少なくするためには、ランプから被処理物に向かう方向の水冷層の厚さを10mmとすることが良いことが分かる。   Considering the measurement result of FIG. 4 and the measurement result of FIG. 5, 80% or more of light energy having a wavelength of 800 nm to 1500 nm can be removed, and in order to reduce the decrease in ultraviolet light having a wavelength of 200 nm or less, It can be seen that the thickness of the water-cooled layer in the direction toward the workpiece is preferably 10 mm.

本発明の第2の実施形態を図6ないし図9を用いて説明する。
図6は、本実施形態の発明に係る紫外線照射器の分解斜視図である。
同図において、3は水冷ジャケット、31は断面が略U字状に形成された金属製の上面板、32は筒状部材34の開口部と対向するように設けられた開口部を有する金属製の側面板、33は紫外線を透過する石英ガラス等で構成された下面板、34は紫外線を透過する石英ガラス等で構成された筒状部材、35は水冷ジャケット3に冷却水等の冷却媒体が導入される冷却水入口、36は水冷ジャケット2から冷却水等の冷却媒体が排出される冷却水出口である。
同図に示すように、水冷ジャケット3は符号31〜符号36で示される各構成部品を組み合わせて1つの容器として構成されるが、水冷ジャケット3の構造を分かりやすくするために各構成部品を分解し、また、冷却水が漏れないようにするためのシール構造等の細部の構造は省略して示されている。なお、図示されていないが、ランプは、各筒状部材34内に挿入され、第1の実施形態の発明において使用したランプ1と同様のランプが使用される。
A second embodiment of the present invention will be described with reference to FIGS.
FIG. 6 is an exploded perspective view of the ultraviolet irradiator according to the invention of the present embodiment.
In the figure, 3 is a water-cooling jacket, 31 is a metal top plate having a substantially U-shaped cross section, and 32 is a metal having an opening provided so as to face the opening of the cylindrical member 34. The side plate 33 is a bottom plate made of quartz glass or the like that transmits ultraviolet light, 34 is a cylindrical member made of quartz glass or the like that transmits ultraviolet light, and 35 is a cooling medium such as cooling water in the water cooling jacket 3. An introduced cooling water inlet 36 is a cooling water outlet through which a cooling medium such as cooling water is discharged from the water cooling jacket 2.
As shown in the figure, the water cooling jacket 3 is configured as a single container by combining the components indicated by reference numerals 31 to 36. However, in order to make the structure of the water cooling jacket 3 easier to understand, the respective components are disassembled. In addition, detailed structures such as a seal structure for preventing cooling water from leaking are omitted. Although not shown, the lamp is inserted into each cylindrical member 34, and the same lamp as the lamp 1 used in the invention of the first embodiment is used.

第1の実施形態の発明においては、水冷ジャケット2全体を石英ガラスで構成したが、本実施形態の発明に係る水冷ジャケット3のように、水冷ジャケット全体を石英ガラスで構成する必要はない。即ち、水冷ジャケット3の上面と2箇所の側面を各々アルミニウム等の金属製の上面板31とアルミニウム等の金属製の側面板32で構成し、水冷ジャケット3の下面と筒状部材を、上面板31や側面板32とは別体に、紫外線を透過する石英ガラス等の部材からなる下面板33と筒状部材34で構成し、さらに、水冷ジャケット3内にランプ1からの光を被処理物に向かって反射する反射ミラー37を設ける。反射ミラー37は上面板31や側面板32によって支持される。下面板33は被処理物に紫外線を照射する出射口となる。   In the invention of the first embodiment, the entire water cooling jacket 2 is made of quartz glass. However, unlike the water cooling jacket 3 according to the invention of the present embodiment, the entire water cooling jacket need not be made of quartz glass. That is, the upper surface and two side surfaces of the water-cooling jacket 3 are respectively constituted by a metal upper surface plate 31 such as aluminum and a metal side surface plate 32 such as aluminum, and the lower surface and the cylindrical member of the water-cooling jacket 3 are formed as upper surface plates. 31 and a side plate 32 are formed separately from a lower plate 33 and a cylindrical member 34 made of a member such as quartz glass that transmits ultraviolet rays, and further, light from the lamp 1 is processed into the water-cooled jacket 3. A reflection mirror 37 is provided that reflects toward the surface. The reflection mirror 37 is supported by the top plate 31 and the side plate 32. The lower surface plate 33 serves as an exit for irradiating the workpiece with ultraviolet rays.

第1の実施形態の発明のように、水冷ジャケット2全体を石英ガラスのような部材で製作しようとすると、加工が難しく高価になるが、本実施形態の発明のように、光(紫外線)照射に関係ない個所を金属製部材で構成することにより、水冷ジャケット3の加工が容易となり安価となる。また、水冷ジャケット3内部に反射ミラー37を設けることができるので、反射ミラーを水冷ジャケット3の外側に設ける場合に比べて、紫外線照射器の小型化を図ることができる。   If the entire water-cooled jacket 2 is made of a member such as quartz glass as in the invention of the first embodiment, processing is difficult and expensive. However, as in the invention of this embodiment, light (ultraviolet) irradiation is performed. By configuring the portion not related to the metal member, the processing of the water-cooled jacket 3 becomes easy and inexpensive. Further, since the reflection mirror 37 can be provided inside the water-cooling jacket 3, the size of the ultraviolet irradiator can be reduced as compared with the case where the reflection mirror is provided outside the water-cooling jacket 3.

次に、図6に示した水冷ジャケット3において、ランプ1を挿入した筒状部材34と側面板32のシール構造及び下面板33と側面板32とのシール構造について図7及び図8を用いて説明する。
図7及び図8は、各々ランプ1を挿入した筒状部材34と側面板32のシール構造及び下面板33と側面板32とのシール構造を説明するための一部断面図及び斜視図である。
これらの図において、40は冷却水、41はシール用リング部材、42はワッシャ、43はランプ1のベース、44はランプホルダ、45はランプホルダ44の底部、46はランプホルダ44に設けられた貫通孔、47はランプホルダ44の凸部、48は側面板32に設けられた開口部、49は下面板33を押さえる下面板押え部材、50はランプホルダ44の凸部47内に形成される孔、51は筒状部材34とシール用リング部材41との間に設けられるOリング、52はシール用リング部材41と側面板32との間に設けられるOリング、53は側面板32と下面板33との間に設けられるOリングである。
Next, in the water-cooling jacket 3 shown in FIG. 6, the sealing structure between the cylindrical member 34 into which the lamp 1 is inserted and the side plate 32 and the sealing structure between the bottom plate 33 and the side plate 32 will be described with reference to FIGS. explain.
7 and 8 are a partial cross-sectional view and a perspective view for explaining the sealing structure of the cylindrical member 34 and the side plate 32 into which the lamp 1 is inserted and the sealing structure of the bottom plate 33 and the side plate 32, respectively. .
In these drawings, 40 is cooling water, 41 is a ring member for sealing, 42 is a washer, 43 is a base of the lamp 1, 44 is a lamp holder, 45 is a bottom portion of the lamp holder 44, and 46 is provided in the lamp holder 44. The through hole 47 is a convex portion of the lamp holder 44, 48 is an opening provided in the side plate 32, 49 is a lower surface plate pressing member for pressing the lower surface plate 33, and 50 is formed in the convex portion 47 of the lamp holder 44. A hole 51 is an O-ring provided between the tubular member 34 and the sealing ring member 41, 52 is an O-ring provided between the sealing ring member 41 and the side plate 32, and 53 is below the side plate 32. It is an O-ring provided between the face plate 33.

まず、ランプ1を挿入した筒状部材34と側面板32の部分のシール構造について説明する。棒状のランプ1を筒状部材34に挿入する。筒状部材34に挿入されたランプ1は両側からランプホルダ44により保持する。ランプホルダ44は、筒状部材34の内径よりも小さい外形の凸部47を有する凸型状に形成され、凸部47にはランプ1のベース43が挿入される孔50が形成されている。ランプ1は凸部47の孔50にランプ1のベース43を挿入することにより保持される。ランプホルダ44には貫通孔46が形成されており、この貫通孔46からランプ1に接続された不図示のリード線が出される。   First, the sealing structure of the cylindrical member 34 into which the lamp 1 is inserted and the side plate 32 will be described. The rod-shaped lamp 1 is inserted into the cylindrical member 34. The lamp 1 inserted into the cylindrical member 34 is held by the lamp holder 44 from both sides. The lamp holder 44 is formed in a convex shape having a convex portion 47 having an outer shape smaller than the inner diameter of the cylindrical member 34, and a hole 50 into which the base 43 of the lamp 1 is inserted is formed in the convex portion 47. The lamp 1 is held by inserting the base 43 of the lamp 1 into the hole 50 of the convex portion 47. A through hole 46 is formed in the lamp holder 44, and a lead wire (not shown) connected to the lamp 1 is taken out from the through hole 46.

筒状部材34は、ランプホルダ44の凸部47に被さり、筒状部材34の端面が両側からランプホルダ44の底部45に挟まれる。金属製のランプホルダ44の底部45が筒状部材34に直接触れると、石英管からなる筒状部材34が傷つくおそれがあるので、両者の間には樹脂製のワッシャ42が設けられる。さらに、筒状部材34の両側では筒状部材34の上からシール用リング部材41が被せられる。シール用リング部材41の内壁にはOリング51が設けられ、外壁にはOリング52が設けられている。なお、シール用リング部材41の外径はランプホルダ44の底部45の外径に等しい。筒状部材34がシール用リング部材41に挿入されると、Oリング51は筒状部材24とシール用リング部材41の内壁とにより挟まれる。これにより水冷ジャケット3の内側と筒状部材34の内側(ランプ1が挿入されている側)とがシールされる。以上の構成において、ランプ1、筒状部材34、ランプホルダ44、及びシール用リング部材41がランプユニットを構成する。水冷ジャケット3を構成する側面板32には、ランプホルダ44とシール用リング部材41が挿入される凹状の開口部48が形成されており、この開口部48にランプユニットが挿入される。側面板32の凹状の開口部48にランプユニットが挿入されると、Oリング52は側面板32の開口部48の内壁とシール用リング部材41の外壁との間に挟まれ、これにより、水冷ジャケット3の内側と外側とがシールされる。   The cylindrical member 34 covers the convex portion 47 of the lamp holder 44, and the end surface of the cylindrical member 34 is sandwiched between the bottom portions 45 of the lamp holder 44 from both sides. If the bottom part 45 of the metal lamp holder 44 directly touches the cylindrical member 34, the cylindrical member 34 made of a quartz tube may be damaged. Therefore, a resin washer 42 is provided between them. Further, a sealing ring member 41 is put on the cylindrical member 34 on both sides of the cylindrical member 34. An O-ring 51 is provided on the inner wall of the sealing ring member 41, and an O-ring 52 is provided on the outer wall. The outer diameter of the sealing ring member 41 is equal to the outer diameter of the bottom 45 of the lamp holder 44. When the cylindrical member 34 is inserted into the sealing ring member 41, the O-ring 51 is sandwiched between the cylindrical member 24 and the inner wall of the sealing ring member 41. Thereby, the inner side of the water-cooling jacket 3 and the inner side of the cylindrical member 34 (side on which the lamp 1 is inserted) are sealed. In the above configuration, the lamp 1, the cylindrical member 34, the lamp holder 44, and the sealing ring member 41 constitute a lamp unit. A concave opening 48 into which the lamp holder 44 and the sealing ring member 41 are inserted is formed in the side plate 32 constituting the water cooling jacket 3, and the lamp unit is inserted into the opening 48. When the lamp unit is inserted into the concave opening 48 of the side plate 32, the O-ring 52 is sandwiched between the inner wall of the opening 48 of the side plate 32 and the outer wall of the sealing ring member 41. The inner side and the outer side of the jacket 3 are sealed.

次に、光出射口の石英板からなる下面板33と側面板32の部分のシール構造について説明する。水冷ジャケット3の下面側、即ち、水冷ジャケット3の側面板32の下面及び上面板31の下面の全周に渡ってOリング53を設ける。側面板32及び上面板31の上にOリング52を置き、このOリング52の上に下面板33を置き、その上から下面板押え部材49により、下面板33全周を押さえる。これにより、水冷ジャケット3の内側と外側とがシールされる。   Next, the sealing structure of the bottom plate 33 and the side plate 32 made of a quartz plate at the light exit port will be described. An O-ring 53 is provided over the entire circumference of the lower surface side of the water cooling jacket 3, that is, the lower surface of the side plate 32 of the water cooling jacket 3 and the lower surface of the upper surface plate 31. An O-ring 52 is placed on the side plate 32 and the upper plate 31, a lower plate 33 is placed on the O-ring 52, and the entire circumference of the lower plate 33 is pressed by a lower plate pressing member 49 from above. Thereby, the inner side and the outer side of the water cooling jacket 3 are sealed.

図9は、第2の実施形態の発明に係る紫外線照射器を用いた紫外線照射装置の構成を示す図である。
同図において、60は紫外線出射部としての紫外線照射器、61は冷却水循環器、62はランプ電源、63はシャッタ駆動機構、64は制御部、65はシャッタ、66は紫外線照射器60から出射した光の広がりを限定する反射ミラー、67はワークステージ、68は、例えば、誘電体膜が形成されたウエハ等の紫外線処理される被処理物である。なお、その他の構成は図6に示した同符号の構成に対応する。
FIG. 9 is a diagram showing a configuration of an ultraviolet irradiation apparatus using the ultraviolet irradiator according to the invention of the second embodiment.
In the figure, 60 is an ultraviolet irradiator as an ultraviolet irradiating unit, 61 is a cooling water circulator, 62 is a lamp power supply, 63 is a shutter drive mechanism, 64 is a control unit, 65 is a shutter, and 66 is emitted from the ultraviolet irradiator 60. A reflecting mirror for limiting the spread of light, 67 is a work stage, and 68 is an object to be processed with ultraviolet rays such as a wafer on which a dielectric film is formed. Other configurations correspond to the configurations of the same reference numerals shown in FIG.

同図に示すように、この紫外線照射装置は、制御部64によって冷却水循環器61、ランプ電源62、シャッタ駆動機構63を制御する。制御部64からの信号により、ランプ電源62は紫外線照射器60の各ランプ1に電力を供給し点灯する。また、制御部64からの信号により、冷却水循環器61は紫外線照射器60の水冷ジャケット3内に冷却水を供給し、水冷ジャケット3内を流れ温度の上がった冷却水を再び冷却して水冷ジャケット3に供給する。なお、ランプ1は冷却水により温度制御されるので、ランプの空冷機構は不要となる。被処理物68は、不図示の搬送機構により搬送され、ワークステージ67上に載置される。   As shown in the figure, in the ultraviolet irradiation device, the control unit 64 controls the cooling water circulator 61, the lamp power source 62, and the shutter drive mechanism 63. In response to a signal from the control unit 64, the lamp power supply 62 supplies power to each lamp 1 of the ultraviolet irradiator 60 and lights it. Further, according to a signal from the control unit 64, the cooling water circulator 61 supplies the cooling water into the water cooling jacket 3 of the ultraviolet irradiator 60, and again cools the cooling water that has flowed through the water cooling jacket 3 and has risen in temperature. 3 is supplied. Since the temperature of the lamp 1 is controlled by cooling water, an air cooling mechanism for the lamp is not necessary. The workpiece 68 is transported by a transport mechanism (not shown) and placed on the work stage 67.

制御部64からの信号により、シャッタ駆動機構63が制御され、シャッタ65が開かれると、紫外線照射器60から被処理物68への光照射が行われる。ランプ1からの光は、水冷ジャケット3の水冷層により、処理に不要な可視から赤外にかけての領域の波長の光と、ランプ1から放射される輻射熱が取り除かれ、ワークステージ67上に置かれた被処理物68の温度上昇が防がれる。また、紫外線照射器60内のランプ1の配置ピッチは狭いので、被処理物68全体が均一度良く照射される。被処理物68に対して、予め設定した紫外線照射が行われると、制御部64からの信号により、シャッタ駆動機構63が制御され、シャッタ65が閉じられて処理が終了する。処理終了後、不図示の搬送機構により被処理物68がワークステージ67から搬出され、次に処理される被処理物68が搬入される。   When the shutter driving mechanism 63 is controlled by a signal from the control unit 64 and the shutter 65 is opened, light irradiation from the ultraviolet irradiator 60 to the workpiece 68 is performed. The light from the lamp 1 is placed on the work stage 67 after the water-cooled layer of the water-cooling jacket 3 removes light having a wavelength in the visible to infrared region unnecessary for processing and the radiant heat radiated from the lamp 1. Further, the temperature rise of the workpiece 68 is prevented. Further, since the arrangement pitch of the lamps 1 in the ultraviolet irradiator 60 is narrow, the entire workpiece 68 is irradiated with good uniformity. When preset ultraviolet irradiation is performed on the workpiece 68, the shutter drive mechanism 63 is controlled by a signal from the control unit 64, the shutter 65 is closed, and the process ends. After the processing is completed, the workpiece 68 is unloaded from the work stage 67 by a transport mechanism (not shown), and the workpiece 68 to be processed next is loaded.

次に、本発明の第3の実施形態を図10を用いて説明する。
図10は、本実施形態の発明に係る紫外線照射器の斜視図である。
同図において、7は水冷ジャケット、71は断面が湾曲状に形成された金属製の上面板、72は筒状部材34の開口部と対向するように設けられた開口部を有する金属製の側面板である。その他の構成は図6に示した同符号の構成に対応する。
同図に示すように、水冷ジャケット4の下面板33は平板状のものが用いられるが、上面板71は断面が湾曲状のように種々の形状のものを用いることが可能である。
Next, a third embodiment of the present invention will be described with reference to FIG.
FIG. 10 is a perspective view of an ultraviolet irradiator according to the invention of this embodiment.
In the figure, 7 is a water-cooled jacket, 71 is a metal top plate having a curved cross section, and 72 is a metal side having an opening provided so as to face the opening of the cylindrical member 34. It is a face plate. Other configurations correspond to the configurations of the same reference numerals shown in FIG.
As shown in the figure, the bottom plate 33 of the water-cooling jacket 4 is a flat plate, but the top plate 71 can have various shapes such as a curved cross section.

なお、上記の各実施形態に示した紫外線照射器は、水冷ジャケットの一方の側面からこの側面に対向する他方の側面に貫通するように、両端が開口した筒状部材を設けたが、水冷ジャケットの一方の側面から内部に、一方のみ開口し他方が閉口した筒状部材を設けるようにしてもよい。その際、この筒状部材に挿入されるランプに接続される2本のリード線は、この開口部分から引き出されることになる。
また、上記の各実施形態に示した紫外線照射器では、冷却媒体として冷却水を用いてランプを冷却する場合について説明したが、冷却媒体は、目的とする波長の光が透過し、ランプの過熱を防ぐものであれば、水以外の液体や気体を用いてもよい。
The ultraviolet irradiator shown in each of the above embodiments is provided with a cylindrical member having both ends opened so as to penetrate from one side surface of the water cooling jacket to the other side surface facing this side surface. A cylindrical member that is open only on one side and closed on the other side may be provided from one side surface. At that time, the two lead wires connected to the lamp inserted into the tubular member are drawn out from the opening.
In the ultraviolet irradiator shown in each of the above embodiments, the case where the lamp is cooled using cooling water as the cooling medium has been described. However, the cooling medium transmits light of a target wavelength, and the lamp is overheated. Any liquid or gas other than water may be used as long as it prevents water.

第1の実施形態の発明に係る紫外線照射器の斜視図である。It is a perspective view of the ultraviolet irradiator which concerns on invention of 1st Embodiment. 図2は図1に示す紫外線照射器のB−B断面図である。2 is a BB cross-sectional view of the ultraviolet irradiator shown in FIG. ランプの配置ピッチとランプ並び方向の照度分布の関係を示すグラフである。It is a graph which shows the relationship between the arrangement pitch of a lamp | ramp, and the illumination distribution of a lamp arrangement direction. 水冷層の厚さと可視から近赤外にかけての光の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the light from the thickness of a water cooling layer, and visible to near infrared. 水冷層の厚さと紫外領域の光の透過率を示すグラフである。It is a graph which shows the thickness of a water cooling layer, and the transmittance | permeability of the light of an ultraviolet region. 第2の実施形態の発明に係る紫外線照射器の分解斜視図である。It is a disassembled perspective view of the ultraviolet irradiator which concerns on invention of 2nd Embodiment. 各々ランプ1を挿入した筒状部材34と側面板32のシール構造及び下面板33と側面板32とのシール構造を説明するための一部断面図である。FIG. 5 is a partial cross-sectional view for explaining a sealing structure between a cylindrical member 34 and a side plate 32 into which each lamp 1 is inserted and a sealing structure between a bottom plate 33 and a side plate 32. 各々ランプ1を挿入した筒状部材34と側面板32のシール構造及び下面板33と側面板32とのシール構造を説明するための斜視図である。FIG. 4 is a perspective view for explaining a sealing structure between a cylindrical member 34 and a side plate 32 into which each lamp 1 is inserted and a sealing structure between a bottom plate 33 and a side plate 32. 第2の実施形態の発明に係る紫外線照射器を用いた紫外線照射装置の構成を示す図である。It is a figure which shows the structure of the ultraviolet irradiation device using the ultraviolet irradiation device which concerns on invention of 2nd Embodiment. 第3の実施形態の発明に係る紫外線照射器の斜視図である。It is a perspective view of the ultraviolet irradiator which concerns on invention of 3rd Embodiment. 従来技術に係る2重管型の水冷ジャケットを備えた紫外線照射器の概略構成を示す斜視図及び紫外線照射器の断面図である。It is the perspective view which shows schematic structure of the ultraviolet irradiation device provided with the double tube | pipe type water cooling jacket which concerns on a prior art, and sectional drawing of an ultraviolet irradiation device. 2重管型の水冷ジャケット付きのランプを複数並べて配置した紫外線照射器の光軸に垂直な断面図である。It is sectional drawing perpendicular | vertical to the optical axis of the ultraviolet irradiation device which arranged the lamp | ramp with a double tube | pipe type water cooling jacket side by side.

符号の説明Explanation of symbols

1 棒状ランプ
2 水冷ジャケット
21 上面
22 側面
23 下面
24 筒状部材
25 外壁
26 冷却水入口
27 冷却水出口
28 水冷層
29 空気層
3 水冷ジャケット
31 上面板
32 側面板
33 下面板
34 筒状部材
35 冷却水入口
36 冷却水出口
40 冷却水
41 シール用リング部材
42 ワッシャ
43 ベース
44 ランプホルダ
45 底部
46 貫通孔
47 凸部
48 開口部
49 下面板押さ部
50 孔
51 Oリング
52 Oリング
53 Oリング
60 紫外線照射器
61 冷却水循環器
62 ランプ電源
63 シャッタ駆動機構
64 制御部
65 シャッタ
66 反射ミラー
67 ワークステージ
68 被処理物
7 水冷ジャケット
71 上面板
72 側面板
DESCRIPTION OF SYMBOLS 1 Bar-shaped lamp 2 Water cooling jacket 21 Upper surface 22 Side surface 23 Lower surface 24 Cylindrical member 25 Outer wall 26 Cooling water inlet 27 Cooling water outlet 28 Water cooling layer 29 Air layer 3 Water cooling jacket 31 Upper surface plate 32 Side surface plate 33 Lower surface plate 34 Cylindrical member 35 Cooling Water inlet 36 Cooling water outlet 40 Cooling water 41 Sealing ring member 42 Washer 43 Base 44 Lamp holder 45 Bottom portion 46 Through hole 47 Protruding portion 48 Opening portion 49 Lower surface plate pressing portion 50 Hole 51 O-ring 52 O-ring 53 O-ring 60 Ultraviolet light Irradiator 61 Cooling water circulator 62 Lamp power supply 63 Shutter drive mechanism 64 Control unit 65 Shutter 66 Reflection mirror 67 Work stage 68 Object to be processed 7 Water cooling jacket 71 Top plate 72 Side plate

Claims (5)

内部に冷却媒体を有する容器と、該容器の側面から内部方向に向かって該容器と一体または別体に構成された複数の筒状部材と、各筒状部材内に挿入された紫外線を含む光を放射する棒状のランプとからなり、前記容器の少なくとも一部と前記筒状部材が紫外線を透過する材質で構成されていることを特徴とする紫外線照射器。   A container having a cooling medium therein, a plurality of cylindrical members formed integrally or separately with the container from the side of the container toward the inside, and light including ultraviolet rays inserted into each cylindrical member An ultraviolet irradiator comprising: a rod-shaped lamp that radiates light, wherein at least a part of the container and the tubular member are made of a material that transmits ultraviolet light. 前記容器は上面板と下面板と側面板を備え、前記側面が前記側面板であり、前記容器の少なくとも一部が前記下面板であることを特徴とする請求項1に記載の紫外線照射器。   The ultraviolet irradiator according to claim 1, wherein the container includes an upper surface plate, a lower surface plate, and a side surface plate, the side surface is the side surface plate, and at least a part of the container is the lower surface plate. 前記容器内に前記ランプからの光を反射する反射ミラーが設けられていることを特徴とする請求項1または請求項2に記載の紫外線照射器。   The ultraviolet irradiator according to claim 1, wherein a reflection mirror that reflects light from the lamp is provided in the container. 請求項1ないし請求項3のいずれか1つの請求項に記載の紫外線照射器と、該紫外線照射器からの紫外線が照射されて処理される被処理物が載置されるワークステージと、前記紫外線照射器と前記ワークステージとの間に配置され、前記紫外線照射器から照射される紫外線を遮光制御するシャッタとを備えることを特徴とする紫外線照射装置。   The ultraviolet irradiator according to any one of claims 1 to 3, a work stage on which a workpiece to be processed by being irradiated with ultraviolet rays from the ultraviolet irradiator is placed, and the ultraviolet rays An ultraviolet irradiation apparatus comprising: a shutter disposed between an irradiator and the work stage and configured to control and block the ultraviolet rays irradiated from the ultraviolet irradiator. 平面状に配列された複数の棒状のランプから放射される紫外線を含む光を、前記ランプを冷却する冷却媒体を介して、ウエハに形成された誘電体膜に照射し、該誘電体膜の膜質を改質することを特徴とする膜質改質方法。



















Irradiating light including ultraviolet rays emitted from a plurality of rod-shaped lamps arranged in a plane onto a dielectric film formed on a wafer through a cooling medium for cooling the lamp, and film quality of the dielectric film A film quality modification method characterized by reforming the film.



















JP2007074835A 2007-03-22 2007-03-22 Ultraviolet irradiator, ultraviolet irradiation device and film reforming method Pending JP2008235678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074835A JP2008235678A (en) 2007-03-22 2007-03-22 Ultraviolet irradiator, ultraviolet irradiation device and film reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074835A JP2008235678A (en) 2007-03-22 2007-03-22 Ultraviolet irradiator, ultraviolet irradiation device and film reforming method

Publications (1)

Publication Number Publication Date
JP2008235678A true JP2008235678A (en) 2008-10-02

Family

ID=39908103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074835A Pending JP2008235678A (en) 2007-03-22 2007-03-22 Ultraviolet irradiator, ultraviolet irradiation device and film reforming method

Country Status (1)

Country Link
JP (1) JP2008235678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108146065A (en) * 2016-12-05 2018-06-12 塞米西斯科株式会社 It is capable of the light sintering equipment of water cooling
WO2019117657A1 (en) * 2017-12-15 2019-06-20 한양대학교 산학협력단 Light sintering device and cooling method for light sintering device
WO2019182406A1 (en) * 2018-03-23 2019-09-26 한양대학교 산학협력단 Reflector and light sintering apparatus comprising same
KR20190111780A (en) * 2018-03-23 2019-10-02 한양대학교 산학협력단 Reflector and light sintering apparatus comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200616A (en) * 1988-02-05 1989-08-11 Sumitomo Electric Ind Ltd Manufacture of amorphous alloy thin film
JPH05226262A (en) * 1992-02-14 1993-09-03 Hitachi Ltd Surface treatment device
JPH09147586A (en) * 1995-11-24 1997-06-06 Nec Kyushu Ltd Ultraviolet erasing device
JPH09186110A (en) * 1995-12-27 1997-07-15 Tokyo Electron Ltd Gas component removal processor and clustered tool device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200616A (en) * 1988-02-05 1989-08-11 Sumitomo Electric Ind Ltd Manufacture of amorphous alloy thin film
JPH05226262A (en) * 1992-02-14 1993-09-03 Hitachi Ltd Surface treatment device
JPH09147586A (en) * 1995-11-24 1997-06-06 Nec Kyushu Ltd Ultraviolet erasing device
JPH09186110A (en) * 1995-12-27 1997-07-15 Tokyo Electron Ltd Gas component removal processor and clustered tool device using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108146065A (en) * 2016-12-05 2018-06-12 塞米西斯科株式会社 It is capable of the light sintering equipment of water cooling
KR20180064003A (en) * 2016-12-05 2018-06-14 (주)쎄미시스코 Apparatus for intense pulsed light sintering with water colorable
KR101953442B1 (en) * 2016-12-05 2019-02-28 (주)쎄미시스코 Apparatus for intense pulsed light sintering with water colorable
CN108146065B (en) * 2016-12-05 2020-05-12 塞米西斯科株式会社 Light sintering device capable of being cooled by water
WO2019117657A1 (en) * 2017-12-15 2019-06-20 한양대학교 산학협력단 Light sintering device and cooling method for light sintering device
KR20190071920A (en) * 2017-12-15 2019-06-25 한양대학교 산학협력단 Device for light sintering and cooling method thereof
KR102052252B1 (en) * 2017-12-15 2019-12-04 한양대학교 산학협력단 Device for light sintering and cooling method thereof
US11729942B2 (en) 2017-12-15 2023-08-15 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Device for light sintering and cooling method for device for light sintering
WO2019182406A1 (en) * 2018-03-23 2019-09-26 한양대학교 산학협력단 Reflector and light sintering apparatus comprising same
KR20190111780A (en) * 2018-03-23 2019-10-02 한양대학교 산학협력단 Reflector and light sintering apparatus comprising the same
KR102328781B1 (en) * 2018-03-23 2021-11-22 한양대학교 산학협력단 Reflector and light sintering apparatus comprising the same
US12022579B2 (en) 2018-03-23 2024-06-25 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Reflector and light sintering apparatus comprising the same

Similar Documents

Publication Publication Date Title
JP4947370B2 (en) UV light source device
KR20070059937A (en) Light irradiation device
US6614005B1 (en) Device and method for thermally treating substrates
JP2011107264A (en) Uv ray irradiation device
KR20140018118A (en) Apparatus for fabricating liquid crystal panel and method for fabricating liquid crystal panel
JP2008235678A (en) Ultraviolet irradiator, ultraviolet irradiation device and film reforming method
US8269190B2 (en) Method and system for achieving optimal UV water disinfection
JP2006108010A (en) Heating unit
KR101640608B1 (en) Apparatus for radiating ultraviolet ray
JP4696736B2 (en) Light heating device
JP2010274173A (en) Uv ray irradiation apparatus
JP2008130302A (en) Light irradiation device
US20090218924A1 (en) Light source for ultraviolet ray irradiation
JP2017044967A (en) Manufacturing device of liquid crystal panel
JP4329629B2 (en) Excimer lamp
JP5910020B2 (en) Blue phase liquid crystal panel manufacturing apparatus and blue phase liquid crystal panel manufacturing method
JP2006108526A (en) Heating unit
JP5597951B2 (en) UV irradiation equipment
WO2013191003A1 (en) Fluid processing device
JP2015011276A (en) Device for manufacturing liquid crystal panel and method for manufacturing liquid crystal panel
JP2017106986A (en) Manufacturing apparatus of liquid crystal panel and manufacturing method of liquid crystal panel
JP2003091071A (en) Ultraviolet ray irradiator
JP4344938B2 (en) Excimer light irradiation equipment
JP5963119B2 (en) Light irradiation device and long arc type discharge lamp
JP2012124094A (en) Ultraviolet light radiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111116