JP5719913B2 - UV irradiation equipment - Google Patents

UV irradiation equipment Download PDF

Info

Publication number
JP5719913B2
JP5719913B2 JP2013250626A JP2013250626A JP5719913B2 JP 5719913 B2 JP5719913 B2 JP 5719913B2 JP 2013250626 A JP2013250626 A JP 2013250626A JP 2013250626 A JP2013250626 A JP 2013250626A JP 5719913 B2 JP5719913 B2 JP 5719913B2
Authority
JP
Japan
Prior art keywords
protective tube
ultraviolet
lamp
tube
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013250626A
Other languages
Japanese (ja)
Other versions
JP2014057964A (en
Inventor
出口 憲一郎
憲一郎 出口
山口 智
智 山口
藤井 隆
隆 藤井
猛 小藤田
猛 小藤田
壽之 加々良
壽之 加々良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Chiyoda Kohan Co Ltd
Original Assignee
Chukoh Chemical Industries Ltd
Chiyoda Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd, Chiyoda Kohan Co Ltd filed Critical Chukoh Chemical Industries Ltd
Priority to JP2013250626A priority Critical patent/JP5719913B2/en
Publication of JP2014057964A publication Critical patent/JP2014057964A/en
Application granted granted Critical
Publication of JP5719913B2 publication Critical patent/JP5719913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は紫外線照射装置に関し、特に紫外線ランプが内挿された保護管を備えた紫外線照射装置に関する。   The present invention relates to an ultraviolet irradiation device, and more particularly to an ultraviolet irradiation device including a protective tube in which an ultraviolet lamp is inserted.

従来、紫外線を水等の被処理水に照射して被処理水中の微生物の殺滅、有機物の酸化分解、その他の有毒物質の分解などを行う紫外線照射装置が知られている。この紫外線照射装置の具体例としては、例えば特許文献1,特許文献2,特許文献3が知られている。   2. Description of the Related Art Conventionally, there are known ultraviolet irradiation apparatuses that irradiate water to be treated such as water to kill microorganisms, oxidatively decompose organic substances, and decompose other toxic substances. For example, Patent Document 1, Patent Document 2, and Patent Document 3 are known as specific examples of this ultraviolet irradiation device.

特許文献1は、紫外線ランプと、この紫外線ランプが挿入された紫外線透過性のガラス管と、このガラス管を被覆するふっ素樹脂膜と、ガラス管とふっ素樹脂膜と接合する,前記ガラス管を構成する分子と前記ふっ素樹脂膜を構成する分子とが化学結合した化学結合層とを備えた紫外線照射装置を開示している。   Patent Document 1 constitutes the glass tube, an ultraviolet ray lamp, an ultraviolet ray transmissive glass tube in which the ultraviolet ray lamp is inserted, a fluorine resin film covering the glass tube, and the glass tube and the fluorine resin film joined together. An ultraviolet irradiation device including a chemical bonding layer in which molecules to be bonded and molecules constituting the fluororesin film are chemically bonded is disclosed.

特許文献2は、光照射ランプを内蔵した投光管を処理筒内に挿填して、液体中の細菌の殺菌等の光照射を行う際に投光管の外部に設けた回転ネジ軸を正転及び逆転させて、回転ネジ軸に螺動可能に装填しているクリーニング体を投光管に沿って反復移動させて、投光管に付着するスケールを剥離等する光照射装置であり、投光管にふっ素樹脂又はふっ素膜が被覆されている光照射装置を開示している。   Patent Document 2 discloses a rotating screw shaft provided outside a light projecting tube when a light projecting tube incorporating a light irradiation lamp is inserted into a processing cylinder and light irradiation such as sterilization of bacteria in a liquid is performed. It is a light irradiating device that reversibly moves the cleaning body that is forwardly and reversely rotated so as to be able to be screwed to the rotating screw shaft along the light projecting tube, and peels off the scale attached to the light projecting tube, A light irradiation apparatus is disclosed in which a light projecting tube is coated with a fluorine resin or a fluorine film.

特許文献3は、殺菌ランプを使用して水の殺菌を行う装置において、紫外線透過ガラスと水とが接触するガラス表面を紫外線透過性防汚塗料でコーティングすることを特徴とする紫外線殺菌装置を開示している。   Patent Document 3 discloses an ultraviolet sterilization apparatus characterized in that, in an apparatus for sterilizing water using a sterilization lamp, the glass surface in contact with ultraviolet transmissive glass and water is coated with an ultraviolet permeable antifouling paint. doing.

特開2004−249239号公報JP 2004-249239 A 特開平10−249334号公報JP-A-10-249334 特開平2−218491号公報JP-A-2-218491

しかしながら、上述した装置では、ガラス管又は投光管の外表面に被処理液の微生物、有機物質等のその他の汚物が付着すると、紫外線の照射が妨げられるため、所望の能力が得られないという課題があった。そこで、こうした課題を解決するためにガラス管又は投光管にふっ素樹脂チューブを被覆する方法が試みられている。しかし、この場合、ガラス管の内面,ガラス管の外面,ふっ素樹脂チューブの内面及びふっ素樹脂チューブの外面の4つの境界面が存在することになるため、正反射が増加することになり、紫外線の照射量が大幅に低下するという新たな課題があった。   However, in the above-described apparatus, when other filth such as microorganisms or organic substances in the liquid to be treated adheres to the outer surface of the glass tube or the floodlight tube, irradiation with ultraviolet rays is hindered, so that the desired performance cannot be obtained. There was a problem. In order to solve these problems, a method of coating a fluororesin tube on a glass tube or a floodlight tube has been attempted. However, in this case, since there are four boundary surfaces of the inner surface of the glass tube, the outer surface of the glass tube, the inner surface of the fluororesin tube, and the outer surface of the fluororesin tube, regular reflection increases, There was a new problem that the amount of irradiation decreased significantly.

本発明はこうした事情を考慮してなされたもので、ふっ素樹脂膜と接する保護管の内面及び外面の少なくともいずれか一方の面に凹凸面を形成することにより、紫外線の照射量の低下を抑制しつつ、被処理液の微生物の殺滅、有機物の酸化分解、その他の有毒物質の分解などをなし得る紫外線照射装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and by forming a concavo-convex surface on at least one of the inner surface and the outer surface of the protective tube in contact with the fluororesin film, it is possible to suppress a decrease in the amount of ultraviolet irradiation. On the other hand, an object of the present invention is to provide an ultraviolet irradiation apparatus capable of killing microorganisms in a liquid to be treated, oxidative decomposition of organic substances, decomposition of other toxic substances, and the like.

本発明に係る紫外線照射装置は、被処理液の流入口及び流出口が設けられた容器と、この容器内に配置され,紫外線透過性を有する保護管と、この保護管内の挿入された紫外線ランプと、前記保護管の内面,外面の少なくともいずれか一方に被覆されたふっ素樹脂膜とを具備し、前記ふっ素樹脂膜と接する前記保護管の面が凹凸面であることを特徴とする。   An ultraviolet irradiation apparatus according to the present invention includes a container provided with an inlet and an outlet for a liquid to be treated, a protective tube disposed in the container and having ultraviolet transparency, and an ultraviolet lamp inserted into the protective tube. And a fluororesin film coated on at least one of the inner and outer surfaces of the protective tube, and the surface of the protective tube in contact with the fluororesin film is an uneven surface.

また、本発明によれば、被処理液の流入口及び流出口が設けられた容器と、この容器内に配置され,紫外線透過性を有する保護管と、この保護管内挿入された紫外線ランプと、前記保護管の内面,外面の少なくともいずれか一方に被覆されたふっ素樹脂膜とを具備し、前記ふっ素樹脂膜と接する前記保護管の面が、サンドブラスト処理,ケミカルエッチング処理,プラズマ処理,旋盤による切削加工のいずれかにより形成された、十点平均粗さが15.3μm以上23.2μm以下の凹凸面であることを特徴とする紫外線照射装置が提供される。 Further, according to the present invention, a container provided with an inlet and an outlet for the liquid to be treated, a protective tube disposed in the container and having ultraviolet transparency, and an ultraviolet lamp inserted into the protective tube , And a fluorine resin film coated on at least one of the inner surface and the outer surface of the protective tube, and the surface of the protective tube in contact with the fluorine resin film is formed by sandblasting, chemical etching, plasma processing, lathe There is provided an ultraviolet irradiation apparatus characterized in that the ten-point average roughness is an uneven surface having a surface roughness of 15.3 μm or more and 23.2 μm or less formed by any of the cutting processes.

本発明によれば、紫外線の照射量の低下を抑制しつつ、被処理液の微生物の殺滅、有機物の酸化分解、その他の有毒物質の分解などをなし得る紫外線照射装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the ultraviolet irradiation device which can do the killing of the microorganisms of a to-be-processed liquid, the oxidative decomposition of organic substance, decomposition | disassembly of other toxic substances, etc. can be provided, suppressing the fall of the irradiation amount of an ultraviolet-ray.

図1は、本発明の実施形態に係る紫外線照射装置の全体を示す概略図である。FIG. 1 is a schematic diagram showing an entire ultraviolet irradiation apparatus according to an embodiment of the present invention. 図2は、図1の要部を部分的に拡大して示す断面図である。FIG. 2 is a cross-sectional view showing a main part of FIG. 1 partially enlarged. 図3は、本発明にかかる紫外線照射装置及び比較品である紫外線照射装置を用いて通水による水中残留塩素の分解試験を行う場合の試験装置の概略説明図である。FIG. 3 is a schematic explanatory diagram of a test apparatus when performing a decomposition test of residual chlorine in water by passing water using the ultraviolet irradiation apparatus according to the present invention and a comparative ultraviolet irradiation apparatus. 図4は、図3の試験装置による理論装置内滞留時間の特性図である。FIG. 4 is a characteristic diagram of the residence time in the theoretical apparatus by the test apparatus of FIG. 図5は、石英製ガラス層とふっ素樹脂層との界面における反射光と拡散透過光との関係を示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between reflected light and diffused transmitted light at the interface between the quartz glass layer and the fluororesin layer. 図6は、石英製ガラス層に形成された凹凸面の凸部の山が小さい場合及び大きい場合において紫外線による拡散透過光の状態を示す説明図である。FIG. 6 is an explanatory diagram showing the state of diffusely transmitted light by ultraviolet rays when the crests of the concavo-convex surface formed on the quartz glass layer are small and large. 図7は、図6(B)の部分拡大図である。FIG. 7 is a partially enlarged view of FIG. 図8は、石英製ガラス層に形成された凹凸面の筒部の山の角度が広い場合の紫外線による反射光と拡散透過光の状態を示す説明図である。FIG. 8 is an explanatory diagram showing a state of reflected light and diffused transmitted light by ultraviolet rays when the angle of the crest of the cylindrical portion of the concavo-convex surface formed on the quartz glass layer is wide.

以下、本発明の紫外線照射装置について更に詳しく説明する。
(1) 本発明に係る紫外線照射装置は、上述したように、容器と、紫外線透過性を有する保護管と、この保護管内の紫外線ランプと、保護管の内面,外面の少なくともいずれか一方に被覆されたふっ素樹脂膜とを具備し、ふっ素樹脂膜と接する前記保護管の面が凹凸面であることを特徴とする。
Hereinafter, the ultraviolet irradiation device of the present invention will be described in more detail.
(1) The ultraviolet irradiation device according to the present invention, as described above, covers a container, a protective tube having ultraviolet transparency, an ultraviolet lamp in the protective tube, and at least one of an inner surface and an outer surface of the protective tube. And a surface of the protective tube in contact with the fluororesin film is an uneven surface.

(2) 上記(1)の紫外線照射装置において、保護管の凹凸面が十点平均粗さ23.2μm以下に粗面化処理されていることが好ましい。これにより、紫外線ランプから照射された紫外線が保護管とふっ素樹脂膜との境界での紫外線透過の減少を抑制することができる。なお、凹凸面が十点平均粗さ23.2μmを超えると、紫外線透過の減少を十分抑制することができない。   (2) In the ultraviolet irradiation device of the above (1), it is preferable that the concavo-convex surface of the protective tube is roughened to a 10-point average roughness of 23.2 μm or less. Thereby, it is possible to suppress a decrease in the transmission of ultraviolet rays at the boundary between the protective tube and the fluororesin film by the ultraviolet rays irradiated from the ultraviolet lamp. In addition, if the uneven surface exceeds the 10-point average roughness of 23.2 μm, it is not possible to sufficiently suppress the decrease in ultraviolet transmission.

(3) 上記(2)の凹凸面は、例えばサンドブラスト処理,ケミカルエッチング処理,プラズマ処理旋盤による切削加工のいずれかにより形成することができる。ここで、サンドブラスト処理とは、アルミナを圧搾空気によって散布することによって施される。ケミカルエッチング処理は、フッ化アンモニウムを塗布して表面を腐食させることによって施される。プラズマ処理は、プラズマ中で発生するイオン,ラジカルなどによってエッチングすることにより施される。   (3) The concavo-convex surface of the above (2) can be formed by any one of, for example, sand blasting, chemical etching, or cutting using a plasma processing lathe. Here, the sandblast treatment is performed by spraying alumina with compressed air. The chemical etching process is performed by applying ammonium fluoride to corrode the surface. The plasma treatment is performed by etching with ions, radicals, etc. generated in the plasma.

ここで、保護管とふっ素樹脂膜の界面での光の正反射及び拡散透過光について、図5、図6(A),(B)、図7及び図8を参照して説明する。なお、図7は図6(B)を拡大して示す説明図である。図5に示すように、一般に、紫外線1が保護管(石英ガラス層)2とふっ素樹脂層3の界面Sに達すると、反射光4は正反射し、拡散透過光5は外側に向って拡散する。この場合、反射光4は正反射によって紫外線ランプに戻ることによる損失が大きい。   Here, regular reflection and diffuse transmission of light at the interface between the protective tube and the fluororesin film will be described with reference to FIGS. 5, 6 </ b> A, 6 </ b> B, 7, and 8. FIG. 7 is an explanatory diagram showing an enlargement of FIG. As shown in FIG. 5, generally, when the ultraviolet light 1 reaches the interface S between the protective tube (quartz glass layer) 2 and the fluororesin layer 3, the reflected light 4 is regularly reflected and the diffuse transmitted light 5 is diffused outward. To do. In this case, the reflected light 4 has a large loss due to returning to the ultraviolet lamp by regular reflection.

図6(A),(B)の場合は、夫々凹凸面の表面粗さが粗い場合(前者),細かい場合(後者)を示す。前者の場合、石英ガラス層2とふっ素樹脂層3との界面Sにおける反射光6は、ガラス層の先端に向って反射を繰り返すため、ランプ側に戻る損失分は無い。しかし、石英ガラス層2の凹凸が大きいため、反射回数が多くなって光路長が長くなるため、石英ガラス層2による吸収損失分がある。   6A and 6B show a case where the surface roughness of the uneven surface is rough (the former) and a case where the surface roughness is fine (the latter), respectively. In the former case, the reflected light 6 at the interface S between the quartz glass layer 2 and the fluororesin layer 3 is repeatedly reflected toward the tip of the glass layer, so there is no loss returning to the lamp side. However, since the irregularity of the quartz glass layer 2 is large, the number of reflections increases and the optical path length becomes long, so there is an absorption loss due to the quartz glass layer 2.

一方、後者の場合、前者と同様にランプ側に戻る損失分は無いが、石英ガラス層2の凹凸が図6(B)及び図7に示すように小さく幅も狭いため、反射回数が少なくなって光路長が短くなるため、石英ガラス層2による吸収損失分も小さい。具体的には、全反射、又は正反射と拡散透過の複合のいずれの場合も、石英ガラスの凹凸の山の先端に向って反射を繰り返し、先端に近づくにつれて反射光6の入射角が小さくなる。従って、いずれ正反射と拡散透過の複合となり、反射回数が多いことによって拡散透過光の総和量が増える。   On the other hand, in the latter case, there is no loss returning to the lamp side as in the former case, but the unevenness of the quartz glass layer 2 is small and narrow as shown in FIGS. Since the optical path length is shortened, the absorption loss due to the quartz glass layer 2 is also small. Specifically, in any case of total reflection or a combination of regular reflection and diffuse transmission, reflection is repeated toward the tip of the concave and convex peaks of the quartz glass, and the incident angle of the reflected light 6 decreases as the tip approaches. . Therefore, the regular reflection and the diffuse transmission are eventually combined, and the total amount of the diffuse transmitted light increases due to the large number of reflections.

なお、図8のように、石英ガラス層2の凹凸の凸部の先端角度が広い場合、比較的少ない反射回数でランプ方向へと反射してしまうため、十分な拡散透過光の総和量を得ることができない(即ち、反射損失が大きくなる)。
図5〜図8より石英ガラス層に形成される凹凸面は、凹凸面の凸部の角度が鋭角でかつ高さが低い方が好ましい。具体的には、上記(2)のように、凹凸面が十点平均粗さ23.2μm以下に粗面化処理されていることが好ましい。
In addition, as shown in FIG. 8, when the tip angle of the convex and concave portions of the quartz glass layer 2 is wide, the reflection is reflected in the lamp direction with a relatively small number of reflections, so that a sufficient total amount of diffuse transmitted light is obtained. (That is, the reflection loss increases).
From FIG. 5 to FIG. 8, it is preferable that the uneven surface formed on the quartz glass layer has an acute angle and a low height. Specifically, as described in (2) above, it is preferable that the concavo-convex surface is roughened to a 10-point average roughness of 23.2 μm or less.

(4) 上記(1)において、保護管は石英ガラス製であり、ふっ素樹脂膜は四ふっ化エチレン−六ふっ化プロピレン共重合樹脂製であることが好ましい。これにより、例えば被処理液が水を主体とする流体である場合、水に接する媒質の屈折率を水に比較的近づけることができる。従って、水の境界面における臨界角を大きくできるので、その分だけ大きな入射角で紫外線を照射、つまり広い範囲で紫外線を照射できるから紫外線照射量を増やすことができる。
(5) 上記(1)において、ふっ素樹脂膜の結晶化度は40〜50%であることが好ましい。ここで、結晶化度がこれ以上大きいと、成膜性が悪くなる。
(4) In the above (1), the protective tube is preferably made of quartz glass, and the fluororesin film is preferably made of tetrafluoroethylene-hexafluoropropylene copolymer resin. Thereby, for example, when the liquid to be treated is a fluid mainly composed of water, the refractive index of the medium in contact with water can be made relatively close to that of water. Therefore, since the critical angle at the boundary surface of water can be increased, ultraviolet rays can be irradiated with a correspondingly large incident angle, that is, ultraviolet rays can be irradiated in a wide range, so that the amount of ultraviolet irradiation can be increased.
(5) In the above (1), the degree of crystallinity of the fluororesin film is preferably 40 to 50%. Here, when the degree of crystallinity is larger than this, the film formability deteriorates.

次に、本発明の実施形態について図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(実施形態)
本発明に係る紫外線照射装置について図1及び図2(A),(B)を参照して説明する。ここで、図1は本発明の実施形態に係る紫外線照射装置の全体を示す概略図である。図2は図1の要部を部分的に拡大して示す断面図であり、図2(A)は図1の横断面図、図2(B)は図2(A)の保護管及びふっ素樹脂膜の境界部を拡大して示す断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the following description.
(Embodiment)
An ultraviolet irradiation apparatus according to the present invention will be described with reference to FIGS. 1 and 2A and 2B. Here, FIG. 1 is a schematic view showing the entire ultraviolet irradiation apparatus according to the embodiment of the present invention. 2 is a partially enlarged cross-sectional view of the main part of FIG. 1, FIG. 2 (A) is a cross-sectional view of FIG. 1, and FIG. 2 (B) is a protective tube and fluorine of FIG. 2 (A). It is sectional drawing which expands and shows the boundary part of a resin film.

図中の符番11は筒状体であり、底板12及び上板13と共に円筒状容器14を構成している。筒状体11の下部には被処理液例えば水の流入口15が設けられ、筒状体11の上部には水の流出口16が設けられている。円筒状容器11内には、該容器11の軸方向に沿って紫外線を透過する石英製の保護管17が配置されている。保護管17は、底板12及び上板13を貫通するように配置されている。   A reference numeral 11 in the drawing is a cylindrical body, and constitutes a cylindrical container 14 together with a bottom plate 12 and an upper plate 13. An inlet 15 of the liquid to be treated, for example, water is provided at the lower part of the cylindrical body 11, and an outlet 16 of the water is provided at the upper part of the cylindrical body 11. A quartz protective tube 17 that transmits ultraviolet rays is disposed in the cylindrical container 11 along the axial direction of the container 11. The protective tube 17 is disposed so as to penetrate the bottom plate 12 and the top plate 13.

保護管17の外側の面は、サンドブラスト処理により図2(B)に示すように凹凸面18が形成されている。保護管17の凹凸面18には、ふっ素樹脂膜としての厚さ150μmの四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP)膜19が被覆されている。保護管17内には、紫外線ランプ20が挿入されている。この紫外線ランプ20と図示しない電源とはケーブル21により接続されている。前記円筒状容器11の上部にはカバー22が取付けられている。なお、紫外線ランプ20からの紫外線が保護管17とFEP膜19との境界に達すると、図2(A)のように、内側に向って正反射光23が発生するとともに外側に向って拡散透過光24が放射される。   As shown in FIG. 2 (B), an uneven surface 18 is formed on the outer surface of the protective tube 17 by sandblasting. The uneven surface 18 of the protective tube 17 is coated with a 150 μm thick tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) film 19 as a fluororesin film. An ultraviolet lamp 20 is inserted in the protective tube 17. The ultraviolet lamp 20 and a power source (not shown) are connected by a cable 21. A cover 22 is attached to the upper part of the cylindrical container 11. When the ultraviolet rays from the ultraviolet lamp 20 reach the boundary between the protective tube 17 and the FEP film 19, regular reflected light 23 is generated inward and diffused and transmitted outward as shown in FIG. Light 24 is emitted.

上述したように、本実施形態に係る紫外線照射装置は、円筒状容器14と、紫外線透過性を有する石英製の保護管17と、この保護管17内の紫外線ランプ20と、保護管17の外面に被覆されたFEP膜19とを具備し、FEP膜19と接する保護管17の外面がサンドブラスト処理で十点平均粗さ23.2μm以下の凹凸面18である構成となっている。従って、保護管17とFEP膜19の境界での紫外線ランプ20からの紫外線の反射光は、凹凸面18の先端に向って反射を繰り返すため、先端に近づくにつれた反射光の入射角が小さくなり、いずれ正反射と拡散透過の複合となり、反射回数が多いことによって拡散透過光23の総和量が増える。   As described above, the ultraviolet irradiation device according to the present embodiment includes the cylindrical container 14, the protective tube 17 made of quartz having ultraviolet transparency, the ultraviolet lamp 20 in the protective tube 17, and the outer surface of the protective tube 17. The outer surface of the protective tube 17 in contact with the FEP film 19 is a concavo-convex surface 18 having a ten-point average roughness of 23.2 μm or less by sandblasting. Therefore, the reflected light of the ultraviolet rays from the ultraviolet lamp 20 at the boundary between the protective tube 17 and the FEP film 19 is repeatedly reflected toward the tip of the concavo-convex surface 18, so that the incident angle of the reflected light as approaching the tip is reduced. Eventually, it becomes a composite of regular reflection and diffuse transmission, and the total amount of diffuse transmitted light 23 increases as the number of reflections increases.

この理由は以下に述べるとおりである。即ち、ブラストスリーブの紫外線透過率は拡散透過光を含んでいるため、紫外線照度計による光学的測定では正確に測定することができない。そこで、水道水中の残留塩素分解率から紫外線透過率を算出した。水道水中の残留塩素の紫外線による分解反応は、一次反応速度式に従い、下記式(1)で表すことができる。
−(dC/dt)=φ×ε×C×反応槽内平均紫外線照度 …(1)
但し、φは残留塩素の量子収率、εは残留塩素のモル吸光係数、Cは処理水の残留塩素濃度である。
The reason for this is as described below. That is, since the ultraviolet transmittance of the blast sleeve includes diffuse transmitted light, it cannot be accurately measured by optical measurement using an ultraviolet illuminometer. Therefore, the ultraviolet transmittance was calculated from the residual chlorine decomposition rate in tap water. The decomposition reaction of residual chlorine in tap water by ultraviolet light can be expressed by the following equation (1) according to the first-order reaction rate equation.
− (DC / dt) = φ × ε × C × average ultraviolet illuminance in reaction tank (1)
Where φ is the quantum yield of residual chlorine, ε is the molar extinction coefficient of residual chlorine, and C is the residual chlorine concentration of the treated water.

紫外線透過率95%程度における残留塩素分解試験では、反応槽内平均紫外線照度は照射時間によらず、ほぼ一定とみなすことができるため、式(1)を積分した下記式(2)で表すことができる。
−log(C/C)=φ×ε×反応槽内平均紫外線照度×平均滞留時間 …(2)
但し、Cは原水の残留塩素濃度を示す。
In the residual chlorine decomposition test at an ultraviolet transmittance of about 95%, the average ultraviolet illuminance in the reaction tank can be regarded as almost constant regardless of the irradiation time, and therefore expressed by the following formula (2) obtained by integrating the formula (1). Can do.
-Log (C / C 0 ) = φ × ε × average ultraviolet illuminance in reaction tank × average residence time (2)
However, C 0 represents the concentration of residual chlorine in the raw water.

図4は、横軸の装置内平均滞留時間に対して縦軸に−log(C/C)をプロットしたものであり、反応速度定数kは直線の勾配として得られる。また、式(2)より反応速度定数kは、下記式(3)と表すことができる。
反応速度定数k[sec−1]=φ×ε×反応槽内平均紫外線照度 …(3)
なお、φ及びεは水質によって一定であり、ブラストスリーブの拡散光を含めた透過率が大きいほど反応槽内平均紫外線照度も大きくなるため、反応速度定数の比は各ブラストスリーブの紫外線透過率の比と一致する。分解試験は、図3の概略的なフロー図に沿って行う。また、上記残留塩素分解率は、FEPをコーティングしたランプスリーブ(φ30mm×長さ1050mm,両切)を用いて、紫外線透過性を塩素分解試験により確認した。
Figure 4 is a plot of -log (C / C 0) on the vertical axis with respect to the apparatus within the mean residence time of the horizontal axis, the reaction rate constant k is obtained as a slope of the line. Moreover, the reaction rate constant k can be represented by the following formula (3) from the formula (2).
Reaction rate constant k [sec −1 ] = φ × ε × average ultraviolet illuminance in reaction tank (3)
Note that φ and ε are constant depending on the water quality, and the average ultraviolet illuminance in the reaction vessel increases as the transmittance including the diffused light of the blast sleeve increases. Consistent with the ratio. The decomposition test is performed according to the schematic flow chart of FIG. The residual chlorine decomposition rate was confirmed by a chlorine decomposition test using a lamp sleeve (φ30 mm × length 1050 mm, both sides cut) coated with FEP.

即ち、紫外線照射装置(UEX−2)にFEPコーティングランプスリーブと、未コーティングスランプスリーブの夫々を装着させ、通水による水中残留塩素の分解試験を行った。図3において、タンク31には、ポンプ32,流量計33及び紫外線照射装置34が順次接続された構成となっている。このとき、紫外線ランプは1本のみの点灯とし、もう1本のスリーブには空間紫外線強度計を設置し、試験中の紫外線出力に異常がないことを確認した。空間紫外線強度計を設置するスリーブは未コーティング品とした。また、残留塩素の分解速度は水質によって異なるため、3mタンク満水に水道水を溜め、FEPコーティングランプスリーブと、未コーティングランプスリーブを用いた試験を同じタンクの水で実施した。試験条件は、使用装置:紫外線照射装置(千代田工販(株)製の商品名:UEX−2)(ランプ1本点灯),使用ランプ:FD−10.sc(商品名),使用安定器:千代田工販(株)製のUBE2100(商品名),流量:10〜18m/h(各試験につき3流量),水温:26℃とした。 That is, an FEP coated lamp sleeve and an uncoated slump sleeve were each attached to an ultraviolet irradiation device (UEX-2), and a decomposition test of residual chlorine in water by passing water was conducted. In FIG. 3, the tank 31 has a configuration in which a pump 32, a flow meter 33, and an ultraviolet irradiation device 34 are sequentially connected. At this time, only one UV lamp was turned on, and a space UV intensity meter was installed on the other sleeve, and it was confirmed that there was no abnormality in UV output during the test. The sleeve for installing the space ultraviolet intensity meter was uncoated. Furthermore, the degradation rate of the residual chlorine type differs for water quality, reservoir tap water 3m 3 tank full water was performed and FEP coated lamp sleeve, a test using uncoated lamp sleeve with water in the same tank. The test conditions were as follows: use device: ultraviolet irradiation device (trade name: UEX-2 manufactured by Chiyoda Kosaku Co., Ltd.) (one lamp lit), use lamp: FD-10. sc (trade name), ballast used: UBE2100 (trade name) manufactured by Chiyoda Corporation, flow rate: 10 to 18 m 3 / h (3 flow rates for each test), water temperature: 26 ° C.

図4は、各スリーブにおける理論装置内平均滞留時間と−log(C/C)(但し、C:流出口の残留塩素濃度、Cは流入口の残留塩素濃度との関係を示す特性図である。図4において、直線aは未コーティングランプスリーブの場合を示す。直線b,c,d,e,fは、夫々FEPコーティングランプスリーブでかつサンドブラスト処理後の表面粗さが十点平均粗さで24.6μm、23.2μm、17.1μm、16.4μm、15.3μmの場合を示す。 FIG. 4 is a characteristic diagram showing the relationship between the average residence time in the theoretical device and -log (C / C 0 ) (where C is the residual chlorine concentration at the outlet, and C 0 is the residual chlorine concentration at the inlet at each sleeve. 4, straight line a indicates the case of an uncoated lamp sleeve, and straight lines b, c, d, e, and f are FEP coated lamp sleeves, respectively, and the surface roughness after sandblasting is 10-point average roughness. Now, the cases of 24.6 μm, 23.2 μm, 17.1 μm, 16.4 μm, and 15.3 μm are shown.

事実、未処理(保護管の表面の処理なし)及びサンドブラスト処理した場合(十点平均粗さ:24.6μm、23.2μm、17.1μm、16.4μm、15.3μm)の表面粗さ、FEP膜の膜厚、残留塩素分解率、残留塩素分解反応速度定数、紫外線出力比、汚物付着性、及び殺菌効果について調べたところ、下記表1に示す結果が得られた。   In fact, the surface roughness when untreated (no treatment of the surface of the protective tube) and when sandblasted (ten-point average roughness: 24.6 μm, 23.2 μm, 17.1 μm, 16.4 μm, 15.3 μm), When the film thickness of the FEP film, the residual chlorine decomposition rate, the residual chlorine decomposition reaction rate constant, the ultraviolet light output ratio, the dirt adhesion, and the bactericidal effect were examined, the results shown in Table 1 below were obtained.

表1より、保護管の外径表面サンドブラストをしない(未処理)の場合は、汚物付着性が不良であった。また、十点平均粗さ:24.6μmでは、未処理の場合と比較して、残留塩素分解率、紫外線出力比、及び殺菌効果の点で未処理の場合と同じであるが、汚物付着性は良好な結果が得られた。しかし、十点平均粗さ:23.2μm以下の場合は、十点平均粗さが小さくなるにしたがって、残留塩素分解率、残留塩素分解反応速度定数、紫外線出力比、及び殺菌効果(log生残率)が大きくなり、かつ汚物付着性も良好な結果が得られた。   From Table 1, in the case where the outer diameter surface sandblasting of the protective tube was not performed (untreated), the dirt adhesion was poor. In addition, the 10-point average roughness: 24.6 μm is the same as the untreated case in terms of residual chlorine decomposition rate, ultraviolet light output ratio, and bactericidal effect as compared with the untreated case, but the adherence to filth. Good results were obtained. However, when the 10-point average roughness is 23.2 μm or less, as the 10-point average roughness decreases, the residual chlorine decomposition rate, the residual chlorine decomposition reaction rate constant, the UV output ratio, and the bactericidal effect (log survival) Rate) was increased, and favorable results were obtained for dirt adhesion.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態では、保護管の外面に凹凸面を形成したが、保護管の内面に凹凸面を形成しても良いし、保護管の外面及び内面の両方に凹凸面を形成してもよい。また、FEP膜の厚みも150μmに限らない。更に、凹凸面の形成もブラスト処理に限らない。
以下、本願の出願当初の特許請求の範囲に記載された発明を付記する。
[1] 被処理液の流入口及び流出口が設けられた容器と、この容器内に配置され,紫外線透過性を有する保護管と、この保護管内の挿入された紫外線ランプと、前記保護管の内面,外面の少なくともいずれか一方に被覆されたふっ素樹脂膜とを具備し、
前記ふっ素樹脂膜と接する前記保護管の面が、サンドブラスト処理,ケミカルエッチング処理,プラズマ処理,旋盤による切削加工のいずれかにより形成された凹凸面であることを特徴とする紫外線照射装置。
[2] 前記保護管の凹凸面は、十点平均粗さが23.2μm以下に粗面化処理されていることを特徴とする[1]記載の紫外線照射装置。
[3] 前記保護管は石英ガラス製であり、前記ふっ素樹脂膜は四ふっ化エチレン−六ふっ化プロピレン共重合樹脂製であることを特徴とする[1]乃至[2]いずれかに記載の紫外線照射装置。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, in the embodiment, the uneven surface is formed on the outer surface of the protective tube, but the uneven surface may be formed on the inner surface of the protective tube, or the uneven surface may be formed on both the outer surface and the inner surface of the protective tube. . Further, the thickness of the FEP film is not limited to 150 μm. Furthermore, the formation of the uneven surface is not limited to blasting.
Hereinafter, the invention described in the scope of claims at the beginning of the application of the present application will be added.
[1] A container provided with an inlet and an outlet for a liquid to be treated, a protective tube disposed in the container and having ultraviolet transparency, an ultraviolet lamp inserted in the protective tube, and the protective tube A fluororesin film coated on at least one of the inner surface and the outer surface;
The ultraviolet irradiation apparatus characterized in that the surface of the protective tube in contact with the fluororesin film is an uneven surface formed by any one of sandblasting, chemical etching, plasma processing, and cutting with a lathe.
[2] The ultraviolet irradiation device according to [1], wherein the uneven surface of the protective tube is roughened so that the ten-point average roughness is 23.2 μm or less.
[3] The protection tube according to any one of [1] to [2], wherein the protective tube is made of quartz glass, and the fluororesin film is made of a tetrafluoroethylene-hexafluoropropylene copolymer resin. UV irradiation device.

11…筒状体、12…底板、13…上板、14…円筒状容器、15…流入口、16…流出口、17…保護管、19…四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP)膜、20…紫外線ランプ、22…カバー、23…正反射光、24…拡散透過光、31…タンク、32…ポンプ、33…流量計、34…紫外線照射装置。   DESCRIPTION OF SYMBOLS 11 ... Cylindrical body, 12 ... Bottom plate, 13 ... Top plate, 14 ... Cylindrical container, 15 ... Inlet, 16 ... Outlet, 17 ... Protective tube, 19 ... Tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) film, 20 ... ultraviolet lamp, 22 ... cover, 23 ... regular reflection light, 24 ... diffuse transmission light, 31 ... tank, 32 ... pump, 33 ... flow meter, 34 ... ultraviolet irradiation device.

Claims (2)

被処理液の流入口及び流出口が設けられた容器と、この容器内に配置され,紫外線透過性を有する保護管と、この保護管内挿入された紫外線ランプと、前記保護管の内面,外面の少なくともいずれか一方に被覆されたふっ素樹脂膜とを具備し、
前記ふっ素樹脂膜と接する前記保護管の面が、サンドブラスト処理,ケミカルエッチング処理,プラズマ処理,旋盤による切削加工のいずれかにより形成された、十点平均粗さが15.3μm以上23.2μm以下の凹凸面であることを特徴とする紫外線照射装置。
A container inlet and outlet of the liquid to be treated is provided, disposed in the vessel, a protective tube having a UV transparent, and inserted ultraviolet lamp protective tube, the inner surface of the protective tube, the outer surface A fluororesin film coated on at least one of
The surface of the protective tube in contact with the fluororesin film is formed by any one of sand blasting, chemical etching, plasma processing, and cutting with a lathe and has a ten-point average roughness of 15.3 μm to 23.2 μm An ultraviolet irradiation device characterized by being an uneven surface.
前記保護管は石英ガラス製であり、前記ふっ素樹脂膜は四ふっ化エチレン−六ふっ化プロピレン共重合樹脂製であることを特徴とする請求項1記載の紫外線照射装置。 2. The ultraviolet irradiation device according to claim 1 , wherein the protective tube is made of quartz glass, and the fluororesin film is made of ethylene tetrafluoride-hexafluoropropylene copolymer resin.
JP2013250626A 2013-12-03 2013-12-03 UV irradiation equipment Active JP5719913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250626A JP5719913B2 (en) 2013-12-03 2013-12-03 UV irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250626A JP5719913B2 (en) 2013-12-03 2013-12-03 UV irradiation equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009200837A Division JP5537871B2 (en) 2009-08-31 2009-08-31 UV irradiation equipment

Publications (2)

Publication Number Publication Date
JP2014057964A JP2014057964A (en) 2014-04-03
JP5719913B2 true JP5719913B2 (en) 2015-05-20

Family

ID=50614941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250626A Active JP5719913B2 (en) 2013-12-03 2013-12-03 UV irradiation equipment

Country Status (1)

Country Link
JP (1) JP5719913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771399B2 (en) * 2017-02-02 2020-10-21 日機装株式会社 Irradiation device
CN107244708A (en) * 2017-07-28 2017-10-13 罗璐 The water treatment facilities of water supply network terminal based on S VDBD

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801720B2 (en) * 1996-03-14 2006-07-26 株式会社日本フォトサイエンス Ultraviolet irradiation device with scraper ring on light transmission tube
JP2007245154A (en) * 2007-06-04 2007-09-27 Chiyoda Kohan Co Ltd Ultraviolet irradiation device

Also Published As

Publication number Publication date
JP2014057964A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US10869943B2 (en) Treatment of fluid transport conduit with ultraviolet radiation
US10099944B2 (en) Ultraviolet transparent enclosure
JP5374697B2 (en) UV sterilization water purifier and UV LED unit used for it
CN105268386B (en) Ultraviolet transparent shell
US8872131B2 (en) Method and system for treating liquids by ultraviolet illumination
US20190142987A1 (en) Disinfection apparatus having submersible uv light devices
US20180244543A1 (en) Fluid sterilization device
JP2016531746A (en) Apparatus and method for liquid treatment with uniform dispersion of ultraviolet light
WO2019151364A1 (en) Ultraviolet sterilization tube and ultraviolet sterilization device
KR20210044314A (en) Method and system for preventing fouling of surfaces
JP5719913B2 (en) UV irradiation equipment
WO2020072339A1 (en) Uv-c wavelength radially emitting particle-enabled optical fibers for microbial disinfection
JP6355244B2 (en) UV irradiation equipment
US20140271353A1 (en) Toroidal-shaped treatment device for disinfecting a fluid such as air or water
US20090169442A1 (en) Anti-deposit coating on internal surfaces of an ultraviolet disinfection system
Zhao et al. Evanescent wave interactions with nanoparticles on optical fiber modulate side emission of germicidal ultraviolet light
JP5537871B2 (en) UV irradiation equipment
RU2019102214A (en) LIGHT GUIDES WITH A WEAKLY REFRACTIVE COATING FOR USE IN WATER
CA2999365A1 (en) Device for uv irradiation of a flowing medium
US20180334400A1 (en) Uv apparatus
JP2014076205A (en) Sterilizer
RU2395461C2 (en) Method of liquid decontamination by uv-radiation and device to this end
JP6258163B2 (en) Ultraviolet-transmissive window material having photocatalytic function and ultraviolet irradiation apparatus having the window material
JP2013034979A (en) Ultraviolet irradiation apparatus
JP2022069596A (en) Irradiation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250