JP6771399B2 - Irradiation device - Google Patents

Irradiation device Download PDF

Info

Publication number
JP6771399B2
JP6771399B2 JP2017017512A JP2017017512A JP6771399B2 JP 6771399 B2 JP6771399 B2 JP 6771399B2 JP 2017017512 A JP2017017512 A JP 2017017512A JP 2017017512 A JP2017017512 A JP 2017017512A JP 6771399 B2 JP6771399 B2 JP 6771399B2
Authority
JP
Japan
Prior art keywords
flow path
ultraviolet light
wall surface
irradiation device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017512A
Other languages
Japanese (ja)
Other versions
JP2018122263A (en
Inventor
睦 糀屋
睦 糀屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63109163&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6771399(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2017017512A priority Critical patent/JP6771399B2/en
Publication of JP2018122263A publication Critical patent/JP2018122263A/en
Application granted granted Critical
Publication of JP6771399B2 publication Critical patent/JP6771399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、流体に紫外光を照射するための照射装置に関する。 The present invention relates to an irradiation device for irradiating a fluid with ultraviolet light.

紫外光には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外光を照射する装置が用いられている。また、水などの流体に紫外光を照射することで、流体を連続的に殺菌する装置も用いられている。このような装置として、例えば、直管状の金属パイプで形成される流路の管端部内壁に紫外線LEDを配置した装置が挙げられる(例えば、特許文献1参照)。 It is known that ultraviolet light has a sterilizing ability, and a device that irradiates ultraviolet light is used for sterilizing treatment at medical sites and food processing sites. In addition, a device for continuously sterilizing a fluid by irradiating a fluid such as water with ultraviolet light is also used. Examples of such a device include a device in which an ultraviolet LED is arranged on the inner wall of a pipe end of a flow path formed of a straight tubular metal pipe (see, for example, Patent Document 1).

特開2011−16074号公報Japanese Unexamined Patent Publication No. 2011-16704

流路内を流れる流体に高効率で紫外光を照射するためには、流路内壁面での紫外光反射率が高い構造とすることが望ましい。 In order to irradiate the fluid flowing in the flow path with ultraviolet light with high efficiency, it is desirable to have a structure having a high ultraviolet light reflectance on the inner wall surface of the flow path.

本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、紫外光の照射効率を高めた照射装置を提供することにある。 The present invention has been made in view of these problems, and one of the exemplary objects thereof is to provide an irradiation device having improved irradiation efficiency of ultraviolet light.

本発明のある態様の照射装置は、算術平均粗さが4μm以上100μm以下のフッ素系樹脂材料で流路内壁面の少なくとも一部が構成される流路構造と、流路構造の内部に向けて紫外光を照射する光源と、を備える。 The irradiation device of one aspect of the present invention has a flow path structure in which at least a part of the inner wall surface of the flow path is formed of a fluororesin material having an arithmetic mean roughness of 4 μm or more and 100 μm or less, and toward the inside of the flow path structure. It includes a light source that irradiates ultraviolet light.

この態様によると、流路内壁面にフッ素系樹脂材料を用いることにより、紫外光に対する耐久性が高い流路構造にするとともに、流路内壁面での紫外光反射率を高めて流体に効率的に紫外光を照射することができる。また、フッ素系樹脂材料の表面粗さを4μm以上100μm以下にすることで、流路内壁面に気泡を付着させやすくでき、流体と気泡の界面での反射を利用して紫外光を流路に沿って高効率に伝搬させることができる。これにより、光源から離れた位置まで高強度の紫外光を照射することができ、流体に作用する紫外光量を高めることができる。 According to this aspect, by using a fluorine-based resin material for the inner wall surface of the flow path, a flow path structure having high durability against ultraviolet light is formed, and the reflectance of ultraviolet light on the inner wall surface of the flow path is increased to be efficient for fluids. Can be irradiated with ultraviolet light. Further, by setting the surface roughness of the fluororesin material to 4 μm or more and 100 μm or less, it is possible to easily attach bubbles to the inner wall surface of the flow path, and ultraviolet light is sent to the flow path by utilizing the reflection at the interface between the fluid and the bubbles. It can be propagated along with high efficiency. As a result, it is possible to irradiate high-intensity ultraviolet light to a position away from the light source, and it is possible to increase the amount of ultraviolet light acting on the fluid.

フッ素系樹脂材料は、ポリテトラフルオロエチレン(PTFE)であってもよい。 The fluororesin material may be polytetrafluoroethylene (PTFE).

流路構造は、フッ素系樹脂材料で構成される直管を含んでもよい。光源は、直管の内部に向けて直管の軸方向に紫外光を照射するよう配置されてもよい。 The flow path structure may include a straight pipe made of a fluororesin material. The light source may be arranged so as to irradiate ultraviolet light toward the inside of the straight tube in the axial direction of the straight tube.

光源は、波長が250nm〜300nmの紫外光を出力してもよい。 The light source may output ultraviolet light having a wavelength of 250 nm to 300 nm.

本発明によれば、流路内での紫外光の照射効率を高めることができる。 According to the present invention, the irradiation efficiency of ultraviolet light in the flow path can be increased.

実施の形態に係る照射装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the irradiation apparatus which concerns on embodiment. 流路内の照度分布を模式的に示すグラフである。It is a graph which shows typically the illuminance distribution in a flow path. 実施の形態に係る浄化装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the purification apparatus which concerns on embodiment.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate.

図1は、実施の形態に係る照射装置10の構成を概略的に示す断面図である。照射装置10は、流路構造12と、光源14とを備える。流路構造12は、直管20と、流入管26と、流出管28と、照射窓30と、端部壁32とを備える。照射装置10は、直管20の内部を流れる水などの流体に紫外光を照射して殺菌処理や浄化処理を施すために用いられる。 FIG. 1 is a cross-sectional view schematically showing the configuration of the irradiation device 10 according to the embodiment. The irradiation device 10 includes a flow path structure 12 and a light source 14. The flow path structure 12 includes a straight pipe 20, an inflow pipe 26, an outflow pipe 28, an irradiation window 30, and an end wall 32. The irradiation device 10 is used to irradiate a fluid such as water flowing inside the straight tube 20 with ultraviolet light to perform a sterilization treatment or a purification treatment.

光源14は、流路構造12の内部に紫外光を照射するよう構成される。光源14は、直管20の第1端部22に配置され、照射窓30を介して直管20の内部に向けて直管20の軸方向に紫外光を照射する。光源14は、例えば、紫外光を発するLED(Light Emitting Diode)を含み、殺菌効率が高い波長である250nm〜300nm付近の紫外光を出力する。光源14は、照射対象が水の場合、265nm〜285nmの紫外光を出力するよう構成されることが好ましく、例えば、270nm、275nm、または、280nmの紫外光を出力する。光源14は、紫外光LEDから出力される紫外光の照射方向を整えるためのレンズやリフレクタといった光学素子を含んでもよい。 The light source 14 is configured to irradiate the inside of the flow path structure 12 with ultraviolet light. The light source 14 is arranged at the first end 22 of the straight tube 20, and irradiates ultraviolet light in the axial direction of the straight tube 20 toward the inside of the straight tube 20 through the irradiation window 30. The light source 14 includes, for example, an LED (Light Emitting Diode) that emits ultraviolet light, and outputs ultraviolet light in the vicinity of 250 nm to 300 nm, which is a wavelength having high sterilization efficiency. When the irradiation target is water, the light source 14 is preferably configured to output ultraviolet light of 265 nm to 285 nm, and outputs, for example, ultraviolet light of 270 nm, 275 nm, or 280 nm. The light source 14 may include an optical element such as a lens or a reflector for adjusting the irradiation direction of the ultraviolet light output from the ultraviolet light LED.

直管20は、第1端部22から第2端部24に向けて軸方向に延在する。直管20は、フッ素系樹脂材料で構成され、例えば、全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)で構成される。PTFEは、化学的に安定した材料であり、耐久性、耐熱性および耐薬品性に優れ、紫外光の反射率が高い材料である。直管20をPTFEなどのフッ素系樹脂で構成することにより、光源14からの紫外光を内壁面18で反射させ、直管20の軸方向に紫外光を伝搬させることができる。 The straight pipe 20 extends axially from the first end 22 to the second end 24. The straight pipe 20 is made of a fluorinated resin material, for example, made of polytetrafluoroethylene (PTFE), which is a completely fluorinated resin. PTFE is a chemically stable material, excellent in durability, heat resistance and chemical resistance, and has a high reflectance of ultraviolet light. By forming the straight tube 20 with a fluorine-based resin such as PTFE, the ultraviolet light from the light source 14 can be reflected by the inner wall surface 18 and propagated in the axial direction of the straight tube 20.

なお、直管20は、その全体がPTFEで構成されている必要はなく、流体と接触する内壁面18がPTFEで構成されていればよい。例えば、他の樹脂材料もしくは金属材料で構成される管の内面にPTFEのライナを取り付けて直管20を構成してもよい。 The straight pipe 20 does not have to be entirely made of PTFE, and the inner wall surface 18 in contact with the fluid may be made of PTFE. For example, the straight pipe 20 may be formed by attaching a PTFE liner to the inner surface of a pipe made of another resin material or metal material.

直管20の第1端部22には、光源14からの紫外光を透過させる照射窓30が設けられる。照射窓30は、石英(SiO)やサファイア(Al)、非晶質のフッ素系樹脂などの紫外光の透過率が高い部材で構成される。直管20の第2端部24には、端部壁32が設けられる。端部壁32は、直管20と同様にPTFEなどのフッ素系樹脂材料で構成される。端部壁32は、その全体がPTFEで構成されなくてもよく、少なくとも端部壁32の内面34がPTFEで構成されていればよい。 The first end 22 of the straight tube 20 is provided with an irradiation window 30 that transmits ultraviolet light from the light source 14. The irradiation window 30 is made of a member having a high transmittance of ultraviolet light such as quartz (SiO 2 ), sapphire (Al 2 O 3 ), and an amorphous fluororesin. An end wall 32 is provided at the second end 24 of the straight pipe 20. The end wall 32 is made of a fluororesin material such as PTFE, like the straight pipe 20. The end wall 32 does not have to be entirely composed of PTFE, and at least the inner surface 34 of the end wall 32 may be composed of PTFE.

流入管26は、直管20の第1端部22付近に設けられ、直管20の軸方向と直交する径方向に延在する。流出管28は、直管20の第2端部24付近に設けられ、直管20の径方向に延在する。したがって、照射装置10は、光源14に近い位置から流体が流入され、光源14から離れる方向に直管20の内部を流れてから排出される。なお、流体の流れの方向が逆になるように構成されてもよく、流入管26が流出側、流出管28が流入側となるように構成してもよい。 The inflow pipe 26 is provided near the first end portion 22 of the straight pipe 20, and extends in the radial direction orthogonal to the axial direction of the straight pipe 20. The outflow pipe 28 is provided near the second end portion 24 of the straight pipe 20, and extends in the radial direction of the straight pipe 20. Therefore, in the irradiation device 10, the fluid flows in from a position close to the light source 14, flows inside the straight tube 20 in the direction away from the light source 14, and then is discharged. The flow direction of the fluid may be reversed, and the inflow pipe 26 may be on the outflow side and the outflow pipe 28 may be on the inflow side.

本実施の形態では、直管20の内壁面18の算術平均粗さRaが4μm以上となるように構成されている。例えば、表面に微細な凹凸が設けられた金型を用いて直管20を成形することにより、内壁面18の表面粗さRaを4μm以上にできる。その他、成形された直管20の内壁面18にサンドブラスト処理等を加えて内壁面18を粗面化してもよい。また、直管20がPTFEである場合、PTFEの圧縮成形に用いる樹脂ペレットの粒径を適切に選択することで内壁面18に微細な凹凸が生じるようにしてもよい。 In the present embodiment, the arithmetic average roughness Ra of the inner wall surface 18 of the straight pipe 20 is configured to be 4 μm or more. For example, the surface roughness Ra of the inner wall surface 18 can be made 4 μm or more by molding the straight pipe 20 using a mold having fine irregularities on the surface. In addition, the inner wall surface 18 of the molded straight pipe 20 may be roughened by sandblasting or the like. Further, when the straight pipe 20 is PTFE, the inner wall surface 18 may have fine irregularities by appropriately selecting the particle size of the resin pellets used for compression molding of PTFE.

直管20の内壁面18を構成するフッ素系樹脂材料は、表面エネルギーが高いために超撥水性を示す。そのため、内壁面18に微細な凹凸が存在すると、その凹凸に気泡が付着しやすく、気泡がいったんできると除去されにくい。本発明者らの知見によれば、PTFE表面の算術平均粗さRaが4μm以上となると、表面に気泡の付着が確認され、Raが9μm以上となると多数の気泡が付着することが分かっている。一方、PTFE表面の表面粗さRaが4μm未満となり、例えば、表面粗さRaが2μm以下となると気泡の付着がほとんど確認されない。 The fluororesin material constituting the inner wall surface 18 of the straight pipe 20 exhibits super water repellency due to its high surface energy. Therefore, if fine irregularities are present on the inner wall surface 18, bubbles are likely to adhere to the irregularities, and once the bubbles are formed, they are difficult to remove. According to the findings of the present inventors, it is known that when the arithmetic mean roughness Ra of the PTFE surface is 4 μm or more, adhesion of bubbles is confirmed on the surface, and when Ra is 9 μm or more, a large number of bubbles are attached. .. On the other hand, when the surface roughness Ra of the PTFE surface is less than 4 μm, for example, when the surface roughness Ra is 2 μm or less, adhesion of bubbles is hardly confirmed.

直管20の内壁面18に気泡が付着すると、流体と気泡の屈折率差により気泡表面で反射ないし散乱が生じ、直管20の内部の紫外光照度分布に影響を及ぼす。フッ素系樹脂材料の表面では拡散反射が主体的であり、入射する紫外光が様々な方向に散乱されるのに対し、気泡表面では鏡面反射が主体的であり、入射する紫外光が特定の方向に強く反射されやすい。その結果、流路内壁面に多数の気泡を生じさせると、流路内壁面で紫外光を鏡面反射させて紫外光をより遠くまで伝搬させることができる。本実施の形態では、気泡を発生させて紫外光の伝搬距離を長くする目的のため、内壁面18の算術平均粗さRaを4μm以上としている。 When bubbles adhere to the inner wall surface 18 of the straight tube 20, reflection or scattering occurs on the surface of the bubbles due to the difference in refractive index between the fluid and the bubbles, which affects the ultraviolet light illuminance distribution inside the straight tube 20. Diffuse reflection is the main component on the surface of the fluororesin material, and incident ultraviolet light is scattered in various directions, whereas specular reflection is the main component on the surface of bubbles, and the incident ultraviolet light is in a specific direction. It is strongly reflected by. As a result, when a large number of bubbles are generated on the inner wall surface of the flow path, the ultraviolet light can be specularly reflected on the inner wall surface of the flow path and the ultraviolet light can be propagated farther. In the present embodiment, the arithmetic average roughness Ra of the inner wall surface 18 is set to 4 μm or more for the purpose of generating bubbles and lengthening the propagation distance of ultraviolet light.

一方で、表面粗さRaが100μmを超えると、PTFE表面に均一に気泡を生じさせることが難しい。したがって、気泡を利用して流路内の照度分布を高めるためには、内壁面18の算術平均粗さRaを4μm以上100μm以下とすることが好ましい。例えば、内壁面18の表面粗さRaとして、4μm、9μm、15μm、30μm程度のものを用いることができる。 On the other hand, if the surface roughness Ra exceeds 100 μm, it is difficult to uniformly generate bubbles on the PTFE surface. Therefore, in order to increase the illuminance distribution in the flow path by utilizing the bubbles, it is preferable that the arithmetic average roughness Ra of the inner wall surface 18 is 4 μm or more and 100 μm or less. For example, as the surface roughness Ra of the inner wall surface 18, those having about 4 μm, 9 μm, 15 μm, and 30 μm can be used.

図2は、流路内の径方向の照度分布を模式的に示すグラフである。グラフAは、実施例に係る照度分布を示し、流路内壁面に算術平均粗さRaが4μmのPTFEを用いている。グラフBは、比較例に係る照度分布を示し、流路内壁面に算術平均粗さRaが1.8μmのPTFEを用いている。実施例と比較例のいずれも、内直径が40mmのPTFE管の内部に純水を満たした状態で、光源から150mm離れた位置で照度分布を計測した。実施例および比較例において、光源の出力は同じである。図2では、比較例に係るグラフBの光強度の最大値を1として規格化している。 FIG. 2 is a graph schematically showing the radial illuminance distribution in the flow path. Graph A shows the illuminance distribution according to the example, and uses PTFE having an arithmetic mean roughness Ra of 4 μm on the inner wall surface of the flow path. Graph B shows the illuminance distribution according to the comparative example, and uses PTFE having an arithmetic mean roughness Ra of 1.8 μm on the inner wall surface of the flow path. In both the examples and the comparative examples, the illuminance distribution was measured at a position 150 mm away from the light source in a state where the inside of the PTFE tube having an inner diameter of 40 mm was filled with pure water. In the examples and comparative examples, the output of the light source is the same. In FIG. 2, the maximum value of the light intensity of the graph B according to the comparative example is standardized as 1.

グラフより、実施例に係る光強度は、流路内の径方向の全体にわたって比較例よりも高いことがわかる。特に、光強度が最大となる中心位置において、実施例の光強度は、比較例よりも60%以上高い。このことから、流路内壁面の表面粗さRaを4μmとすることにより、表面粗さRaが1.8μmとする場合よりも流路内の光強度を高くでき、光源からの紫外光をより遠くまで効率的に伝搬させることができる。流体に作用する紫外光量は、紫外光の照度(W/cm)と紫外光の照射時間(s)の積である積算照度(J/cm)により決まるため、より高強度の紫外光をより遠くまで伝搬させることで、流体に作用する積算照度を高めることができる。 From the graph, it can be seen that the light intensity according to the example is higher than that of the comparative example over the entire radial direction in the flow path. In particular, at the central position where the light intensity is maximum, the light intensity of the examples is 60% or more higher than that of the comparative examples. From this, by setting the surface roughness Ra of the inner wall surface of the flow path to 4 μm, the light intensity in the flow path can be increased as compared with the case where the surface roughness Ra is set to 1.8 μm, and the ultraviolet light from the light source can be increased. It can be efficiently propagated to a long distance. Since the amount of ultraviolet light acting on the fluid is determined by the integrated illuminance (J / cm 2 ), which is the product of the illuminance of the ultraviolet light (W / cm 2 ) and the irradiation time (s) of the ultraviolet light, higher intensity ultraviolet light can be obtained. By propagating farther, the integrated illuminance acting on the fluid can be increased.

図3は、実施の形態に係る浄化装置70の構成を模式的に示す図であり、上述の照射装置10の応用例を示す。浄化装置70は、照射装置10と、処理装置60とを備える。浄化装置70は、二段階の浄化処理をするための浄化システムであり、処理装置60にて前処理がなされた後、照射装置10にて後処理がなされる。 FIG. 3 is a diagram schematically showing the configuration of the purification device 70 according to the embodiment, and shows an application example of the above-mentioned irradiation device 10. The purification device 70 includes an irradiation device 10 and a processing device 60. The purification device 70 is a purification system for performing a two-step purification treatment, and after the pretreatment is performed by the treatment device 60, the post-treatment is performed by the irradiation device 10.

処理装置60は、処理槽62と、曝気装置64とを有する。処理装置60は、微生物を利用して浄化処理をするための装置である。処理槽62の内部には、好気性微生物が付着する接触材が設けられる。曝気装置64は、処理槽62の内部の流体に空気を供給し、好気性微生物の働きにより流入路71から供給される流体が浄化されるようにする。処理槽62にて処理された流体は、固形物が除去された後、接続路72を通じて照射装置10に供給される。 The processing device 60 includes a processing tank 62 and an aeration device 64. The treatment device 60 is a device for purifying treatment using microorganisms. A contact material to which aerobic microorganisms adhere is provided inside the treatment tank 62. The aeration device 64 supplies air to the fluid inside the treatment tank 62 so that the fluid supplied from the inflow path 71 is purified by the action of aerobic microorganisms. The fluid treated in the treatment tank 62 is supplied to the irradiation device 10 through the connecting path 72 after the solid matter is removed.

照射装置10は、処理装置60から接続路72を通じて供給される流体に紫外光を照射して浄化処理をし、処理後の流体を流出路73から排出する。処理装置60では曝気装置64を通じて空気が供給されるため、接続路72を通じて供給される流体は、溶存空気量が比較的高く、気泡が生じやすい。照射装置10では、流路内壁面の表面粗さRaが4μm以上に設定されているため、流路内壁面に好適に気泡を付着させることができる。その結果、照射装置10において高効率に紫外光を照射することができ、浄化装置70の処理能力を向上させることができる。 The irradiation device 10 irradiates the fluid supplied from the processing device 60 through the connecting path 72 with ultraviolet light to purify the fluid, and discharges the treated fluid from the outflow path 73. Since air is supplied through the aeration device 64 in the processing device 60, the fluid supplied through the connecting path 72 has a relatively high amount of dissolved air, and bubbles are likely to be generated. In the irradiation device 10, since the surface roughness Ra of the inner wall surface of the flow path is set to 4 μm or more, air bubbles can be suitably attached to the inner wall surface of the flow path. As a result, the irradiation device 10 can irradiate ultraviolet light with high efficiency, and the processing capacity of the purification device 70 can be improved.

以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above-described embodiment, various design changes are possible, various modifications are possible, and such modifications are also within the scope of the present invention. It is about to be.

上述の実施の形態では、直管形状の流路構造を用いる場合を示したが、流路構造の形状は特に限定されない。変形例においては、流路全体が直線状に構成されるのではなく、流路の少なくとも一部に屈曲部が設けられてもよい。また、流路の断面形状は円形であってもよいし、多角形であってもよい。 In the above-described embodiment, the case where a straight pipe-shaped flow path structure is used is shown, but the shape of the flow path structure is not particularly limited. In the modified example, the entire flow path is not formed in a straight line, but a bent portion may be provided in at least a part of the flow path. Further, the cross-sectional shape of the flow path may be circular or polygonal.

上述の実施の形態では、流路内壁面の全体にフッ素系樹脂材料を用いる場合を示した。変形例においては、流路内壁面の一部にフッ素系樹脂材料が用いられてもよい。流路の配壁面の一部に用いられるフッ素系樹脂材料について表面粗さRaを4μm以上100μm以下にすることにより、フッ素系樹脂表面に均一に気泡を付着させ、流路内を伝搬する紫外光の強度を高めることができる。 In the above-described embodiment, a case where a fluororesin material is used for the entire inner wall surface of the flow path is shown. In the modified example, a fluorine-based resin material may be used for a part of the inner wall surface of the flow path. By setting the surface roughness Ra of the fluorine-based resin material used for a part of the wall surface of the flow path to 4 μm or more and 100 μm or less, bubbles are uniformly attached to the surface of the fluorine-based resin, and ultraviolet light propagating in the flow path. Can increase the strength of.

上述の実施の形態では、光源14として紫外光LEDを用いる場合を示した。変形例においては、紫外線ランプを光源として用いてもよく、中心波長またはピーク波長が250nm〜260nm、例えば254nmの紫外線ランプを用いてもよい。 In the above-described embodiment, a case where an ultraviolet LED is used as the light source 14 is shown. In the modified example, an ultraviolet lamp may be used as a light source, or an ultraviolet lamp having a center wavelength or a peak wavelength of 250 nm to 260 nm, for example, 254 nm may be used.

10…照射装置、12…流路構造、14…光源、18…内壁面、20…直管。 10 ... Irradiation device, 12 ... Channel structure, 14 ... Light source, 18 ... Inner wall surface, 20 ... Straight tube.

Claims (4)

算術平均粗さが4μm以上100μm以下のフッ素系樹脂材料で流路内壁面の少なくとも一部が構成される流路構造と、
前記流路構造の内部に向けて紫外光を照射する光源と、を備えることを特徴とする照射装置。
A flow path structure in which at least a part of the inner wall surface of the flow path is made of a fluororesin material having an arithmetic mean roughness of 4 μm or more and 100 μm or less.
An irradiation device including a light source that irradiates ultraviolet light toward the inside of the flow path structure.
前記フッ素系樹脂材料は、ポリテトラフルオロエチレン(PTFE)であることを特徴とする請求項1に記載の照射装置。 The irradiation device according to claim 1, wherein the fluororesin material is polytetrafluoroethylene (PTFE). 前記流路構造は、前記フッ素系樹脂材料で構成される直管を含み、
前記光源は、前記直管の内部に向けて前記直管の軸方向に紫外光を照射するよう配置されることを特徴とする請求項1または2に記載の照射装置。
The flow path structure includes a straight pipe made of the fluororesin material.
The irradiation device according to claim 1 or 2, wherein the light source is arranged so as to irradiate ultraviolet light in the axial direction of the straight tube toward the inside of the straight tube.
前記光源は、波長が250nm〜300nmの紫外光を出力することを特徴とする請求項1から3のいずれか一項に記載の照射装置。 The irradiation device according to any one of claims 1 to 3, wherein the light source outputs ultraviolet light having a wavelength of 250 nm to 300 nm.
JP2017017512A 2017-02-02 2017-02-02 Irradiation device Active JP6771399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017512A JP6771399B2 (en) 2017-02-02 2017-02-02 Irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017512A JP6771399B2 (en) 2017-02-02 2017-02-02 Irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020163739A Division JP7132992B2 (en) 2020-09-29 2020-09-29 Irradiation device

Publications (2)

Publication Number Publication Date
JP2018122263A JP2018122263A (en) 2018-08-09
JP6771399B2 true JP6771399B2 (en) 2020-10-21

Family

ID=63109163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017512A Active JP6771399B2 (en) 2017-02-02 2017-02-02 Irradiation device

Country Status (1)

Country Link
JP (1) JP6771399B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128755B2 (en) * 2019-01-31 2022-08-31 日機装株式会社 Fluid sterilizer
JP7316117B2 (en) * 2019-06-28 2023-07-27 旭化成株式会社 UV irradiation device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034378A (en) * 2007-08-02 2009-02-19 Sumitomo Electric Fine Polymer Inc Heating vessel for cooking and method for manufacturing heating vessel for cooking
US8551415B2 (en) * 2008-08-22 2013-10-08 Applied Materials, Inc. UV assisted polymer modification and in situ exhaust cleaning
JP5374697B2 (en) * 2009-07-09 2013-12-25 ユーヴィックス株式会社 UV sterilization water purifier and UV LED unit used for it
JP2013220126A (en) * 2012-04-13 2013-10-28 Panasonic Corp Ultraviolet ray sterilization device
JP2014004506A (en) * 2012-06-22 2014-01-16 Ushio Inc Fluid treatment apparatus
JP5995657B2 (en) * 2012-10-24 2016-09-21 旭有機材株式会社 ULTRASONIC FLOWMETER MANUFACTURING METHOD, ULTRASONIC FLOWMETER PRODUCED BY THE METHOD, AND FLUID CONTROL DEVICE PROVIDED WITH ULTRASONIC FLOWMETER
WO2014115146A1 (en) * 2013-01-24 2014-07-31 Atlantium Technologies Ltd. Method and apparatus for liquid disinfection by light emitted from light emitting diodes
JPWO2015046014A1 (en) * 2013-09-24 2017-03-09 旭有機材株式会社 UV sterilizer
JP5719913B2 (en) * 2013-12-03 2015-05-20 千代田工販株式会社 UV irradiation equipment
JP2015150396A (en) * 2014-02-19 2015-08-24 象印マホービン株式会社 Manufacturing method of cooking pot, and cooking pot
JP6478325B2 (en) * 2015-05-08 2019-03-06 住友ゴム工業株式会社 Gasket for prefilled syringe and prefilled syringe

Also Published As

Publication number Publication date
JP2018122263A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
CN105268386B (en) Ultraviolet transparent shell
JP7011931B2 (en) Fluid sterilizer
KR102186368B1 (en) Fluid sterilization device
US20180177908A1 (en) Irradiation apparatus and fluid sterilization method
WO2017064950A1 (en) Fluid sterilization device and fluid sterilization method
JP6698496B2 (en) UV light irradiation device
KR101683351B1 (en) Light curtain type LED irradiator
US20150338336A1 (en) Reflective Transparent Optical Chamber
JP6771399B2 (en) Irradiation device
JP6963956B2 (en) UV sterilizer and UV irradiation device
CN110740977A (en) Fluid sterilizing device
JPWO2019151364A1 (en) UV sterilization tube and UV sterilizer
CN111320230A (en) Device for disinfecting a fluid
JP2022069596A (en) Irradiation device
JP6654888B2 (en) Fluid sterilizer
WO2018037938A1 (en) Running water sterilization device and running water sterilization method
JP2021000636A (en) Irradiation device
US10759679B2 (en) Fluid sterilization device
JP7071144B2 (en) UV sterilizer and UV irradiation device
JP6936644B2 (en) Fluid sterilizer
JP2016175025A (en) Cell for sterilization module, and sterilization module
JP6817021B2 (en) Fluid sterilizer
JP7509074B2 (en) Fluid Sterilization Device
JP2015128494A (en) Uv bactericidal device for fluid
JP2021007902A (en) Ultraviolet irradiation device and method for manufacturing ultraviolet irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200929

R150 Certificate of patent or registration of utility model

Ref document number: 6771399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250