WO2013190922A1 - 受信装置および受信方法、並びにコンピュータプログラム - Google Patents

受信装置および受信方法、並びにコンピュータプログラム Download PDF

Info

Publication number
WO2013190922A1
WO2013190922A1 PCT/JP2013/062705 JP2013062705W WO2013190922A1 WO 2013190922 A1 WO2013190922 A1 WO 2013190922A1 JP 2013062705 W JP2013062705 W JP 2013062705W WO 2013190922 A1 WO2013190922 A1 WO 2013190922A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
phase
phase difference
uplink
unit
Prior art date
Application number
PCT/JP2013/062705
Other languages
English (en)
French (fr)
Inventor
俊倫 横手
Original Assignee
日本電気株式会社
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 株式会社エヌ・ティ・ティ・ドコモ filed Critical 日本電気株式会社
Priority to JP2014521018A priority Critical patent/JPWO2013190922A1/ja
Publication of WO2013190922A1 publication Critical patent/WO2013190922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0046Open loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to a receiving device, a receiving method, and a computer program.
  • a received signal is distorted by a multipath fading or the like in a wireless communication path (channel). Therefore, it is necessary to obtain an estimated value (channel estimated value) of the channel characteristic of each subcarrier using a known reference signal multiplexed and transmitted with the data symbol, and to compensate for signal distortion at the receiver. If the accuracy of the channel estimate is low, the distortion of the signal received on the channel will not be corrected properly, and the demodulation accuracy of the received signal will be reduced. Various methods for improving the accuracy of the channel estimate have been proposed. Yes. Patent Document 1 discloses that noise in a channel estimation value can be suppressed by averaging the channel estimation values over time. Patent Document 2 shows that a correction factor for obtaining a channel response at an access point and a user terminal is determined based on channel estimation values of a downlink (DL) channel and an uplink (UL) channel. ing.
  • DL downlink
  • UL uplink
  • TD-LTE Time Division Long Term Evolution
  • FIG. 10 is a block diagram illustrating a configuration of a channel estimation unit of a conventional receiver, and illustrates a configuration for obtaining a time average of channel estimation values as disclosed in Patent Document 1.
  • the channel estimation unit 101 of the receiver includes a pattern cancellation unit 121, a buffer 122, a time average processing unit 123, and an interpolation processing unit 124.
  • the channel estimation unit 101 receives a reference signal included in the output of an FFT (Fast Fourier Transform) processing unit (not shown).
  • the pattern cancel unit 121 cancels the pseudo random pattern applied to the reference signal, and obtains a channel estimation value of the reference signal.
  • the buffer 122 holds the channel estimation value of the reference signal for time averaging in the next channel estimation process.
  • the time average processing unit 123 averages the channel estimation value of the current subframe input from the pattern cancellation unit 121 and the channel estimation value of the previous DL subframe held in the buffer 122 to suppress noise. Obtain the estimated channel estimate.
  • the interpolation processing unit 124 calculates a channel estimation value between reference signals and outputs a channel estimation value of each subcarrier.
  • FIG. 11 is a flowchart for explaining the channel estimation operation of the receiver shown in FIG.
  • the pattern cancellation unit 121 cancels the pseudo random pattern applied to the reference signal, and obtains a channel estimation value of the reference signal.
  • step S102 the channel estimation value of the reference signal is input to the buffer 122 and held for time averaging in the next channel estimation process.
  • step S103 it is determined whether the current subframe is immediately after the UL. If it is determined in step S103 that it is not immediately after the UL, that is, if there is a previous DL subframe, in step S104, the channel estimation value of the current subframe input from the pattern cancel unit 121 and the buffer The channel estimation value of the previous DL subframe held in 122 is time-averaged by the time average processing unit 123, and a channel estimation value in which noise is suppressed is obtained. The procedure proceeds to step S105 after step S104.
  • step S103 determines whether it is immediately after the UL, that is, if the immediately preceding DL subframe does not exist, the time averaging process is not performed, and the input from the pattern cancellation unit 121 is directly received from the time average processing unit 123. The procedure proceeds to step S105.
  • step S105 the interpolation processing unit 124 calculates the channel estimation value between the reference signals, outputs the channel estimation value of each subcarrier, and the channel estimation operation ends.
  • the conventional channel estimation method cannot perform time averaging with the channel estimation value of the immediately preceding subframe in the DL subframe immediately after the UL. Therefore, the noise suppression effect by time averaging cannot be obtained, and the accuracy of channel estimation of the DL subframe immediately after the UL is deteriorated as compared with other subframes.
  • a phase synchronization circuit (PLL: Phase-Locked Loop) is restarted in the DL subframe immediately after the UL even if it tries to time average with the channel estimation value before the UL. Since the phase of the reception signal before and after the UL becomes discontinuous, it is not possible to perform time averaging with the channel estimation value before the UL instead of the channel estimation value of the immediately preceding subframe.
  • paragraph 0063 describes that the phase difference between the DL channel and the UL channel is normalized. However, this relates to the phase difference between transmission and reception, and does not consider the continuity of the phase of the received signal between the DLs sandwiching the UL.
  • an aspect of the receiving apparatus of the present invention is a receiving apparatus that forms a wireless communication system using TDD, and receives DL before and after UL among UL and DL that are alternately repeated.
  • Phase difference estimating means for estimating the phase difference of the signal
  • phase correcting means for correcting the phase of the DL received signal before and after the UL based on the estimated phase difference
  • a channel for performing channel estimation using the received signal whose phase has been corrected And an estimation means.
  • Another aspect of the reception method of the present invention is a reception method of a reception apparatus that forms a wireless communication system using TDD, and the position of DL reception signals before and after UL among UL and DL that are alternately repeated.
  • a phase difference between DL reception signals before and after UL among UL and DL that are alternately repeated is estimated in a computer of a reception apparatus that forms a wireless communication system using TDD.
  • a process including a phase difference estimation step, a phase correction step for correcting the phase of the DL reception signal before and after the UL based on the estimated phase difference, and a channel estimation step for performing channel estimation using the phase-corrected reception signal. It is supposed to be done.
  • the present invention it is possible to provide a receiving apparatus, a receiving method, and a program that can further suppress noise and improve the accuracy of channel estimation.
  • FIG. It is a block diagram which shows the structure of the transmitter of TD-LTE. It is a block diagram which shows the structure of the receiver of TD-LTE.
  • 3 is a block diagram illustrating a configuration example of a channel estimation unit 26.
  • FIG. It is a flowchart explaining the operation
  • TD-LTE Time Division Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • FIG. 1 is a block diagram showing a configuration of a TD-LTE transmitter.
  • the transmitter 10 forms a communication system with a receiver described later, a channel encoding unit 11, a modulation unit 12, an IFFT (Inverse Fast Fourier Transform) processing unit 13, a CP (Cyclic Prefix) addition unit 14, a D / A (Digital) / Analog) conversion unit 15 and transmission antenna 16.
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • D / A Digital) / Analog
  • transmission data addressed to each user is first subjected to error detection coding / error correction coding by the channel coding unit 11, and is mapped to the I component and Q component by the modulation unit 12.
  • the signal is converted into a time-domain signal wave by the IFFT processing unit 13, and a CP is added to the head of the OFDM symbol in order to prevent the influence of intersymbol interference due to multipath in the CP adding unit 14.
  • the OFDM symbol to which the CP is added is converted from a digital signal to an analog signal by the D / A converter 15 and then transmitted from the transmission antenna 16.
  • FIG. 2 is a block diagram showing a configuration of a TD-LTE receiver.
  • the receiver 20 constitutes a receiving device.
  • the receiver 20 includes a receiving antenna 21, an A / D (Analog / Digital) conversion unit 22, an FFT (Fast Fourier Transform) timing detection unit 23, a CP removal unit 24, an FFT processing unit 25, a channel estimation unit 26, and a demodulation unit 27. And a channel decoding unit 28.
  • a / D Analog / Digital
  • FFT Fast Fourier Transform
  • the reception signal received by the reception antenna 21 is converted from an analog signal to a digital signal by the A / D conversion unit 22, and then input to the FFT timing detection unit 23 and the CP removal unit 24.
  • the CP removal unit 24 removes the CP added to the head from the OFDM symbol based on the FFT timing information detected by the FFT timing detection unit 23, and the FFT processing unit 25 removes each subcarrier from the time domain signal wave. Converted into components.
  • the channel estimation unit 26 obtains a channel estimation value of each subcarrier using a known reference signal multiplexed and transmitted with the data symbol. By multiplying the reception signal of each subcarrier by the complex conjugate of the channel estimation value, distortion of the signal received on the channel is compensated (channel equalization).
  • the received signal of each subcarrier compensated for the channel effect is converted into likelihood information from the I component and the Q component by the demodulator 27, and error correction decoding and error detection are performed by the channel decoder 28. can get.
  • FIG. 3 is a block diagram illustrating an example of the configuration of the channel estimation unit 26.
  • the channel estimation unit 26 includes a pattern cancellation unit 31, a buffer 32, a phase difference estimation unit 33, a phase correction unit 34, a time average processing unit 35, and an interpolation processing unit 36.
  • the reference signal included in the output of the FFT processing unit 25 is input to the channel estimation unit 26.
  • the pattern cancel unit 31 cancels the pseudo random pattern applied to the reference signal, and obtains a channel estimation value of the reference signal.
  • the pattern cancel unit 31 supplies the channel estimation value of the reference signal to the buffer 32, the phase difference estimation unit 33, and the time average processing unit 35.
  • the buffer 32 holds the channel estimation value of the reference signal supplied from the pattern cancellation unit 31 in order to perform time averaging in the next channel estimation processing.
  • the buffer 32 supplies the channel estimation value of the held reference signal to the phase difference estimation unit 33 and the phase correction unit 34.
  • the phase difference estimator 33 constitutes a phase difference estimator, and the channel estimation value of the current subframe input from the pattern cancellation unit 31 and the channel estimation value before UL held in the buffer 32 are used before and after the UL.
  • the phase difference ⁇ is estimated.
  • the phase difference estimation unit 33 supplies the estimation result of the phase difference ⁇ before and after the UL to the phase correction unit 34. That is, the phase difference estimation unit 33 estimates the phase difference between the reception signals of the DL before and after the UL among the UL and DL that are alternately repeated.
  • the phase correction unit 34 constitutes phase correction means, and multiplies the channel estimation value before UL held in the buffer 32 by the phase difference ⁇ before and after UL, thereby calculating the phase of the channel estimation value before UL as the current phase. Match the phase of the channel estimate of the subframe. That is, the phase correction unit 34 corrects the phase of the DL reception signals before and after the UL based on the estimated phase difference.
  • the time average processing unit 35 constitutes a channel estimation unit, and calculates the time average of the channel estimation value of the current subframe input from the pattern cancellation unit 31 and the channel estimation value before UL corrected by the phase correction unit 34. Then, a channel estimation value in which noise is suppressed is obtained. That is, the time average processing unit 35 performs channel estimation using the received signal whose phase is corrected.
  • Interpolation processing unit 36 calculates a channel estimation value between reference signals and outputs a channel estimation value of each subcarrier.
  • step S10 the pattern cancel unit 31 cancels the pseudo random pattern applied to the reference signal, and obtains a channel estimation value of the reference signal.
  • step S ⁇ b> 11 the buffer 32 holds the reference signal channel estimation value input from the pattern cancellation unit 31 for time averaging in the next channel estimation process.
  • step S12 the channel estimation unit 26 determines whether the current subframe is immediately after the UL. If it is determined in step S12 that it is not immediately after the UL, that is, if there is a previous DL subframe, the procedure proceeds to step S13, and the time average processing unit 35 receives the current input from the pattern cancellation unit 31. The channel estimation value of the subframe and the channel estimation value of the previous DL subframe held in the buffer 32 are time-averaged to obtain a channel estimation value in which noise is suppressed. After step S13, the procedure proceeds to step S17.
  • step S12 determines whether it is immediately after the UL, that is, if there is no immediately preceding DL subframe. If it is determined in step S12 that it is immediately after the UL, that is, if there is no immediately preceding DL subframe, the procedure proceeds to step S14. Immediately after the UL, since the reference signal is not input to the channel estimation unit 26 in the UL subframe, the channel estimation value before the UL is held in the buffer 32. In addition, when the phase synchronization circuit is restarted in the DL subframe immediately after the UL, the phase of the received signal before and after the UL becomes discontinuous, so that the channel estimation value of the current subframe input from the pattern cancel unit 31 and The channel estimation values before UL stored in the buffer 32 also have different phases.
  • step S14 the phase difference estimation unit 33 calculates the phase difference before and after the UL from the channel estimation value of the current subframe input from the pattern cancellation unit 31 and the channel estimation value before the UL held in the buffer 32.
  • Step S14 corresponds to a phase difference estimation step.
  • the phase difference estimation unit 33 estimates the phase difference ⁇ before and after the UL by the calculation shown in Expression (1).
  • the variable N indicates the number of reference signals
  • the channel estimate h_curr (i) indicates the i-th channel estimate of the current subframe
  • the channel estimate h_prev (i) is UL The previous i-th channel estimate is shown.
  • the phase difference estimation unit 33 estimates the phase difference between the DL reception signals before and after the UL using the channel estimation values before and after the UL.
  • phase correction unit 34 multiplies the channel estimation value before UL held in the buffer 32 by the phase difference ⁇ before and after UL, thereby calculating the phase of the channel estimation value before UL in the current subframe. Match the phase of the channel estimate.
  • Step S15 corresponds to a phase correction step. As described above, the phase correction unit 34 corrects the phase of the channel estimation value before UL based on the estimated phase difference ⁇ .
  • step S16 the time average processing unit 35 time-averages the channel estimation value of the current subframe input from the pattern cancellation unit 31 and the channel estimation value before the UL corrected by the phase correction unit 34, and generates noise. To obtain a channel estimate with suppressed.
  • Step S16 corresponds to a channel estimation step. As described above, the time average processing unit 35 performs channel estimation using the reception signal whose phase is corrected, using time averaging as the channel estimation method.
  • step S17 the interpolation processing unit 36 calculates the channel estimation value between the reference signals, outputs the channel estimation value of each subcarrier, and the channel estimation ends.
  • FIG. 5 is a diagram showing a subframe configuration in the case of UL / DL configuration 2 defined by 3GPP.
  • a subframe in the case of UL / DL configuration 2 includes subframe # 0 to subframe # 9.
  • Subframe # 0, subframe # 3, subframe # 4, subframe # 5, subframe # 8, and subframe # 9 are DL subframes, and subframe # 2 and subframe # 7 are UL
  • Subframe # 1 and subframe # 6 are special subframes including a DL part called DwPTS, a part without transmission called GAP, and a UL part called UpPTS. is there.
  • subframe #n As shown in FIG. 6, when both subframe # n-1 and subframe #n are DL subframes, in the channel estimation of subframe #n, the channel estimation value and time of immediately preceding subframe # n-1 Since averaging is possible, noise can be suppressed and the accuracy of channel estimation is improved.
  • subframe # n-1 is a UL subframe and subframe #n is a DL subframe
  • the immediately preceding subframe # n-1 Since it is not possible to perform time averaging with the channel estimation value, noise cannot be suppressed. As a result, the channel estimation value is degraded as compared with other subframes.
  • noise can be suppressed by performing time averaging with the channel estimation value of the immediately preceding subframe # n-2, and the accuracy of channel estimation is improved. Since the frame enters, if the phase synchronization circuit is restarted in the DL subframe immediately after the UL, the phase estimates of the channel estimation values of subframe # n-2 and subframe #n do not match, so time averaging cannot be performed as it is. . For example, if the channel estimation values of subframe # n-2 and subframe #n are 180 degrees out of phase, they will cancel each other out over time.
  • the receiver 20 estimates the phase difference immediately after the UL, corrects the phase of the channel estimation value of the subframe # n-2, and performs time averaging, thereby estimating the channel of the subframe #n immediately after the UL.
  • the channel estimation value of subframe # n-2 before UL and time averaging can be performed, noise can be suppressed and the accuracy of channel estimation is improved.
  • the time average using the channel estimation value immediately before UL (past) and the channel estimation value immediately after UL (current) is taken as an example, but the present invention is not limited to this.
  • Two or more channel estimation values may be used for time averaging, and not only channel estimation values in the past direction but also channel estimation values in the future direction may be used.
  • the time average of channel estimation is taken as an example, but the present invention is not limited to this.
  • various channel estimation methods and interpolation processes using channel estimation in the past direction can be used in the DL subframe immediately after the UL.
  • the channel estimation value before UL is corrected at the time of phase correction is taken as an example, but the present invention is not limited to this.
  • the channel estimation value to be corrected may be a channel estimation value after UL.
  • the phase difference is estimated as a complex number by dividing the channel estimation value immediately after the UL by the channel estimation value before the UL in the phase estimation.
  • the channel estimation value before UL may be divided by the channel estimation value immediately after UL, or may be obtained as an angle instead of a complex number.
  • the TD-LTE discussed in 3GPP has been described as an example, but the present invention is not necessarily limited thereto.
  • the present invention can be similarly applied to other wireless communication systems using TDD. That is, the wireless communication system can use OFDM (orthogonal frequency-division multiplexing) as a wireless communication system.
  • the wireless communication system can use TD-LTE (Time Division Long Term Evolution) as a wireless communication method.
  • the phase difference between the reception signals before and after the UL is estimated, and after correcting the phase of the channel estimation value before the UL, the channel estimation value after the UL and the time average are performed. As a result, the reception characteristics can be improved.
  • the phase difference between the DL reception signals before and after the UL is estimated, the phase of the DL reception signal before and after the UL is corrected based on the estimated phase difference, and the phase is corrected. Since the channel estimation is performed using the received signal, the accuracy of the channel estimation of the DL subframe immediately after the UL is not deteriorated, so that noise can be further suppressed and the accuracy of the channel estimation is further improved. be able to.
  • the present invention can be applied to a receiver of a communication device such as a mobile phone, a data communication card, a PHS (Personal Handyphone System), a PDA (Personal Data Assistance, Personal Digital Assistant), a smartphone, or a wireless base station.
  • a communication device such as a mobile phone, a data communication card, a PHS (Personal Handyphone System), a PDA (Personal Data Assistance, Personal Digital Assistant), a smartphone, or a wireless base station.
  • the series of processes described above can be executed by hardware or software.
  • a program constituting the software executes various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a program recording medium in a general-purpose personal computer or the like.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • an input / output interface 55 is connected to the bus 54.
  • the input / output interface 55 includes a keyboard, a mouse, a microphone, or the like, or an input unit 56 to which they are wirelessly connected, an output unit 57 such as a display or a speaker, a storage unit 58 such as a hard disk or a nonvolatile memory, A communication unit 59 including a wireless network interface is connected.
  • the input / output interface 55 is connected to a drive 60 that drives a removable medium 61 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 51 loads the program stored in the storage unit 58 to the RAM 53 via the input / output interface 55 and the bus 54 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 51) is, for example, a package made of a magnetic disk (including a flexible disk), an optical disk (CD-ROM (Compact Disc-Read Only Memory, DVD, etc.), a magneto-optical disk, or a semiconductor memory. It is recorded on a removable medium 61 that is a medium, or is provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the computer by storing the removable medium 61 in the drive 60 and storing it in the storage unit 58 via the input / output interface 55. Further, the program can be installed in a computer by being received by the communication unit 59 via a wired or wireless transmission medium and stored in the storage unit 58. In addition, the program can be installed in the computer in advance by storing the program in the ROM 52 or the storage unit 58 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)

Abstract

 雑音をより抑制することができ、チャネル推定の精度をより向上させる。 TDDを利用した無線通信システムをなす受信装置に、交互に繰り返されるULとDLのうちの、UL前後のDLの受信信号の位相差を推定する位相差推定手段と、推定された位相差により、UL前後のDLの受信信号の位相を補正する位相補正手段と、位相が補正された受信信号によりチャネル推定を行うチャネル推定手段とを設ける。

Description

受信装置および受信方法、並びにコンピュータプログラム
 本発明は受信装置および受信方法、並びにコンピュータプログラムに関する。
 近年、通信技術の発達はめざましく、大容量のデータを高速で通信するシステムが実現されつつある。これは、有線通信のみのことではなく、無線通信においても同様である。すなわち、携帯電話機などの移動端末の普及に伴い、無線でも大容量のデータを高速で通信し、動画や音声などのマルチメディアデータを移動端末でも利用可能とする次世代通信方式の研究、開発が盛んに行われている。
 無線通信では、受信信号は無線通信路(チャネル)において、マルチパスフェージング等に起因する信号の歪みが生じる。そこで、データシンボルと共に多重されて送信される既知のリファレンスシグナルを用いて、各サブキャリアのチャネル特性の推定値(チャネル推定値)を求め、受信機で信号の歪みを補償する必要がある。チャネル推定値の精度が低いと、チャネルで受けた信号の歪みが適切に補正されず、受信信号の復調精度が低下することから、チャネル推定値の精度を向上させるための方式がさまざま提案されている。特許文献1には、チャネル推定値を時間平均することにより、チャネル推定値中の雑音を抑制できることが示されている。また、特許文献2には、ダウンリンク(DL)チャネルとアップリンク(UL)チャネルのチャネル推定値に基づいて、アクセスポイントとユーザ端末におけるチャネル応答を得るための補正率を決定することが示されている。
 図10および図11を参照して、TD-LTE(Time Division Long Term Evolution)の受信機の一般的なチャネル推定動作を説明する。
 図10は、従来の受信機のチャネル推定部の構成を示すブロック図であり、特許文献1に示されるようなチャネル推定値の時間平均を求める構成を示す。受信機のチャネル推定部101は、パターンキャンセル部121と、バッファ122、時間平均処理部123、および補間処理部124とを備えている。チャネル推定部101には、FFT(Fast Fourier Transform)処理部(図示せず)の出力の中に含まれるリファレンスシグナルが入力される。パターンキャンセル部121は、リファレンスシグナルに掛けられている擬似ランダムパターンをキャンセルし、リファレンスシグナルのチャネル推定値を求める。バッファ122は、次回のチャネル推定処理で時間平均をするためにリファレンスシグナルのチャネル推定値を保持する。時間平均処理部123は、パターンキャンセル部121から入力される現在のサブフレームのチャネル推定値と、バッファ122で保持されている直前のDLサブフレームのチャネル推定値とを時間平均し、雑音が抑制されたチャネル推定値を得る。補間処理部124は、リファレンスシグナル間のチャネル推定値を算出し、各サブキャリアのチャネル推定値を出力する。
 図11は、図10に示す受信機のチャネル推定動作を説明するフローチャートである。ステップS101において、パターンキャンセル部121で、リファレンスシグナルに掛けられている擬似ランダムパターンがキャンセルされ、リファレンスシグナルのチャネル推定値が求められる。
 ステップS102において、リファレンスシグナルのチャネル推定値はバッファ122に入力され、次回のチャネル推定処理で時間平均をするために保持される。ステップS103において、現在のサブフレームがUL直後かどうか判定される。ステップS103において、UL直後ではないと判定された場合、つまり、直前のDLサブフレームが存在する場合は、ステップS104において、パターンキャンセル部121から入力される現在のサブフレームのチャネル推定値と、バッファ122で保持されている直前のDLサブフレームのチャネル推定値とが時間平均処理部123で時間平均され、雑音が抑制されたチャネル推定値が得られる。手続はステップS104の後、ステップS105に進む。
 一方、ステップS103において、UL直後であると判定された場合、つまり、直前のDLサブフレームが存在しない場合、時間平均処理は行われず、パターンキャンセル部121からの入力が時間平均処理部123からそのまま出力され、手続は、ステップS105に進む。
 ステップS105において、補間処理部124で、リファレンスシグナル間のチャネル推定値が算出され、各サブキャリアのチャネル推定値が出力され、チャネル推定動作は終了する。
特表2009‐521132号公報 特開2011‐234361号公報
 しかしながら、ULとDLが交互に繰り返されるTDD(Time Division Duplex)システムにおいて、従来のチャネル推定方法では、UL直後のDLサブフレームにおいては、直前のサブフレームのチャネル推定値と時間平均することができないため、時間平均による雑音抑制効果が得られず、UL直後のDLサブフレームのチャネル推定の精度は他のサブフレームよりも劣化してしまう。また、直前のサブフレームのチャネル推定値の代わりに、UL前のチャネル推定値と時間平均しようとしても、UL直後のDLサブフレームにおいて位相同期回路(PLL:Phase-Locked Loop)が再起動されると、UL前後の受信信号の位相が不連続となるため、直前のサブフレームのチャネル推定値の代わりに、UL前のチャネル推定値と時間平均することもできない。
 特許文献2には、たとえば0063段落に、DLチャネルとULチャネルとの間の位相差を正規化する旨の記載がある。しかし、これは送受信間の位相差に関するもので、ULを挟んだDL間の受信信号の位相の連続性を考慮したものではない。
 本発明は、上記課題を解決し、雑音をより抑制することができ、チャネル推定の精度をより向上させた受信装置および受信方法、並びにプログラムを提供することを目的とする。
 上記課題を解決するために、本発明の受信装置の一側面は、TDDを利用した無線通信システムをなす受信装置であって、交互に繰り返されるULとDLのうちの、UL前後のDLの受信信号の位相差を推定する位相差推定手段と、推定された位相差により、UL前後のDLの受信信号の位相を補正する位相補正手段と、位相が補正された受信信号によりチャネル推定を行うチャネル推定手段とを有するものとされている。
 また、本発明の受信方法の一側面は、TDDを利用した無線通信システムをなす受信装置の受信方法であって、交互に繰り返されるULとDLのうちの、UL前後のDLの受信信号の位相差を推定する位相差推定ステップと、推定された位相差により、UL前後のDLの受信信号の位相を補正する位相補正ステップと、位相が補正された受信信号によりチャネル推定を行うチャネル推定ステップとを含むものとされている。
 さらに、本発明のプログラムの一側面は、TDDを利用した無線通信システムをなす受信装置のコンピュータに、交互に繰り返されるULとDLのうちの、UL前後のDLの受信信号の位相差を推定する位相差推定ステップと、推定された位相差により、UL前後のDLの受信信号の位相を補正する位相補正ステップと、位相が補正された受信信号によりチャネル推定を行うチャネル推定ステップとを含む処理を行わせるものとされている。
 本発明によれば、雑音をより抑制することができ、チャネル推定の精度をより向上させた受信装置および受信方法、並びにプログラムを提供することができる。
TD-LTEの送信機の構成を示すブロック図である。 TD-LTEの受信機の構成を示すブロック図である。 チャネル推定部26の構成例を示すブロック図である。 チャネル推定の動作を説明するフローチャートである。 サブフレームの構成を説明する図である。 チャネル推定に用いられるサブフレームの例を説明する図である。 チャネル推定に用いられるサブフレームの例を説明する図である。 チャネル推定に用いられるサブフレームの例を説明する図である。 コンピュータのハードウェアの構成例を示すブロック図である。 従来の受信機のチャネル推定部の構成を示すブロック図である。 従来の受信機のチャネル推定動作を説明するフローチャートである。
 以下、本発明の一実施の形態の通信システムについて、図1~図9を参照しながら説明する。以下、3GPP(3rd Generation Partnership Project)のTD-LTE(Time Division Long Term Evolution)を例に説明する。
 図1は、TD-LTEの送信機の構成を示すブロック図である。送信機10は、後述の受信機と共に通信システムをなし、チャネル符号化部11、変調部12、IFFT(Inverse Fast Fourier Transform)処理部13、CP(Cyclic Prefix)付加部14、D/A(Digital/Analog)変換部15、および送信アンテナ16を備えている。
 送信機10では、各ユーザ宛の送信データは、まず、チャネル符号化部11で誤り検出符号化・誤り訂正符号化が施され、変調部12でI成分、Q成分にマッピングされる。次に、IFFT処理部13で時間領域の信号波へ変換され、CP付加部14でマルチパスによるシンボル間干渉の影響を防ぐために、OFDMシンボルの先頭にCPが付加される。CPが付加されたOFDMシンボルは、D/A変換部15でデジタル信号からアナログ信号へ変換された後、送信アンテナ16から送信される。
 図2は、TD-LTEの受信機の構成を示すブロック図である。受信機20は、受信装置を構成する。受信機20は、受信アンテナ21、A/D(Analog/Digital)変換部22、FFT(Fast Fourier Transform)タイミング検出部23、CP除去部24、FFT処理部25、チャネル推定部26、復調部27、およびチャネル復号部28を備えている。
 受信機20では、受信アンテナ21で受信された受信信号は、A/D変換部22でアナログ信号からデジタル信号に変換された後、FFTタイミング検出部23とCP除去部24に入力される。CP除去部24では、FFTタイミング検出部23で検出されたFFTタイミング情報を基に、OFDMシンボルから先頭に付加されているCPが除去され、FFT処理部25で時間領域の信号波から各サブキャリア成分に変換される。
 チャネル推定部26は、データシンボルと共に多重されて送信される既知のリファレンスシグナルを用いて、各サブキャリアのチャネル推定値を求める。各サブキャリアの受信信号にチャネル推定値の複素共役を乗算することによって、チャネルで受けた信号の歪みが補償(チャネル等化)される。チャネルの影響が補償された、各サブキャリアの受信信号は復調部27でI成分、Q成分から尤度情報に変換され、チャネル復号部28で誤り訂正復号・誤り検出が行われ、受信データが得られる。
 図3は、チャネル推定部26の構成の例を示すブロック図である。チャネル推定部26は、パターンキャンセル部31、バッファ32、位相差推定部33、位相補正部34、時間平均処理部35、および補間処理部36を備えている。
 チャネル推定部26には、FFT処理部25の出力の中に含まれるリファレンスシグナルが入力される。パターンキャンセル部31は、リファレンスシグナルに掛けられている擬似ランダムパターンをキャンセルし、リファレンスシグナルのチャネル推定値を求める。パターンキャンセル部31は、リファレンスシグナルのチャネル推定値をバッファ32、位相差推定部33、および時間平均処理部35に供給する。
 バッファ32は、パターンキャンセル部31から供給されたリファレンスシグナルのチャネル推定値を、次回のチャネル推定処理で時間平均をするために保持する。バッファ32は、保持しているリファレンスシグナルのチャネル推定値を位相差推定部33および位相補正部34に供給する。
 位相差推定部33は、位相差推定手段を構成し、パターンキャンセル部31から入力される現在のサブフレームのチャネル推定値と、バッファ32で保持されているUL前のチャネル推定値からUL前後の位相差φを推定する。位相差推定部33は、UL前後の位相差φの推定の結果を位相補正部34に供給する。すなわち、位相差推定部33は、交互に繰り返されるULとDLのうちの、UL前後のDLの受信信号の位相差を推定する。
 位相補正部34は、位相補正手段を構成し、バッファ32で保持されているUL前のチャネル推定値にUL前後の位相差φを乗算することにより、UL前のチャネル推定値の位相を現在のサブフレームのチャネル推定値の位相に合わせる。すなわち、位相補正部34は、推定された位相差により、UL前後のDLの受信信号の位相を補正する。
 時間平均処理部35は、チャネル推定手段を構成し、パターンキャンセル部31から入力される現在のサブフレームのチャネル推定値と、位相補正部34で補正されたUL前のチャネル推定値とを時間平均し、雑音が抑制されたチャネル推定値を得る。すなわち、時間平均処理部35は、位相が補正された受信信号によりチャネル推定を行う。
 補間処理部36は、リファレンスシグナル間のチャネル推定値を算出し、各サブキャリアのチャネル推定値を出力する。
 次に、図4のフローチャートを参照してチャネル推定の動作を説明する。ステップS10において、パターンキャンセル部31は、リファレンスシグナルに掛けられている擬似ランダムパターンをキャンセルし、リファレンスシグナルのチャネル推定値を求める。ステップS11において、バッファ32は、パターンキャンセル部31から入力されたリファレンスシグナルのチャネル推定値を、次回のチャネル推定処理で時間平均をするために保持する。
 ステップS12において、チャネル推定部26は、現在のサブフレームがUL直後かどうかを判定する。ステップS12において、UL直後ではないと判定された場合、つまり、直前のDLサブフレームが存在する場合、手続はステップS13に進み、時間平均処理部35は、パターンキャンセル部31から入力される現在のサブフレームのチャネル推定値と、バッファ32で保持されている直前のDLサブフレームのチャネル推定値とを時間平均し、雑音が抑制されたチャネル推定値を得る。ステップS13の後、手続はステップS17に進む。
 一方、ステップS12において、UL直後であると判定された場合、つまり、直前のDLサブフレームが存在しない場合、手続はステップS14に進む。UL直後において、ULサブフレームではチャネル推定部26にリファレンスシグナルは入力されないため、バッファ32にはUL前のチャネル推定値が保持されている。また、UL直後のDLサブフレームにおいて位相同期回路が再起動されると、UL前後の受信信号の位相が不連続となるため、パターンキャンセル部31から入力される現在のサブフレームのチャネル推定値と、バッファ32で保持されているUL前のチャネル推定値もそれぞれ異なる位相を持つことになる。
 ステップS14において、位相差推定部33は、パターンキャンセル部31から入力される現在のサブフレームのチャネル推定値と、バッファ32で保持されているUL前のチャネル推定値から、UL前後の位相差を推定する。ステップS14は、位相差推定ステップに対応する。
 具体的には、位相差推定部33は、式(1)に示される演算により、UL前後の位相差φを推定する。
Figure JPOXMLDOC01-appb-M000001
                          ・・・式(1)
 式(1)において、変数Nは、リファレンスシグナルの数を示し、チャネル推定値h_curr(i)は、現在のサブフレームのi番目のチャネル推定値を示し、チャネル推定値h_prev(i)は、UL前のi番目のチャネル推定値を示す。
 このように、位相差推定部33は、UL前後のチャネル推定値を使用して、UL前後のDLの受信信号の位相差を推定する。
 位相差推定部33で推定されたUL前後の位相差φは位相補正部34に入力される。ステップS15において、位相補正部34は、バッファ32で保持されているUL前のチャネル推定値にUL前後の位相差φを乗算することにより、UL前のチャネル推定値の位相を現在のサブフレームのチャネル推定値の位相に合わせる。ステップS15は、位相補正ステップに対応する。このように、位相補正部34は、推定された位相差φにより、UL前のチャネル推定値の位相を補正する。
 ステップS16において、時間平均処理部35は、パターンキャンセル部31から入力される現在のサブフレームのチャネル推定値と、位相補正部34で補正されたUL前のチャネル推定値とを時間平均し、雑音が抑制されたチャネル推定値を得る。ステップS16は、チャネル推定ステップに対応する。このように、時間平均処理部35は、チャネル推定方式として時間平均を用いて、位相が補正された受信信号によりチャネル推定を行う。
 ステップS17において、補間処理部36は、リファレンスシグナル間のチャネル推定値を算出し、各サブキャリアのチャネル推定値を出力して、チャネル推定は終了する。
 次に、図5~図8を参照しながら、3GPPのTD-LTEを用いてチャネル推定を説明する。TD-LTEでは、あらかじめ決められたパターンでULとDLが交互に繰り返される。図5は、3GPPで定義されているUL/DLコンフィグレーション2の場合のサブフレーム構成を示す図である。UL/DLコンフィグレーション2の場合のサブフレームは、サブフレーム#0からサブフレーム#9で構成される。サブフレーム#0、サブフレーム#3、サブフレーム#4、サブフレーム#5、サブフレーム#8、およびサブフレーム#9は、DLサブフレームであり、サブフレーム#2およびサブフレーム#7は、ULサブフレームであり、サブフレーム#1およびサブフレーム#6は、DwPTSと称されるDL部分と、GAPと称される送信の無い部分と、UpPTSと称されるUL部分とから成るスペシャルサブフレームである。
 図5において、送信の無い部分とUL部分とには、斜線が付されている。
 ここで、サブフレーム#nに注目する。図6に示されるようにサブフレーム#n-1とサブフレーム#nとが共にDLサブフレームの場合、サブフレーム#nのチャネル推定において、直前のサブフレーム#n-1のチャネル推定値と時間平均ができるため、雑音を抑制することができ、チャネル推定の精度が向上する。
 一方、図7に示されるように、サブフレーム#n-1がULサブフレーム、サブフレーム#nがDLサブフレームの場合、サブフレーム#nのチャネル推定において、直前のサブフレーム#n-1のチャネル推定値と時間平均をすることはできないため、雑音を抑制することができない。その結果、チャネル推定値は他のサブフレームよりも劣化してしまう。
 図8に示されるように、更に1つ前のサブフレーム#n-2のチャネル推定値と時間平均を行えば雑音を抑制することができ、チャネル推定の精度が向上するが、間にULサブフレームが入るため、UL直後のDLサブフレームにおいて位相同期回路が再起動されると、サブフレーム#n-2とサブフレーム#nのチャネル推定値の位相が一致しないため、そのままでは時間平均はできない。例えば、サブフレーム#n-2とサブフレーム#nのチャネル推定値の位相が180度異なっていた場合、時間平均すると互いに打ち消しあってしまうことになる。
 そこで、受信機20では、UL直後の位相差を推定し、サブフレーム#n-2のチャネル推定値の位相を補正してから時間平均することにより、UL直後のサブフレーム#nのチャネル推定においても、UL前のサブフレーム#n-2のチャネル推定値と時間平均が可能となるため、雑音を抑制することができチャネル推定の精度が向上する。
 上述の実施の形態では、UL直前のチャネル推定値(過去)とUL直後のチャネル推定値(現在)の2つを使用した時間平均を例にあげたが、これに限るものではない。時間平均に使用するチャネル推定値は2つ以上でも良いし、過去方向のチャネル推定値だけでなく、未来方向のチャネル推定値を使用しても良い。
 また、上述の実施の形態では、チャネル推定の時間平均を例にあげたが、これに限るものではない。UL直後の位相差を推定し、補正することにより、UL直後のDLサブフレームにおいて過去方向のチャネル推定を使用した様々なチャネル推定方法や補間処理を用いることができる。
 さらに、上述の実施の形態では、位相補正の際に、UL前のチャネル推定値を補正する場合を例にあげたが、これに限るものではない。補正を行うチャネル推定値はUL後のチャネル推定値でも良い。
 さらにまた、上述の実施の形態では、位相推定の際に、UL直後のチャネル推定値をUL前のチャネル推定値で除算することにより、位相差を複素数として推定したが、位相差の推定方法はこれに限るものではない。上述の実施の形態とは逆にUL前のチャネル推定値をUL直後のチャネル推定値で除算しても良いし、複素数ではなく角度として求めてもよい。
 また、以上において、3GPPで議論されているTD-LTEを例に説明したが、必ずしもこれに限るものではない。TDDを用いた他の無線通信システムにも同様に適用することができる。すなわち、無線通信システムは、無線通信方式としてOFDM(orthogonal frequency-division multiplexing)を用いることができる。また、無線通信システムは、無線通信方式としてTD-LTE(Time Division Long Term Evolution)を用いることができる。
 このように、UL直後のDLサブフレームのチャネル推定において、UL前後の受信信号の位相差を推定し、UL前のチャネル推定値の位相を補正した後にUL後のチャネル推定値と時間平均を行うことによって受信特性を改善することができる。
 すなわち、交互に繰り返されるULとDLのうちの、UL前後のDLの受信信号の位相差を推定し、推定された位相差により、UL前後のDLの受信信号の位相を補正し、位相が補正された受信信号によりチャネル推定を行うようにしたので、UL直後のDLサブフレームのチャネル推定の精度が劣化することがないので、雑音をより抑制することができ、チャネル推定の精度をより向上させることができる。
 なお、本発明は、携帯電話機、データ通信カード、PHS(Personal Handyphone System)、PDA(Personal Data Assistance,Personal Digital Assistants)、スマートフォン、または無線基地局等の通信装置の受信機に適用することができる。
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。
 図9は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)51,ROM(Read Only Memory)52,RAM(Random Access Memory)53は、バス54により相互に接続されている。
 バス54には、さらに、入出力インタフェース55が接続されている。入出力インタフェース55には、キーボード、マウス、マイクロホンなどを含む、あるいはそれらが無線接続される入力部56、ディスプレイ、スピーカなどよりなる出力部57、ハードディスクや不揮発性のメモリなどよりなる記憶部58、および、無線によるネットワークインタフェースなどよりなる通信部59が接続される。また、この例では、入出力インタフェース55に、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア61を駆動するドライブ60が接続されている。
 以上のように構成されるコンピュータでは、CPU51が、例えば、記憶部58に記憶されているプログラムを、入出力インタフェース55及びバス54を介して、RAM53にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU51)が実行するプログラムは、例えば、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory),DVD等)、光磁気ディスク、もしくは半導体メモリなどよりなるパッケージメディアであるリムーバブルメディア61に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供される。
 そして、プログラムは、リムーバブルメディア61をドライブ60に装着することにより、入出力インタフェース55を介して、記憶部58に記憶することで、コンピュータにインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部59で受信し、記憶部58に記憶することで、コンピュータにインストールすることができる。その他、プログラムは、ROM52や記憶部58にあらかじめ記憶しておくことで、コンピュータにあらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 20…受信機、21…受信アンテナ、22…A/D変換部、23…FFTタイミング検出部、24…CP除去部、25…FFT処理部、26…チャネル推定部、27…復調部、28…チャネル復号部、31…パターンキャンセル部、32…バッファ、33…位相差推定部(位相差推定手段)、34…位相補正部(位相補正手段)、35…時間平均処理部(チャネル推定手段)、36…補間処理部

 

Claims (8)

  1.  TDD(Time Division Duplex)を利用した無線通信システムをなす受信装置において、
     交互に繰り返されるアップリンクとダウンリンクのうちの、アップリンク前後のダウンリンクの受信信号の位相差を推定する位相差推定手段と、
     推定された位相差により、アップリンク前後のダウンリンクの受信信号の位相を補正する位相補正手段と、
     位相が補正された受信信号によりチャネル推定を行うチャネル推定手段と
     を有することを特徴とする受信装置。
  2.  請求項1に記載の受信装置において、
     前記位相差推定手段は、アップリンク前後のチャネル推定値を使用して、アップリンク前後のダウンリンクの受信信号の位相差を推定する
     ことを特徴とする受信装置。
  3.  請求項1または請求項2に記載の受信装置において、
     前記位相補正手段は、推定された位相差により、アップリンク前のチャネル推定値の位相を補正する
     ことを特徴とする受信装置。
  4.  請求項1から請求項3のいずれか1項に記載の受信装置において、
     前記チャネル推定手段は、チャネル推定方式として時間平均を用いて、位相が補正された受信信号によりチャネル推定を行う
     ことを特徴とする受信装置。
  5.  請求項1から請求項4のいずれか1項に記載の受信装置において、
     前記無線通信システムは、無線通信方式としてOFDM(orthogonal frequency-division multiplexing)を用いる
     ことを特徴とする受信装置。
  6.  請求項1から請求項4のいずれか1項に記載の受信装置において、
     前記無線通信システムは、無線通信方式としてTD-LTE(Time Division Long Term Evolution)を用いる
     ことを特徴とする受信装置。
  7.  TDDを利用した無線通信システムをなす受信装置の受信方法において、
     交互に繰り返されるアップリンクとダウンリンクのうちの、アップリンク前後のダウンリンクの受信信号の位相差を推定する位相差推定ステップと、
     推定された位相差により、アップリンク前後のダウンリンクの受信信号の位相を補正する位相補正ステップと、
     位相が補正された受信信号によりチャネル推定を行うチャネル推定ステップと
     を含むことを特徴とする受信方法。
  8.  TDDを利用した無線通信システムをなす受信装置のコンピュータに、
     交互に繰り返されるアップリンクとダウンリンクのうちの、アップリンク前後のダウンリンクの受信信号の位相差を推定する位相差推定ステップと、
     推定された位相差により、アップリンク前後のダウンリンクの受信信号の位相を補正する位相補正ステップと、
     位相が補正された受信信号によりチャネル推定を行うチャネル推定ステップと
     を含む処理を行わせるプログラム。
PCT/JP2013/062705 2012-06-21 2013-05-01 受信装置および受信方法、並びにコンピュータプログラム WO2013190922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521018A JPWO2013190922A1 (ja) 2012-06-21 2013-05-01 受信装置および受信方法、並びにコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012139744 2012-06-21
JP2012-139744 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013190922A1 true WO2013190922A1 (ja) 2013-12-27

Family

ID=49768528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062705 WO2013190922A1 (ja) 2012-06-21 2013-05-01 受信装置および受信方法、並びにコンピュータプログラム

Country Status (2)

Country Link
JP (1) JPWO2013190922A1 (ja)
WO (1) WO2013190922A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038719B2 (en) * 2019-04-30 2021-06-15 Qualcomm Incorporated Channel estimation for systems with PLL phase discontinuities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081952A (ja) * 2005-09-15 2007-03-29 Fujitsu Ltd 移動通信システム、並びに移動通信システムにおいて使用される基地局装置および移動局装置
JP2009177295A (ja) * 2008-01-22 2009-08-06 Sumitomo Electric Ind Ltd 無線通信システム及び信号補正方法、並びにこれに用いる送信装置、受信装置
JP2010050885A (ja) * 2008-08-25 2010-03-04 Hitachi Communication Technologies Ltd 無線端末、基地局及びチャンネル特性推定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081952A (ja) * 2005-09-15 2007-03-29 Fujitsu Ltd 移動通信システム、並びに移動通信システムにおいて使用される基地局装置および移動局装置
JP2009177295A (ja) * 2008-01-22 2009-08-06 Sumitomo Electric Ind Ltd 無線通信システム及び信号補正方法、並びにこれに用いる送信装置、受信装置
JP2010050885A (ja) * 2008-08-25 2010-03-04 Hitachi Communication Technologies Ltd 無線端末、基地局及びチャンネル特性推定方法

Also Published As

Publication number Publication date
JPWO2013190922A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
US8085859B2 (en) Platform noise mitigation
US20120328055A1 (en) Channel estimation circuit, channel estimation method, and receiver
US9124457B2 (en) Frequency domain equalization for wireless communication
JP2011507323A (ja) Ofdm受信機におけるfftウインドウの位置決め方法および装置
JP2008294631A (ja) 受信品質測定装置および受信品質測定方法
JP2010532139A (ja) 通信受信機のためのバースト的干渉抑圧
CN110830395A (zh) 通信系统中用于数据检测的方法、装置和计算机存储介质
JP4190406B2 (ja) 周波数オフセット推定方法およびそれを利用した周波数オフセット補正装置
US20080273646A1 (en) Sampling clock offset tracking and symbol re-timing
EP2884682B1 (en) Receiver, method for estimating frequency response of transmission path by receiver
WO2012153659A1 (ja) 受信装置および受信方法、並びにコンピュータプログラム
JP2010062865A (ja) 復調装置
CN111294917B (zh) 基于pdcch估计定时偏差的方法、装置、存储介质及用户设备
CN109274619A (zh) 一种频率偏移确定方法及装置
WO2013190922A1 (ja) 受信装置および受信方法、並びにコンピュータプログラム
JP5263958B2 (ja) 信号処理装置
WO2013129146A1 (ja) チャネル推定方法および受信機
JP2007104574A (ja) マルチキャリア無線受信機及び受信方法
JP4486008B2 (ja) 受信装置
JP5182699B2 (ja) 受信装置、無線信号の受信方法および無線通信システムならびにプログラム
JPWO2021100092A1 (ja) 伝送路等化処理装置、および、伝送路等化処理方法
CN115225436B (zh) 干扰抑制方法、装置、设备及存储介质
JP6324260B2 (ja) 受信装置
JP2011101167A (ja) 無線通信装置
JP5317194B2 (ja) 受信装置、受信方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807174

Country of ref document: EP

Kind code of ref document: A1