JP2011039120A - Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus - Google Patents

Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus Download PDF

Info

Publication number
JP2011039120A
JP2011039120A JP2009183895A JP2009183895A JP2011039120A JP 2011039120 A JP2011039120 A JP 2011039120A JP 2009183895 A JP2009183895 A JP 2009183895A JP 2009183895 A JP2009183895 A JP 2009183895A JP 2011039120 A JP2011039120 A JP 2011039120A
Authority
JP
Japan
Prior art keywords
light
emitting element
reflected
reflected light
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009183895A
Other languages
Japanese (ja)
Inventor
Tatsuzo Kaneko
竜三 金子
Noriyoshi Kaneko
範義 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEISEI CHORIKI KK
TAO BRAIN KK
Original Assignee
HEISEI CHORIKI KK
TAO BRAIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEISEI CHORIKI KK, TAO BRAIN KK filed Critical HEISEI CHORIKI KK
Priority to JP2009183895A priority Critical patent/JP2011039120A/en
Publication of JP2011039120A publication Critical patent/JP2011039120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydroponics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflected light-irradiating apparatus which can efficiently irradiate an object to be irradiated with reflected light obtained by a reflector. <P>SOLUTION: The reflected light-irradiating apparatus 1 includes a light-emitting element 2 for irradiating the object with light in a prescribed wavelength range, a light condensing body 3 for condensing light radiated from the light-emitting element 2 and a light reflector 4 for reflecting light in a light extraction direction (D2) which is different from a light radiation direction (D1) of the luminous element. Thus, light radiated from the light-emitting element 2 is not directly output in the light extraction direction at most but the reflected light from the reflector is efficiently output. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、反射光照射装置に関し、特に発光素子と光改質機能を有する反射体とを備えた反射光照射装置に関する。   The present invention relates to a reflected light irradiation apparatus, and more particularly to a reflected light irradiation apparatus including a light emitting element and a reflector having a light modifying function.

一般に光学用途における光の反射を目的とした反射体の機能とは、光源より得られた光の特性を変質させずに、照射角度に可変機能を有させる目的や、照射光の集光・散乱を目的とした機能や、ファラデー効果として知られるような偏波依存型の光アイソレータに観られるような光線の偏重を目的とした特殊な偏重方式等はあるが、反射体そのものが光の改質機能を有し、この改質された改質光が水や有機溶媒の特性に影響を及ぼすような改質を可能とする反射体や、このような反射体を用いた光線改質能を有した照射装置はあまり知られていない。   In general, the function of a reflector for the purpose of reflecting light in optical applications is to change the irradiation angle without changing the characteristics of the light obtained from the light source, and to collect and scatter the irradiated light. There is a special depolarization method for the purpose of defocusing light rays as seen in polarization-dependent optical isolators known as the Faraday effect, but the reflector itself modifies the light. A reflector that can be modified so that the modified light affects the properties of water and organic solvents, and has the ability to modify light using such a reflector. The irradiating device is not well known.

本発明者らは所定の加工を施したセラミックスの表面が、反射した照射光を改質する機能を有するという特性を見出し、更には前記反射光のみを効率的に取り出すための照射装置の構造を発明した。   The present inventors have found that the surface of the ceramic subjected to a predetermined processing has a function of modifying the reflected irradiation light, and further has a structure of an irradiation apparatus for efficiently extracting only the reflected light. Invented.

前記光改質機能を有するセラミックスに対し、光を照射しても、目的とする反射光以外で発光素子より洩れ出る光が反射光に混じってしまい、安定的な改質光の生成を妨げていた。   Even if the ceramics having the light modifying function are irradiated with light, light leaking from the light emitting element other than the target reflected light is mixed with the reflected light, thereby preventing the generation of stable modified light. It was.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、光源より照射された光を極力、反射体に接触反射せしめる構造であり、改質された反射光のみを照射槽に反射することを目的としている。   The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is a structure in which the light irradiated from the light source is reflected to the reflector as much as possible, and only the modified reflected light is irradiated. It is intended to reflect on the tank.

本発明の実施の形態に係る第1の特徴は、反射光照射装置において、紫外光から赤外光までの波長領域範囲内の光を照射する発光素子と、発光素子と反射体との間に集光体を備え、この集光された光を反射体が前記発光素子の光照射方向とは異なる光取出方向に反射及び/または散乱することで、発光素子から照射される光が光取出方向に直接出力されない。   A first feature according to an embodiment of the present invention is that, in the reflected light irradiation device, a light emitting element that irradiates light in a wavelength region range from ultraviolet light to infrared light, and the light emitting element between the light emitting element and the reflector. A light collecting body is provided, and the light reflected from the light emitting element is reflected and / or scattered in a light extraction direction different from the light irradiation direction of the light emitting element. Is not output directly.

本発明の実施の形態に係る第2の特徴は、反射光照射装置において、反射体材料が金属酸化物、金属窒化物、黒鉛のそれぞれ一種か二種以上を組み合わせた材料である。   The 2nd characteristic which concerns on embodiment of this invention is a reflected light irradiation apparatus. WHEREIN: The reflector material is a material which combined 1 type, or 2 or more types, respectively, of a metal oxide, a metal nitride, and graphite.

本発明の実施の形態に係る第3の特徴は、反射光照射装置において、紫外光から赤外光までの範囲内の光を照射する発光素子と、前記発光素子から照射される光を反射及び/または散乱し、この反射及び/または散乱された光を前記発光素子の光照射方向とは異なる光取出方向に反射及び/または散乱するのと同時に、照射光が反射体に接触することで、照射光に所定の機能を持たせることを目的とした反射体と、反射光を被照射体に照射するための照射槽を備え、前記照射槽は外光の進入を遮蔽する構造となっており、また更に照射槽の内壁は鏡面状であるため、反射光が効率的かつ全方位より被照射体に照射される。   A third feature according to the embodiment of the present invention is that, in the reflected light irradiation device, a light emitting element that irradiates light in a range from ultraviolet light to infrared light, and the light irradiated from the light emitting element is reflected and The reflected light and / or scattered light is reflected and / or scattered in a light extraction direction different from the light irradiation direction of the light emitting element, and at the same time, the irradiated light contacts the reflector, It has a reflector for the purpose of giving the irradiation light a predetermined function, and an irradiation tank for irradiating the irradiated object with the reflected light, and the irradiation tank has a structure that blocks the entrance of external light. Moreover, since the inner wall of the irradiation tank is mirror-like, the reflected light is efficiently and irradiates the irradiated object from all directions.

本発明によれば、光改質を目的とした反射体より、反射された反射光を効率的に利用することができる反射光照射装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reflected light irradiation apparatus which can utilize efficiently the reflected reflected light from the reflector for the purpose of optical modification can be provided.

本発明の第1の実施の形態に係る反射光照射装置の断面図である。It is sectional drawing of the reflected light irradiation apparatus which concerns on the 1st Embodiment of this invention. 図1に示す反射光照射装置の遮蔽体を除いた平面図である。It is a top view except the shield of the reflected light irradiation apparatus shown in FIG. 図1に示す反射光照射装置の遮蔽体を含んだ平面図である。It is a top view containing the shield of the reflected light irradiation apparatus shown in FIG. 図1に示す反射光照射装置に照射槽を加えた断面図である。It is sectional drawing which added the irradiation tank to the reflected light irradiation apparatus shown in FIG.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において同一機能を有する構成要素には同一符号を付け、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment, components having the same function are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施の形態)
[反射光照射装置の全体構造]
図1及び図2に示すように、本発明の実施の形態に係る反射光照射装置1は、紫外光から赤外光までの範囲内の光を第1の水平方向D1に照射する発光素子2と、発光素子2と反射体4の間に設けられた集光体3と、集光された光を第1の水平方向D1と異なる第2の方向D2に反射する反射体4とを備え、発光素子2から照射される光が光取出方向に直接出力されないようになっている。
(First embodiment)
[Overall structure of reflected light irradiation device]
As shown in FIGS. 1 and 2, the reflected light irradiation apparatus 1 according to the embodiment of the present invention emits light within a range from ultraviolet light to infrared light in a first horizontal direction D1. And a light collector 3 provided between the light emitting element 2 and the reflector 4, and a reflector 4 that reflects the collected light in a second direction D2 different from the first horizontal direction D1, The light emitted from the light emitting element 2 is not directly output in the light extraction direction.

第1の実施の形態に係る発光素子2は、基盤5を中心に水平方向に複数配列され、第1の水平方向D1に向かって光を出力する。発光素子2は基盤5の表面上の対向する2箇所(180度対向する位置)ないしは基盤5の表面に複数個均等角度に配設され、各発光素子より照射された光は、集光体により各発光素子の照射光正面に断続的ないしは円状に配置された反射体4に対し集光された後、反射体によって反射及び/または散乱される。ここで、第1の方向D1とは、発光素子2からの光の照射方向であって発光素子2から出力される光の光軸に一致する方向という意味において使用される。また、第1の方向D1は、光強度のピーク位置に一致する。更に、発光素子2から出力される光は遮蔽体7の表面に対して平行に出力させており、第1の方向D1は遮蔽体7の表面に対して実質的に平行である。つまり、発光素子2は遮蔽体7の表面に沿って光(直接光)を照射する。   A plurality of light emitting elements 2 according to the first embodiment are arranged in the horizontal direction around the base 5 and output light in the first horizontal direction D1. The light-emitting elements 2 are arranged at two equal positions (positions facing each other at 180 degrees) on the surface of the base 5 or on the surface of the base 5 at a plurality of equal angles. After being focused on the reflector 4 arranged in an intermittent or circular manner in front of the irradiation light of each light emitting element, it is reflected and / or scattered by the reflector. Here, the first direction D <b> 1 is used in the sense that it is the direction in which light is emitted from the light emitting element 2 and coincides with the optical axis of the light output from the light emitting element 2. The first direction D1 coincides with the peak position of the light intensity. Furthermore, the light output from the light emitting element 2 is output in parallel to the surface of the shield 7, and the first direction D <b> 1 is substantially parallel to the surface of the shield 7. That is, the light emitting element 2 irradiates light (direct light) along the surface of the shield 7.

また、ここで、「光の反射」とは、発光素子2から照射される直接光をすべて反射体4で反射する場合、直接光の大半が反射体4で反射され直接光の一部が反射体4に吸収される場合のいずれも含む意味においても使用される。更に、「発光素子2から照射される光が光取出方向に直接出力されない」とは、発光素子2から照射される直接光、発光素子2から反射体4に照射されずに漏れた光、発光素子2から反射体4に吸収され、光取出方向への反射に寄与しない光が光取出方向に出力されないという意味において使用される。なお、反射体4から光取出方向に反射される光は「反射光」になる。   Here, “reflection of light” means that when all the direct light irradiated from the light emitting element 2 is reflected by the reflector 4, most of the direct light is reflected by the reflector 4 and a part of the direct light is reflected. It is used in the meaning including any of the cases absorbed by the body 4. Further, “light emitted from the light emitting element 2 is not directly output in the light extraction direction” means direct light emitted from the light emitting element 2, light leaked without being emitted from the light emitting element 2 to the reflector 4, light emission It is used in the sense that light that is absorbed by the reflector 4 from the element 2 and does not contribute to reflection in the light extraction direction is not output in the light extraction direction. The light reflected from the reflector 4 in the light extraction direction is “reflected light”.

[基盤の構造]
図1及び図2に示すように、基盤5は発光素子2とワイヤ6を通して電気的に接続されている。
[Structure of the base]
As shown in FIGS. 1 and 2, the substrate 5 is electrically connected to the light emitting element 2 through the wire 6.

[反射体の配置]
図1及び図2に示すように、反射体4は、第1の実施の形態において、発光素子の配置された集光体配置列の更に外周にあって、円盤形状を有する基盤5の表面上の周縁全域に沿って配設されている。
[Reflector arrangement]
As shown in FIG. 1 and FIG. 2, the reflector 4 is on the surface of the base 5 having a disk shape that is further on the outer periphery of the light collector arrangement row where the light emitting elements are arranged in the first embodiment. It is arrange | positioned along the peripheral edge whole area | region.

ここで、第2の方向D2とは、前述のように第1の方向D1とは異なる光取出方向であって、反射体4から反射され取り出される反射光の光軸方向という意味において使用されている。   Here, the second direction D2 is a light extraction direction different from the first direction D1 as described above, and is used in the meaning of the optical axis direction of the reflected light reflected and extracted from the reflector 4. Yes.

第1の実施の形態において、反射体4は、基盤5に対して別部材(別部品)により構成されており、図示しないが、基盤5に接着剤、締結部材等により機械的に固定されているが、反射体を光の入射角度に対して固定を可能とする方法であれば、これらの方法に限ったものではない。   In the first embodiment, the reflector 4 is configured by a separate member (separate part) with respect to the base 5 and is not fixed to the base 5 but is mechanically fixed to the base 5 by an adhesive, a fastening member, or the like. However, the method is not limited to these methods as long as the reflector can be fixed with respect to the incident angle of light.

[発光素子の種類]
発光素子2には、アルゴンランプ、HIDランプ、クリプトンランプ、ハロゲンランプ、蛍光ランプ、ELランプ、発光ダイオード、無電極ランプ等を利用出来るが、これらの素子に限ったものではない。
[Types of light emitting elements]
As the light-emitting element 2, an argon lamp, an HID lamp, a krypton lamp, a halogen lamp, a fluorescent lamp, an EL lamp, a light-emitting diode, an electrodeless lamp, or the like can be used. However, the light-emitting element 2 is not limited to these elements.

[セラミックの組成]
第1の実施の形態において、反射体4には、金属酸化物、金属窒化物、黒鉛を組み合わせて構成されているが、より詳細には次のような物質が挙げられる。
[Ceramic composition]
In the first embodiment, the reflector 4 is configured by combining a metal oxide, a metal nitride, and graphite. More specifically, the following substances may be mentioned.

金属酸化物としては酸化アルミニウム、酸化アルミニウム水和物、酸化珪素、酸化珪素水和物、酸化鉄、酸化鉄水和物、酸化スズ、酸化セリウム、酸化亜鉛、酸化ジルコニウム、酸化クロム、酸化チタン、特に二酸化チタン、酸化チタン水和物が挙げられる。   Metal oxides include aluminum oxide, aluminum oxide hydrate, silicon oxide, silicon oxide hydrate, iron oxide, iron oxide hydrate, tin oxide, cerium oxide, zinc oxide, zirconium oxide, chromium oxide, titanium oxide, In particular, titanium dioxide and titanium oxide hydrate can be mentioned.

また、金属窒化物としては金属チタン、ジルコニウムおよび/またはタンタルの窒化物等が挙げられる。黒鉛は黒鉛単体での使用も可能ではあるが、金属酸化物、金属窒化物に黒鉛を含んだ組成として例えば黒鉛珪石等を利用してもよい。   Examples of the metal nitride include metal titanium, zirconium and / or tantalum nitride. Although graphite can be used alone, graphite, for example, may be used as a composition containing graphite in a metal oxide or metal nitride.

また、ニオブ酸リチウム、タンタル酸リチウム、チタン酸バリウム、チタン酸リチウム酸塩のような強誘電体材料を使用してもよい。   Further, a ferroelectric material such as lithium niobate, lithium tantalate, barium titanate, or lithium titanate may be used.

また、その他の金属酸化物としてチタン酸カリウム、酸化ゲルマニウム、酸化スズ、酸化ホウ素、酸化ナトリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マンガン、酸化コバルト、酸化銅、酸化アンチモン、酸化ビスマス、カオリン、及びタルク等も利用してもよい。   Other metal oxides include potassium titanate, germanium oxide, tin oxide, boron oxide, sodium oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, manganese oxide, cobalt oxide, copper oxide, antimony oxide, bismuth oxide. , Kaolin, and talc may also be used.

更に金属窒化物としても上記の窒化物以外に窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化スズ、窒化ストロンチウム、窒化バリウム等の金属窒化物が挙げられる。   In addition to the above nitrides, metal nitrides such as aluminum nitride, silicon nitride, boron nitride, tin nitride, strontium nitride, and barium nitride can be used as the metal nitride.

更には第1の実施の形態内の前記[セラミックの組成]に記載の組成物の複合体を利用することも出来る。   Furthermore, a composite of the composition described in [Ceramic composition] in the first embodiment can also be used.

[反射体の第1の製造方法]
図2に示す反射体4は平面状の板状により構成されている。このような板状を有する反射体4は、粉体材料からの加圧焼結や基材に対する溶射により製作することができるが、目的の表面状態が得られる加工方法であれば、これらの方法に限ったものではない。
[First manufacturing method of reflector]
The reflector 4 shown in FIG. 2 is configured by a planar plate shape. The reflector 4 having such a plate shape can be manufactured by pressure sintering from a powder material or thermal spraying on a base material, and these methods can be used as long as the processing method can obtain a desired surface state. It is not limited to.

反射体の表面粗度(Ra)は接触する光の散乱度や接触面積等の要素から0.1μm〜1000μmの範囲で用いられても良いが、更に好ましくは1μm〜100μmの範囲で利用されても良い。   The surface roughness (Ra) of the reflector may be used in the range of 0.1 μm to 1000 μm, more preferably in the range of 1 μm to 100 μm, depending on factors such as the degree of light scattering and contact area. Also good.

[反射体の第2の製造方法]
また、反射体表面の粗度(Ra)は、焼結等の方法で成型する工程で、同時に目的の粗度を得ても良いが、成型段階ではより粗い状態の表面を作成し、成型後に物理的ないしは化学的な処理を施して粗度を低減するなどしても良い。または、成型時に表面を平滑な状態で作成しておき、成型後に物理的ないしは化学的に粗化処理を施しても良い。
[Second manufacturing method of reflector]
Further, the roughness (Ra) of the reflector surface may be obtained by a process such as sintering, and at the same time, the desired roughness may be obtained at the same time. Physical or chemical treatment may be applied to reduce the roughness. Alternatively, the surface may be prepared in a smooth state at the time of molding, and a roughening treatment may be physically or chemically performed after the molding.

[反射光照射装置の発光動作]
このように構成される反射光照射装置1は、まず発光素子2の第1の主電極と第2の主電極との間に動作電圧が印加されると、発光素子から第1の方向D1に光が出力され、この光を集光体3が集光し、反射体4がこの集光された光を反射及び/または散乱する。そして反射光は、第2の方向D2に向かって反射される。
[Light emission operation of reflected light irradiation device]
In the reflected light irradiation device 1 configured as described above, first, when an operating voltage is applied between the first main electrode and the second main electrode of the light emitting element 2, the light emitting element in the first direction D1. Light is output, the light collector 3 collects this light, and the reflector 4 reflects and / or scatters the collected light. The reflected light is reflected toward the second direction D2.

(第2の実施の形態)
第2の実施の形態に係る反射光照射装置1の具体的な実施例を説明する。図3に示すように、反射光照射装置1において、基盤5は、前述の反射体4を接合した状態に構成されている。基盤5は成型加工により簡易に製作することができる。この基盤5の表面上に420nm波長の光を発振するLED発光素子2をマウントした。ワイヤ6により基盤5と発光素子2との間を電気的に接続した。集光体3は発光素子2に近接する形で設置され、発光素子2より発生する光を散逸させることなくD1方向へと集光させる。更には図1に示すような遮蔽体6を備えた。反射体4は、平均粒径20μmの表面処理を施していない酸化アルミニウム粉末を63wt%と平均粒径5μmの酸化珪素粉末を30wt%と更に平均粒径10μmの黒鉛粉末を7wt%をボールミルを用いて乾式混合し、この混合物を1,200℃にて焼結し成型品を得た上で、ブラスト粗化により表面粗度(Ra)を平均40μmに調整したものを使用した。
(Second Embodiment)
A specific example of the reflected light irradiation device 1 according to the second embodiment will be described. As shown in FIG. 3, in the reflected light irradiation device 1, the base 5 is configured in a state where the above-described reflector 4 is joined. The base 5 can be easily manufactured by molding. An LED light emitting element 2 that oscillates light having a wavelength of 420 nm is mounted on the surface of the substrate 5. The substrate 5 and the light emitting element 2 were electrically connected by the wire 6. The condensing body 3 is installed in the form close to the light emitting element 2, and condenses the light generated from the light emitting element 2 in the direction D1 without being dissipated. Further, a shield 6 as shown in FIG. 1 is provided. The reflector 4 uses a ball mill with 63 wt% of aluminum oxide powder having an average particle diameter of 20 μm that has not been subjected to surface treatment, 30 wt% of silicon oxide powder with an average particle diameter of 5 μm, and 7 wt% of graphite powder with an average particle diameter of 10 μm. The mixture was dry-mixed, and the mixture was sintered at 1,200 ° C. to obtain a molded product, and the surface roughness (Ra) adjusted to an average of 40 μm by blast roughening was used.

発光素子2の主電極間に動作電圧を印加し、LED光を照射した。発光素子2から第1の方向D1に向かってLED光が出力され、反射体4に照射、反射され、反射体4においては第2の方向D2に向かって反射光を反射した。   An operating voltage was applied between the main electrodes of the light emitting element 2, and LED light was irradiated. The LED light is output from the light emitting element 2 in the first direction D1, irradiated and reflected on the reflector 4, and the reflector 4 reflects the reflected light in the second direction D2.

[第2の実施の形態に係る効果]
以上説明したように、第2の実施の形態に係る反射光照射装置1においては、発光素子2から照射される光の方向(第1の方向D1)と異なる方向(第2の方向D2)に反射光のみを発することができる。
[Effects of Second Embodiment]
As described above, in the reflected light irradiation device 1 according to the second embodiment, the direction of light emitted from the light emitting element 2 (first direction D1) is different from the direction (second direction D2). Only reflected light can be emitted.

更に、第2の実施の形態に係る反射光照射装置1においては、発光素子2からの照射光の放出方向と反射体4からの光の放出方向とを調節する簡易な構造であるので、部品点数も少なく、小型化を実現することができる。   Furthermore, in the reflected light irradiation device 1 according to the second embodiment, since it has a simple structure that adjusts the emission direction of the irradiation light from the light emitting element 2 and the emission direction of the light from the reflector 4, Miniaturization can be realized with a small number of points.

本発明の第2の実施の形態を達成するための組成物としては第1の実施の形態内の前記[セラミックの組成]に記載の組成物を用いても良いし、これら組成物の複合体を利用することも出来る。   As the composition for achieving the second embodiment of the present invention, the composition described in [Ceramic composition] in the first embodiment may be used, or a composite of these compositions. Can also be used.

(第3の実施の形態)
第3の実施の形態に係る反射光照射装置1の具体的な実施例を説明する。図3に示すように、反射光照射装置1において、基盤5は、前述の反射体4を接合した状態に構成されている。基盤5は成型加工により簡易に製作することができる。この基盤5の表面上に300nm波長の光を発振するクリプトン発光素子2をマウントした。ワイヤ6により基盤5と発光素子2との間を電気的に接続した。集光体3は発光素子2に近接する形で設置され、発光素子2より発生する光を散逸させることなくD1方向へと集光させる。更には図1に示すような遮蔽体6を備えた。反射体4は、平均粒径200μmの酸化チタン粉末を50wt%と平均粒径150μmの酸化珪素粉末を40wt%と更に平均粒径60μmの黒鉛粉末を10wt%をボールミルを用いて乾式混合し、この混合物を1,200℃にて焼結し成型品を得た上で、表面粗度(Ra)を確認したところ平均70μmであり、これに表面処理を施さず使用した。
(Third embodiment)
A specific example of the reflected light irradiation device 1 according to the third embodiment will be described. As shown in FIG. 3, in the reflected light irradiation device 1, the base 5 is configured in a state where the above-described reflector 4 is joined. The base 5 can be easily manufactured by molding. A krypton light emitting element 2 that oscillates light having a wavelength of 300 nm was mounted on the surface of the substrate 5. The substrate 5 and the light emitting element 2 were electrically connected by the wire 6. The condensing body 3 is installed in the form close to the light emitting element 2, and condenses the light generated from the light emitting element 2 in the direction D1 without being dissipated. Further, a shield 6 as shown in FIG. 1 is provided. The reflector 4 is prepared by dry-mixing 50 wt% of titanium oxide powder having an average particle diameter of 200 μm, 40 wt% of silicon oxide powder having an average particle diameter of 150 μm, and 10 wt% of graphite powder having an average particle diameter of 60 μm using a ball mill. The mixture was sintered at 1,200 ° C. to obtain a molded product, and the surface roughness (Ra) was confirmed to be 70 μm on average, which was used without being subjected to surface treatment.

本発明の第3の実施の形態を達成するための組成物としては第1の実施の形態内の前記[セラミックの組成]に記載の組成物を用いても良いし、これら組成物の複合体を利用することも出来る。   As the composition for achieving the third embodiment of the present invention, the composition described in [Ceramic composition] in the first embodiment may be used, or a composite of these compositions. Can also be used.

(第4の実施の形態)
第4の実施の形態に係る反射光照射装置1の具体的な実施例を説明する。図3に示すように、反射光照射装置1において、基盤5は、前述の反射体4を接合した状態に構成されている。基盤5は成型加工により簡易に製作することができる。この基盤5の表面上に600nm波長の光を発振するLED発光素子2をマウントした。ワイヤ6により基盤5と発光素子2との間を電気的に接続した。集光体3は発光素子2に近接する形で設置され、発光素子2より発生する光を散逸させることなくD1方向へと集光させる。更には図1に示すような遮蔽体6を備えた。反射体4は、平均粒径700μmの酸化ジルコニウム粉末を80wt%と平均粒径1000μmのカオリン粉末を10wt%と更に平均粒径10μmの黒鉛粉末を10wt%をボールミルを用いて乾式混合し、この混合物を1,200℃にて焼結し成型品を得た上で、表面粗度(Ra)を確認したところ平均150μmであった。これに物理的研磨処理を施し、表面粗度を平均90μとして反射体として使用した。
(Fourth embodiment)
A specific example of the reflected light irradiation device 1 according to the fourth embodiment will be described. As shown in FIG. 3, in the reflected light irradiation device 1, the base 5 is configured in a state where the above-described reflector 4 is joined. The base 5 can be easily manufactured by molding. An LED light emitting element 2 that oscillates light having a wavelength of 600 nm was mounted on the surface of the substrate 5. The substrate 5 and the light emitting element 2 were electrically connected by the wire 6. The condensing body 3 is installed in the form close to the light emitting element 2, and condenses the light generated from the light emitting element 2 in the direction D1 without being dissipated. Further, a shield 6 as shown in FIG. 1 is provided. The reflector 4 is obtained by dry-mixing 80 wt% of zirconium oxide powder having an average particle diameter of 700 μm, 10 wt% of kaolin powder having an average particle diameter of 1000 μm, and 10 wt% of graphite powder having an average particle diameter of 10 μm using a ball mill. After sintering at 1,200 ° C. to obtain a molded product, the surface roughness (Ra) was confirmed to be 150 μm on average. This was subjected to a physical polishing treatment and used as a reflector with an average surface roughness of 90 μm.

本発明の第4の実施の形態を達成するための組成物としては第1の実施の形態内の前記[セラミックの組成]に記載の組成物を用いても良いし、これら組成物の複合体を利用することも出来る。   As the composition for achieving the fourth embodiment of the present invention, the composition described in [Ceramic composition] in the first embodiment may be used, or a composite of these compositions. Can also be used.

(第5の実施の形態)
第5の実施の形態に係る反射光照射装置1の具体的な実施例を説明する。図3に示すように、反射光照射装置1において、基盤5は、前述の反射体4を接合した状態に構成されている。基盤5は成型加工により簡易に製作することができる。この基盤5の表面上に1500nm波長の光を発振するハロゲン発光素子2をマウントした。ワイヤ6により基盤5と発光素子2との間を電気的に接続した。集光体3は発光素子2に近接する形で設置され、発光素子2より発生する光を散逸させることなくD1方向へと集光させる。更には図1に示すような遮蔽体6を備えた。反射体4は、平均粒径20μmの表面処理を施していない酸化アルミニウム粉末を63wt%と平均粒径5μmの酸化珪素粉末を30wt%と更に平均粒径10μmの黒鉛粉末を7wt%をボールミルを用いて乾式混合し、この混合物を1,200℃にて焼結し成型品を得た上で、ブラスト粗化により表面粗度(Ra)を平均40μmに調整したものを使用した。
(Fifth embodiment)
A specific example of the reflected light irradiation device 1 according to the fifth embodiment will be described. As shown in FIG. 3, in the reflected light irradiation device 1, the base 5 is configured in a state where the above-described reflector 4 is joined. The base 5 can be easily manufactured by molding. A halogen light emitting element 2 that oscillates light having a wavelength of 1500 nm was mounted on the surface of the substrate 5. The substrate 5 and the light emitting element 2 were electrically connected by the wire 6. The condensing body 3 is installed in the form close to the light emitting element 2, and condenses the light generated from the light emitting element 2 in the direction D1 without being dissipated. Further, a shield 6 as shown in FIG. 1 is provided. The reflector 4 uses a ball mill with 63 wt% of aluminum oxide powder having an average particle diameter of 20 μm that has not been subjected to surface treatment, 30 wt% of silicon oxide powder with an average particle diameter of 5 μm, and 7 wt% of graphite powder with an average particle diameter of 10 μm. The mixture was dry-mixed, and the mixture was sintered at 1,200 ° C. to obtain a molded product, and the surface roughness (Ra) adjusted to an average of 40 μm by blast roughening was used.

本発明の第5の実施の形態を達成するための組成物としては第1の実施の形態内の前記[セラミックの組成]に記載の組成物を用いても良いし、これら組成物の複合体を利用することも出来る。   As the composition for achieving the fifth embodiment of the present invention, the composition described in [Ceramic composition] in the first embodiment may be used, or a composite of these compositions. Can also be used.

(第6の実施の形態)
本発明の第6の実施の形態に係る、反射光照射装置1より得られる反射光利用の具体的な実施例を説明する。前述の第1の実施の形態に係る反射光照射装置1より得られた反射光を紫外線〜赤外線領域において平均95%以上の透過率を有する容器に水道水を密閉し、外光を遮蔽した上で72時間反射光の照射を行い、改質水である所定の反射光照射水を得た。この水を用いて苺を栽培し、ブランク水と生育効果を比較したところ、3ヶ月の育成期間で反射光照射水を利用したプラントでは約2.2倍の収量が得られ、平均の糖度も2度高かった。なお、本実施の形態において、第1の実施の形態以外の構造を利用しても近似の結果が得られた。
(Sixth embodiment)
A specific example of using reflected light obtained from the reflected light irradiation device 1 according to the sixth embodiment of the present invention will be described. The reflected light obtained from the reflected light irradiation device 1 according to the first embodiment is sealed with tap water in a container having an average transmittance of 95% or more in the ultraviolet to infrared region to shield outside light. Then, the reflected light was irradiated for 72 hours to obtain a predetermined reflected light irradiated water which was a modified water. Using this water to cultivate straw and compared the growth effect with the blank water, the plant using reflected light irradiation water in the growing period of 3 months gave a yield of about 2.2 times, and the average sugar content was 2 It was high. In the present embodiment, an approximate result was obtained even when a structure other than the first embodiment was used.

(第7の実施の形態)
本発明の第7の実施の形態に係る、反射光照射装置1より得られる反射光利用の具体的な実施例を説明する。前述の第1の実施の形態に係る反射光照射装置1より得られた反射光を有機質セルロースを炭化して作製した炭化布に24時間照射した後、窒素吸着法により反射光照射前後の比表面積と全細孔容積を確認した。結果は表1に示されるようにブランクの炭化布に比べ、比表面積が約83%減少し、全細孔容積が約85%減少しており、構造に変化が見られた。なお、本実施の形態において、第1の実施の形態以外の構造を利用しても近似の結果が得られた。
(Seventh embodiment)
A specific example of using reflected light obtained from the reflected light irradiation device 1 according to the seventh embodiment of the present invention will be described. After the reflected light obtained from the reflected light irradiation apparatus 1 according to the first embodiment described above is irradiated for 24 hours on a carbonized fabric produced by carbonizing organic cellulose, the specific surface area before and after the reflected light irradiation is obtained by a nitrogen adsorption method. And the total pore volume was confirmed. As shown in Table 1, the specific surface area was reduced by about 83%, the total pore volume was reduced by about 85%, and the structure was changed as shown in Table 1. In the present embodiment, an approximate result was obtained even when a structure other than the first embodiment was used.

Figure 2011039120
Figure 2011039120

(第8の実施の形態)
本発明の第8の実施の形態に係る、反射光照射装置1より得られる反射光利用の具体的な実施例を説明する。前述の第1の実施の形態に係る反射光照射装置1より得られた反射光を、性能が劣化し、発電能を示さなくなったDEFC(ダイレクトエタノール燃料電池)ユニット用のMEAに燃料極側から反射光を22時間、44時間、90時間照射した上で、無負荷状態のMEAに燃料として3%に濃度を調整した日本酒(菊水の辛口)を投入し、最高電圧に到達後5分経過時の電圧を測定し、表2に示されるような結果が得られた。なお、本実施の形態において、第1の実施の形態以外の構造を利用しても近似の結果が得られた。
(Eighth embodiment)
A specific example of using reflected light obtained from the reflected light irradiation device 1 according to the eighth embodiment of the present invention will be described. The reflected light obtained from the reflected light irradiation device 1 according to the first embodiment described above is applied from the fuel electrode side to the MEA for a DEFC (direct ethanol fuel cell) unit whose performance has deteriorated and has no power generation capability. After irradiating the reflected light for 22 hours, 44 hours, and 90 hours, the non-loaded MEA was charged with 3% of sake (spicy Kikusui) as fuel, and 5 minutes passed after reaching the maximum voltage. As a result, the results shown in Table 2 were obtained. In the present embodiment, an approximate result was obtained even when a structure other than the first embodiment was used.

Figure 2011039120
Figure 2011039120

(第9の実施の形態)
本発明の第9の実施の形態に係る、反射光照射装置1より得られる反射光利用の具体的な実施例を説明する。前述の第1の実施の形態に係る反射光照射装置1より得られた反射光を、酸化チタン微粉末(デグッサ社製P−25)の水分散液をスピンコートして得られた膜に72時間照射したところ、塗膜表面付近結晶性の改善が見られた。なお、本実施の形態において、第1の実施の形態以外の構造を利用しても近似の結果が得られた。
(Ninth embodiment)
A specific example of using reflected light obtained from the reflected light irradiation device 1 according to the ninth embodiment of the present invention will be described. The reflected light obtained from the reflected light irradiation apparatus 1 according to the first embodiment described above is applied to a film 72 obtained by spin-coating an aqueous dispersion of titanium oxide fine powder (P-25 manufactured by Degussa). When irradiated for a long time, improvement in crystallinity near the coating surface was observed. In the present embodiment, an approximate result was obtained even when a structure other than the first embodiment was used.

(第10の実施の形態)
本発明の第10の実施の形態に係る、反射光照射装置1より得られる反射光利用の具体的な実施例を説明する。前述の第1の実施の形態に係る反射光照射装置1より得られた反射光を、紫外線〜赤外線領域において平均95%以上の透過率を有する容器に、酵素源を含んだ混合液を投入密閉した状態で、72時間照射したところ、本来40℃付近でなければ、酵素活性を示しにくい微生物が、30℃付近での顕著な酵素活性を示した。なお、本実施の形態において、第1の実施の形態以外の構造を利用しても近似の結果が得られた。
(Tenth embodiment)
A specific example of using reflected light obtained from the reflected light irradiation device 1 according to the tenth embodiment of the present invention will be described. The reflected light obtained from the reflected light irradiation apparatus 1 according to the first embodiment is charged with a mixture containing an enzyme source in a container having an average transmittance of 95% or more in the ultraviolet to infrared region. When irradiated for 72 hours in such a state, microorganisms that did not exhibit enzyme activity unless they were originally around 40 ° C. showed significant enzyme activity around 30 ° C. In the present embodiment, an approximate result was obtained even when a structure other than the first embodiment was used.

実施の形態中の各性能試験における、試験方法は以下の通りである。
糖度測定:京都電子工業製 ポータブル糖度計RA−250による測定
比表面積/全細孔容積/平均細孔直径測定:窒素ガス吸着法による測定
MEA無負荷最大到達電圧測定:デジタルマルチメーターCDM−17Dによる測定
酸化チタン薄膜表面構造測定:ラマン分光測定器による表面状態測定
酵素活性測定:分光法による酵素活性の測定
The test method in each performance test in the embodiment is as follows.
Measurement of sugar content: Measurement with a portable sugar meter RA-250 manufactured by Kyoto Electronics Industry Measurement of specific surface area / total pore volume / average pore diameter: Measurement by nitrogen gas adsorption method Measurement of maximum unloaded MEA: Digital multimeter CDM-17D Measurement Titanium oxide thin film surface structure measurement: surface state measurement by Raman spectrophotometer Enzyme activity measurement: measurement of enzyme activity by spectroscopy

〔比較例1〕
第6の実施の形態に係る具体的な比較例を説明する。反射光照射装置1に利用している反射体を鏡面仕上げのSUS−304材に切り替え、この照射装置より得られた反射光を紫外線〜赤外線領域において平均95%以上の透過率を有する容器に水道水を密閉し、外光を遮蔽した上で72時間反射光の照射を行い、所定の反射光照射水を得た。この水を用いて苺を栽培し、ブランク水と生育効果を比較したところ、3ヶ月の育成期間で反射光照射水を利用したプラントでは生育効果、糖度共に変化は見られなかった。
[Comparative Example 1]
A specific comparative example according to the sixth embodiment will be described. The reflector used in the reflected light irradiation device 1 is switched to a mirror-finished SUS-304 material, and the reflected light obtained from this irradiation device is supplied to a container having an average transmittance of 95% or more in the ultraviolet to infrared region. The water was sealed and the external light was shielded, and the reflected light was irradiated for 72 hours to obtain predetermined reflected light irradiated water. Using this water, the straw was cultivated, and the growth effect was compared with the blank water. In the plant using the reflected light irradiation water in the growth period of 3 months, neither growth effect nor sugar content was observed.

1 反射光照射装置
2 発光素子
3 集光体
4 反射体
5 基盤
6 ワイヤ
7 遮蔽体
8 照射槽
81 照射槽内壁
DESCRIPTION OF SYMBOLS 1 Reflected light irradiation apparatus 2 Light emitting element 3 Condensing body 4 Reflector 5 Base 6 Wire 7 Shielding body 8 Irradiation tank 81 Irradiation tank inner wall

Claims (13)

少なくとも一つの発光素子と、前記発光素子の光照射方向に配置され前記発光素子から照射される光を反射または散乱する反射体とを有し、前記反射体によってこの反射または散乱された反射光を前記発光素子の光照射方向とは異なる光取出方向に反射または散乱させた光のみを照射することを特徴とする反射光照射装置。   And at least one light emitting element and a reflector that is disposed in a light irradiation direction of the light emitting element and reflects or scatters light emitted from the light emitting element, and the reflected light that is reflected or scattered by the reflector. A reflected light irradiation apparatus that irradiates only light reflected or scattered in a light extraction direction different from the light irradiation direction of the light emitting element. 少なくとも一つの発光素子と、前記発光素子の光照射方向に配置され前記発光素子から照射される光を反射および散乱する反射体とを有し、前記反射体によってこの反射および散乱された反射光を前記発光素子の光照射方向とは異なる光取出方向に反射および散乱させた光のみを照射することを特徴とする反射光照射装置。   And at least one light emitting element and a reflector that is arranged in a light irradiation direction of the light emitting element and reflects and scatters light emitted from the light emitting element, and the reflected light scattered and scattered by the reflector A reflected light irradiation apparatus that emits only light reflected and scattered in a light extraction direction different from the light irradiation direction of the light emitting element. 前記反射体の材質は金属酸化物、金属窒化物、黒鉛のいずれか一種または二種以上を組み合わせた材質であることを特徴とする請求項1または2に記載の反射光照射装置。   The reflected light irradiation apparatus according to claim 1 or 2, wherein a material of the reflector is a material obtained by combining one or more of metal oxide, metal nitride, and graphite. 前記発光素子からの光の波長領域は紫外線領域から赤外線領域にピーク強度を有する光であることを特徴とする請求項1乃至3のいずれか一つに記載の反射光照射装置。   4. The reflected light irradiation apparatus according to claim 1, wherein a wavelength region of light from the light emitting element is light having a peak intensity from an ultraviolet region to an infrared region. 5. 前記発光素子が照射された光は、前記反射体から反射される光を除きすべて照射されないように前記発光素子の周囲が遮蔽体で被覆されていることを特徴とする請求項1乃至4のいずれか一つに記載の反射光照射装置。   5. The light-emitting element is covered with a shielding body so that the light emitted from the light-emitting element is not irradiated except for light reflected from the reflector. The reflected light irradiation device according to claim 1. 前記発光素子と反射体との間に集光体を備えたことを特徴とする請求項1乃至5のいずれか一つに記載の反射光照射装置。   The reflected light irradiation apparatus according to claim 1, further comprising a light collector between the light emitting element and the reflector. 前記発光素子は、円形基板上に前記基板の直径方向外向きが前記発光素子の光照射方向となるように配置され、前記反射体は円形基板上円周上であって前記発光素子の光照射方向との交点に配置されることを特徴とする請求項1乃至6のいずれか一つに記載の反射光照射装置。   The light emitting element is disposed on a circular substrate so that a diameter direction outward of the substrate is a light irradiation direction of the light emitting element, and the reflector is on a circumference of the circular substrate, and the light irradiation of the light emitting element is performed. The reflected light irradiation apparatus according to claim 1, wherein the reflected light irradiation apparatus is disposed at an intersection with a direction. 前記発光素子は、互いに円形基板の中心に対して点対称となる位置に偶数個配置されることを特徴とする請求項7に記載の反射光照射装置。   The reflected light irradiation apparatus according to claim 7, wherein an even number of the light emitting elements are arranged at positions symmetrical with respect to the center of the circular substrate. 前記反射光照射装置は反射光及び被照射物を外光より遮蔽することを目的とした密閉照射槽を更に備えたことを特徴とする請求項1乃至8のいずれか一つに記載の反射光照射装置。   The reflected light according to any one of claims 1 to 8, wherein the reflected light irradiation device further includes a sealed irradiation tank for the purpose of shielding the reflected light and the object to be irradiated from outside light. Irradiation device. 前記密閉照射槽内の内壁は鏡面状態であることを特徴とする請求項1乃至請求項9のいずれか一つに記載の反射光照射装置。   The reflected light irradiation apparatus according to claim 1, wherein an inner wall of the sealed irradiation tank is in a mirror state. 請求項1乃至10のいずれか一つに記載の反射光照射装置の生成する反射光を照射された改質水。   The modified water irradiated with the reflected light which the reflected light irradiation apparatus as described in any one of Claims 1 thru | or 10 produces | generates. 請求項1乃至10のいずれか一つに記載の反射光照射装置の生成する反射光を照射された改質水溶液。   The modified aqueous solution irradiated with the reflected light generated by the reflected light irradiation device according to claim 1. 請求項1乃至9のいずれか一つに記載の反射光照射装置の生成する反射光を照射された改質材料。   The modified material irradiated with the reflected light generated by the reflected light irradiation device according to claim 1.
JP2009183895A 2009-08-06 2009-08-06 Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus Pending JP2011039120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183895A JP2011039120A (en) 2009-08-06 2009-08-06 Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183895A JP2011039120A (en) 2009-08-06 2009-08-06 Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus

Publications (1)

Publication Number Publication Date
JP2011039120A true JP2011039120A (en) 2011-02-24

Family

ID=43766981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183895A Pending JP2011039120A (en) 2009-08-06 2009-08-06 Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus

Country Status (1)

Country Link
JP (1) JP2011039120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881777B2 (en) 2008-12-24 2014-11-11 Pirelli Tyre S.P.A. Tyre for motorcycles
JP2021007902A (en) * 2019-06-28 2021-01-28 旭化成株式会社 Ultraviolet irradiation device and method for manufacturing ultraviolet irradiation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881777B2 (en) 2008-12-24 2014-11-11 Pirelli Tyre S.P.A. Tyre for motorcycles
JP2021007902A (en) * 2019-06-28 2021-01-28 旭化成株式会社 Ultraviolet irradiation device and method for manufacturing ultraviolet irradiation device
JP7316117B2 (en) 2019-06-28 2023-07-27 旭化成株式会社 UV irradiation device

Similar Documents

Publication Publication Date Title
JP5843789B2 (en) Glass ceramic having bulk scattering characteristics and method for producing the same
KR101482765B1 (en) Ultraviolet Light-emitting Material and Ultraviolet Light Source
JP6111538B2 (en) Manufacturing method of ITO powder used for manufacturing ITO film
JP2017027019A (en) Light source device
TW201249955A (en) Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension
JP2012064484A (en) Light source device
JP2008006429A (en) Photocatalytic material, photocatalyst, photocatalyst product, illumination assembly, and method of manufacturing photocatalytic material
JP2016031838A (en) Fluorescent light source device and manufacturing method of the same
WO2014104152A1 (en) Light emitting device
TW201240154A (en) Structure of the LED package
KR20150079629A (en) Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
KR102490444B1 (en) Surface modified phosphor and light emitting device comprising the same
WO2016146068A1 (en) Deep ultraviolet light source and packaging method therefor
KR20090004826A (en) Ultraviolet irradiation apparatus
JP2011039120A (en) Reflected light-irradiating apparatus and modified water, modified aqueous solution and modified material modified by this apparatus
Chu et al. Preparation of Bismuth Oxide Photocatalyst and Its Application in White‐light LEDs
JP2019039992A (en) Phosphor wheel, wheel device and projector
KR101997296B1 (en) Ultraviolet light generating target, electron-beam-excited ultraviolet light source, and method for producing ultraviolet light generating target
CN101045550A (en) Ultraviolet cut material, ultraviolet cut filter, discharge lamp and lighting apparatus
JP5928610B2 (en) Adjustment parts and light emitting device
JP4965874B2 (en) Short wavelength ultraviolet detector and method of manufacturing the same
TWI792529B (en) Photodetector and manufacturing method thereof
JP2009117148A (en) Excimer lamp
JP5392084B2 (en) Light emitting diode element and method for manufacturing the same
US11105482B2 (en) Light source device, projector, and vehicle