JP2021007902A - Ultraviolet irradiation device and method for manufacturing ultraviolet irradiation device - Google Patents

Ultraviolet irradiation device and method for manufacturing ultraviolet irradiation device Download PDF

Info

Publication number
JP2021007902A
JP2021007902A JP2019121780A JP2019121780A JP2021007902A JP 2021007902 A JP2021007902 A JP 2021007902A JP 2019121780 A JP2019121780 A JP 2019121780A JP 2019121780 A JP2019121780 A JP 2019121780A JP 2021007902 A JP2021007902 A JP 2021007902A
Authority
JP
Japan
Prior art keywords
ultraviolet
irradiation device
processing chamber
ultraviolet irradiation
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019121780A
Other languages
Japanese (ja)
Other versions
JP7316117B2 (en
Inventor
篤史 兒玉
Atsushi Kodama
篤史 兒玉
聖 杉山
Sei Sugiyama
聖 杉山
直人 伊藤
Naoto Ito
直人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2019121780A priority Critical patent/JP7316117B2/en
Publication of JP2021007902A publication Critical patent/JP2021007902A/en
Application granted granted Critical
Publication of JP7316117B2 publication Critical patent/JP7316117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

To provide an ultraviolet irradiation device in which the sterilization performance is improved while the decrease in productivity is suppressed.SOLUTION: The ultraviolet irradiation device 1 includes a treatment chamber 21c and a light-emitting element 31 for irradiating ultraviolet toward the inside of the treatment chamber 21c, and in which the inner wall surface of the treatment chamber 21c has an ultraviolet reflection surface, and the root-mean-square wavelength of ultraviolet irradiated from the light-emitting element 31 with respect to the optical axis direction on the ultraviolet reflection surface is 1 μm or more and 70 μm or less. As a result, the reflection characteristics of the ultraviolet reflection surface can be improved, and consequently, the sterilization performance can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、紫外線照射装置及び紫外線照射装置の製造方法に関する。 The present invention relates to an ultraviolet irradiation device and a method for manufacturing an ultraviolet irradiation device.

従来、紫外線を用いて殺菌する際には、紫外線光源として水銀ランプやキセノンランプ等の管球が用いられている。また、近年、殺菌を行うことの可能な波長の光を照射することのできるLED(light emitting diode)が実用化されたことによって、紫外線光源として管球を用いた場合では実現できなかった装置構成が可能になっている。例えば、紫外線光源の光エネルギをより効果的に殺菌に用いるため、特許文献1及び特許文献2に示すように、管状の流路内壁面にフッ素樹脂を反射材として用いた構造が採用されている。 Conventionally, when sterilizing with ultraviolet rays, a tube such as a mercury lamp or a xenon lamp has been used as an ultraviolet light source. Further, in recent years, due to the practical application of an LED (light emitting diode) capable of irradiating light having a wavelength capable of sterilizing, a device configuration that could not be realized when a tube is used as an ultraviolet light source. Is possible. For example, in order to use the light energy of the ultraviolet light source for sterilization more effectively, as shown in Patent Document 1 and Patent Document 2, a structure using fluororesin as a reflective material on the inner wall surface of the tubular flow path is adopted. ..

特開2018−122262号公報Japanese Unexamined Patent Publication No. 2018-12262 特開2018−122263号公報Japanese Unexamined Patent Publication No. 2018-12263

しかしながら、本発明者らは、流路内壁面にフッ素樹脂を反射材として用いたとしても、反射材そのものの表面性状によって反射特性が変化し、そのため、流路内の照射密度が低下し、殺菌性能が低下することを確認した。
また、上記特許文献1及び特許文献2においては、流路内壁面に気泡が付着すると、気泡により紫外光が散乱され、流路内の紫外光の強度分布が変化することから、これを回避するために、流路内壁面の表面粗さRaを規定している。つまり、表面粗さRaが大きいと、気泡が付着している状態では殺菌性能が高くなるが、気泡に依存するため殺菌性能が安定しない(特許文献2参照)。一方で、表面粗さRaが小さいと気泡が付着しにくくなり、殺菌性能が安定する(特許文献1参照)。
However, even if fluororesin is used as a reflective material on the inner wall surface of the flow path, the present inventors change the reflection characteristics depending on the surface texture of the reflective material itself, so that the irradiation density in the flow path decreases and sterilization occurs. It was confirmed that the performance deteriorated.
Further, in Patent Document 1 and Patent Document 2, when bubbles adhere to the inner wall surface of the flow path, the ultraviolet light is scattered by the bubbles and the intensity distribution of the ultraviolet light in the flow path changes, so this is avoided. Therefore, the surface roughness Ra of the inner wall surface of the flow path is defined. That is, when the surface roughness Ra is large, the sterilization performance is high in the state where the bubbles are attached, but the sterilization performance is not stable because it depends on the bubbles (see Patent Document 2). On the other hand, if the surface roughness Ra is small, bubbles are less likely to adhere and the sterilization performance is stable (see Patent Document 1).

ここで、特許文献1のように表面粗さRaを2μm以下に制御しようとしたとき、通常の旋削方法で流路となる管状部材を形成する場合には、切削工具をより低速度で移動させる必要がある。このように切削工具の移動速度を低速度化することは生産性の低下につながり、生産コストが増大することになる。一方、流路として押出パイプ材を用いることで、気泡が付着しにくい表面粗さを有する流路内壁面を実現することができるが、この場合には、流路の内径寸法の精度を出すことが困難であり、殺菌性能が安定しない。
そこで、この発明は、従来の未解決の問題に着目してなされたものであり、生産性の低下を抑制しつつ、流路内の反射特性の変化を抑制し、殺菌性能を向上させることの可能な紫外線照射装置及び紫外線照射装置の製造方法を提供することを目的としている。
Here, when the surface roughness Ra is controlled to 2 μm or less as in Patent Document 1, when a tubular member serving as a flow path is formed by a normal turning method, the cutting tool is moved at a lower speed. There is a need. Reducing the moving speed of the cutting tool in this way leads to a decrease in productivity and an increase in production cost. On the other hand, by using the extruded pipe material as the flow path, it is possible to realize the inner wall surface of the flow path having a surface roughness to which air bubbles do not easily adhere. In this case, the accuracy of the inner diameter dimension of the flow path should be improved. Is difficult and the sterilization performance is not stable.
Therefore, the present invention has been made by paying attention to a conventional unsolved problem, and it is possible to suppress a change in reflection characteristics in a flow path and improve sterilization performance while suppressing a decrease in productivity. It is an object of the present invention to provide a possible ultraviolet irradiation device and a method for manufacturing the ultraviolet irradiation device.

本発明の一実施形態に係る紫外線照射装置は、処理室と、当該処理室の内部に向けて紫外線を照射する光源と、を備え、前記処理室の内壁面は紫外線反射面を有し、当該紫外線反射面における、前記光源から照射される前記紫外線の光軸方向に対する二乗平均平方根波長が1μm以上70μm以下であることを特徴としている。
また、本発明の他の実施形態に係る紫外線照射装置の製造方法は、処理室の一方の端部に設けられた光源から、前記処理室の内部に向けて紫外線を照射するようにした紫外線照射装置の製造方法であって、前記処理室の内壁面のうち、少なくとも前記光源側の端部から前記紫外線の光軸方向に前記処理室の相当直径だけ離れた位置までの領域は、送り量が0.03mm/rev以上0.17mm/rev以下の条件で旋削加工により形成することを特徴としている。
The ultraviolet irradiation device according to an embodiment of the present invention includes a processing chamber and a light source that irradiates ultraviolet rays toward the inside of the processing chamber, and the inner wall surface of the processing chamber has an ultraviolet reflecting surface. It is characterized in that the root mean square wavelength of the ultraviolet rays emitted from the light source on the ultraviolet reflecting surface with respect to the optical axis direction is 1 μm or more and 70 μm or less.
Further, in the method for manufacturing an ultraviolet irradiation device according to another embodiment of the present invention, ultraviolet irradiation is performed so that ultraviolet rays are irradiated from a light source provided at one end of the processing chamber toward the inside of the processing chamber. In the method for manufacturing an apparatus, in the inner wall surface of the processing chamber, at least a region from an end on the light source side to a position separated by a considerable diameter of the processing chamber in the optical axis direction of the ultraviolet rays has a feed amount. It is characterized in that it is formed by turning under the conditions of 0.03 mm / rev or more and 0.17 mm / rev or less.

本発明の一態様によれば、生産性の低下を抑制しつつ、紫外線の照射密度を向上させることができ、紫外線照射装置の殺菌性能をより向上させることができる。 According to one aspect of the present invention, it is possible to improve the irradiation density of ultraviolet rays while suppressing a decrease in productivity, and it is possible to further improve the sterilization performance of the ultraviolet irradiation device.

本発明を適用した紫外線照射装置の一例を示す概略の断面図である。It is a schematic cross-sectional view which shows an example of the ultraviolet irradiation apparatus to which this invention was applied. パラメータ値の測定方法を説明するための説明図である。It is explanatory drawing for demonstrating the measurement method of a parameter value. 二乗平均平方根波長Rλqと紫外線照射装置1におけるLED出力64mW(LED波長270nm)における殺菌性能(LRV)(Flow Rate:2L/min、菌種:E.Coli ATCC8739)との対応を示す特性図である。It is a characteristic diagram showing the correspondence between the root mean square wavelength Rλq and the sterilization performance (LRV) (Flow Rate: 2 L / min, bacterial species: E. Coli ATCC8739) at an LED output of 64 mW (LED wavelength 270 nm) in the ultraviolet irradiation device 1. .. 要素の平均高さRSmと紫外線照射装置1におけるLED出力64mW(LED波長270nm)における殺菌性能(LRV)(Flow Rate:2L/min、菌種:E.Coli ATCC8739)との対応を示す特性図である。The characteristic diagram showing the correspondence between the average height RSm of the element and the sterilization performance (LRV) (Flow Rate: 2 L / min, bacterial species: E. Coli ATCC8739) at the LED output of 64 mW (LED wavelength 270 nm) in the ultraviolet irradiation device 1. is there. 最大高さRz及び算術平均粗さRaと、紫外線照射装置1におけるLED出力64mW(LED波長270nm)(Flow Rate:2L/min、菌種:E.Coli ATCC8739)における殺菌性能(LRV)との関係を説明するための特性図であって、(a)は最大高さRzと殺菌性能(LRV)との関係、(b)は算術平均粗さRaと殺菌性能(LRV)との関係を示す。Relationship between maximum height Rz and arithmetic mean roughness Ra and sterilization performance (LRV) at LED output 64 mW (LED wavelength 270 nm) (Flow Rate: 2 L / min, bacterial species: E. Colli ATCC8739) in the ultraviolet irradiation device 1. In the characteristic diagram for explaining, (a) shows the relationship between the maximum height Rz and the sterilization performance (LRV), and (b) shows the relationship between the arithmetic mean roughness Ra and the sterilization performance (LRV). 処理室内における光学シミュレーション結果の一例である。This is an example of the optical simulation result in the processing chamber.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each layer, etc. are different from the actual ones. In addition, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, and arrangement of constituent parts. Etc. are not specified as the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

本発明者らは、鋭意検討し実験を重ねた結果、処理室の内壁面に紫外線反射面を設け、この紫外線反射面の光軸方向に対する二乗平均平方根波長を1μm以上70μm以下の値に制限することで、生産性の低下を抑制しつつ紫外線の照射密度を向上させることができることを見出した。
本発明に係る紫外線照射装置は、処理室と、処理室の内部に向けて紫外線を照射する光源と、を備え、処理室の内壁面は紫外線反射面を有し、紫外線反射面における、光源から照射される紫外線の光軸方向に対する二乗平均平方根波長が1μm以上70μm以下である。
As a result of diligent studies and repeated experiments, the present inventors provided an ultraviolet reflecting surface on the inner wall surface of the processing chamber, and limited the root mean square wavelength of the ultraviolet reflecting surface with respect to the optical axis direction to a value of 1 μm or more and 70 μm or less. As a result, it was found that the irradiation density of ultraviolet rays can be improved while suppressing the decrease in productivity.
The ultraviolet irradiation device according to the present invention includes a processing chamber and a light source that irradiates ultraviolet rays toward the inside of the processing chamber. The inner wall surface of the processing chamber has an ultraviolet reflecting surface, and the ultraviolet source on the ultraviolet reflecting surface The root mean square wavelength of the irradiated ultraviolet rays with respect to the optical axis direction is 1 μm or more and 70 μm or less.

〔紫外線照射装置の構成〕
図1は、本発明を適用した紫外線照射装置1の構成の一例を概略的に示す断面図である。
紫外線照射装置1は、処理室構造部2と、発光部3と、を備える。
処理室構造部2は、内筒21と、内筒21及び発光部3を収容するケース部22と、を備える。
内筒21は、紫外線反射物質で形成される。紫外線反射物質としてはフッ素系樹脂材料が好ましく、例えばポリテトラフルオロエチレン(polytetrafluoroethylene PTFE)で形成される。ここでいう紫外線反射物質とは、UVC光(波長220nm以上300nm)に対して、拡散透過率が1%/1mm以上10%/1mm以下であり、且つ、全反射率が70%/1mm以上100%/1mm以下である物質のことをいう。
[Structure of UV irradiation device]
FIG. 1 is a cross-sectional view schematically showing an example of the configuration of an ultraviolet irradiation device 1 to which the present invention is applied.
The ultraviolet irradiation device 1 includes a processing chamber structure unit 2 and a light emitting unit 3.
The processing chamber structure portion 2 includes an inner cylinder 21 and a case portion 22 for accommodating the inner cylinder 21 and the light emitting unit 3.
The inner cylinder 21 is formed of an ultraviolet reflective substance. As the ultraviolet reflective substance, a fluororesin material is preferable, and it is formed of, for example, polytetrafluoroethylene PTFE. The ultraviolet reflective substance referred to here has a diffusion transmittance of 1% / 1 mm or more and 10% / 1 mm or less and a total reflectance of 70% / 1 mm or more 100 with respect to UVC light (wavelength 220 nm or more and 300 nm). % / 1 mm or less.

内筒21は、両端が開口された筒状に形成され、内筒21の中空部が処理室(以下、単に処理室21cともいう。)を構成している。処理室21cは、その内壁面が後述する表面性状の条件を満足するように形成される。内筒21は、その内径は一定であるが、長手方向中央部付近に、その外径が他の領域よりも大きい大径部21aを有する。この大径部21aは、内筒21をケース部22に収容したときに、大径部21aの外周とケース部22の内周面とが密着するように形成される。
内筒21の発光部3側の端部寄りの位置には、周方向の例えば60度離れた6箇所に、径方向を向き、内筒21を貫通する連通口21bが形成されている。なお、連通口21bの配置位置及び配置数はこれに限るものではない。
内筒21の発光部3とは逆側の端部には、整流板23が開口部を塞ぐように設けられている。
The inner cylinder 21 is formed in a tubular shape with both ends opened, and the hollow portion of the inner cylinder 21 constitutes a processing chamber (hereinafter, also simply referred to as a processing chamber 21c). The inner wall surface of the treatment chamber 21c is formed so as to satisfy the surface texture conditions described later. The inner cylinder 21 has a constant inner diameter, but has a large diameter portion 21a having an outer diameter larger than that of other regions in the vicinity of the central portion in the longitudinal direction. The large diameter portion 21a is formed so that when the inner cylinder 21 is housed in the case portion 22, the outer periphery of the large diameter portion 21a and the inner peripheral surface of the case portion 22 are in close contact with each other.
At positions near the end of the inner cylinder 21 on the light emitting portion 3 side, communication ports 21b are formed at six locations, for example, 60 degrees apart in the circumferential direction, facing in the radial direction and penetrating the inner cylinder 21. The placement position and number of communication ports 21b are not limited to this.
A straightening vane 23 is provided at the end of the inner cylinder 21 opposite to the light emitting portion 3 so as to close the opening.

整流板23は、PTFE等の紫外線反射物質で形成される。整流板23は、表裏間を通じる開口孔23aを複数有し、照射対象物が整流板23を介して処理室21cに導入されることによって整流効果を発揮し、照射対象物の流速のばらつきを抑制するようになっている。なお、ここでは、内筒21内に導入される照射対象物を、整流板23を設けることにより整流するようにしているが、整流板23に限るものではなく、整流することの可能な整流機構を設ければよい。また、要求される殺菌効果を得ることができるのであれば、整流板23つまり整流機構を必ずしも設けなくともよい。 The straightening vane 23 is formed of an ultraviolet reflecting substance such as PTFE. The rectifying plate 23 has a plurality of opening holes 23a passing between the front and back surfaces, and exerts a rectifying effect by introducing the irradiation target object into the processing chamber 21c via the rectifying plate 23, thereby varying the flow velocity of the irradiation target object. It is designed to be suppressed. Here, the irradiation target introduced into the inner cylinder 21 is rectified by providing a rectifying plate 23, but the rectifying mechanism is not limited to the rectifying plate 23 and can be rectified. Should be provided. Further, if the required bactericidal effect can be obtained, the rectifying plate 23, that is, the rectifying mechanism does not necessarily have to be provided.

内筒21の発光部3側の開口部には、開口部に密着して円盤状の窓24が設けられている。また、窓24は、内筒21をケース部22に収容したときに、窓24の外周面とケース部22の内周面とが密着するように形成される。
窓24は、例えば、石英ガラス等の紫外線透過性素材で形成される。
ケース部22は、例えば、ポリオレフィン、具体的にはポリプロピレン又はポリエチレンで形成される。
A disk-shaped window 24 is provided in the opening of the inner cylinder 21 on the light emitting portion 3 side in close contact with the opening. Further, the window 24 is formed so that the outer peripheral surface of the window 24 and the inner peripheral surface of the case portion 22 are in close contact with each other when the inner cylinder 21 is housed in the case portion 22.
The window 24 is made of an ultraviolet transmissive material such as quartz glass.
The case portion 22 is made of, for example, polyolefin, specifically polypropylene or polyethylene.

ケース部22は、中空部の断面が円形の筒状を有し、内筒21を収容したときにケース部22の内壁面と大径部21aの外周面とが密着し、また、内筒21に設けられた整流板23とケース部22の一端との間、及び窓24とケース部22の他端との間に隙間が形成される大きさに形成される。ケース部22の、発光部3とは逆側寄りの外周面には、円筒状の中空部を内部に有する流入部22aがケース部22と一体に形成され、ケース部22の、発光部3寄りの外周面には、円筒状の中空部を内部に有する流出部22bがケース部22と一体に形成されている。これら流入部22a及び流出部22bは、ケース部22に内筒21を収容したときに、流入部22a及び流出部22bが、内筒21の大径部21aを挟んで軸方向両側に形成される隙間のそれぞれに個別に連通する位置に配置される。 The case portion 22 has a tubular shape having a circular hollow cross section, and when the inner cylinder 21 is accommodated, the inner wall surface of the case portion 22 and the outer peripheral surface of the large diameter portion 21a are in close contact with each other, and the inner cylinder 21 is also provided. The size is such that a gap is formed between the straightening vane 23 provided in the above and one end of the case portion 22, and between the window 24 and the other end of the case portion 22. An inflow portion 22a having a cylindrical hollow portion inside is formed integrally with the case portion 22 on the outer peripheral surface of the case portion 22 closer to the light emitting portion 3 side, and the case portion 22 is closer to the light emitting portion 3. On the outer peripheral surface of the above, an outflow portion 22b having a cylindrical hollow portion inside is integrally formed with the case portion 22. When the inner cylinder 21 is housed in the case portion 22, the inflow portion 22a and the outflow portion 22b are formed on both sides in the axial direction with the large diameter portion 21a of the inner cylinder 21 interposed therebetween. It is arranged at a position where it communicates with each of the gaps individually.

このため、内筒21をケース部22に収容したときに、内筒21の大径部21aとケース部22の内周面とが密着し、ケース部22と内筒21との隙間が二つの区画に分割される。そのため、流入部22aから入力された照射対象物は、整流板23側に形成された区画(以後、流入側整流室25という。)から、整流板23を通って処理室21cに流入する。そして、処理室21c内の照射対象物は、連通口21bを通って、窓24側に形成された区画(以後、流出側整流室26という。)に流出され、流出部22bを通って、紫外線照射装置1外に排出される。このとき、内筒21の大径部21aとケース部22の内周面とは密着しているため、流入側整流室25と流出側整流室26とは連通しない。また、窓24の外周とケース部22の内周面とは密着するため、窓24とケース部22の発光部3側との隙間は水密性が保たれる。 Therefore, when the inner cylinder 21 is housed in the case portion 22, the large diameter portion 21a of the inner cylinder 21 and the inner peripheral surface of the case portion 22 are in close contact with each other, and there are two gaps between the case portion 22 and the inner cylinder 21. Divided into compartments. Therefore, the irradiation object input from the inflow unit 22a flows into the processing chamber 21c through the rectifying plate 23 from the section formed on the rectifying plate 23 side (hereinafter referred to as the inflow side rectifying chamber 25). Then, the irradiation target in the processing chamber 21c flows out to the section formed on the window 24 side (hereinafter referred to as the outflow side rectifying chamber 26) through the communication port 21b, passes through the outflow portion 22b, and is subjected to ultraviolet rays. It is discharged to the outside of the irradiation device 1. At this time, since the large diameter portion 21a of the inner cylinder 21 and the inner peripheral surface of the case portion 22 are in close contact with each other, the inflow side rectifying chamber 25 and the outflow side rectifying chamber 26 do not communicate with each other. Further, since the outer periphery of the window 24 and the inner peripheral surface of the case portion 22 are in close contact with each other, the gap between the window 24 and the light emitting portion 3 side of the case portion 22 is maintained in watertightness.

発光部3は、光源としての発光素子31とこの発光素子31が実装された基板32とを含む。発光素子31は、例えば、UVC−LED(深紫外LED)からなる。発光部3は、窓24とケース部22との隙間に、発光素子31の発光面が窓24と対向するようにケース部22に固定される。発光素子31は、発光素子31からの照射光の光軸と、処理室21cの長手方向の中心軸とが一致するように配置される。
発光素子31は、例えば図示しない制御装置により制御される。
これにより、紫外線照射装置1に入力される照射対象物は流入部22a、流入側整流室25、整流板23を通って処理室21cに導入され、処理室21c内を移動しながら、発光素子31により紫外光の照射を受けた後、連通口21b、流出側整流室26、流出部22bを通って、紫外線照射装置1から排出される。
The light emitting unit 3 includes a light emitting element 31 as a light source and a substrate 32 on which the light emitting element 31 is mounted. The light emitting element 31 is composed of, for example, a UVC-LED (deep ultraviolet LED). The light emitting portion 3 is fixed to the case portion 22 so that the light emitting surface of the light emitting element 31 faces the window 24 in the gap between the window 24 and the case portion 22. The light emitting element 31 is arranged so that the optical axis of the irradiation light from the light emitting element 31 coincides with the central axis in the longitudinal direction of the processing chamber 21c.
The light emitting element 31 is controlled by, for example, a control device (not shown).
As a result, the irradiation target input to the ultraviolet irradiation device 1 is introduced into the processing chamber 21c through the inflow portion 22a, the inflow side rectifying chamber 25, and the rectifying plate 23, and while moving in the processing chamber 21c, the light emitting element 31 After being irradiated with ultraviolet light, the light is discharged from the ultraviolet irradiation device 1 through the communication port 21b, the outflow side rectifying chamber 26, and the outflow portion 22b.

〔処理室の内壁面の表面性状〕
次に、処理室21cの内壁面の表面性状について説明する。
本実施形態に係る紫外線照射装置1の処理室21cは紫外線反射物質で形成されている。つまり、処理室21cの内壁面は紫外線反射面を形成している。
処理室21cの内壁面つまり紫外線反射面は、その表面性状が次の(A)〜(D)の表面性状の条件のうち少なくとも条件(A)を含む、一又は複数の条件を満足するように形成される。
(A)発光素子31からの照射光の光軸方向に対する二乗平均平方根波長Rλqが1μm以上70μm以下であること。
(B)発光素子31からの照射光の光軸方向の要素の平均長さRSmが140μm以上400μm以下であること。
(C)算術平均粗さRaが2μm以上8μm以下であること。
(D)最大高さRzが2μm以上53μm以下であること。
[Surface texture of the inner wall surface of the processing chamber]
Next, the surface texture of the inner wall surface of the processing chamber 21c will be described.
The processing chamber 21c of the ultraviolet irradiation device 1 according to the present embodiment is formed of an ultraviolet reflecting substance. That is, the inner wall surface of the processing chamber 21c forms an ultraviolet reflecting surface.
The inner wall surface of the treatment chamber 21c, that is, the ultraviolet ray reflecting surface, satisfies one or more conditions including at least condition (A) among the following surface texture conditions (A) to (D). It is formed.
(A) The root mean square wavelength Rλq of the irradiation light from the light emitting element 31 with respect to the optical axis direction is 1 μm or more and 70 μm or less.
(B) The average length RSm of the elements in the optical axis direction of the irradiation light from the light emitting element 31 is 140 μm or more and 400 μm or less.
(C) Arithmetic mean roughness Ra is 2 μm or more and 8 μm or less.
(D) The maximum height Rz is 2 μm or more and 53 μm or less.

なお、ここでいう二乗平均平方根波長Rλqとは、二乗平均平方根傾斜角から推定される平均波長を表す値を表したものであり、次式(1)で表される。式(1)中のZqは、基準長さにおける高さZ(x)の二乗平均平方根である。また、RΔqは、二乗平均平方根傾斜である。二乗平均平方根傾斜RΔqは、基準長さにおける局部傾斜dZ/dXの二乗平均平方根を表したものである。局部傾斜dZ/dXは、Z(x)を微分したものである。微分は基本的には7点公式を用いる。なお線の両端から3点以内ではデータが足りないため、3点公式、5点公式を用いる。 The root mean square wavelength Rλq referred to here represents a value representing an average wavelength estimated from the root mean square inclination angle, and is represented by the following equation (1). Zq in the formula (1) is the root mean square of the height Z (x) at the reference length. Further, RΔq is the root mean square slope. The root mean square slope RΔq represents the root mean square of the local slope dZ / dX at the reference length. The local inclination dZ / dX is a derivative of Z (x). The 7-point formula is basically used for differentiation. Since there is not enough data within 3 points from both ends of the line, the 3-point formula and 5-point formula are used.

Figure 2021007902
Figure 2021007902

要素の平均長さRSmは基準長さにおける輪郭曲線要素の長さの平均を表したものであり、次式(2)で表される。(2)式中のXsiは1つの輪郭線要素に対応する長さである。この場合の輪郭要素を構成する山(谷)には、最低高さと、最低長さの規定があり、高さ(深さ)が最大高さの10%以下、または長さが計算区間の長さの1%以下であるものはノイズとみなされて、前後に続く谷(山)の一部と認識する。 The average length RSm of the elements represents the average length of the contour curve elements at the reference length, and is expressed by the following equation (2). Xsi in the equation (2) is a length corresponding to one contour line element. The peaks (valleys) that make up the contour element in this case have a minimum height and a minimum length, and the height (depth) is 10% or less of the maximum height, or the length is the length of the calculation section. Those with a height of 1% or less are regarded as noise and are recognized as part of the valley (mountain) that continues before and after.

Figure 2021007902
Figure 2021007902

〔処理室の形成方法〕
本実施形態に係る紫外線照射装置1の処理室21cは、例えば、次の手順で形成する。
上記表面性状の条件を満足し得る紫外線反射面を作製するためには、紫外線反射面つまり、処理室21cの内壁面を旋削加工により作製するときに、切削部材の送り量を、0.03mm/rev以上0.17mm/rev以下の範囲内の値に設定する。このように設定することによって、上記の表面性状の条件を満足し得る表面性状を有する内壁面、すなわち紫外線反射面を実現することができる。
[Method of forming a treatment chamber]
The processing chamber 21c of the ultraviolet irradiation device 1 according to the present embodiment is formed by, for example, the following procedure.
In order to produce an ultraviolet reflecting surface that can satisfy the above-mentioned surface texture conditions, when the ultraviolet reflecting surface, that is, the inner wall surface of the processing chamber 21c is produced by turning, the feed amount of the cutting member is 0.03 mm /. Set the value within the range of rev or more and 0.17 mm / rev or less. By setting in this way, it is possible to realize an inner wall surface having a surface texture that can satisfy the above-mentioned condition of the surface texture, that is, an ultraviolet reflecting surface.

〔効果〕
以上説明したように、処理室21cの内壁面の表面性状が、上記の表面性状の条件を満足するように処理室21cを作製することによって反射率を向上させることができ、その結果、殺菌性能を向上させることができる。また、このとき、処理室21cの内壁面の表面性状そのものを調整することで反射率を向上させている。そのため、例えば、処理室21cの内壁面の気泡を利用して反射率を向上させる場合等のように、時間の経過と共に反射率が変化することはなく、一定以上の殺菌性能を発揮することができる。また、紫外線反射面の表面性状が、上記の表面性状の条件を満足するためには、旋削加工工程における切削部材の送り量を、0.03mm/rev以上0.17mm/rev以下の範囲に設定すればよい。そのため、紫外線反射面の形成に伴う処理時間が大幅に増大することなく、上記の表面性状の条件を満足し得る紫外線反射面を形成することができる。つまり、生産性の低下を抑制しつつ、反射率を向上させることができ、殺菌性能を向上させることができる。
〔effect〕
As described above, the reflectance can be improved by producing the treatment chamber 21c so that the surface texture of the inner wall surface of the treatment chamber 21c satisfies the above-mentioned condition of the surface texture, and as a result, the sterilization performance can be improved. Can be improved. Further, at this time, the reflectance is improved by adjusting the surface texture itself of the inner wall surface of the processing chamber 21c. Therefore, as in the case of improving the reflectance by utilizing the air bubbles on the inner wall surface of the processing chamber 21c, the reflectance does not change with the passage of time, and the sterilization performance of a certain level or higher can be exhibited. it can. Further, in order for the surface texture of the ultraviolet reflecting surface to satisfy the above-mentioned surface texture condition, the feed amount of the cutting member in the turning process is set in the range of 0.03 mm / rev or more and 0.17 mm / rev or less. do it. Therefore, it is possible to form an ultraviolet reflecting surface that can satisfy the above-mentioned surface texture conditions without significantly increasing the treatment time associated with the formation of the ultraviolet reflecting surface. That is, the reflectance can be improved and the sterilization performance can be improved while suppressing the decrease in productivity.

なお、上記実施形態においては、処理室21cの内壁面全面が上記の表面性状の条件を満足していなくともよい。少なくとも処理室21cの内壁面の、発光部3側の端部から、処理室21cの相当直径だけ離れた位置までの領域のみ、表面性状の条件を満足していればよい。つまり、紫外線照射装置1において、照射対象物に対する照射密度が最も高い領域は、発光素子31の直前から、処理室21cの相当直径だけ離れた位置までの領域である。そのため、照射対象物に対する照射密度が最も高い領域についてのみ十分な反射特性が得られるように紫外線反射面の表面性状を制御することによって、高い照射密度を得ると共に生産性を向上することができる。なお、相当直径とは、「(処理室21cの断面積の4倍)/(流路断面周の長さ)」のことをいう。 In the above embodiment, the entire inner wall surface of the treatment chamber 21c does not have to satisfy the above-mentioned surface texture conditions. It is sufficient that the surface texture condition is satisfied only in the region of the inner wall surface of the processing chamber 21c from the end on the light emitting portion 3 side to a position separated by a corresponding diameter of the processing chamber 21c. That is, in the ultraviolet irradiation device 1, the region having the highest irradiation density for the irradiation target is a region from immediately before the light emitting element 31 to a position separated by a considerable diameter of the processing chamber 21c. Therefore, by controlling the surface texture of the ultraviolet reflecting surface so that sufficient reflection characteristics can be obtained only in the region having the highest irradiation density with respect to the irradiation target, it is possible to obtain high irradiation density and improve productivity. The equivalent diameter means "(4 times the cross-sectional area of the processing chamber 21c) / (the length of the cross-sectional circumference of the flow path)".

また、上記実施形態においては、PTFEから内筒21を形成する場合について説明したがこれに限るものではない。フッ素系樹脂材料は、その表面性状がPTFEの表面性状と同等程度であるとみなすことができるため、PTFEとは別のフッ素系樹脂材料を用いて内筒21を形成した場合も、上記表面性状の条件を満足するようにすれば、上記と同等の作用効果を得ることができる。
また、上記実施形態においては、図1に示すように、紫外線照射装置1が、流入側整流室25と流出側整流室26とを備える場合について説明したが、流入側整流室25と流出側整流室26とを備えていなくともよい。要は、内壁面に反射材が設けられた処理室21cを有し、処理室21cの端部に設けられた発光素子31から、照射対象物に対して紫外線照射を行うようになっている紫外線照射装置であれば適用することができる。
Further, in the above embodiment, the case where the inner cylinder 21 is formed from PTFE has been described, but the present invention is not limited to this. Since the surface texture of the fluororesin material can be considered to be equivalent to the surface texture of PTFE, even when the inner cylinder 21 is formed by using a fluororesin material different from PTFE, the surface texture is described above. If the above conditions are satisfied, the same action and effect as described above can be obtained.
Further, in the above embodiment, as shown in FIG. 1, the case where the ultraviolet irradiation device 1 includes the inflow side rectifying chamber 25 and the outflow side rectifying chamber 26 has been described, but the inflow side rectifying chamber 25 and the outflow side rectifying chamber 25 have been described. It is not necessary to have a room 26. In short, ultraviolet rays having a processing chamber 21c provided with a reflective material on the inner wall surface and emitting ultraviolet rays to an object to be irradiated from a light emitting element 31 provided at the end of the processing chamber 21c. It can be applied if it is an irradiation device.

〔効果の詳細説明〕
次に、表面性状の条件を満足するように内筒21を作製することによる効果を詳述する。
本発明者らは、表面性状の異なる紫外線反射材を用いて図1に示した紫外線照射装置1にてE.Coli(ATCC8739)菌液を2L/minで通水した際の殺菌性能の検出を行った。紫外線照射装置1において反射材のみを変えて殺菌性能評価をする事で、反射材特性を間接的に評価する事が出来る。なお、先行文献1、2に記載の通り、反射面に気泡が付着すると反射材特性が正確に評価できないので、評価時には脱気水を事前に流して反射面の気泡を除去した上で殺菌評価を実施した。
[Detailed explanation of the effect]
Next, the effect of producing the inner cylinder 21 so as to satisfy the surface texture conditions will be described in detail.
The present inventors used the ultraviolet reflecting materials having different surface textures in the ultraviolet irradiation device 1 shown in FIG. The bactericidal performance when the Escherichia coli (ATCC8739) bacterial solution was passed through the water at 2 L / min was detected. By evaluating the sterilization performance by changing only the reflective material in the ultraviolet irradiation device 1, the reflective material characteristics can be indirectly evaluated. As described in Prior Documents 1 and 2, if air bubbles adhere to the reflective surface, the characteristics of the reflective material cannot be evaluated accurately. Therefore, at the time of evaluation, degassed water is flowed in advance to remove air bubbles on the reflective surface before sterilization evaluation. Was carried out.

表面性状の条件で規定される各種パラメータの測定は次の手順で行った。すなわち、図2(a)に示すように、レーザ共焦点顕微鏡VK−X(株式会社キーエンス社製)を用いて、紫外線反射面の表面性状を測定した。レンズ倍率は10倍、視野角は約1mmとした。具体的には、内筒21に相当するPTFEからなる円筒状の部材を軸方向に沿った切断線で四等分し、そのうちの一つの個片をパラメータ測定用のサンプルS1とした。このサンプルS1の内壁面つまり紫外線反射面に相当する面について、軸方向の21箇所において各パラメータを測定した(図2(b))。二乗平均平方根波長Rλqについては、軸方向の21箇所それぞれについて算出した二乗平均平方根波長Rλqの平均値を紫外線反射面の二乗平均平方根波長Rλqとした。同様に、軸方向の21箇所それぞれについて算出した要素の平均長さRSmの平均値を紫外線反射面の要素の平均長さRSmとした。また、21箇所それぞれについて算出した算術平均粗さの平均値を紫外線反射面の算術平均粗さRaとし、21箇所それぞれについて算出した最大高さRzの平均値を、紫外線反射面の最大高さRzとした。 The measurement of various parameters specified by the surface texture conditions was performed by the following procedure. That is, as shown in FIG. 2A, the surface texture of the ultraviolet reflecting surface was measured using a laser confocal microscope VK-X (manufactured by KEYENCE CORPORATION). The lens magnification was 10 times and the viewing angle was about 1 mm. Specifically, a cylindrical member made of PTFE corresponding to the inner cylinder 21 was divided into four equal parts by a cutting line along the axial direction, and one of them was used as a sample S1 for parameter measurement. With respect to the inner wall surface of this sample S1, that is, the surface corresponding to the ultraviolet reflecting surface, each parameter was measured at 21 points in the axial direction (FIG. 2 (b)). Regarding the root mean square wavelength Rλq, the average value of the root mean square wavelength Rλq calculated for each of the 21 points in the axial direction was taken as the root mean square wavelength Rλq of the ultraviolet reflecting surface. Similarly, the average value of the average length RSm of the elements calculated for each of the 21 points in the axial direction was taken as the average length RSm of the elements on the ultraviolet reflecting surface. Further, the average value of the arithmetic mean roughness calculated for each of the 21 locations is defined as the arithmetic average roughness Ra of the ultraviolet reflecting surface, and the average value of the maximum height Rz calculated for each of the 21 locations is the maximum height Rz of the ultraviolet reflecting surface. And said.

そして、二乗平均平方根波長Rλqが異なる複数のサンプルS1、要素の平均長さRSmが異なる複数のサンプルS1、算術平均粗さRaが異なる複数のサンプルS1、最大高さRzが異なる複数のサンプルS1をそれぞれ用意し、各サンプルS1についてそれぞれ対応するパラメータ、すなわち二乗平均平方根波長Rλq、要素の平均長さRSm、算術平均粗さRa、最大高さRzを測定した。 Then, a plurality of samples S1 having different root mean square wavelengths Rλq, a plurality of samples S1 having different average lengths RSm of elements, a plurality of samples S1 having different arithmetic mean roughness Ras, and a plurality of samples S1 having different maximum heights Rz are used. Each was prepared, and the corresponding parameters for each sample S1, that is, the root mean square wavelength Rλq, the average length RSm of the elements, the arithmetic mean roughness Ra, and the maximum height Rz were measured.

〔殺菌性能と二乗平均平方根波長Rλqとの関係〕
図3は、紫外線反射面の光軸方向に対する二乗平均平方根波長Rλqと殺菌性能との関係を示した特性図である。図3において、横軸は二乗平均平方根波長Rλq(μm)、縦軸は紫外線照射装置1においてLED出力64mW(LED波長270nm)における殺菌性能(LRV)(Flow Rate:2L/min、菌種:E.Coli ATCC8739)である。図3に示すように、二乗平均平方根波長Rλqが大きくなるほど、殺菌性能が低下している。
[Relationship between sterilization performance and root mean square wavelength Rλq]
FIG. 3 is a characteristic diagram showing the relationship between the root mean square wavelength Rλq and the sterilization performance with respect to the optical axis direction of the ultraviolet reflecting surface. In FIG. 3, the horizontal axis is the root mean square wavelength Rλq (μm), and the vertical axis is the sterilization performance (LRV) (Flow Rate: 2 L / min, bacterial species: E) at an LED output of 64 mW (LED wavelength 270 nm) in the ultraviolet irradiation device 1. .Coli ATCC8739). As shown in FIG. 3, the larger the root mean square wavelength Rλq, the lower the sterilization performance.

ここで、紫外線照射装置1において、殺菌装置として実用上使用することの可能な性能である99%殺菌(LRV2.0)を満足するためには、図3から、二乗平均平方根波長Rλqを70μm以下とすればよいことがわかる。さらに99.9%殺菌(LRV3.0)を満足するためには、図3から、二乗平均平方根波長Rλqを50μm以下とすればよいことがわかる。
一方で、反射面の加工条件を検討した結果、反射面を切削加工する際の切削送り量を小さくするほど二乗平均平方根波長Rλqが小さくなることが確認された。二乗平均平方根波長RλqがRλq<1μmを満足し得る紫外線反射面を形成するためには、切削送り量を0.03mm/rev以下にする必要があり、内筒21の1本当たりの、加工処理時間が長くなり加工コストが増大する。
Here, in order to satisfy 99% sterilization (LRV2.0), which is a performance that can be practically used as a sterilizer in the ultraviolet irradiation device 1, the root mean square wavelength Rλq is set to 70 μm or less from FIG. It turns out that it should be done. Further, in order to satisfy 99.9% sterilization (LRV3.0), it can be seen from FIG. 3 that the root mean square wavelength Rλq should be 50 μm or less.
On the other hand, as a result of examining the processing conditions of the reflective surface, it was confirmed that the root mean square wavelength Rλq decreases as the cutting feed amount when cutting the reflective surface decreases. In order to form an ultraviolet reflecting surface where the root mean square wavelength Rλq can satisfy Rλq <1 μm, the cutting feed amount must be 0.03 mm / rev or less, and the processing process per inner cylinder 21 The time becomes long and the processing cost increases.

そこで、生産性の低下量が比較的小さくて済む送り量で旋削加工を行った場合に得られる二乗平均平方根波長Rλq=1μmを、紫外線反射面の二乗平均平方根波長の下限値とする。
このように、二乗平均平方根波長Rλqを1μm以上70μm以下の範囲内の値とすることによって、生産性の低下を抑制しつつ、十分な反射率を有する紫外線反射面を実現することができ、その結果、殺菌性能を向上させることができる。
また、反射面の切削加工時の送り量として0.03mm/rev以上0.17mm/rev以下とする事で、上記に示した表面形状を得ることが出来る。
Therefore, the root mean square wavelength Rλq = 1 μm obtained when the turning process is performed with a feed amount that requires a relatively small decrease in productivity is set as the lower limit of the root mean square wavelength of the ultraviolet reflecting surface.
In this way, by setting the root mean square wavelength Rλq to a value within the range of 1 μm or more and 70 μm or less, it is possible to realize an ultraviolet reflecting surface having sufficient reflectance while suppressing a decrease in productivity. As a result, the sterilization performance can be improved.
Further, the surface shape shown above can be obtained by setting the feed amount at the time of cutting the reflective surface to 0.03 mm / rev or more and 0.17 mm / rev or less.

〔殺菌性能と要素の平均長さRSmとの関係〕
図4は、Rλqが1μm以上70μm以下の反射材サンプルにおいて、紫外線反射面の要素の平均長さRSmと殺菌性能との関係を示した特性図である。図4において、横軸は要素の平均長さRSm(μm)、縦軸は紫外線照射装置1においてLED出力64mW(LED波長270nm)における殺菌性能(LRV)(Flow Rate:2L/min、菌種:E.Coli ATCC8739)である。図4の特性図から、要素の平均長さRSmが大きくなるほど殺菌性能も大きくなることがわかる。紫外線照射装置1において、さらに性能を向上させ、99.9%殺菌(LRV3.0)を満足するためには、要素の平均長さRSmを140μm以上とする必要があることがわかる。
[Relationship between sterilization performance and average element length RSm]
FIG. 4 is a characteristic diagram showing the relationship between the average length RSm of the elements of the ultraviolet reflecting surface and the sterilizing performance in the reflector sample having Rλq of 1 μm or more and 70 μm or less. In FIG. 4, the horizontal axis is the average length RSm (μm) of the element, and the vertical axis is the sterilization performance (LRV) (Flow Rate: 2 L / min, bacterial species: in the ultraviolet irradiation device 1 at an LED output of 64 mW (LED wavelength 270 nm)). E. Coli ATCC8739). From the characteristic diagram of FIG. 4, it can be seen that the sterilization performance increases as the average length RSm of the elements increases. It can be seen that in the ultraviolet irradiation device 1, in order to further improve the performance and satisfy 99.9% sterilization (LRV3.0), the average length RSm of the elements needs to be 140 μm or more.

このように、要素の平均長さRSmが140μm以上であれば、紫外線照射装置1において、実用上の発光素子31を用いた場合に、高い殺菌性能を得ることができ、LRV3.0以上の殺菌性能を得ることができる。一方で、要素の平均長さRSmが400μmを超えると、切削加工にて実現する事が困難となり、生産性が低下する。このように、要素の平均高さRSmを140μm以上400μm以下の範囲内の値に制限することによって、生産性の低下を回避しつつ殺菌性能を向上させることができる。 As described above, when the average length RSm of the element is 140 μm or more, high sterilization performance can be obtained when the practical light emitting element 31 is used in the ultraviolet irradiation device 1, and sterilization of LRV3.0 or more. Performance can be obtained. On the other hand, if the average length RSm of the element exceeds 400 μm, it becomes difficult to realize by cutting, and the productivity decreases. In this way, by limiting the average height RSm of the elements to a value within the range of 140 μm or more and 400 μm or less, it is possible to improve the sterilization performance while avoiding a decrease in productivity.

〔算術平均粗さRa及び最大高さRzと反射率との関係〕
図5は、二乗平均平方根波長Rλqが1μm以上70μm以下の反射材サンプルにおいて、最大高さRz(図5(a))及び算術平均粗さRa(図5(b))と紫外線照射装置1においてLED出力64mW(LED波長270nm)における殺菌性能(LRV)(Flow Rate:2L/min、菌種:E.Coli ATCC8739)との関係を示したものである。
ここで、紫外線照射装置1において99.9%殺菌(LRV3.0)を満足するためには、図5(a)から最大高さRzを53μm以下とすればよく、図5(b)から算術平均粗さRaを8μm以下とすればよいことがわかる。
一方で、最大高さRzおよび算術平均粗さRaを小さくすればするほど紫外線反射面を形成するための作製時間が増大し、生産コストが増大する。そこで、生産性の低下量が比較的小さくて済む条件で紫外線反射面を形成した場合に得られる最大高さRz=2μm及び算術平均粗さRa=2μmを、最大高さRz及び算術平均粗さRaの下限値とする。
このように、最大高さRzを2μm以上53μm以下または算術平均粗さRaを2μm以上8μm以下の範囲内の値に制限することによって、生産コストの増加を抑制しつつ、殺菌性能を向上させることができる。
[Relationship between arithmetic mean roughness Ra and maximum height Rz and reflectance]
FIG. 5 shows a maximum height Rz (FIG. 5 (a)) and an arithmetic mean roughness Ra (FIG. 5 (b)) and an ultraviolet irradiation device 1 in a reflective material sample having a root mean square wavelength Rλq of 1 μm or more and 70 μm or less. It shows the relationship with the sterilization performance (LRV) (Flow Rate: 2 L / min, bacterial species: E. Coli ATCC8739) at an LED output of 64 mW (LED wavelength 270 nm).
Here, in order to satisfy 99.9% sterilization (LRV3.0) in the ultraviolet irradiation device 1, the maximum height Rz may be set to 53 μm or less from FIG. 5 (a), and arithmetic from FIG. 5 (b). It can be seen that the average roughness Ra should be 8 μm or less.
On the other hand, the smaller the maximum height Rz and the arithmetic mean roughness Ra, the longer the production time for forming the ultraviolet reflecting surface, and the higher the production cost. Therefore, the maximum height Rz = 2 μm and the arithmetic mean roughness Ra = 2 μm obtained when the ultraviolet reflecting surface is formed under the condition that the amount of decrease in productivity is relatively small, and the maximum height Rz and the arithmetic mean roughness are obtained. Let it be the lower limit of Ra.
In this way, by limiting the maximum height Rz to a value within the range of 2 μm or more and 53 μm or less or the arithmetic mean roughness Ra of 2 μm or more and 8 μm or less, the sterilization performance is improved while suppressing the increase in production cost. Can be done.

〔処理室内における反射率の必要制御領域〕
図6は、処理室21c内における光学シミュレーション結果を示したものである。処理室21cが、UV透過率が97%の水で満たされた状態で、発光素子31により波長265nmの紫外線照射を行ったときの、処理室21cのPTFEからなる紫外線反射面において全反射率が85%であるときの、入射フラックスの分布を示したものである。図6に示すように、入射フラックスは、発光素子31に近い領域が最も多く、発光素子31から離れるほど少なくなる。つまり、発光素子31に近い領域における紫外線照射が、紫外線照射対象物に対してより大きく寄与している。そのため、紫外線照射対象物に対して、紫外線照射がより大きく寄与する発光素子31に近い領域における、紫外線反射面の反射特性を向上させれば、処理室21cにおける反射特性を効率よく向上させることができる。すなわち少なくとも、発光素子31から処理室21cの相当直径だけ離れた位置までの領域について、紫外線反射面の表面性状を前記条件(A)〜(D)を満足するようにすれば、殺菌性能を向上させることができる。また、処理室21cの内壁面全体ではなく、発光素子31の近い領域についてのみ表面性状を制御すればよいため、その分紫外線反射面の形成に要する旋削加工処理における処理時間を短縮することができ、すなわち生産性を高めることができる。
[Required control area for reflectance in the processing chamber]
FIG. 6 shows the optical simulation results in the processing chamber 21c. When the treatment chamber 21c is filled with water having a UV transmittance of 97% and the light emitting element 31 irradiates ultraviolet rays having a wavelength of 265 nm, the total reflectance is increased on the ultraviolet reflection surface made of PTFE in the treatment chamber 21c. It shows the distribution of the incident flux when it is 85%. As shown in FIG. 6, the incident flux is most in the region close to the light emitting element 31, and decreases as the distance from the light emitting element 31 increases. That is, the irradiation of ultraviolet rays in the region close to the light emitting element 31 contributes more to the object to be irradiated with ultraviolet rays. Therefore, if the reflection characteristics of the ultraviolet reflection surface in the region close to the light emitting element 31 to which the ultraviolet irradiation contributes more to the ultraviolet irradiation object are improved, the reflection characteristics in the processing chamber 21c can be efficiently improved. it can. That is, at least in the region from the light emitting element 31 to the position separated by a considerable diameter of the processing chamber 21c, the sterilization performance is improved if the surface texture of the ultraviolet reflecting surface satisfies the above conditions (A) to (D). Can be made to. Further, since the surface texture needs to be controlled only for the region near the light emitting element 31 instead of the entire inner wall surface of the processing chamber 21c, the processing time required for the turning process for forming the ultraviolet reflecting surface can be shortened accordingly. That is, productivity can be increased.

なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。
さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
It should be noted that the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but also includes all embodiments that provide an effect equal to that of the object of the present invention.
Furthermore, the scope of the present invention is not limited to the combination of the features of the invention defined by the claims, but may be defined by any desired combination of the specific features of all the disclosed features.

1 紫外線照射装置
2 処理室構造部
3 発光部
21 内筒
21a 大径部
21b 連通口
21c 処理室
22 ケース部
23 整流板
24 窓
25 流入側整流室
26 流出側整流室
31 発光素子
32 基板
1 Ultraviolet irradiation device 2 Processing chamber structure 3 Light emitting unit 21 Inner cylinder 21a Large diameter portion 21b Communication port 21c Processing chamber 22 Case unit 23 Rectifier plate 24 Window 25 Inflow side rectifier chamber 26 Outflow side rectifier chamber 31 Light emitting element 32 Substrate

Claims (9)

処理室と、
当該処理室の内部に向けて紫外線を照射する光源と、を備え、
前記処理室の内壁面は紫外線反射面を有し、当該紫外線反射面における、前記光源から照射される前記紫外線の光軸方向に対する二乗平均平方根波長が1μm以上70μm以下である紫外線照射装置。
With the processing room
It is equipped with a light source that irradiates the inside of the processing chamber with ultraviolet rays.
An ultraviolet irradiation device having an ultraviolet reflecting surface on the inner wall surface of the processing chamber, and having a root mean square wavelength of the ultraviolet rays emitted from the light source on the ultraviolet reflecting surface in the optical axis direction of 1 μm or more and 70 μm or less.
前記紫外線反射面における前記光軸方向の要素の平均長さが140μm以上400μm以下である請求項1に記載の紫外線照射装置。 The ultraviolet irradiation device according to claim 1, wherein the average length of the elements in the optical axis direction on the ultraviolet reflecting surface is 140 μm or more and 400 μm or less. 前記紫外線反射面における算術平均粗さが2μm以上8μm以下である請求項1又は請求項2に記載の紫外線照射装置。 The ultraviolet irradiation device according to claim 1 or 2, wherein the arithmetic mean roughness on the ultraviolet reflecting surface is 2 μm or more and 8 μm or less. 前記紫外線反射面における最大高さが2μm以上53μm以下である請求項1から請求項3のいずれか一項に記載の紫外線照射装置。 The ultraviolet irradiation device according to any one of claims 1 to 3, wherein the maximum height of the ultraviolet reflecting surface is 2 μm or more and 53 μm or less. 前記紫外線反射面は、前記内壁面のうち、少なくとも前記光源側の端部から前記処理室の相当直径だけ前記光軸方向に離れた位置までの領域に形成される請求項1から請求項4のいずれか一項に記載の紫外線照射装置。 The ultraviolet reflecting surface is formed in a region of the inner wall surface from an end on the light source side to a position separated in the optical axis direction by a considerable diameter of the processing chamber, according to claims 1 to 4. The ultraviolet irradiation device according to any one item. 前記紫外線の照射対象である照射対象物を前記処理室に流入する流入部と、
前記処理室から前記照射対象物を流出する流出部と、を備える請求項1から請求項5のいずれか一項に記載の紫外線照射装置。
An inflow portion that allows an irradiation object to be irradiated with ultraviolet rays to flow into the processing chamber,
The ultraviolet irradiation device according to any one of claims 1 to 5, further comprising an outflow portion for flowing out the irradiation object from the processing chamber.
前記紫外線反射面は、フッ素系樹脂材料で形成されている請求項1から請求項6のいずれか一項に記載の紫外線照射装置。 The ultraviolet irradiation device according to any one of claims 1 to 6, wherein the ultraviolet reflecting surface is made of a fluororesin material. 前記フッ素系樹脂材料は、ポリテトラフルオロエチレン(PTFE)である請求項7に記載の紫外線照射装置。 The ultraviolet irradiation device according to claim 7, wherein the fluororesin material is polytetrafluoroethylene (PTFE). 処理室の一方の端部に設けられた光源から、前記処理室の内部に向けて紫外線を照射するようにした紫外線照射装置の製造方法であって、
前記処理室の内壁面のうち、少なくとも前記光源側の端部から前記紫外線の光軸方向に前記処理室の相当直径だけ離れた位置までの領域は、送り量が0.03mm/rev以上0.17mm/rev以下の条件で旋削加工により形成する紫外線照射装置の製造方法。
It is a method of manufacturing an ultraviolet irradiation device in which an ultraviolet ray is irradiated from a light source provided at one end of the processing chamber toward the inside of the processing chamber.
Of the inner wall surface of the processing chamber, at least a region from the end on the light source side to a position separated by a considerable diameter of the processing chamber in the optical axis direction of the ultraviolet rays has a feed amount of 0.03 mm / rev or more. A method for manufacturing an ultraviolet irradiation device formed by turning under the condition of 17 mm / rev or less.
JP2019121780A 2019-06-28 2019-06-28 UV irradiation device Active JP7316117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019121780A JP7316117B2 (en) 2019-06-28 2019-06-28 UV irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121780A JP7316117B2 (en) 2019-06-28 2019-06-28 UV irradiation device

Publications (2)

Publication Number Publication Date
JP2021007902A true JP2021007902A (en) 2021-01-28
JP7316117B2 JP7316117B2 (en) 2023-07-27

Family

ID=74198992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121780A Active JP7316117B2 (en) 2019-06-28 2019-06-28 UV irradiation device

Country Status (1)

Country Link
JP (1) JP7316117B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039120A (en) * 2009-08-06 2011-02-24 Tao Brain:Kk Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus
US20150008167A1 (en) * 2013-07-08 2015-01-08 Sensor Electronic Technology, Inc. Ultraviolet Water Disinfection System
JP2018122262A (en) * 2017-02-02 2018-08-09 日機装株式会社 Irradiation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537871B2 (en) 2009-08-31 2014-07-02 千代田工販株式会社 UV irradiation equipment
US20160207795A1 (en) 2013-09-24 2016-07-21 Asahi Organic Chemicals Industry Co., Ltd. Ultraviolet sterilization device
JP6771399B2 (en) 2017-02-02 2020-10-21 日機装株式会社 Irradiation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039120A (en) * 2009-08-06 2011-02-24 Tao Brain:Kk Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus
US20150008167A1 (en) * 2013-07-08 2015-01-08 Sensor Electronic Technology, Inc. Ultraviolet Water Disinfection System
JP2018122262A (en) * 2017-02-02 2018-08-09 日機装株式会社 Irradiation device

Also Published As

Publication number Publication date
JP7316117B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
KR102182402B1 (en) Fluid sterilization device
TWI626958B (en) Fluid sterilization device and fluid sterilization method
CN105268386B (en) Ultraviolet transparent shell
US10787375B2 (en) Ultraviolet water disinfection system
JP6675287B2 (en) Fluid sterilizer
WO2015020041A1 (en) Ultraviolet sterilization device
CN111320229B (en) Fluid sterilization device
JP2019141292A (en) Fluid sterilizer
JP2005534475A (en) Apparatus and method for processing fluid
JP6192679B2 (en) Liquid sterilization method and sterilizer
US20150338336A1 (en) Reflective Transparent Optical Chamber
JP6963956B2 (en) UV sterilizer and UV irradiation device
WO2019151364A1 (en) Ultraviolet sterilization tube and ultraviolet sterilization device
KR20160018915A (en) Fluid sterilization apparatus using ultraviolet light-emitting diode
JP6760993B2 (en) Fluid sterilization module
JP7316117B2 (en) UV irradiation device
WO2018037938A1 (en) Running water sterilization device and running water sterilization method
JP6826070B2 (en) Fluid sterilization module
JP2022069596A (en) Irradiation device
JP6771399B2 (en) Irradiation device
US20230399242A1 (en) Device and method for sterilising a fluid flowing therethrough
JP6676749B2 (en) Apparatus for applying liquid medium irradiated with UV radiation to a substrate
JP6244235B2 (en) Photocatalyst purification device
JP2022503401A (en) Device assemblies for disinfecting fluids, manufacturing methods, disinfection devices, and devices for distributing disinfected fluids at the point of consumption.
JP2021000636A (en) Irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7316117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150