JP6936644B2 - Fluid sterilizer - Google Patents

Fluid sterilizer Download PDF

Info

Publication number
JP6936644B2
JP6936644B2 JP2017136463A JP2017136463A JP6936644B2 JP 6936644 B2 JP6936644 B2 JP 6936644B2 JP 2017136463 A JP2017136463 A JP 2017136463A JP 2017136463 A JP2017136463 A JP 2017136463A JP 6936644 B2 JP6936644 B2 JP 6936644B2
Authority
JP
Japan
Prior art keywords
flow path
processing flow
housing
fluid
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017136463A
Other languages
Japanese (ja)
Other versions
JP2019017496A (en
Inventor
真也 渡邊
真也 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2017136463A priority Critical patent/JP6936644B2/en
Publication of JP2019017496A publication Critical patent/JP2019017496A/en
Application granted granted Critical
Publication of JP6936644B2 publication Critical patent/JP6936644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、流体殺菌装置に関する。 The present invention relates to a fluid sterilizer.

紫外線には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外線を照射する装置が用いられている。また、水などの流体に紫外線を照射することで、流体を連続的に殺菌する装置も用いられている。このような装置として、例えば、直管状のパイプで形成される容器の端部に紫外線発光ダイオードを配置した装置が考案されている(特許文献1参照)。 It is known that ultraviolet rays have a sterilizing ability, and devices that irradiate ultraviolet rays are used for sterilizing treatment in medical and food processing sites. In addition, a device for continuously sterilizing a fluid by irradiating a fluid such as water with ultraviolet rays is also used. As such a device, for example, a device in which an ultraviolet light emitting diode is arranged at an end of a container formed of a straight tubular pipe has been devised (see Patent Document 1).

特開2014−233712号公報Japanese Unexamined Patent Publication No. 2014-233712

しかしながら、上述の装置では、容器を構成するパイプに流入した流体の流れを積極的に制御していないため、パイプの中心軸に対して非対称な流速分布が生じる。そのため、比較的短時間でパイプから流出する速い流れが生じる場合がある。このような速い流れに含まれている菌は、紫外線に十分な時間暴露されることなく装置外へ流出するおそれがあり、殺菌性能の低下の一因となり得る。 However, in the above-mentioned device, since the flow of the fluid flowing into the pipe constituting the container is not positively controlled, an asymmetric flow velocity distribution with respect to the central axis of the pipe occurs. Therefore, a fast flow flowing out of the pipe may occur in a relatively short time. Bacteria contained in such a fast flow may flow out of the apparatus without being exposed to ultraviolet rays for a sufficient time, which may contribute to a decrease in bactericidal performance.

本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、紫外線による流体の殺菌効率を向上する新たな技術を提供することにある。 The present invention has been made in view of these problems, and one of its exemplary purposes is to provide a new technique for improving the sterilization efficiency of a fluid by ultraviolet rays.

上記課題を解決するために、本発明のある態様の流体殺菌装置は、通過する流体が殺菌処理される処理流路と、処理流路に向かって紫外線を照射する光源と、処理流路を収容する筐体と、処理流路の周囲に満たされた、処理流路に入射する紫外線の反射を抑制する反射抑制物質と、を備える。処理流路は、紫外線を透過させる透過部材で構成されており、反射抑制物質は、空気より屈折率が高い。 In order to solve the above problems, the fluid sterilizer according to an embodiment of the present invention includes a treatment flow path in which the passing fluid is sterilized, a light source that irradiates ultraviolet rays toward the treatment flow path, and a treatment flow path. It is provided with a housing to be used and a reflection-suppressing substance that is filled around the treatment flow path and suppresses the reflection of ultraviolet rays incident on the treatment flow path. The treatment flow path is composed of a transmissive member that transmits ultraviolet rays, and the antireflection substance has a higher refractive index than air.

この態様によると、処理流路の周囲が空気の場合と比較して、処理流路に入射する紫外線の反射を抑制できる。 According to this aspect, the reflection of ultraviolet rays incident on the treatment flow path can be suppressed as compared with the case where the periphery of the treatment flow path is air.

筐体は、流体が処理流路に流入する流入路および流体が処理流路から流出する流出路を有しており、処理流路は、流入路および流出路を非直線的に連通してもよい。非直線的に連通とは、流入路と流出路とを最短距離で連通していない場合であり、例えば、処理流路が曲路や折り返し路を含む場合である。これにより、流入路から流入した流体が流出路に到達するまでの距離を長くできるため、処理流路に流れる流体に十分な紫外線を照射できる。 The housing has an inflow path through which the fluid flows into the treatment flow path and an outflow path through which the fluid flows out from the treatment flow path, and the treatment flow path may communicate with the inflow path and the outflow path in a non-linear manner. good. The non-linear communication is a case where the inflow path and the outflow path are not communicated with each other at the shortest distance, for example, when the processing flow path includes a curved path or a turnaround path. As a result, the distance until the fluid flowing in from the inflow path reaches the outflow path can be lengthened, so that the fluid flowing in the processing flow path can be irradiated with sufficient ultraviolet rays.

流入路は、筐体の外周面であって、該筐体の長手方向に対して交差する向きに形成されていてもよい。 The inflow path may be an outer peripheral surface of the housing and may be formed in a direction intersecting the longitudinal direction of the housing.

処理流路は、らせん状に形成されていてもよい。これにより、コンパクトな筐体の中に経路の長い処理流路を配置できる。 The processing flow path may be formed in a spiral shape. As a result, a processing flow path having a long path can be arranged in a compact housing.

透過部材は、非晶質のフッ素樹脂または無機材料で構成されていてもよい。 The permeation member may be made of an amorphous fluororesin or an inorganic material.

反射抑制物質は、屈折率が1.3以上の液体であってもよい。 The antireflection substance may be a liquid having a refractive index of 1.3 or more.

光源は、中心波長またはピーク波長が200nm〜350nmの範囲に含まれる紫外線を発する半導体発光素子であってもよい。これにより、光源の大きさをコンパクトにでき、配置の自由度が増す。 The light source may be a semiconductor light emitting device that emits ultraviolet rays having a center wavelength or a peak wavelength in the range of 200 nm to 350 nm. As a result, the size of the light source can be made compact, and the degree of freedom of arrangement is increased.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems and the like are also effective as aspects of the present invention.

本発明によれば、紫外線による流体の殺菌効率を向上できる。 According to the present invention, the sterilization efficiency of a fluid by ultraviolet rays can be improved.

参考例に係る流体殺菌装置の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the fluid sterilizer which concerns on a reference example. 第1の実施の形態に係る流体殺菌装置の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the fluid sterilizer which concerns on 1st Embodiment. 第2の実施の形態に係る流体殺菌装置の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the fluid sterilizer which concerns on 2nd Embodiment.

以下、本発明の実施の形態を図面を参照して説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate. Moreover, the configuration described below is an example, and does not limit the scope of the present invention at all.

(参考例)
はじめに、参考例に係る流体殺菌装置を説明する。図1は、参考例に係る流体殺菌装置100の概略構成を示す断面図である。
(Reference example)
First, the fluid sterilizer according to the reference example will be described. FIG. 1 is a cross-sectional view showing a schematic configuration of a fluid sterilizer 100 according to a reference example.

流体殺菌装置100は、処理流路102を区画する直管104と、直管104の内部に紫外線を照射する光源106と、を備える。直管104は、一方の端部108に直管104の径方向に延びる流入路110が設けられており、他方の端部112に直管104の径方向に延びる流出路114が設けられている。他方の端部112には、光源106からの紫外線を透過させるための窓部116が設けられている。 The fluid sterilizer 100 includes a straight pipe 104 that partitions the processing flow path 102, and a light source 106 that irradiates the inside of the straight pipe 104 with ultraviolet rays. The straight pipe 104 is provided with an inflow path 110 extending in the radial direction of the straight pipe 104 at one end 108 and an outflow path 114 extending in the radial direction of the straight pipe 104 at the other end 112. .. The other end 112 is provided with a window 116 for transmitting ultraviolet rays from the light source 106.

流体殺菌装置100において、流入路110から流入する流体は、処理流路102を直管104の軸方向に流れて流出路114から流出する。流入路110は、直管104の側方に直接取り付けられているため、一方の端部108の近傍では流体の流れに乱れが生じる。 In the fluid sterilizer 100, the fluid flowing in from the inflow path 110 flows through the processing flow path 102 in the axial direction of the straight pipe 104 and flows out from the outflow path 114. Since the inflow path 110 is directly attached to the side of the straight pipe 104, the fluid flow is turbulent in the vicinity of one end 108.

具体的には、流入路110から流入した流体は、流入直後に流入路110と対向する直管104の側壁に衝突し、跳ね返った勢いで速い流れを生じさせる。つまり、流入路110から流入した流体は、直管104の流入路110が形成されている側壁の近くを流れる流体の速度が相対的に速くなる。その結果、図1に示されるように、直管104の中心軸に対して非対称な速度分布が生じ、光源106からの紫外線を効率的に流体に作用させることが難しくなる。特に、速い流れに乗った菌は紫外線に十分暴露されることなく流出するため、殺菌性能を大きく低下させる原因となり得る。 Specifically, the fluid flowing in from the inflow path 110 collides with the side wall of the straight pipe 104 facing the inflow path 110 immediately after the inflow, and causes a fast flow with a rebounding force. That is, the speed of the fluid flowing from the inflow path 110 near the side wall on which the inflow path 110 of the straight pipe 104 is formed becomes relatively high. As a result, as shown in FIG. 1, an asymmetric velocity distribution is generated with respect to the central axis of the straight pipe 104, and it becomes difficult to efficiently act the ultraviolet rays from the light source 106 on the fluid. In particular, bacteria that ride on a fast stream flow out without being sufficiently exposed to ultraviolet rays, which can cause a significant decrease in bactericidal performance.

したがって、以下の各実施の形態に係る流体殺菌装置は、参考例に係る流体殺菌装置100を鑑みて考案されたものである。 Therefore, the fluid sterilizer according to each of the following embodiments has been devised in view of the fluid sterilizer 100 according to the reference example.

(第1の実施の形態)
図2は、第1の実施の形態に係る流体殺菌装置10の概略構成を示す断面図である。流体殺菌装置10は、通過する流体が殺菌処理される処理流路12と、処理流路12に向かって紫外線Lを照射する光源14と、処理流路12を収容する筒状の筐体16と、処理流路12の周囲に満たされた、処理流路12に入射する紫外線Lの反射を抑制する反射抑制物質18と、を備える。
(First Embodiment)
FIG. 2 is a cross-sectional view showing a schematic configuration of the fluid sterilizer 10 according to the first embodiment. The fluid sterilizer 10 includes a processing flow path 12 in which the passing fluid is sterilized, a light source 14 that irradiates the processing flow path 12 with ultraviolet rays L, and a tubular housing 16 that houses the processing flow path 12. A reflection-suppressing substance 18 that suppresses the reflection of ultraviolet rays L incident on the treatment flow path 12 and is filled around the treatment flow path 12.

筐体16は、流体が処理流路12に流入する流入路20および流体が処理流路12から流出する流出路22を有している。流入路20および流出路22は、筐体16の外周面であって、筐体16の長手方向に対して交差する向きに形成されている。なお、処理流路12は、流入路20および流出路22のそれぞれの近傍において筐体16に接続されている。また、筐体16と処理流路12との間の、反射抑制物質18が満たされる空間は、筐体16の外部に対して水密構造になっている。そのため、処理流路12を流れる流体と、反射抑制物質18とが混ざることはない。 The housing 16 has an inflow path 20 in which the fluid flows into the processing flow path 12 and an outflow path 22 in which the fluid flows out from the processing flow path 12. The inflow path 20 and the outflow path 22 are outer peripheral surfaces of the housing 16 and are formed so as to intersect with each other in the longitudinal direction of the housing 16. The processing flow path 12 is connected to the housing 16 in the vicinity of each of the inflow path 20 and the outflow path 22. Further, the space between the housing 16 and the processing flow path 12 filled with the reflection inhibitor 18 has a watertight structure with respect to the outside of the housing 16. Therefore, the fluid flowing through the processing flow path 12 and the reflection inhibitor 18 do not mix.

筐体16は、金属材料や樹脂材料で構成されており、紫外線の反射率が高い材料で構成されることが望ましい。例えば、筐体16の内周面16aが鏡面研磨されたアルミニウム(Al)や、全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)で構成されていてもよい。これらの材料で筐体16を構成することで、光源14が発する紫外線を内周面16aで反射させて筐体16の長手方向に伝搬させることができる。特に、PTFEは、化学的に安定した材料であり、紫外線の反射率が高い材料であるため、筐体16の材料として好適である。 The housing 16 is made of a metal material or a resin material, and it is desirable that the housing 16 is made of a material having a high reflectance of ultraviolet rays. For example, the inner peripheral surface 16a of the housing 16 may be made of mirror-polished aluminum (Al) or polytetrafluoroethylene (PTFE), which is a fully fluorinated resin. By constructing the housing 16 with these materials, the ultraviolet rays emitted by the light source 14 can be reflected by the inner peripheral surface 16a and propagated in the longitudinal direction of the housing 16. In particular, PTFE is a chemically stable material and has a high reflectance of ultraviolet rays, and is therefore suitable as a material for the housing 16.

筐体16の内部には、光源14から出射された紫外線を透過する窓部17が設けられている。窓部17は、光源14が設けられている空間と、処理流路12が設けられている空間と、を隔てている。窓部17は、石英(SiO)やサファイア(Al)、非晶質のフッ素系樹脂などの紫外線の透過率が高い部材で一部または全部が構成されている。 Inside the housing 16, a window portion 17 that transmits ultraviolet rays emitted from the light source 14 is provided. The window portion 17 separates the space provided with the light source 14 from the space provided with the processing flow path 12. The window portion 17 is partially or wholly composed of a member having a high ultraviolet transmittance such as quartz (SiO 2 ), sapphire (Al 2 O 3), and an amorphous fluororesin.

本実施の形態に係る処理流路12は、流入路20および流出路22を非直線的に連通している。非直線的に連通とは、流入路20と流出路22とを最短距離で連通していない場合、つまり迂回して(遠回りに)連通している場合である。例えば、処理流路12が曲路や折り返し路(クランク路)を含む場合であってもよい。本実施の形態に係る処理流路12は、らせん状に形成されており、流路の直径は8〜15mm程度である。 The processing flow path 12 according to the present embodiment communicates the inflow path 20 and the outflow path 22 in a non-linear manner. The non-linear communication is a case where the inflow path 20 and the outflow path 22 are not communicated with each other at the shortest distance, that is, a case where the inflow path 20 and the outflow path 22 are communicated in a detour (detour). For example, the processing flow path 12 may include a curved path or a turning path (crank path). The processing flow path 12 according to the present embodiment is formed in a spiral shape, and the diameter of the flow path is about 8 to 15 mm.

これにより、流入路20から流入した流体が流出路22に到達するまでの距離を長くできるため、処理流路12に流れる流体に十分な紫外線を照射できる。また、筐体16の内部空間に対して、処理流路12を細く長くすることで、処理流路12内での速度分布を平準化し易くなる。 As a result, the distance until the fluid flowing in from the inflow path 20 reaches the outflow path 22 can be lengthened, so that the fluid flowing in the processing flow path 12 can be irradiated with sufficient ultraviolet rays. Further, by making the processing flow path 12 thin and long with respect to the internal space of the housing 16, it becomes easy to level the velocity distribution in the processing flow path 12.

また、処理流路12をらせん状とすることで、コンパクトな筐体16の中に経路の長い処理流路を配置できる。なお、処理流路12がらせん状の場合、外周部ほど流体の流速が速くなる(内周部ほど流体の速度が遅くなる)傾向がある。しかしながら、それと同時に流水の移動距離も長くなるため、処理流路12内での速度分布の偏りは低減される。また、処理流路12の途中でらせんの向き(右回りまたは左回り)を反転させて流路を構成してもよい。これにより、らせん状の処理流路12の外周部を通過していた流体が、途中から内周部を通過することとなり、処理流路12内での速度分布の偏りが更に低減される。 Further, by forming the processing flow path 12 into a spiral shape, a processing flow path having a long path can be arranged in the compact housing 16. When the processing flow path 12 is spiral, the flow velocity of the fluid tends to be faster toward the outer peripheral portion (the speed of the fluid is slower toward the inner peripheral portion). However, at the same time, the moving distance of the flowing water becomes long, so that the bias of the velocity distribution in the processing flow path 12 is reduced. Further, the direction of the spiral (clockwise or counterclockwise) may be reversed in the middle of the processing flow path 12 to form the flow path. As a result, the fluid that has passed through the outer peripheral portion of the spiral processing flow path 12 passes through the inner peripheral portion from the middle, and the bias of the velocity distribution in the processing flow path 12 is further reduced.

処理流路12は、紫外線を透過させる透過部材で構成されている。具体的には、ガラス、石英(SiO)、サファイア(Al)といった無機材料や、非晶質のフッ素系樹脂などの紫外線の透過率が高い部材で構成されている。このような透過部材は、屈折率が1.3〜1.5以上であり、空気と比較して屈折率が高い。そのため、空気を通過してきた紫外線は、空気と透過部材との屈折率差により処理流路12の表面で反射を繰り返す。そのため、光源14から出射した紫外線のうち、処理流路12の流入路20側まで到達する割合が減少し、流体の殺菌効率が低下する。 The processing flow path 12 is composed of a transmissive member that transmits ultraviolet rays. Specifically, it is composed of an inorganic material such as glass, quartz (SiO 2 ), and sapphire (Al 2 O 3 ), and a member having a high ultraviolet transmittance such as an amorphous fluorine-based resin. Such a transmissive member has a refractive index of 1.3 to 1.5 or more, and has a higher refractive index than air. Therefore, the ultraviolet rays that have passed through the air are repeatedly reflected on the surface of the processing flow path 12 due to the difference in refractive index between the air and the transmitting member. Therefore, the proportion of the ultraviolet rays emitted from the light source 14 that reach the inflow path 20 side of the processing flow path 12 decreases, and the sterilization efficiency of the fluid decreases.

そこで、本実施の形態に係る流体殺菌装置10では、処理流路12の周囲を屈折率が空気より高い反射抑制物質18で満たしている。本実施の形態に係る反射抑制物質18は、水(屈折率1.33)であるため、処理流路12の周囲が空気の場合と比較して、処理流路12に入射する紫外線Lの反射を抑制できる。 Therefore, in the fluid sterilizer 10 according to the present embodiment, the periphery of the treatment flow path 12 is filled with a reflection inhibitor 18 having a refractive index higher than that of air. Since the reflection-suppressing substance 18 according to the present embodiment is water (refractive index 1.33), the reflection of ultraviolet rays L incident on the treatment flow path 12 is compared with the case where the periphery of the treatment flow path 12 is air. Can be suppressed.

なお、反射抑制物質18は、水以外でも良く、紫外線の波長域に対して透明な物質であって、屈折率が1.3以上の液体や、ガラスや樹脂といった固体であってもよい。また、反射抑制物質18の屈折率は、処理流路12を構成する部材の屈折率の±0.3以内、好ましくは±0.2以内、より好ましくは±0.1以内であるとよい。 The antireflection substance 18 may be a substance other than water, which is transparent to the wavelength range of ultraviolet rays, and may be a liquid having a refractive index of 1.3 or more, or a solid such as glass or resin. The refractive index of the reflection inhibitor 18 is preferably within ± 0.3, preferably within ± 0.2, and more preferably within ± 0.1 of the refractive index of the members constituting the processing flow path 12.

反射抑制物質18が液体の場合、筐体16内の空間への充填が容易であり、処理流路12の表面を確実に被覆することができる。また、反射抑制物質18に対しては常に光源14から出射した紫外線が照射されているため、交換しなくても菌の増殖は抑制される。なお、本実施の形態に係る流体殺菌装置10においては、反射抑制物質18を充填するための充填孔16bが筐体16の一部に設けられている。流体殺菌装置10を使用する場合、はじめに充填孔16bから反射抑制物質18を筐体16内部に充填し、充填孔16bを封止した後、処理流路12に殺菌対象である流体を流入させる。 When the reflection inhibitor 18 is a liquid, the space inside the housing 16 can be easily filled, and the surface of the processing flow path 12 can be reliably covered. Further, since the reflection inhibitor 18 is constantly irradiated with ultraviolet rays emitted from the light source 14, the growth of bacteria is suppressed without replacement. In the fluid sterilizer 10 according to the present embodiment, a filling hole 16b for filling the reflection inhibitor 18 is provided in a part of the housing 16. When the fluid sterilizer 10 is used, the reflection inhibitor 18 is first filled inside the housing 16 through the filling holes 16b, the filling holes 16b are sealed, and then the fluid to be sterilized flows into the processing flow path 12.

光源14は、中心波長またはピーク波長が200nm〜350nmの範囲に含まれる紫外線を発する半導体発光素子である。本実施の形態に係る光源14は、紫外線を発するLED(Light Emitting Diode)であり、殺菌効率の高い波長である260nm〜290nm付近の紫外線を発することが好ましい。このような紫外線LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。これにより、紫外線を発する光源の大きさをコンパクトにでき、配置の自由度が増す。 The light source 14 is a semiconductor light emitting device that emits ultraviolet rays whose center wavelength or peak wavelength is in the range of 200 nm to 350 nm. The light source 14 according to the present embodiment is an LED (Light Emitting Diode) that emits ultraviolet rays, and preferably emits ultraviolet rays in the vicinity of 260 nm to 290 nm, which is a wavelength having high sterilization efficiency. As such an ultraviolet LED, for example, one using aluminum gallium nitride (AlGaN) is known. As a result, the size of the light source that emits ultraviolet rays can be made compact, and the degree of freedom of arrangement is increased.

(第2の実施の形態)
図3は、第2の実施の形態に係る流体殺菌装置30の概略構成を示す断面図である。本実施の形態に係る流体殺菌装置30は、光源として紫外線ランプを用いている以外は、第1の実施の形態に係る流体殺菌装置10とほぼ同様の構成であり、同じ構成には同じ符号を付して説明を適宜省略する。
(Second Embodiment)
FIG. 3 is a cross-sectional view showing a schematic configuration of the fluid sterilizer 30 according to the second embodiment. The fluid sterilizer 30 according to the present embodiment has substantially the same configuration as the fluid sterilizer 10 according to the first embodiment except that an ultraviolet lamp is used as a light source, and the same configuration has the same reference numerals. The description will be omitted as appropriate.

流体殺菌装置30は、らせん状に形成されている処理流路12の中心部分を貫通するように直管状の紫外線ランプ32が配置されている。紫外線ランプ32から出射した紫外線は、反射抑制物質18を介して処理流路12に入射するため、処理流路12表面での反射が抑制される。 In the fluid sterilizer 30, a straight tubular ultraviolet lamp 32 is arranged so as to penetrate the central portion of the spirally formed processing flow path 12. Since the ultraviolet rays emitted from the ultraviolet lamp 32 enter the processing flow path 12 via the reflection suppressing substance 18, the reflection on the surface of the processing flow path 12 is suppressed.

以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 Although the present invention has been described above with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or substituted. Those are also included in the present invention. Further, it is also possible to appropriately rearrange the combinations and the order of processing in each embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiments. Additional embodiments may also be included within the scope of the invention.

上述の第1の実施の形態では、筐体の流出路側の端部近傍に光源を設けているが、筐体の流入路側の端部近傍に光源を設けてもよい。また、筐体の流出路側の端部近傍および筐体の流入路側の端部近傍の両方に光源を設けてもよい。 In the above-described first embodiment, the light source is provided near the end on the outflow path side of the housing, but the light source may be provided near the end on the inflow path side of the housing. Further, the light source may be provided both near the end of the housing on the outflow path side and near the end of the housing on the inflow path side.

10 流体殺菌装置、 12 処理流路、 14 光源、 16 筐体、 16a 内周面、 17 窓部、 18 反射抑制物質、 20 流入路、 22 流出路。 10 Fluid sterilizer, 12 Treatment flow path, 14 Light source, 16 Housing, 16a Inner peripheral surface, 17 Window, 18 Reflection inhibitor, 20 Inflow path, 22 Outflow path.

Claims (8)

通過する流体が殺菌処理される処理流路と、
前記処理流路に向かって紫外線を照射する光源と、
前記処理流路を収容する筐体と、
前記処理流路の周囲に満たされた、前記処理流路に入射する紫外線の反射を抑制する反射抑制物質と、を備え、
前記処理流路は、紫外線を透過させる透過部材で構成されており、
前記反射抑制物質は、空気より屈折率が高く、
前記反射抑制物質が満たされる空間は、前記筐体の外部および前記処理流路に対して水密構造になっていることを特徴とする流体殺菌装置。
A processing flow path in which the passing fluid is sterilized, and
A light source that irradiates ultraviolet rays toward the processing flow path,
A housing for accommodating the processing flow path and
A reflection-suppressing substance that suppresses the reflection of ultraviolet rays incident on the treatment flow path, which is filled around the treatment flow path, is provided.
The processing flow path is composed of a transmissive member that transmits ultraviolet rays.
The antireflection substance has a higher refractive index than air and has a higher refractive index.
A fluid sterilizer characterized in that the space filled with the antireflection substance has a watertight structure with respect to the outside of the housing and the treatment flow path.
通過する流体が殺菌処理される処理流路と、A processing flow path in which the passing fluid is sterilized, and
前記処理流路に向かって紫外線を照射する光源と、A light source that irradiates ultraviolet rays toward the processing flow path,
前記処理流路を収容する筐体と、A housing for accommodating the processing flow path and
前記処理流路の周囲に満たされた、前記処理流路に入射する紫外線の反射を抑制する反射抑制物質と、を備え、A reflection-suppressing substance that suppresses the reflection of ultraviolet rays incident on the treatment flow path, which is filled around the treatment flow path, is provided.
前記光源は、前記筐体の長手方向の端部に設けられ、The light source is provided at the longitudinal end of the housing and is provided.
前記処理流路は、紫外線を透過させる透過部材で構成されており、The processing flow path is composed of a transmissive member that transmits ultraviolet rays.
前記反射抑制物質は、空気より屈折率が高く、The antireflection substance has a higher refractive index than air and has a higher refractive index.
前記反射抑制物質が満たされる空間は、前記筐体の外部に対して水密構造になっていることを特徴とする流体殺菌装置。A fluid sterilizer characterized in that the space filled with the antireflection substance has a watertight structure with respect to the outside of the housing.
前記筐体は、流体が前記処理流路に流入する流入路および流体が前記処理流路から流出する流出路を有しており、
前記処理流路は、前記流入路および前記流出路を非直線的に連通することを特徴とする請求項1または2に記載の流体殺菌装置。
The housing has an inflow path through which the fluid flows into the processing flow path and an outflow path through which the fluid flows out from the processing flow path.
The fluid sterilizer according to claim 1 or 2 , wherein the treatment flow path communicates the inflow path and the outflow path in a non-linear manner.
前記流入路は、前記筐体の外周面であって、該筐体の長手方向に対して交差する向きに形成されていることを特徴とする請求項に記載の流体殺菌装置。 The fluid sterilizer according to claim 3 , wherein the inflow path is an outer peripheral surface of the housing and is formed in a direction intersecting the longitudinal direction of the housing. 前記処理流路は、らせん状に形成されていることを特徴とする請求項1乃至のいずれか1項に記載の流体殺菌装置。 The fluid sterilizer according to any one of claims 1 to 4 , wherein the treatment flow path is formed in a spiral shape. 前記透過部材は、非晶質のフッ素樹脂または無機材料で構成されていることを特徴とする請求項1乃至のいずれか1項に記載の流体殺菌装置。 The fluid sterilizer according to any one of claims 1 to 5 , wherein the permeation member is made of an amorphous fluororesin or an inorganic material. 前記反射抑制物質は、屈折率が1.3以上の液体であることを特徴とする請求項1乃至のいずれか1項に記載の流体殺菌装置。 The fluid sterilizer according to any one of claims 1 to 6 , wherein the antireflection substance is a liquid having a refractive index of 1.3 or more. 前記光源は、中心波長またはピーク波長が200nm〜350nmの範囲に含まれる紫外線を発する半導体発光素子であることを特徴とする請求項1乃至のいずれか1項に記載の流体殺菌装置。 The fluid sterilizer according to any one of claims 1 to 7 , wherein the light source is a semiconductor light emitting device that emits ultraviolet rays having a center wavelength or a peak wavelength in the range of 200 nm to 350 nm.
JP2017136463A 2017-07-12 2017-07-12 Fluid sterilizer Active JP6936644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017136463A JP6936644B2 (en) 2017-07-12 2017-07-12 Fluid sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136463A JP6936644B2 (en) 2017-07-12 2017-07-12 Fluid sterilizer

Publications (2)

Publication Number Publication Date
JP2019017496A JP2019017496A (en) 2019-02-07
JP6936644B2 true JP6936644B2 (en) 2021-09-22

Family

ID=65352577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136463A Active JP6936644B2 (en) 2017-07-12 2017-07-12 Fluid sterilizer

Country Status (1)

Country Link
JP (1) JP6936644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314743A (en) * 2020-10-10 2022-04-12 崑山科技大学 Fluid sterilization and disinfection equipment
CN114656008A (en) * 2022-04-21 2022-06-24 山东博艺节能科技有限公司 Sterilizing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551294U (en) * 1978-09-30 1980-04-04
JPS6179461A (en) * 1984-09-27 1986-04-23 田端 覚 Liquid sterilization method and apparatus
DE3828026A1 (en) * 1988-08-18 1990-02-22 Franz Boehnensieker Device for the hygienic processing of liquids
US7993528B2 (en) * 2007-04-25 2011-08-09 Necamp David Richard Method and apparatus for treating materials using electrodeless lamps
US20080305018A1 (en) * 2007-06-11 2008-12-11 Albonia Innovative Technologies Ltd. Photosterilization Reactor
KR20080039355A (en) * 2008-03-14 2008-05-07 주식회사기영미다스 Using uv-led water faucet sterilizer with standalone small size generator
GB0918824D0 (en) * 2009-10-27 2009-12-09 Waterlogic Internat Ltd Water purification
KR101269438B1 (en) * 2011-07-12 2013-05-30 아이닉스 주식회사 Device for clean water
WO2015046014A1 (en) * 2013-09-24 2015-04-02 旭有機材工業株式会社 Ultraviolet sterilization device
US9499415B2 (en) * 2014-08-14 2016-11-22 Chiyoda Kohan Co., Ltd Ultraviolet irradiation apparatus

Also Published As

Publication number Publication date
JP2019017496A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6419760B2 (en) Ultraviolet light sterilizer
KR102182402B1 (en) Fluid sterilization device
US20180140729A1 (en) Sterilization device
WO2017056902A1 (en) Irradiation device and fluid sterilization method
JP6675287B2 (en) Fluid sterilizer
WO2017051774A1 (en) Fluid sterilization device
WO2017064950A1 (en) Fluid sterilization device and fluid sterilization method
JP6698496B2 (en) UV light irradiation device
JP6936644B2 (en) Fluid sterilizer
JP6559577B2 (en) Fluid sterilization apparatus and fluid sterilization method
JP2018148938A (en) Fluid sterilizer
JPWO2019151364A1 (en) UV sterilization tube and UV sterilizer
JP2018034020A (en) Ultraviolet sterilization device
JP2019005382A (en) Fluid sterilizer
WO2017038764A1 (en) Sterilization device
JP2019154885A (en) Fluid sterilizer
WO2018037938A1 (en) Running water sterilization device and running water sterilization method
JP7071144B2 (en) UV sterilizer and UV irradiation device
JP7017902B2 (en) Fluid sterilizer
JP2017104830A (en) Fluid sterilizer
JP2022069596A (en) Irradiation device
JP2022103883A (en) Sterilizer
JP2018064772A (en) Liquid sterilizer
JP2020044272A (en) Fluid sterilizer
WO2020183767A1 (en) Ultraviolet sterilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210609

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210827

R150 Certificate of patent or registration of utility model

Ref document number: 6936644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250