WO2013190958A1 - ヘッドアップディスプレイ装置 - Google Patents

ヘッドアップディスプレイ装置 Download PDF

Info

Publication number
WO2013190958A1
WO2013190958A1 PCT/JP2013/064786 JP2013064786W WO2013190958A1 WO 2013190958 A1 WO2013190958 A1 WO 2013190958A1 JP 2013064786 W JP2013064786 W JP 2013064786W WO 2013190958 A1 WO2013190958 A1 WO 2013190958A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
polarizing element
incident
transparent
Prior art date
Application number
PCT/JP2013/064786
Other languages
English (en)
French (fr)
Inventor
和之 栗原
康宏 池田
寛 坂本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014521251A priority Critical patent/JPWO2013190958A1/ja
Publication of WO2013190958A1 publication Critical patent/WO2013190958A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/60Instruments characterised by their location or relative disposition in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/77Instrument locations other than the dashboard
    • B60K2360/785Instrument locations other than the dashboard on or in relation to the windshield or windows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects

Definitions

  • the present invention relates to a head-up display device.
  • a typical example of using a transparent screen is a head-up display device for moving means such as a vehicle or an aircraft.
  • the vehicle head-up display device can image information such as the vehicle speed in the field of view in front of the driver (for example, Patent Document 1 and Patent Document 2). For this reason, the driver does not need to largely shift his / her line of sight from the front for information confirmation during driving of the vehicle, and safety during driving is improved.
  • a head-up display device for a vehicle is composed of a display means installed on a dashboard or the like in the vehicle, and a windshield provided with a combiner.
  • the combiner is a semi-transmissive and semi-reflective optical element, and the display light (virtual image) superimposed on the outside scene is visually recognized by the driver by irradiating display light toward the combiner and reflecting the display light by the combiner.
  • the combiner is installed in a form such as being enclosed in a windshield (laminated glass), affixed to the surface of the windshield on the driver side, or installed between the windshield and the driver.
  • part of the display light irradiated to the combiner is transmitted through the combiner and reflected to the driver side at an interface having a different refractive index, such as the surface on the side where the combiner contacts the outside. .
  • the conventional head-up display device in addition to the reflected light (display light) from the originally required combiner, reflected light from other interfaces also exists. Therefore, the conventional head-up display device has a problem that the display image becomes a double image and visibility is deteriorated.
  • Patent Document 1 discloses a countermeasure for reducing the problem of such a double image.
  • a semi-transmission mirror and a retardation film are used as a combiner to change the polarized light incident on the surface of the windshield in contact with the outside world, thereby reducing the reflected light from the surface.
  • a retardation film sets a phase difference at a certain wavelength, so that the effect of suppressing double images is small, and it is difficult to apply to a head-up display device for color display. .
  • the present invention has been made in view of such a background, and the present invention provides a head-up display device that has versatility and can reduce visibility of double images and increase visibility. Objective.
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
  • the transparent screen has a transparent member and a reflective polarizing element disposed on the surface of the transparent member,
  • the reflective polarizing element is in contact with air,
  • the display light is incident from the first surface;
  • the display light is P-polarized light parallel to the incident surface,
  • the reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light,
  • the incident angle ⁇ of the display light on the second surface is when the Brewster angle at the interface between the material constituting the second surface and air is ⁇ b (where ⁇ b is 0 to 90 °).
  • a head-up display device is provided which is substantially in the range of ⁇ b ⁇ 20 ° to
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means
  • the transparent screen has a transparent member and a reflective polarizing element disposed on the surface of the transparent member, The reflective polarizing element is in contact with air, When the surface of the reflective polarizing element that is in contact with air is the first surface, and the surface of the transparent member opposite to the side on which the reflective polarizing element is disposed is the second surface, The display light is incident from the first surface; The display light is S-polarized light perpendicular to the incident surface,
  • a head-up display device is provided in which the reflective polarizing element is arranged so that a reflection axis is parallel to a polarization axis of display light.
  • a head-up display device that has versatility and can reduce the double image and improve the visibility.
  • FIG. 3 is a cross-sectional view schematically showing the structure of a transparent screen according to Example 1.
  • FIG. 6 is a cross-sectional view schematically showing the structure of a transparent screen according to Example 3.
  • FIG. 5 is a cross-sectional view schematically showing the structure of a transparent screen according to Comparative Example 1.
  • FIG. 1 schematically shows a configuration of a conventional head-up display device for a vehicle.
  • a conventional head-up display device 10 for a vehicle has a windshield 20, a combiner 40 installed on the front surface of the windshield 20, and a display means 45 such as a projector.
  • the display means 45 is usually installed on a part of the dashboard 80 of the vehicle.
  • the windshield 20 has an inner surface (driver-side surface) 22 and an outer surface (external-side surface) 24. Further, the windshield 20 is usually configured by bonding a first glass substrate 30 and a second glass substrate 35 to each other via an intermediate film 39. In the example of FIG. 1, the first glass substrate 30 is on the inner surface 22 side of the windshield 20, and the second glass substrate 35 is on the outer surface 24 side.
  • the combiner 40 is formed of a metal layer such as a silver thin film, and is disposed on the first glass substrate 30 side, that is, on the inner surface 22 of the windshield 20.
  • the display means 45 is installed to emit display light 60 including a display image from the display means 45.
  • the display light 60 emitted from the display means 45 is S-polarized light in a normal case.
  • S-polarized light means polarized light in which the vibration direction of the electric field of light is perpendicular to the incident surface.
  • P-polarized light polarized light in which the vibration direction of the electric field of light is parallel to the incident surface.
  • the “incident surface” means a plane including the optical paths of incident light and reflected light. To do.
  • the reason why the S-polarized light is used as the display light 60 is that the S-polarized light can reflect more light by the windshield 20 than the P-polarized light, and the display image becomes brighter.
  • the display means 45 When operating such a head-up display device 10, the display means 45 is activated, and the display light 60 including the display image is emitted from the display means 45.
  • the display light 60 travels toward the combiner 40 installed on the inner surface 22 of the windshield 20.
  • an optical element such as a lens is arranged between the display means 45 and the windshield 20, thereby guiding the display light 60 toward the combiner 40. Or you may enlarge the magnitude
  • the display light 60 enters the combiner 40 and is reflected here to become reflected light 65.
  • the reflected light 65 is directed toward the driver 90, so that the driver 90 can visually recognize a display image (virtual image) superimposed on the outside scene in front of himself / herself.
  • the display light 60 that reaches the combiner 40 becomes the reflected light 65, and a part of the display light 60 passes through the inner surface 22 of the windshield 20 from the combiner 40 and passes through the transmitted light. 70 and enters the inside of the windshield 20. Thereafter, the transmitted light 70 is reflected by, for example, the outer surface of the second glass substrate 35 constituting the windshield 20, that is, the outer surface 24 of the windshield 20, and becomes the second reflected light 75. It is emitted toward the driver 90 side.
  • both the reflected light 65 and the second reflected light 75 reach the driver 90 side, which causes a problem that the display image becomes a double image. More precisely, from other interfaces in the windshield 20 (for example, the interface between the first glass substrate 30 and the intermediate film 39 and the interface between the second glass substrate 35 and the intermediate film 39). Since reflection also occurs, the display image visually recognized by the driver 90 may be a multiple image that is more than a triple image.
  • the conventional head-up display device 10 has a problem in the visibility of the display image.
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
  • the transparent screen has a transparent member and a reflective polarizing element disposed on the surface of the transparent member, The reflective polarizing element is in contact with air,
  • the display light is incident from the first surface;
  • the display light is P-polarized light parallel to the incident surface,
  • the reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light,
  • the incident angle ⁇ of the display light on the second surface is when the Brewster angle at the interface between the material constituting the second surface and air is ⁇ b (where ⁇ b is 0 to 90 °).
  • a head-up display device substantially in the range of ⁇ b ⁇ 20 ° to ⁇
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
  • the transparent screen has a transparent member and a reflective polarizing element disposed on the surface of the transparent member, The reflective polarizing element is in contact with air,
  • the display light is incident from the first surface;
  • the display light is S-polarized light perpendicular to the incident surface,
  • a head-up display device is provided in which the reflective polarizing element is arranged so that a reflection axis is parallel to a polarization axis of display light.
  • a wire grid type polarizing element or two kinds of polymer layers having different high refractive index layers and low refractive index layers are made to have the same refractive index in one direction and different in refractive index in the other direction.
  • Examples thereof include an optical film in which several hundred layers are arranged, and an optical element in which a cholesteric liquid crystal and a quarter-wave plate are combined.
  • An optical film in which two types of polymer layers with different high-refractive index layers and low-refractive index layers are aligned with each other so that the refractive index in one direction is completely the same and the refractive index in the other direction is different is displayed. It is used for brightness enhancement purposes in equipment. When used for a transparent screen as in the present embodiment, it is desirable to further reduce the degree of polarization and improve the transmittance as compared with the prior art. Examples of such an optical film include DBEF manufactured by Sumitomo 3M Limited.
  • An optical element that combines a cholesteric liquid crystal and a quarter-wave plate is an incident light that is incident on a linearly polarized light, converted into circularly-polarized light by a quarter-wave plate, and selectively transmitted and reflected by the cholesteric liquid crystal.
  • the polarized light is an element that passes through the quarter-wave plate again and is converted from circularly polarized light to linearly polarized light.
  • FIG. 2 shows a wire grid type polarization element as an example of the reflection type polarization element.
  • the wire grid type polarization element 100 includes a transparent substrate 110 and a plurality of metal wires 130 installed on the transparent substrate 110.
  • the transparent substrate 110 is made of, for example, a photocurable resin, a thermoplastic resin, or glass.
  • the metal wires 130 are arranged at equal intervals and in parallel with each other.
  • each metal wire 130 is arranged at a pitch P so as to extend parallel to the Y direction.
  • the pitch P is at least shorter than the wavelength of visible light (about 400 nm), and is about 100 nm to 200 nm, for example. For this reason, each metal wire 130 cannot be visually recognized visually.
  • the extending direction of the metal wire 130 is referred to as a reflection axis.
  • the definition of “reflection axis” will be described later.
  • the wire grid type polarizing element 100 configured as described above operates as follows.
  • S-polarized light means polarized light in which the vibration direction of the electric field of light is perpendicular to the incident surface.
  • P-polarized light means polarized light in which the vibration direction of the electric field of light is parallel to the incident surface.
  • the wire grid type polarizing element 100 has a feature that the optical characteristic of incident light can be changed by reflection / transmission according to the positional relationship between the reflection axis of the wire grid type polarization element 100 and the polarization axis of incident polarized light. .
  • each metal wire 130 has a substantially quadrangular prism shape and is disposed on the flat surface 115 of the transparent substrate 110.
  • the arrangement form of the metal wires is not limited to this.
  • FIG. 5 shows a wire grid type polarizing element 101 having another configuration.
  • the transparent substrate 111 has protrusions 120 arranged at a pitch P along the X direction in FIG. Although not visible from FIG. 5, the protrusions 120 extend parallel to each other along the Y direction (direction perpendicular to the paper surface).
  • the protrusion 120 may be made of the same material as the transparent substrate 111, or may be made of a light transmissive material different from that of the transparent substrate 111.
  • the material of the protrusion 120 include a photo-curing resin, a thermoplastic resin, and glass.
  • the refractive index of the material constituting the protrusion 120 is preferably close to the refractive index of the material constituting the transparent substrate 111.
  • the refractive index difference absolute value
  • the pitch P is the sum of the width T of the protrusion bottom and the width S of the protrusion bottom.
  • the pitch P is preferably 100 to 140 nm. If the pitch P is 140 nm or less, the p-polarized light transmittance in the short wavelength region (450 nm or less) is further increased. Moreover, if the pitch P is 100 nm or more, it is easy to form fine metal wires.
  • the width T of the bottom surface of the protrusion may be the same value as the pitch P, but is preferably 70% or less of the pitch P, and more preferably 60% or less of the pitch P. When the width T is smaller than the pitch P, the transmittance increases, and the angle dependency of the transmittance decreases. H represents the height of the protrusion.
  • the height H of the protrusion is preferably 200 nm or less, and more preferably 150 nm or less. When the height H is 200 nm or less, creation by nanoimprint or the like becomes easy.
  • L represents the height of the metal wire
  • t represents the width of the metal wire. It is this metal wire portion that exhibits polarization separation characteristics in the wire grid polarization element.
  • the width t is preferably 5 nm to 70 nm, and more preferably 5 nm to 60 nm. By setting the width t to 5 nm or more, it is possible to exhibit desired optical characteristics while suppressing deterioration of the metal film quality. By setting the width t to 70 nm or less, both the transmittance and the reflectance can be appropriately achieved as a transparent screen.
  • Each metal wire 131 is disposed on the inclined surface of the corresponding protrusion 120 of the transparent substrate 111.
  • wire grid type polarizing element 101 having such a configuration, when the pitch P is sufficiently shorter than the wavelength of visible light, the same characteristics as those of the wire grid type polarizing element 100 shown in FIG. It will be apparent to those skilled in the art.
  • this feature is not limited to the wire grid type polarizing element 100, but is applicable to all reflective polarizing elements. That is, the same can be said based on the relationship between the reflection axis of the reflective polarizing element and the polarization axis of the incident light (polarization vibration direction).
  • the “reflection axis” of the reflective polarizing element is determined as follows.
  • the reflective polarizing element When light in a non-deflected state is incident on the reflective polarizing element, the light is separated into two light beams, a transmitted light beam and a reflected light beam, whose vibration directions of the electric field are orthogonal.
  • a direction parallel to the vibration direction of the reflected light is referred to as a reflection axis
  • a direction parallel to the vibration direction of the transmitted light is referred to as a transmission axis.
  • the first embodiment has a feature that the reflection axis of the reflective polarizing element having such characteristics is arranged to be parallel to the polarization axis of the incident P-polarized light.
  • the optical characteristics of the incident light are in a reflection state as shown in FIG. 4B, and most of the incident light 140P can be reflected.
  • the second embodiment has a feature that the reflection axis of the reflective polarizing element having such characteristics is arranged to be parallel to the polarization axis of the incident S-polarized light.
  • the optical characteristic of the incident light is in a reflection state as shown in FIG. 3A, and most of the incident light 140S can be reflected.
  • a resin grid substrate having a plurality of parallel fine grooves can be manufactured, for example, by preparing a resin grid substrate having a plurality of parallel fine grooves and forming a thin metal wire in the grooves.
  • the resin grid substrate can be formed by, for example, a nanoimprint (optical imprint, thermal imprint) process or the like. Alternatively, the resin grid substrate may be directly manufactured by interference exposure. On the other hand, the fine metal wire can be formed by using a general film forming technique such as vapor deposition or sputtering.
  • a metal film is formed on a substrate having a flat surface by using a general film forming technique such as a vapor deposition method and a sputtering method. You may manufacture by patterning in a wire form using techniques, such as photolithography or an electron beam drawing method.
  • a wire grid type polarizing element can be manufactured by various methods.
  • FIG. 6 schematically shows the influence of the incident angle ⁇ of S-polarized light and P-polarized light on the reflectance (%).
  • S-polarized light refers to polarized light whose vibration direction of the electric field of light is perpendicular to the incident surface
  • P-polarized light refers to polarized light whose vibration direction of the electric field of light is parallel to the incident surface.
  • FIG. 6 assumes that S-polarized light or P-polarized light is incident from the resin or glass layer (first medium) toward the air layer (second medium).
  • P-polarized light is used as display light incident on the first surface of the transparent substrate.
  • the incident angle when the transmitted light transmitted through the first surface of the transparent substrate is applied to the second surface of the transparent substrate is set to a value close to the Brewster angle ⁇ b. It is adjusted to. For this reason, reflection of the transmitted light on the second surface is minimized. Therefore, in the first embodiment, it is possible to suppress the light once transmitted through the transparent substrate from traveling in the opposite direction, and the problem of double images can be significantly improved.
  • the incident angle when the transmitted light transmitted through the first surface of the transparent substrate is irradiated onto the second surface of the transparent substrate is adjusted to a value close to the Brewster angle ⁇ b. There is no need.
  • S-polarized light is used as the display light incident on the first surface of the transparent substrate.
  • the Brewster angle ⁇ b cannot be defined in the first place.
  • the reflection axis of the reflective polarizing element is parallel to the polarization axis of the incident light. Even if it arrange
  • the effect of suppressing the double image according to the present embodiment as described above can be similarly obtained for color display light. Therefore, in the first embodiment and the second embodiment, it is possible to significantly improve the problem relating to the above-described Patent Document 1, that is, the problem that the effect can be obtained only with monochromatic display light. Therefore, versatility can be improved by the transparent screen according to the present embodiment.
  • this embodiment is not limited to the configuration using color display light, and may use monochromatic display light.
  • FIG. 7 schematically shows a configuration example of the transparent screen in the present embodiment.
  • the transparent screen 700 in this embodiment includes a transparent substrate 720 and a reflective polarizing element 740.
  • the transparent substrate 720 has a first surface 722 and a second surface 724.
  • the material of the transparent substrate 720 is not particularly limited, and any material may be used as long as it is made of a transparent member.
  • the transparent substrate 720 may be a glass substrate or a resin substrate, for example.
  • the transparent substrate 720 is configured by a single member, but the transparent substrate 720 may be configured by a plurality of members.
  • the transparent substrate 720 may be a laminated glass.
  • the reflective polarizing element 740 is installed on the first surface 722 side of the transparent substrate 720. At this time, the reflective polarizing element 740 is installed such that the reflection axis is parallel to the polarization axis of the incident display light.
  • the reflective polarizing element 740 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • the reflective polarizing element 740 is exposed to the atmosphere.
  • the transparent screen 700 is irradiated with display light 760 having P-polarized light from the first surface 722 side.
  • the reflective polarizing element 740 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized display light 760 incident on the reflective polarizing element 740 is reflected here to become reflected light 765.
  • the reflected light 765 is emitted toward the viewer 790 in front of the transparent screen 700, and the viewer 790 can recognize the display image by the reflected light 765.
  • the transmitted light 770 travels through the transparent substrate 720 and reaches the second surface 724 of the transparent substrate 720 at an incident angle ⁇ .
  • the incident angle ⁇ is when the Brewster angle at the interface between the material constituting the second surface 724 of the transparent substrate 720 on the incident side and the air is ⁇ b (where ⁇ b is 0 to 90 °).
  • the range is selected so that it is substantially in the range of ⁇ b ⁇ 20 ° to ⁇ b + 5 °.
  • the incident angle ⁇ is preferably ⁇ b ⁇ 5 °, more preferably ⁇ b.
  • the relationship between the light emission direction from the display means 45 and the angle of the transparent substrate 720 can be controlled so that the incident angle ⁇ falls within the above range.
  • the emission direction of light from the display means 45 can be controlled so that the incident angle ⁇ falls within the above range.
  • the angle of the transparent substrate 720 can be adjusted so that the incident angle ⁇ falls within the above range.
  • the first surface 722 and the second surface 724 may be parallel, but considering the value of ⁇ b, the light from the display unit 45 is adjusted so that the incident angle ⁇ is in the above range. Different angles can be set with respect to the emission direction.
  • the reflection of the transmitted light 770 on the second surface 724 is minimized. That is, most of the transmitted light 770 becomes the light 774 as it is, and is emitted to the rear of the transparent screen 700. For this reason, even if the transmitted light 770 exists, it is significantly suppressed that the transmitted light 770 becomes the second reflected light and returns to the viewer 790.
  • the problem of the double image of the display image can be significantly suppressed when P-polarized display light is used.
  • the transparent screen 700 is irradiated with display light 760 having S-polarized light from the first surface 722 side.
  • the reflective polarizing element 740 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. For this reason, most of the S-polarized display light 760 incident on the reflective polarizing element 740 is reflected to become reflected light 765. The reflected light 765 is emitted toward the viewer 790 in front of the transparent screen 700, and the viewer 790 can recognize the display image by the reflected light 765.
  • the display light 760 is S-polarized light
  • the effect of the Brewster angle ⁇ b cannot be obtained with respect to the transmitted light 770 incident on the second surface 724 of the transparent substrate 720.
  • Head-up display device of this embodiment a head-up display device that can be applied to vehicles such as automobiles and trains will be described, and this configuration and features will be described in detail.
  • the head-up display device in the present embodiment is not limited to a vehicle, and can be similarly applied to other moving means such as an aircraft.
  • FIG. 8 schematically shows a configuration example of a head-up display device for a vehicle in the present embodiment.
  • the head-up display device 800 includes a windshield 820, a reflective polarizing element 840 installed on at least a part of the windshield 820, and a display means 845 such as a projector.
  • the display means 845 may be installed on a part of the dashboard 880 of the vehicle.
  • the windshield 820 has an inner surface (driver side surface) 822 and an outer surface (outside surface) 824.
  • the windshield 820 is a laminated glass, and is configured by bonding a first glass substrate 830 and a second glass substrate 835 to each other via an intermediate film 839.
  • the first glass substrate 830 is on the inner surface 822 side of the windshield 820 and the second glass substrate 835 is on the outer surface 824 side.
  • the material of the intermediate film 839 is not particularly limited as long as it is transparent.
  • an intermediate film used for a known laminated glass such as polyvinyl butyral or ethylene vinyl acetate may be used.
  • the windshield 820 may be formed of a single glass substrate.
  • the display means 845 is installed to emit display light 860 including a display image from the display means 845.
  • the display light 860 emitted from the display unit 845 may be P-polarized light or S-polarized light.
  • the reflective polarizing element 840 has the surface of the first glass substrate 830 in accordance with the display light 860 emitted from the display means 845 so that the reflection axis is parallel to the polarization axis of the incident display light 860. That is, it is installed on the inner surface 822 of the windshield 820.
  • the reflective polarizing element 840 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • the incident P-polarized light is incident due to the optical characteristics of the reflective polarizing element 840.
  • Most of the display light 860 is reflected by the reflective polarizing element 840 to become reflected light 865.
  • the reflected light 865 is emitted toward the driver 890 inside the vehicle, and the driver 890 can recognize the display image by the reflected light 865.
  • the display unit 845 advances the inside of the windshield 820 and enters the transmitted light 870 incident on the outer face 824 of the windshield 820.
  • the angle is ⁇ (where ⁇ is 0 to 90 °).
  • the incident angle ⁇ is substantially when the Brewster angle at the interface between the material constituting the second glass substrate 835 on the incident side and air is ⁇ b (where ⁇ b is 0 to 90 °). Further, it is selected to be in the range of ⁇ b ⁇ 20 ° to ⁇ b + 5 °.
  • the incident angle ⁇ is preferably ⁇ b ⁇ 5 °, more preferably ⁇ b.
  • the incident angle ⁇ of the transmitted light 870 traveling inside the windshield 820 at the outer surface 824 of the windshield 820 is substantially ⁇ b ⁇ 20 °. It is configured to be in the range of ⁇ ⁇ b + 5 °.
  • the transmitted light 870 is reflected by the outer surface 824 of the windshield 820 and the driver 890. Returning toward is significantly suppressed. That is, most of the transmitted light 870 becomes light 874 and is emitted to the outside of the head-up display device 800.
  • the problem of the double image of the display image can be significantly suppressed.
  • the relationship between the light emission direction from the display means 845 and the angles of the first glass substrate 830 and the second glass substrate 835 can be controlled so that the incident angle ⁇ falls within the above range.
  • the emission direction of light from the display unit 845 can be controlled so that the incident angle ⁇ falls within the above range.
  • the angle of the glass substrate 830 or the second glass substrate 835 can be adjusted so that the incident angle ⁇ falls within the above range.
  • the first surface 822 and the second surface 824 may be parallel, but considering the value of ⁇ b, the light from the display means 845 is adjusted so that the incident angle ⁇ is in the above range. Different angles can be set with respect to the emission direction.
  • the reflective polarizing element 840 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. For this reason, even when the display light 860 emitted from the display means 845 has S-polarized light, most of the S-polarized display light 860 incident on the reflective polarizing element 840 is reflected here, and the reflected light 865 become. The reflected light 865 is emitted toward the driver 890 in the vehicle, and the driver 890 can recognize the display image by the strong reflected light 865.
  • the configuration and characteristics of the head-up display device have been described using the head-up display device 800 including the windshield 820 as an example.
  • the head-up display device may include a transparent member other than glass, such as a resin substrate.
  • Example 1 A transparent screen having various wire grid type polarization elements was constructed, and the reflection / transmission characteristics of light when the transparent screen was irradiated with P-polarized light were evaluated by simulation.
  • FIG. 9 schematically shows a cross-sectional view of the assumed transparent screen.
  • the transparent screen 900 includes a resin substrate 950 having a first surface 905 and a second surface 906, and a wire grid type polarization disposed on the first surface 905 of the resin substrate 950.
  • An element 910 is included.
  • the wire grid type polarizing element 910 has protrusions 920 arranged at a constant pitch P along the same direction (X direction in FIG. 9). Each protrusion 920 extends in the Y direction of FIG.
  • H be the vertical height of each protrusion 920.
  • a metal aluminum wire 931 is installed along the extending direction of the protrusions 920 on the inclined surface on the same side of each protrusion 920.
  • the thickness of the wire 931 is t, and the height (vertical length) of the wire 931 is L.
  • a total of five types of transparent screens 900 were configured by using the height H of the protrusion 920, the thickness t of the wire 931, and the height L of the wire 931 as parameters.
  • the transparent screen 900 has a transmittance of about 550 nm when the transparent screen 900 is irradiated with an incident angle of 0 °. It was configured to be 70% (average value of P-polarized light and S-polarized light).
  • Table 1 summarizes the parameter values of the wire grid type polarizing element 910 in the transparent screen 900 of each configuration (Configuration 1 to Configuration 5).
  • the reflection / transmission characteristics of light when P-polarized light having a wavelength of 550 nm was incident on the transparent screen 900 at an incident angle of 60 ° were evaluated by simulation.
  • GSolver software manufactured by Grafting Solver Development Company
  • the wire grid type polarizing element 910 is arranged so that the reflection axis, that is, the extending direction of the wire is parallel to the polarization axis of the incident light.
  • the reflectance of P-polarized light is 29% from the simulation result.
  • the transparent screen 900 shown in FIG. 9 when P-polarized light is incident at an incident angle of 60 ° from the first surface 905 side of the resin substrate 950, the light reflected by the first surface 905 is reflected.
  • the amount (hereinafter referred to as “first reflected light”) is 29%, and the amount of transmitted light that is transmitted without being reflected is expected to be 38%.
  • Example 2 By the same method as in Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Example 2, the light applied to the transparent screen was S-polarized light. Further, the wire grid type polarization element 910 is arranged so that the reflection axis, that is, the extending direction of the wire is parallel to the polarization axis of the incident light. Other conditions are the same as in the first embodiment.
  • the parameter values are collectively shown in the column “Configuration of Wire Grid Polarizing Element” in Table 2. Further, the “simulation result” column in Table 2 shows the simulation results of the reflectance and transmittance obtained in the configuration 6.
  • the reflectance of the S-polarized light is 68.6%, and the transmittance is 19.0%.
  • the transparent screen 900 shown in FIG. 9 when S-polarized light is incident at an incident angle of 60 ° from the first surface 905 side of the resin substrate 950, the first surface 905 is reflected.
  • the amount of one reflected light is 68.6%, and the amount of transmitted light that is transmitted without being reflected is expected to be 19.0%.
  • 19.0% of the transmitted light transmitted through the first surface 905 is then incident on the second surface 906 of the resin substrate 950 at an incident angle ⁇ of about 35 °.
  • the transmitted light is reflected here to become second reflected light, and returns to the first surface 905 side of the transparent screen 900.
  • the first reflected light and the second reflected light are reflected from the transparent screen 900.
  • the intensity of the second reflected light is 19.0% at the maximum, which is significantly weaker than 68.6% of the first reflected light. Therefore, the degree of double image is expected to be very slight.
  • the double image can be reduced in the configuration 6 when S-polarized light is used.
  • Example 3 By the same method as in Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Example 3, a wire grid type polarizing element having a configuration as shown in FIG. 2 was adopted.
  • FIG. 10 schematically shows a cross-sectional view of the adopted transparent screen.
  • the transparent screen 1000 includes a resin substrate 1050 having a first surface 1005 and a second surface 1006, and a wire grid type polarized light disposed on the first surface 1005 of the resin substrate 1050. It is comprised with the element 1010.
  • the wire grid type polarizing element 1010 includes a plurality of metal wires 1030. Each metal wire 1030 is arranged so as to extend parallel to the Y direction at regular intervals.
  • the pitch P in the X direction of the metal wires 1030 is 140 nm.
  • the thickness t of the metal wire 1030 is 20 nm, and the width (length in the X direction) of the metal wire 1030 is 40 nm.
  • the transparent screen 1000 is configured such that the transmittance when light having a wavelength of 550 nm is irradiated onto the transparent screen 1000 at an incident angle of 0 ° is about 70% (average value of P-polarized light and S-polarized light). ing.
  • the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation in the same manner as in Example 1.
  • the extending direction of the metal wire 1030, that is, the reflection axis of the wire grid type polarizing element 1010 was arranged to be parallel to the polarization axis of incident light.
  • the light incident on the transparent screen 1000 was P-polarized light.
  • the column of “Simulation result” in Table 3 shows the simulation result of the reflectance and transmittance obtained in Configuration 7.
  • the column of “Evaluation Result” in Table 3 the result of evaluating the degree (strength) of the double image in Configuration 7 is shown.
  • the reflectance is 29% and the transmittance is 49%. Therefore, in the transparent screen 1000 shown in FIG. 10, when P-polarized light is incident at an incident angle of 60 ° from the first surface 1005 side of the resin substrate 1050, the first surface 1005 reflected by the first surface 1005 is reflected. The amount of one reflected light is 29%, and the amount of transmitted light that is transmitted without being reflected is expected to be 49%.
  • Comparative Example 1 By the same method as in Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Comparative Example 1, a transparent screen having the structure shown in FIG. 11 was assumed.
  • the transparent screen 1200 includes a resin substrate 1250 having a first surface 1205 and a second surface 1206, and a half mirror 1210 installed on the first surface 1205 of the resin substrate 1250. It consists of.
  • the half mirror 1210 was a metal silver thin film having a thickness of 9.5 nm.
  • the transparent screen 1200 simulates the conditions of a normal vehicle windshield. Therefore, the transmittance when the transparent screen 1100 is irradiated with light having a wavelength of 550 nm at an incident angle of 0 ° is about 70% (with P-polarized light). The average value of S-polarized light).
  • the column of “Simulation result” in Table 4 shows the simulation result of the obtained reflectance and transmittance.
  • the column “Evaluation Result” in Table 4 shows the result of evaluating the degree (strength) of double images in Configuration 9.
  • the reflectance of S-polarized light is 48.7% from the simulation result. Therefore, in the transparent screen 1200 shown in FIG. 11, when S-polarized light is incident at an incident angle of 60 ° from the first surface 1205 side of the resin substrate 1250, the first surface 1205 is reflected. The amount of one reflected light is 48.7%, and the amount of transmitted light that is transmitted without being reflected is expected to be 47.8%.
  • the transmitted light transmitted through the first surface 1205 is then incident on the second surface 1206 of the resin substrate 1250 at an incident angle ⁇ of about 35 °.
  • the transmitted light is reflected here to become second reflected light, and returns to the first surface 1205 side of the resin substrate 1250.
  • the first reflected light and the second reflected light are reflected from the transparent screen 1200.
  • the intensity of the second reflected light is 47.8%, which is equivalent to 48.7% of the intensity of the first reflected light. For this reason, the degree of double images is expected to be very significant.
  • This embodiment can be applied to a head-up display device for moving means such as a vehicle or an aircraft.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Instrument Panels (AREA)

Abstract

 ヘッドアップディスプレイ装置は、偏光された表示光を透明基板側で反射させることにより、表示像を表示させる透明スクリーンを有し、前記透明基板は、前記表示光の照射側となる第1の表面と、該第1の表面とは反対側の第2の表面とを有し、前記第1の表面には、反射型偏光素子が設置され、該反射型偏光素子は、反射軸が前記表示光の偏光軸と平行となるように配置され、前記表示光は、入射面に対して平行なP偏光の光であり、前記表示光の前記反射型偏光素子で反射されずに、前記透明基板内に進行する透過光の、前記透明基板の第2の表面における入射角θは、前記透明基板の第2の表面を構成する材料(入射側)/空気の界面でのブリュースタ角をθbとしたとき、実質的に、θb-20゜~θb+5゜の範囲にある。

Description

ヘッドアップディスプレイ装置
 本発明は、ヘッドアップディスプレイ装置に関する。
 従来より、背面側の景色を遮断することなく、表示像を表示することが可能な透明スクリーンが注目されている。
 透明スクリーンを使用する代表的な例は、車両または航空機等の移動手段用のヘッドアップディスプレイ装置である。
 車両用のヘッドアップディスプレイ装置は、運転手前方の視野内に、車速等の情報を結像することができる(例えば、特許文献1および特許文献2)。このため、運転者は、車両の運転中に、情報確認のため視線を前方から大きくそらす必要がなくなり、運転中の安全性が向上する。
特開平2-141720号公報 実開平3-59336号公報
 一般に、車両用のヘッドアップディスプレイ装置は、車内のダッシュボード等に設置された表示手段、およびコンバイナを備えたフロントガラスから構成される。コンバイナは、半透過半反射の光学素子であり、このコンバイナに向かって表示光を照射させ、前記コンバイナにより表示光を反射させることにより、運転者に外景と重畳させた表示像(虚像)を視認させる。コンバイナは、フロントガラス(合わせガラス)内に封入させる、またはフロントガラスの運転手側の表面に貼り付ける、またはフロントガラスと運転手の間に設置する、などといった形態で設置される。
 しかしながら、いずれの構成においても、コンバイナに照射された表示光の一部は、コンバイナを透過して、例えばコンバイナが外界と接する側の表面など、屈折率の異なる界面で運転者側に反射される。このため、従来のヘッドアップディスプレイ装置では、本来必要なコンバイナからの反射光(表示光)のほかに、そのほかの界面からの反射光も存在することになる。従って、従来のヘッドアップディスプレイ装置では、表示像が二重像になり、視認性が悪くなるという問題が生じる。
 特許文献1には、このような二重像の問題を軽減するための対策が開示されている。特許文献1に記載の対策では、コンバイナに半透過ミラーと位相差フィルムを用いて、フロントガラスの外界と接する側の表面に入射する偏光を変化させて、前記表面からの反射光を減少させている。しかしながら、一般に位相差フィルムは、ある波長における位相差を設定するため、二重像抑制の効果が小さく、カラー表示用のヘッドアップディスプレイ装置には適用することが難しいなど、汎用性に問題がある。
 本発明は、このような背景に鑑みなされたものであり、本発明では、汎用性を有する上、二重像を軽減して視認性を高めることが可能なヘッドアップディスプレイ装置を提供することを目的とする。
 一つの形態によれば、表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
 前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
 前記反射型偏光素子は、空気と接しており、
 前記反射型偏光素子の空気と接する表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
 前記表示光は、前記第1の表面から入射し、
 前記表示光は、入射面に対して平行なP偏光の光であり、
 前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、
 前記表示光の前記第2の表面での入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb(ただしθbは、0~90゜)としたとき、実質的に、θb-20゜~θb+5゜の範囲にあることを特徴とするヘッドアップディスプレイ装置が提供される。
 また、本発明では、表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
 前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
 前記反射型偏光素子は、空気と接しており、
 前記反射型偏光素子の空気と接する表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
 前記表示光は、前記第1の表面から入射し、
 前記表示光は、入射面に対して垂直なS偏光の光であり、
 前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置されることを特徴とするヘッドアップディスプレイ装置が提供される。
 本実施形態によれば、汎用性を有する上、二重像を軽減して視認性を高めることが可能なヘッドアップディスプレイ装置を提供することができる。
従来のヘッドアップディスプレイ装置の構成を概略的に示した図である。 反射型偏光素子の一例としての、ワイヤグリッド型偏光素子の構成を概略的に示した図である。 図2に示したワイヤグリッド型偏光素子に、S偏光の光が入射された際の光学特性を説明するための模式図である。 図2に示したワイヤグリッド型偏光素子に、P偏光の光が入射された際の光学特性を説明するための模式図である。 別のワイヤグリッド型偏光素子の構成を概略的に示した図である。 S偏光とP偏光の入射角θが反射率(%)に及ぼす影響を模式的に示したグラフである。 本実施形態による透明スクリーンの一構成例を概略的に示した図である。 本実施形態による車両用のヘッドアップディスプレイ装置の一構成例を概略的に示した図である。 実施例1に係る透明スクリーンの構造を模式的に示した断面図である。 実施例3に係る透明スクリーンの構造を模式的に示した断面図である。 比較例1に係る透明スクリーンの構造を模式的に示した断面図である。
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
 まず、本実施形態による特徴をより良く理解するため、図1を参照して、従来のヘッドアップディスプレイ装置の構成について簡単に説明する。
 図1には、従来の車両用のヘッドアップディスプレイ装置の構成を概略的に示す。
 図1に示すように、従来の車両用のヘッドアップディスプレイ装置10は、フロントガラス20と、該フロントガラス20の前面に設置されたコンバイナ40と、プロジェクタのような表示手段45とを有する。表示手段45は、通常の場合、車両のダッシュボード80の一部に設置される。
 フロントガラス20は、内面(運転者側の表面)22と、外面(外界側の表面)24とを有する。また、フロントガラス20は、通常の場合、第1のガラス基板30と、第2のガラス基板35とを、中間膜39を介して相互に貼り合わせることにより構成される。図1の例では、第1のガラス基板30がフロントガラス20の内面22の側となり、第2のガラス基板35が外面24の側となる。
 コンバイナ40は、例えば銀薄膜のような金属層で構成され、第1のガラス基板30の側、すなわちフロントガラス20の内面22に配置される。
 表示手段45は、該表示手段45から表示像を含む表示光60を出射するために設置される。なお、表示手段45から出射される表示光60は、通常の場合、S偏光の光である。
 ここで、S偏光とは、光の電場の振動方向が入射面に対して垂直な偏光を意味する。(これに対して、光の電場の振動方向が入射面に対して平行な偏光は、P偏光と呼ばれる。)また、「入射面」とは、入射光と反射光の光路を含む平面を意味する。
 一般に表示光60として、S偏光の光を利用するのは、S偏光はP偏光に比べて、より多くの光をフロントガラス20で反射させることができ、表示像が明るくなるためである。
 このようなヘッドアップディスプレイ装置10を作動させる際には、表示手段45が起動され、表示手段45から表示像を含む表示光60が出射される。この表示光60は、フロントガラス20の内面22に設置されたコンバイナ40に向かって進行する。なお、この際には、表示手段45とフロントガラス20の間に、レンズ等の光学素子(図示されていない)を配置しておき、これにより、表示光60をコンバイナ40の方に誘導する、もしくは像の大きさを拡大する、などしても良い。
 次に、表示光60は、コンバイナ40に入射し、ここで反射され、反射光65となる。反射光65は、運転者90の方に向かい、これにより、運転者90は、自身の前方に外景と重畳させた表示像(虚像)を視認することができる。
 しかしながら、実際には、コンバイナ40に到達した表示光60の全てが反射光65となる訳ではなく、表示光60の一部は、コンバイナ40からフロントガラス20の内面22を透過して、透過光70となり、フロントガラス20の内部に侵入する。その後、この透過光70は、例えば、フロントガラス20を構成する第2のガラス基板35の外側の表面、すなわちフロントガラス20の外面24で反射され、第2の反射光75となり、フロントガラス20から、運転者90の側に向かって出射される。
 その結果、運転者90の側には、反射光65と第2の反射光75の双方が到達することとなり、これにより表示像が二重像になるという問題が生じる。また、より厳密には、フロントガラス20内のその他の界面(例えば、第1のガラス基板30と中間膜39との界面、および第2のガラス基板35と中間膜39との界面など)からの反射も生じるため、運転者90に視認される表示像は、三重像以上の多重像になる場合も生じ得る。
 このように、従来のヘッドアップディスプレイ装置10では、表示像の視認性に問題がある。
 本願発明者らは、このような問題に対処すべく、様々な検討を行ってきた。その結果、反射型偏光素子を利用し、ブリュースタ角θbの特性をうまく利用することにより、前述のような二重像の問題が解消または軽減されることを見出し、本願発明に至った。
 すなわち、第1の実施形態では、
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
 前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
 前記反射型偏光素子は、空気と接しており、
 前記反射型偏光素子の空気と接する表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
 前記表示光は、前記第1の表面から入射し、
 前記表示光は、入射面に対して平行なP偏光の光であり、
 前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、
 前記表示光の前記第2の表面での入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb(ただしθbは、0~90゜)としたとき、実質的に、θb-20゜~θb+5゜の範囲にあるヘッドアップディスプレイ装置が提供される。
 また、第2の実施形態では、
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
 前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
 前記反射型偏光素子は、空気と接しており、
 前記反射型偏光素子の空気と接する表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
 前記表示光は、前記第1の表面から入射し、
 前記表示光は、入射面に対して垂直なS偏光の光であり、
 前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置されることを特徴とするヘッドアップディスプレイ装置が提供される。
 (反射型偏光素子の構成および作用について)
 ここで、本実施形態で利用される、反射型偏光素子の構成および作用について簡単に説明する。
 反射型偏光素子としては、ワイヤグリッド型偏光素子や、高屈折率層および低屈折率層の異なる2種類の高分子層を一方向の屈折率は完全に一致させ他方向の屈折率は異なるように互いに数百層並べた光学フィルム、コレステリック液晶と4分の1波長板を組み合わせた光学素子等が挙げられる。
 高屈折率層、低屈折率層の異なる2種類の高分子層を、一方向の屈折率は完全に一致させ、他方向の屈折率は異なるように互いに数百層並べた光学フィルムは、表示装置において輝度向上用途に用いられる。本実施形態にあるような透明スクリーンに用いる場合、従来よりもさらに偏光度を落とし、透過率を向上させて用いることが望ましい。このような光学フィルムとしては、住友スリーエム社製のDBEFが挙げられる。
 コレステリック液晶と4分の1波長板を組み合わせた光学素子とは、ある直線偏光を入射させ4分の1波長板により円偏光に変換させ、コレステリック液晶により選択的に透過・反射させ、反射した円偏光は再度4分の1波長板を通り、円偏光から直線偏光へ変換されるという素子である。
 図2には、反射型偏光素子の一例として、ワイヤグリッド型偏光素子を示す。
 図2に示すように、このワイヤグリッド型偏光素子100は、透明基板110と、該透明基板110上に設置された複数の金属ワイヤ130とを有する。透明基板110は、例えば、光硬化樹脂、熱可塑性樹脂、またはガラス等で構成される。
 各金属ワイヤ130は、等間隔で、相互に平行に配置される。例えば、図2の例では、各金属ワイヤ130は、ピッチPで、それぞれY方向に平行に延伸するように配置される。なお、ピッチPは、少なくとも可視光の波長(約400nm)よりも短く、例えば、100nm~200nm程度である。このため、目視では、各金属ワイヤ130を視認することはできない。
 なお、以下、金属ワイヤ130の延伸方向を、反射軸と称する。「反射軸」の定義は、後述する。
 このように構成されたワイヤグリッド型偏光素子100は、以下のように作用する。
 まず、図2に示すようなワイヤグリッド型偏光素子100に、S偏光の光が入射される場合を説明する。ここで、前述のように、S偏光とは、光の電場の振動方向が入射面に対して垂直な偏光を意味する。
 この場合、大きく分けて、図3に示すような2通りの光学特性が生じる。
 (a)入射する光140Sの偏光軸(図3(a)の紙面に垂直な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が平行な場合、図3(a)に示すように、光140Sは反射し、反射光150aとなる。
 (b)一方、入射する光140Sの偏光軸(図3(a)の紙面に垂直な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が垂直な場合、図3(b)に示すように、光140Sは透過し、透過光150bとなる。
 次に、ワイヤグリッド型偏光素子100に、P偏光の光が入射する場合を説明する。ここで、前述のように、P偏光とは、光の電場の振動方向が入射面に対して平行な偏光を意味する。
 この場合、大きく分けて、図4に示すような2通りの光学特性が生じる。
 (c)入射する光140Pの偏光軸(図4(a)の紙面に平行な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が垂直な場合、図4(a)に示すように、光140Pは透過し、透過光150cとなる。
 (d)一方、入射する光140Pの偏光軸(図4(a)の紙面に平行な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が平行な場合、図3(b)に示すように、光140Pは反射し、反射光150dとなる。
 このように、ワイヤグリッド型偏光素子100は、自身の反射軸と、入射する偏光の偏光軸との配置関係により、入射光の光学特性を、反射/透過で変化させることができるという特徴を有する。
 なお、図2の例では、各金属ワイヤ130は、略四角柱状の形状で、透明基板110の平坦面115上に配置されている。しかしながら、金属ワイヤの配置形態は、これに限られない。
 図5には、別の構成のワイヤグリッド型偏光素子101を示す。
 このワイヤグリッド型偏光素子101では、透明基板111は、図5のX方向に沿って、ピッチPで配列された突起120を有する。図5からは視認できないが、各突起120は、Y方向(紙面に垂直な方向)に沿って相互に平行に延伸している。
 突起120は、透明基板111と同じ材料で構成されても良く、透明基板111と異なる光透過性材料で構成されても良い。突起120の材料としては、光硬化樹脂、熱可塑性樹脂、ガラス等が挙げられる。突起120を構成する材料の屈折率は、透明基板111を構成する材料の屈折率に近いことが好ましい。具体的には、それらの屈折率差(絶対値)は、0.1以下が好ましく、0.05以下がより好ましい。そうすることで、透明基板111と突起120との界面でおこる反射による光のロスを抑えることができる。
 ピッチPは、突起底面の幅Tと突起底部の幅Sの和である。ピッチPは100~140nmが好ましい。ピッチPが140nm以下であれば、短波長領域(450nm以下)におけるp偏光透過率がさらに高くなる。また、ピッチPが100nm以上であれば、金属細線を形成しやすい。突起底面の幅Tは、ピッチPと同じ値でもかまわないが、ピッチPの70%以下が好ましく、ピッチPの60%以下がより好ましい。幅TがピッチPより小さくなると透過率が高くなり、透過率の角度依存が小さくなる。Hは突起の高さを表す。突起の高さHは200nm以下が好ましく、150nm以下がより好ましい。高さHが200nm以下となるとナノインプリントなどによる作成が容易となる。Lは金属ワイヤの高さ、tは金属ワイヤの幅を表す。ワイヤグリッド偏光素子において偏光分離特性を発揮するのはこの金属ワイヤの部分である。幅tは5nm以上70nm以下が好ましく、5nm以上60nm以下がより好ましい。幅tを5nm以上とすることにより、金属の膜質劣化を抑えて所望の光学特性を発揮できるようにできる。幅tを70nm以下とすることにより、透明スクリーンとして透過率・反射率の両立が適切に行える。
 また前述の通り、金属ワイヤの部分で偏光分離特性を発揮するため、図2のように突起を有さず金属ワイヤのみの構成をとることも可能である。
 各金属ワイヤ131は、透明基板111の対応する突起120の傾斜面に配置される。
 このような構成のワイヤグリッド型偏光素子101においても、ピッチPが可視光の波長に比べて十分に短い場合、図2に示したワイヤグリッド型偏光素子100と同様の特性が得られることは、当業者には明らかである。
 さらに、この特徴は、ワイヤグリッド型偏光素子100に限られるものではなく、反射型偏光素子全般に対して成立する。すなわち、反射型偏光素子の反射軸と、入射される光の偏光軸(偏光の振動方向)との関係により、同様のことが言える。
 ここで、本実施形態において、反射型偏光素子の「反射軸」は、以下のように定められる。
 反射型偏光素子に非偏向状態の光が入射されると、光の電場の振動方向が直交した、透過光と反射光の2つの光に分離される。反射光の振動方向と平行な方向を反射軸と称し、透過光の振動方向と平行な方向を透過軸と称する。
 第1の実施形態では、このような特性を有する反射型偏光素子の反射軸が、入射されるP偏光の偏光軸と平行となるように配置されるという特徴を有する。
 この場合、入射される光の光学特性は、図4(b)示すような反射状態となり、入射光140Pの大部分を反射させることが可能になる。
 また、第2の実施形態では、このような特性を有する反射型偏光素子の反射軸が、入射されるS偏光の偏光軸と平行となるように配置されるという特徴を有する。
 この場合、入射される光の光学特性は、図3(a)示すような反射状態となり、入射光140Sの大部分を反射させることが可能になる。
 図5に示すワイヤグリッド型偏光素子は、例えば、複数の平行な微細溝を有する樹脂グリッド基板を準備し、この溝内に、金属細線を成膜することにより、製造することができる。
 樹脂グリッド基板は、例えば、ナノインプリント(光インプリント、熱インプリント)プロセス等によって形成することができる。あるいは、干渉露光法により、直接、樹脂グリッド基板を製作しても良い。一方、金属細線は、例えば、蒸着法およびスパッタ法等の一般的な成膜技術を用いて形成することができる。
 図2に示すワイヤグリッド型偏光素子は、例えば、平坦な表面を有する基板上に、蒸着法およびスパッタ法等の一般的な成膜技術を用いて金属膜を成膜した後、この金属膜をフォトリソグラフィまたは電子ビーム描画法等の技術を用いて、ワイヤー状にパターン処理することにより製造しても良い。
 その他にも、様々な方法で、ワイヤグリッド型偏光素子を製造することができる。
 (ブリュースタ角θbについて)
 次に、図6を参照して、ブリュースタ角θbについて説明する。
 図6には、S偏光とP偏光の入射角θが反射率(%)に及ぼす影響を模式的に示す。前述のように、S偏光とは、光の電界の振動方向が入射面に対して垂直な偏光を意味し、P偏光とは、光の電界の振動方向が入射面に対して平行な偏光を意味する。なお、図6は、S偏光またはP偏光の光が、樹脂またはガラス層(第1の媒質)から、空気層(第2の媒質)に向かって入射する場合を仮定している。
 図6から、S偏光の場合は、入射角θが大きくなるほど、反射率がほぼ単調に増加する傾向にあることがわかる。
 これに対して、P偏光の場合は、反射率がほぼゼロになる入射角θが存在する。また、この角度の前後では、P偏光の反射率が極めて小さくなる。このような反射率がゼロまたは最小となる入射角θを、ブリュースタ角θbと呼ぶ。例えば、第1の透明基板がガラスで構成される場合、ブリュースタ角θbは、
Figure JPOXMLDOC01-appb-M000001
で定義され、この図の例の場合、ガラス(n=1.52)、空気(n=1.0)であるから、θb=33.3゜と求められる。
 ここで、第1の実施形態では、透明基板の第1の表面に入射される表示光として、P偏光の光が使用される。また、第1の実施形態では、透明基板の第1の表面を透過した透過光が、透明基板の第2の表面に照射される際の入射角が、ブリュースタ角θbに近い値になるように調整している。このため、透過光の第2の表面での反射は、最小限に抑制される。従って、第1の実施形態では、一度、透明基板内を透過した光が、逆向きに進行することを抑制することができ、二重像の問題を有意に改善することができる。
 一方、第2の実施形態では、透明基板の第1の表面を透過した透過光が、透明基板の第2の表面に照射される際の入射角を、ブリュースタ角θbに近い値に調整する必要はない。
 これは、第2の実施形態では、透明基板の第1の表面に入射される表示光として、S偏光の光を使用しているためである。(また、S偏光の光の場合は、そもそも、ブリュースタ角θbを定義することはできない。)すなわち、この場合、反射型偏光素子の反射軸を、入射される光の偏光軸と平行となるように配置するだけでも、透明基板の第1の表面から反射される光は、十分に大きくなるため、二重像の発生を有意に抑制することができる。
 ここで、前述のような本実施形態による二重像の抑制効果は、カラーの表示光に対しても同様に得ることができる。従って、第1の実施形態及び第2の実施形態では、前述の特許文献1に関する問題、すなわち、単色の表示光でしか効果を得ることができないという問題を有意に改善することができる。従って、本実施形態による透明スクリーンにより、汎用性を改善することができる。
 ただし、本実施形態は、カラーの表示光を使用する構成に限られるものではなく、単色の表示光を使用しても良い。
 (本実施形態における透明スクリーン)
 以下、図面を参照して、本実施形態における透明スクリーンの一構成例について詳しく説明する。
 図7には、本実施形態における透明スクリーンの一構成例を概略的に示す。
 図7に示すように、本実施形態における透明スクリーン700は、透明基板720と、反射型偏光素子740とを有する。
 透明基板720は、第1の表面722と、第2の表面724とを有する。透明基板720の材料は、特に限られず、透明な部材で構成されている限り、いかなる材料を用いても良い。透明基板720は、例えば、ガラス基板または樹脂基板であっても良い。
 なお、図7の例では、透明基板720は、単一の部材で構成されているが、透明基板720は、複数の部材で構成されても良い。例えば、透明基板720は、合わせガラスであっても良い。
 反射型偏光素子740は、透明基板720の第1の表面722の側に設置される。この際には、反射型偏光素子740は、反射軸が、入射される表示光の偏光軸と平行になるようにして設置される。反射型偏光素子740は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。
 なお、図7の例では、反射型偏光素子740は、大気に露出された状態になっている。
 次に、このような構成の本実施形態による透明スクリーン700の動作について説明する。
 (P偏光照射の場合)
 まず、第1の形態に関し、透明スクリーン700に、P偏光の光が照射される場合について説明する。ここでは、表示手段45はP偏光の光を出射する。
 この場合、透明スクリーン700に、第1の表面722の側から、P偏光を有する表示光760が照射される。
 本実施形態において、反射型偏光素子740は、反射軸が、入射される光の偏光軸と平行になるようにして配置する。このため、反射型偏光素子740に入射されたP偏光の表示光760は、ここで大部分が反射され、反射光765となる。この反射光765は、透明スクリーン700の前方にいる観者790の方に出射され、観者790は、この反射光765により、表示像を認識することができる。
 なお、反射型偏光素子740に入射された表示光760の一部は、反射されずに、透過光770となり、そのまま透明基板720の内部に侵入する可能性がある。その場合、この透過光770は、透明基板720内を進行し、透明基板720の第2の表面724に入射角θで到達する。
 ここで、入射角θは、入射側の透明基板720の第2の表面724を構成する材料と、空気との界面でのブリュースタ角をθb(ただしθbは、0~90゜)としたとき、実質的に、θb-20゜~θb+5゜の範囲となるように選定される。
 この入射角θは、θb±5゜であることが好ましく、θ≒θbであることがさらに好ましい。入射角θが上記範囲となるように、表示手段45からの光の出射方向と透明基板720の角度との関係を制御することができる。本実施形態において、例えば表示手段45からの光の出射方向を制御して、入射角θが上記範囲となるようにすることができる。また、例えば、透明基板720の角度を調整して入射角θが上記範囲となるようにすることができる。なお、第1の表面722と第2の表面724とは、平行であってもよいが、θbの値を考慮して、入射角θが上記範囲となるように、表示手段45からの光の出射方向に対して異なる角度とすることもできる。
 この場合、透過光770の第2の表面724での反射は、最小限に抑制される。すなわち、透過光770の大部分は、そのまま光774となり、透明スクリーン700の後方に出射されるようになる。このため、仮に透過光770が存在する場合であっても、透過光770が第2の反射光となり、観者790の方に戻ることが有意に抑制される。
 これにより、本実施形態における透明スクリーン700では、P偏光の表示光を使用した際に、表示像の二重像の問題を有意に抑制することができる。
 (S偏光照射の場合)
 次に、第2の形態に関し、透明スクリーン700に、S偏光の光が照射される場合について説明する。ここでは、表示手段45はS偏光の光を出射する。
 この場合、透明スクリーン700に、第1の表面722の側から、S偏光を有する表示光760が照射される。
 本実施形態において、反射型偏光素子740は、反射軸が、入射される光の偏光軸と平行になるようにして配置する。このため、反射型偏光素子740に入射されたS偏光の表示光760は、ここで大部分が反射され、反射光765となる。この反射光765は、透明スクリーン700の前方にいる観者790の方に出射され、観者790は、この反射光765により、表示像を認識することができる。
 ここで、表示光760がS偏光の場合は、透明基板720の第2の表面724に入射される透過光770に関して、ブリュースタ角θbによる効果を得ることはできない。
 しかしながら、S偏光の場合は、反射型偏光素子740の効果により、表示光760のほとんどが反射光765となり、観者790の側に到達するようになる。換言すれば、表示光760のうち、透過光770となる光は極めて少ない上、さらにこの透過光770のうち、透明基板720の第2の表面724で反射されて、観者790の方に戻る第2の反射光は、よりいっそう少なくなる。
 従って、表示光760がS偏光の場合も、表示像の二重像の問題を有意に抑制することができる。
 (本実施形態のヘッドアップディスプレイ装置)
 以下、本実施形態における透明スクリーンを使用する具体的一例として、自動車および電車等の車両に適用され得るヘッドアップディスプレイ装置を取り上げ、この構成および特徴について、詳しく説明する。なお、本実施形態におけるヘッドアップディスプレイ装置は、車両用に限られるものではなく、例えば航空機のような他の移動手段にも同様に適用することができる。
 図8には、本実施形態における車両用のヘッドアップディスプレイ装置の一構成例を概略的に示す。
 図8に示すように、このヘッドアップディスプレイ装置800は、フロントガラス820と、該フロントガラス820の少なくとも一部に設置された反射型偏光素子840と、プロジェクタのような表示手段845とを有する。表示手段845は、車両のダッシュボード880の一部に設置されても良い。
 フロントガラス820は、内面(運転者側の表面)822と、外面(外界側の表面)824とを有する。
 また、図8の例では、フロントガラス820は、合わせガラスであり、第1のガラス基板830と、第2のガラス基板835とを、中間膜839を介して相互に貼り合わせることにより構成される。図8の例では、第1のガラス基板830がフロントガラス820の内面822の側となり、第2のガラス基板835が外面824の側となる。
 中間膜839の材質は、透明である限り特に限られず、例えば、公知の合わせガラスに用いられる中間膜、例えばポリビニルブチラールやエチレンビニルアセテート等を使用しても良い。
 なお、フロントガラス820は、単一のガラス基板で構成されても良い。
 表示手段845は、該表示手段845から、表示像を含む表示光860を出射するために設置される。なお、表示手段845から出射される表示光860は、P偏光の光であっても、S偏光の光であっても良い。
 反射型偏光素子840は、表示手段845から出射される表示光860に応じて、反射軸が、入射される表示光860の偏光軸と平行になるようにして、第1のガラス基板830の表面、すなわちフロントガラス820の内面822に設置する。
 反射型偏光素子840は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。
 このような構成の本実施形態によるヘッドアップディスプレイ装置800に、表示手段845から、P偏光を有する表示光860が照射されると、反射型偏光素子840の光学特性により、入射されたP偏光の表示光860は、反射型偏光素子840において、その大部分が反射され、反射光865となる。この反射光865は、車両の内部にいる運転者890の方に出射され、運転者890は、この反射光865により、表示像を認識することができる。
 ここで、表示手段845は、表示光860がフロントガラス820の内面822の側から照射された際に、フロントガラス820内を進行し、フロントガラス820の外面824に入射される透過光870の入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、入射側の第2のガラス基板835を構成する材料と、空気との界面でのブリュースタ角をθb(ただしθbは、0~90゜)としたとき、実質的に、θb-20゜~θb+5゜の範囲となるように選定される。
 この入射角θは、θb±5゜であることが好ましく、θ≒θbであることがさらに好ましい。
 本実施形態によるヘッドアップディスプレイ装置800では、前述のように、フロントガラス820の内部を進行する透過光870の、フロントガラス820の外面824での入射角θが、実質的に、θb-20゜~θb+5゜の範囲となるように構成されている。
 従って、仮に、表示光860の一部が、反射型偏光素子840において反射されずに透過光870となったとしても、この透過光870がフロントガラス820の外面824で反射されて、運転者890の方に戻ることは、有意に抑制される。すなわち、透過光870は、そのほとんどが光874となり、ヘッドアップディスプレイ装置800の外方に出射されるようになる。
 従って、本実施形態によるヘッドアップディスプレイ装置800では、表示像の二重像の問題を有意に抑制することができる。
 なお、入射角θが上記範囲となるように、表示手段845からの光の出射方向と第1のガラス基板830や第2のガラス基板835の角度との関係を制御することができる。本実施形態において、例えば表示手段845からの光の出射方向を制御して、入射角θが上記範囲となるようにすることができる。また、例えば、ガラス基板830や第2のガラス基板835の角度を調整して入射角θが上記範囲となるようにすることができる。なお、第1の表面822と第2の表面824とは、平行であってもよいが、θbの値を考慮して、入射角θが上記範囲となるように、表示手段845からの光の出射方向に対して異なる角度とすることもできる。
 さらに、反射型偏光素子840は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、表示手段845から出射される表示光860がS偏光を有する場合も、反射型偏光素子840に入射されたS偏光の表示光860は、ここで大部分が反射され、反射光865となる。この反射光865は、車内にいる運転者890の方に出射され、運転者890は、この強い反射光865により、表示像を認識することができる。
 従って、表示光860がS偏光の場合も、表示像の二重像の問題を有意に抑制することができる。
 なお、以上の記載では、フロントガラス820を備えるヘッドアップディスプレイ装置800を例に、ヘッドアップディスプレイ装置の構成および特徴を説明した。しかしながら、これは一例であって、ヘッドアップディスプレイ装置は、例えば樹脂基板のような、ガラス以外の透明部材を備えても良い。
 以下、本実施形態の実施例について説明する。
 (実施例1)
 各種ワイヤグリッド型偏光素子を有する透明スクリーンを構成し、この透明スクリーンにP偏光の光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。
 図9には、想定した透明スクリーンの断面図を模式的に示す。
 図9に示すように、透明スクリーン900は、第1の表面905および第2の表面906を有する樹脂基板950と、この樹脂基板950の第1の表面905上に配置された、ワイヤグリッド型偏光素子910とで構成される。
 ワイヤグリッド型偏光素子910は、同一の方向(図9のX方向)に沿って、一定のピッチPで配列された突起920を有する。各突起920は、図9のY方向に延在している。各突起920の底面の長さTを70nmとし、隣接する突起920同士の間隔Sを70nmとした(従って、ピッチP=T+S=140nm)。各突起920の垂直な高さをHとする。
 各突起920の同じ側の傾斜面には、金属アルミニウム製のワイヤ931が、突起920の延伸方向に沿って、設置されている。ワイヤ931の厚さをtとし、ワイヤ931の高さ(垂直方向の長さ)をLとする。
 このようなワイヤグリッド型偏光素子910において、突起920の高さH、ワイヤ931の厚さt、およびワイヤ931の高さLをパラメータとすることにより、合計5種類の透明スクリーン900を構成した。
 なお、通常の車両のフロントガラスの条件を模擬するため、いずれの構成においても、透明スクリーン900は、波長550nmの光を、透明スクリーン900に入射角0゜で照射した際の透過率が、約70%(P偏光とS偏光の平均値)となるように構成した。
 表1には、各構成(構成1~構成5)の透明スクリーン900における、ワイヤグリッド型偏光素子910のパラメータ値をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 このような条件下で、透明スクリーン900に、波長550nmのP偏光の光を入射角60゜で入射させたときの光の反射/透過特性を、シミュレーションにより評価した。シミュレーションには、GSolverソフト(Grating Solver Development Company社製)を使用した。なお、ワイヤグリッド型偏光素子910は、反射軸、すなわちワイヤの延伸方向が、入射される光の偏光軸と平行となるように配置した。
 前述の表1の「シミュレーション結果」の欄には、各構成1~構成5において得られた反射率および透過率のシミュレーション結果をまとめて示す。この結果から、いずれの構成においても、反射率は、14%以上(最大29%)となった。
 また、前述の表1の「評価結果」の欄には、各構成における二重像の程度(強さ)を評価した結果をまとめて示す。
 ここで、例えば構成1の場合、シミュレーション結果より、P偏光の光の反射率は、29%である。従って、図9に示した透明スクリーン900において、樹脂基板950の第1の表面905の側から、入射角60゜でP偏光の光が入射された場合、第1の表面905で反射される光(以下、「第1反射光」と称する)の量は、29%であり、反射されずに透過する透過光の量は、38%であることが予想される。
 第1の表面905を透過した38%の透過光は、その後、樹脂基板950の第2の表面906に、約35゜の入射角θで入射される。この入射角θは、樹脂(入射側)/空気の界面でのブリュースタ角θbである33゜に近く、θb-20゜~θb+5゜の範囲を十分に満たす。このため、樹脂基板950の第2の表面906に入射した透過光は、ここで反射されることなく、透明スクリーン900を透過する。従って、構成1の場合、樹脂基板950の第2の表面906で反射される光(以下、「第2反射光」と称する)は、ほとんど生じない。
 その結果、透明スクリーン900からは、第1反射光のみが反射されることになり、二重像の程度は、極めて軽微になると予想される。
 構成2~構成5についても、同様のことが言える。
 このように、構成1~構成5では、P偏光の光を使用した際に、二重像が軽減できることがわかる。
 (実施例2)
 実施例1と同様の方法により、透明スクリーンに光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。ただし、この実施例2では、透明スクリーンに照射する光は、S偏光の光とした。また、ワイヤグリッド型偏光素子910は、反射軸、すなわちワイヤの延伸方向が、入射される光の偏光軸と平行となるように配置した。その他の条件は、実施例1の場合と同様である。
 表2の「ワイヤグリッド型偏光素子の構成」の欄には、パラメータ値をまとめて示す。また、表2の「シミュレーション結果」の欄には、構成6において得られた反射率および透過率のシミュレーション結果を示す。
 この結果から、構成6における反射率は、68.6%となった。
 また、表2の「評価結果」の欄には、構成6における二重像の程度(強さ)を評価した結果を示す。
Figure JPOXMLDOC01-appb-T000003
 ここで、構成6の場合、シミュレーション結果より、S偏光の光の反射率は、68.6%であり、透過率は、19.0%である。従って、図9に示した透明スクリーン900において、樹脂基板950の第1の表面905の側から、入射角60゜でS偏光の光が入射された場合、第1の表面905で反射される第1反射光の量は、68.6%であり、反射されずに透過する透過光の量は、19.0%であることが予想される。
 第1の表面905を透過した19.0%の透過光は、その後、樹脂基板950の第2の表面906に、約35゜の入射角θで入射される。また、透過光は、ここで反射されて第2反射光となり、透明スクリーン900の第1の表面905の側に戻る。
 その結果、透明スクリーン900からは、第1反射光および第2反射光が反射されることになる。しかしながら、第2反射光の強度は、最大でも19.0%であり、第1反射光の68.6%に比べて有意に弱い。従って、二重像の程度は、極めて軽微になると予想される。
 このように、構成6では、S偏光の光を使用した際に、二重像が軽減できることがわかる。
 (実施例3)
 実施例1と同様の方法により、透明スクリーンに光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。ただし、この実施例3では、ワイヤグリッド型偏光素子として、図2に示したような構成のものを採用した。
 図10には、採用した透明スクリーンの断面図を模式的に示す。
 図10に示すように、透明スクリーン1000は、第1の表面1005および第2の表面1006を有する樹脂基板1050と、この樹脂基板1050の第1の表面1005上に配置された、ワイヤグリッド型偏光素子1010とで構成される。
 ワイヤグリッド型偏光素子1010は、複数の金属ワイヤ1030で構成される。各金属ワイヤ1030は、一定の間隔で、それぞれY方向に平行に延伸するように配置される。金属ワイヤ1030のX方向のピッチPは、140nmである。金属ワイヤ1030の厚さtを20nmとし、金属ワイヤ1030の幅(X方向の長さ)を40nmとする。
 なお、この透明スクリーン1000は、波長550nmの光を、透明スクリーン1000に入射角0゜で照射した際の透過率が、約70%(P偏光とS偏光の平均値)となるように構成されている。
 このような透明スクリーン1000を想定して(構成7)、実施例1と同様の方法で、透明スクリーンに光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。なお、金属ワイヤ1030の延伸方向、すなわち、ワイヤグリッド型偏光素子1010の反射軸は、入射される光の偏光軸と平行となるように配置した。
 なお、透明スクリーン1000に入射される光は、P偏光の光とした。
 表3の「シミュレーション結果」の欄には、構成7において得られた反射率および透過率のシミュレーション結果を示す。また、表3の「評価結果」の欄には、構成7における二重像の程度(強さ)を評価した結果を示す。
Figure JPOXMLDOC01-appb-T000004
 シミュレーションの結果、P偏光の光を入射させた構成7の場合、反射率は、29%となり、透過率は、49%となった。従って、図10に示した透明スクリーン1000において、樹脂基板1050の第1の表面1005の側から、入射角60゜でP偏光の光が入射された場合、第1の表面1005で反射される第1反射光の量は、29%であり、反射されずに透過する透過光の量は、49%であることが予想される。
 第1の表面1005を透過した49%の透過光は、その後、樹脂基板1050の第2の表面1006に、約35゜の入射角θで入射される。この入射角θは、樹脂(入射側)/空気の界面でのブリュースタ角θbである33゜に近く、θb-20゜~θb+5゜の範囲を十分に満たす。このため、樹脂基板1050の第2の表面1006に入射した透過光は、ここで反射されることなく、透明スクリーン1000を透過する。従って、構成7の場合、樹脂基板1050の第2の表面1006で反射される第2反射光は、ほとんど生じない。
 その結果、透明スクリーン1000からは、第1反射光のみが反射されることになり、二重像の程度は、極めて軽微になると予想される。
 このように、構成7においても、二重像が軽減できることがわかる。
 (比較例1)
 実施例1と同様の方法により、透明スクリーンに光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。ただし、この比較例1では、透明スクリーンとして、図11に示す構造のものを想定した。
 すなわち、図11に示すように、この透明スクリーン1200は、第1の表面1205および第2の表面1206を有する樹脂基板1250と、この樹脂基板1250の第1の表面1205に設置されたハーフミラー1210とで構成される。ハーフミラー1210は、厚さが9.5nmの金属銀薄膜とした。
 なお、透明スクリーン1200は、通常の車両のフロントガラスの条件を模擬するため、波長550nmの光を、透明スクリーン1100に入射角0゜で照射した際の透過率が、約70%(P偏光とS偏光の平均値)となるように構成した。
 このような透明スクリーン1200(構成9)に、波長550nmのS偏光の光を入射角60゜で入射させたときの光の反射/透過特性を、シミュレーションにより評価した。
 表4の「シミュレーション結果」の欄には、得られた反射率および透過率のシミュレーション結果を示す。また、表4の「評価結果」の欄には、構成9における二重像の程度(強さ)を評価した結果を示す。
Figure JPOXMLDOC01-appb-T000005
 ここで、構成9の場合、シミュレーション結果より、S偏光の光の反射率は、48.7%である。従って、図11に示した透明スクリーン1200において、樹脂基板1250の第1の表面1205の側から、入射角60゜でS偏光の光が入射された場合、第1の表面1205で反射される第1反射光の量は、48.7%であり、反射されずに透過する透過光の量は、47.8%であることが予想される。
 第1の表面1205を透過した47.8%の透過光は、その後、樹脂基板1250の第2の表面1206に、約35゜の入射角θで入射される。また、透過光は、ここで反射されて第2反射光となり、樹脂基板1250の第1の表面1205の側に戻る。
 その結果、透明スクリーン1200からは、第1反射光および第2反射光が反射されることになる。
 ここで、第2反射光の強度は、47.8%であり、第1反射光の強度の48.7%に匹敵する。このため、二重像の程度は、極めて顕著になると予想される。
 このように、構成9では、顕著な二重像が生じることがわかる。
 本実施形態は、車両や航空機等の移動手段用のヘッドアップディスプレイ装置等に適用することができる。
 以上、本発明の好ましい実施形態及び実施例について詳述したが、本発明は上記した特定の実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。
 本国際出願は2012年6月22日に出願された日本国特許出願2012-141162号に基づく優先権を主張するものであり、その全内容をここに援用する。
 10   従来の車両用のヘッドアップディスプレイ装置
 20   フロントガラス
 22   内面(運転者側の表面)
 24   外面(外界側の表面)
 30   第1のガラス基板
 35   第2のガラス基板
 39   中間膜
 40   コンバイナ
 45   表示手段
 60   表示光
 65   反射光
 70   透過光
 75   第2の反射光
 80   ダッシュボード
 90   運転者
 100  ワイヤグリッド型偏光素子
 101  別の構成のワイヤグリッド型偏光素子
 110  透明基板
 111  透明基板
 115  平坦面
 120  突起
 130、131 金属ワイヤ
 140S、140P 光
 150a 反射光
 150b 透過光
 150c 透過光
 150d 反射光
 700  本発明による透明スクリーン
 720  透明基板
 722  第1の表面
 724  第2の表面
 740  反射型偏光素子
 760  表示光
 765  反射光
 770  透過光
 774  光
 790  観者
 800  本発明によるヘッドアップディスプレイ装置
 820  フロントガラス
 822  内面
 824  外面
 830  第1のガラス基板
 835  第2のガラス基板
 839  中間膜
 840  反射型偏光素子
 845  表示手段
 860  表示光
 865  反射光
 870  透過光
 874  光
 880  ダッシュボード
 890  運転者
 900  実施例1に係る透明スクリーン
 905  第1の表面
 906  第2の表面
 910  偏光素子
 920  突起
 931  ワイヤ
 950  樹脂基板
 1000 実施例3に係る透明スクリーン
 1005 第1の表面
 1006 第2の表面
 1010 偏光素子
 1030 金属ワイヤ
 1050 樹脂基板
 1100 実施例4に係る透明スクリーン
 1105 第1の表面
 1106 第2の表面
 1110 偏光素子
 1120 突起
 1131 ワイヤ
 1150 樹脂基板
 1190 樹脂層
 1200 比較例1に係る透明スクリーン
 1205 第1の表面
 1206 第2の表面
 1210 ハーフミラー
 1250 樹脂基板

Claims (6)

  1.  表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
     前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
     前記反射型偏光素子は、空気と接しており、
     前記反射型偏光素子の空気と接する表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
     前記表示光は、前記第1の表面から入射し、
     前記表示光は、入射面に対して平行なP偏光の光であり、
     前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、
     前記表示光の前記第2の表面での入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb(ただしθbは、0~90゜)としたとき、実質的に、θb-20゜~θb+5゜の範囲にあることを特徴とするヘッドアップディスプレイ装置。
  2.  表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
     前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
     前記反射型偏光素子は、空気と接しており、
     前記反射型偏光素子の空気と接する表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
     前記表示光は、前記第1の表面から入射し、
     前記表示光は、入射面に対して垂直なS偏光の光であり、
     前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置されることを特徴とするヘッドアップディスプレイ装置。
  3.  前記透明部材は、1つの透明基板から構成されるか、あるいは、2つの透明基板と両透明基板の間に配置された中間層とから構成されることを特徴とする請求項1または2に記載のヘッドアップディスプレイ装置。
  4.  前記透明基板は、樹脂またはガラスで構成されることを特徴とする請求項3に記載のヘッドアップディスプレイ装置。
  5.  前記反射型偏光素子は、ワイヤグリッド型偏光素子であることを特徴とする請求項1乃至4のいずれか一つに記載のヘッドアップディスプレイ装置。
  6.  前記透明基板は、輸送機器用のフロントガラスであることを特徴とする請求項1乃至5のいずれか一つに記載のヘッドアップディスプレイ装置。
PCT/JP2013/064786 2012-06-22 2013-05-28 ヘッドアップディスプレイ装置 WO2013190958A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521251A JPWO2013190958A1 (ja) 2012-06-22 2013-05-28 ヘッドアップディスプレイ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141162 2012-06-22
JP2012141162 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013190958A1 true WO2013190958A1 (ja) 2013-12-27

Family

ID=49768561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064786 WO2013190958A1 (ja) 2012-06-22 2013-05-28 ヘッドアップディスプレイ装置

Country Status (2)

Country Link
JP (1) JPWO2013190958A1 (ja)
WO (1) WO2013190958A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036501A (ja) * 2016-08-31 2018-03-08 パイオニア株式会社 虚像表示装置
WO2018143231A1 (ja) * 2017-01-31 2018-08-09 大日本印刷株式会社 表示装置、投射装置および移動体
EP3272568A4 (en) * 2015-03-20 2019-06-19 Boe Technology Group Co. Ltd. VEHICLE DISPLAY SYSTEM AND VEHICLE
EP3848755A1 (fr) * 2020-01-10 2021-07-14 Saint-Gobain Glass France Systeme de projection comprenant un vitrage pour ecran transparent
CN114594607A (zh) * 2022-03-23 2022-06-07 业成科技(成都)有限公司 光学膜片、其制备方法、抬头显示器及车辆
DE102014220189B4 (de) 2014-10-06 2023-08-17 Continental Automotive Technologies GmbH Head-Up-Display und Verfahren zur Erzeugung eines virtuellen Bilds mittels eines Head-Up-Displays und Verwendung von p-polarisiertem Licht in einem Head-Up-Display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485370U (ja) * 1990-11-29 1992-07-24
JPH04114531U (ja) * 1991-03-28 1992-10-08 日本板硝子株式会社 フロントガラス
JP2006512622A (ja) * 2002-12-31 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー 偏光光源および広角p偏光反射偏光子を備えたヘッドアップディスプレイ
JP2009128658A (ja) * 2007-11-26 2009-06-11 Toshiba Corp ヘッドアップディスプレイ用光学フィルム、ヘッドアップディスプレイ及び移動体
JP2010204626A (ja) * 2009-02-05 2010-09-16 Asahi Glass Co Ltd ワイヤグリッド型偏光子およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536809Y2 (ja) * 1974-04-03 1980-08-29

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485370U (ja) * 1990-11-29 1992-07-24
JPH04114531U (ja) * 1991-03-28 1992-10-08 日本板硝子株式会社 フロントガラス
JP2006512622A (ja) * 2002-12-31 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー 偏光光源および広角p偏光反射偏光子を備えたヘッドアップディスプレイ
JP2009128658A (ja) * 2007-11-26 2009-06-11 Toshiba Corp ヘッドアップディスプレイ用光学フィルム、ヘッドアップディスプレイ及び移動体
JP2010204626A (ja) * 2009-02-05 2010-09-16 Asahi Glass Co Ltd ワイヤグリッド型偏光子およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220189B4 (de) 2014-10-06 2023-08-17 Continental Automotive Technologies GmbH Head-Up-Display und Verfahren zur Erzeugung eines virtuellen Bilds mittels eines Head-Up-Displays und Verwendung von p-polarisiertem Licht in einem Head-Up-Display
EP3272568A4 (en) * 2015-03-20 2019-06-19 Boe Technology Group Co. Ltd. VEHICLE DISPLAY SYSTEM AND VEHICLE
US10507767B2 (en) 2015-03-20 2019-12-17 Boe Technology Group Co., Ltd. Vehicle-mounted display system and vehicle
JP2018036501A (ja) * 2016-08-31 2018-03-08 パイオニア株式会社 虚像表示装置
WO2018143231A1 (ja) * 2017-01-31 2018-08-09 大日本印刷株式会社 表示装置、投射装置および移動体
JPWO2018143231A1 (ja) * 2017-01-31 2019-11-14 大日本印刷株式会社 表示装置、投射装置および移動体
EP3848755A1 (fr) * 2020-01-10 2021-07-14 Saint-Gobain Glass France Systeme de projection comprenant un vitrage pour ecran transparent
FR3106220A1 (fr) * 2020-01-10 2021-07-16 Saint-Gobain Glass France Vitrage pour écran transparent et système de projection
CN114594607A (zh) * 2022-03-23 2022-06-07 业成科技(成都)有限公司 光学膜片、其制备方法、抬头显示器及车辆

Also Published As

Publication number Publication date
JPWO2013190958A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2013190959A1 (ja) ヘッドアップディスプレイ装置
US9857586B2 (en) Reflective projection display device
WO2013190958A1 (ja) ヘッドアップディスプレイ装置
US7839574B2 (en) Head-up display optical film, head-up display, and vehicle
JP6455339B2 (ja) ヘッドアップディスプレイ装置
JP5950233B2 (ja) シースルーディスプレイ装置及びシースルーディスプレイ装置を搭載した車両
JP5462443B2 (ja) 反射スクリーン、表示装置及び移動体
JP6572856B2 (ja) ヘッドアップディスプレイ装置
JP6308162B2 (ja) ヘッドアップディスプレイ装置
JP6459921B2 (ja) ヘッドアップディスプレイ装置
CN106990530B (zh) 平视显示器装置的冷光镜以及平视显示器装置
WO2014156167A1 (ja) 画像表示装置
WO2012046379A1 (ja) 透過型表示装置、移動体及び制御装置
WO2017094333A1 (ja) ヘッドアップディスプレイ装置
TW201728957A (zh) 顯示系統以及半透射光學板
US10234684B2 (en) Projection member, head up display device, and polarized sunglasses
JP2023505181A (ja) 光学システム及びヘッドアップディスプレイシステム
WO2018025741A1 (ja) コンバイナおよびそれを利用したヘッドアップディスプレイ装置
JP2010197783A (ja) スクリーン
JP2019066773A (ja) 反射表示板、映像表示装置、車両
JP7110575B2 (ja) 映像表示装置、車両
JP7354624B2 (ja) 表示装置
US20240027757A1 (en) Windshield, display system, and reflective polarizer
JP2023101953A (ja) 光学システム及びヘッドアップディスプレイ装置
WO2019155567A1 (ja) ライトガイド及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807374

Country of ref document: EP

Kind code of ref document: A1