WO2013190620A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2013190620A1
WO2013190620A1 PCT/JP2012/065534 JP2012065534W WO2013190620A1 WO 2013190620 A1 WO2013190620 A1 WO 2013190620A1 JP 2012065534 W JP2012065534 W JP 2012065534W WO 2013190620 A1 WO2013190620 A1 WO 2013190620A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
light emitting
reflective metal
organic
Prior art date
Application number
PCT/JP2012/065534
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
秀雄 工藤
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/065534 priority Critical patent/WO2013190620A1/en
Publication of WO2013190620A1 publication Critical patent/WO2013190620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention relates to an organic electroluminescence element.
  • organic electroluminescence element in which an organic layer including a light emitting layer is sandwiched between an anode electrode layer and a cathode electrode layer on a transparent glass substrate is known.
  • this organic EL element when a voltage is applied between the anode and the cathode, the light emitting layer emits light. The emitted light is extracted through the anode and the glass substrate by making the anode transparent.
  • the light emitted from the light emitting layer is confined and extinguished by total reflection between the anode-glass interface and between the glass-air interface, only about 20% of the light generated in the light emitting layer is emitted. It cannot be taken out.
  • Patent Document 1 suggests that the high refractive index layer in the organic EL element makes it difficult for light emitted from the light emitting layer to be coupled to the plasmon mode. However, when total reflection occurs in the mirror layer, plasmon loss occurs at a predetermined angle. Moreover, in the organic EL element of Patent Document 1, since, for example, a colored inorganic oxide is used for the high refractive index layer, attenuation scattering occurs in the colored high refractive index layer. Further, Patent Document 1 recommends the use of a dielectric multilayer film in addition to metal as a mirror layer. However, in this case, the light extraction efficiency cannot be sufficiently increased because the reflectance varies depending on the incident angle of light on the dielectric multilayer film. Furthermore, high reflectivity can be expected even with a dielectric multilayer film, but when the angle dependency is high and light emission in all directions is required like illumination, the dielectric multilayer film is not suitable as a mirror layer.
  • the organic electroluminescence device of the present invention is an organic electroluminescence device comprising an organic layer sandwiched between a translucent electrode layer and a reflective metal electrode layer and comprising a light emitting layer,
  • the reflective metal electrode layer includes a translucent conductive film in contact with the organic layer, a translucent dielectric film in contact with the conductive film and having a refractive index equal to or greater than a refractive index of the organic layer, A reflective metal film in contact with the translucent dielectric film, wherein at least a part of the reflective metal film is electrically connected to the conductive film.
  • FIG. 1 is a schematic cross-sectional view schematically showing a configuration of an organic EL element which is an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view schematically showing a laminated structure of the organic EL element shown in FIG.
  • FIG. 3 is a partial cross-sectional view of an organic EL device according to another embodiment of the present invention.
  • FIG. 4 is a partially cutaway perspective view schematically showing a configuration of an organic EL element which is another embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of an organic EL device according to another embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view of an organic EL device according to another embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view schematically showing a configuration of an organic EL element which is an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view schematically showing a laminated structure of the organic EL element shown in FIG.
  • an organic EL element includes a translucent electrode layer 2, an organic layer 3, a conductive film CF, a reflective metal film 4, and a translucent substrate on a translucent substrate 1.
  • the conductive dielectric films TF are sequentially stacked.
  • the translucent conductive film CF, the translucent dielectric film TF, and the reflective metal film 4 in contact with the organic layer 3 constitute a reflective metal electrode layer as a composite electrode.
  • the conductive film CF functions as a cathode
  • the reflective metal film 4 functions as a reflection part
  • the translucent dielectric film TF functions as a relay part.
  • the reflective metal film 4 sandwiches the translucent dielectric film TF together with the conductive film CF, and is further electrically connected to the conductive film CF at the connection portion around the light emitting region. .
  • an electric field can be applied to the organic layer 3 from a distance close to the conductive film CF, and at the same time, the plasmon loss is reduced because the conductive film CF is a thin film. Since the conductive film CF is connected to the reflective metal film 4 which is away from the organic layer 3 and is thick and has a small electric resistance, a voltage drop in the conductive film can be suppressed.
  • the reflective metal film 4 is not limited, for example, a metal such as aluminum, silver, copper, nickel, chromium, gold, or platinum is used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the translucent material constituting the translucent dielectric film TF sandwiched between the conductive film CF and the reflective metal film 4 has a refractive index of the organic layer 3, particularly the organic layer in contact with the conductive film CF.
  • the translucent dielectric film TF is made of a hole transporting compound.
  • the translucent dielectric film TF made of a hole transporting compound functions as a layer that blocks electron transfer because the hole transporting compound is a material that does not flow electrons.
  • the translucent dielectric film TF can prevent electrons from flowing into the reflective metal film 4 to become a cathode, and can increase luminous efficiency.
  • “equivalent refractive index” means that the difference between one refractive index and the other refractive index is less than 0.3, preferably 0.2 or less, particularly preferably 0.1 or less. That means. Further, the refractive index “low” or “high” may be “low” or “high” to such an extent that a difference in measurement occurs, but in practice, it exceeds 0.1, preferably exceeds 0.2. More preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, indicating a low or high difference.
  • the organic layer 3 sandwiched between the translucent electrode layer 2 and the reflective metal electrode layer is composed of a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron stacked in order.
  • a transport layer 3d and an electron injection layer 3e are a light-emitting laminated body, and is not limited to these laminated structures, and may have a laminated structure including at least a light-emitting layer or a charge transport layer that can also be used.
  • the organic layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
  • Known methods for forming the organic layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. ing.
  • dry coating methods such as sputtering and vacuum deposition
  • wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater.
  • the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed as a solid film by a wet coating method
  • the electron transport layer and the electron injection layer are uniformly formed sequentially as a solid film by a dry coating method.
  • a film may be formed.
  • all the functional layers may be uniformly and sequentially formed as a solid film by a wet coating method.
  • the translucent electrode layer 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the material of the cathode conductive film CF that supplies electrons to the functional layers up to the light emitting layer 3c preferably contains a metal having a low work function in order to perform electron injection efficiently.
  • a metal having a low work function for example, tin, magnesium, indium
  • a suitable metal such as calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • only 1 type may be used for the material of conductive film CF, and 2 or more types may be used together by arbitrary combinations and ratios.
  • the conductive film CF is a metal thin film made of an electric conductor having an electric conductivity of 10 6 S / m or more and having a transmittance of 50% or more in the visible light wavelength band.
  • the material of the conductive film CF includes, in addition to metals, carbon such as graphite and graphene having electrical conductivity.
  • the silver thin film with a thickness of 20 nm of the conductive film CF has a transmittance of 50%.
  • An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%.
  • the 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%.
  • the organic layer 3 Since the organic layer 3 is sandwiched between and in contact with the translucent electrode layer 2 and the conductive film CF, a driving voltage is applied to the organic layer 3 through the translucent electrode layer 2 and the conductive film CF. Thus, the light generated in the light emitting layer 3c in the organic layer 3 passes through the translucent electrode layer 2 and is further reflected by the reflective metal film 4 through the conductive film CF. It passes through and is taken out from the surface of the translucent substrate 1.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (so-called PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, and phenetole.
  • Aromatic ethers such as 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole.
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Can be mentioned.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the hole transporting compound may be a polymer compound such as a polymer or a low molecular compound such as a monomer, but is preferably a low molecular compound.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more.
  • the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds.
  • an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • a material for forming the hole injection layer is mixed with an appropriate solvent to prepare a film-forming composition, and this hole injection layer forming composition
  • the hole injection layer is formed by applying the material onto the anode by an appropriate technique, forming a film, and drying.
  • the film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the material of the hole transport layer 3b may be any material that has been conventionally used as a constituent material of the hole transport layer.
  • it is exemplified as the hole transport compound used in the above-described hole injection layer. Things.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then dried after wet film formation.
  • the hole transporting layer forming composition contains a solvent.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the film thickness of the hole injection layer 3a and / or the hole transport layer 3b from the anode 2 to the light emitting layer 3c is preferably at least 100 nm.
  • the light emitting layer 3c may be a red, green and blue light emitting independent light emitting layer or a mixed light emitting layer thereof, a compound having a property of transporting holes (hole transporting compound), or A compound having an electron transporting property (electron transporting compound) can also be contained.
  • An organic EL material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be appropriately used as a host material. There is no particular limitation on the organic EL material, and a substance that emits light at a desired emission wavelength and has good emission efficiency may be used.
  • the organic EL material may be a fluorescent material or a phosphorescent material, but it is preferable to use a phosphorescent material from the viewpoint of internal quantum efficiency.
  • the light emitting layer may have a single layer structure or a multilayer structure made of a plurality of materials as desired.
  • a fluorescent material may be used for the blue light emitting layer
  • a phosphorescent material may be used for the green and red light emitting layers.
  • a diffusion preventing layer can be provided between the light emitting layers.
  • fluorescent materials blue fluorescent dyes
  • examples of fluorescent materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent material green fluorescent dye
  • examples of the fluorescent material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light emission include rubrene and perimidone derivatives.
  • red fluorescent dyes examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzoates. Examples thereof include thioxanthene derivatives and azabenzothioxanthene.
  • the phosphorescent material is selected from, for example, the long-period periodic table (hereinafter referred to as the long-period periodic table when referring to “periodic table” unless otherwise specified).
  • An organometallic complex containing a metal can be given.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenyl).
  • Pyridine) platinum tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
  • the proportion of the organic EL material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the organic EL material is too small, uneven light emission may occur, and if the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of organic EL material, it is made for the total content of these to be contained in the said range.
  • the component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material.
  • Aromastituted aromatic diamines aromatic amine compounds having a starburst structure such as 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine, and aromatics composed of tetramers of triphenylamine And spiro compounds such as 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene.
  • the proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (so-called BND), 2 , 5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (so-called PyPySPyPy), bathophenanthroline (so-called BPhen), 2,9 -Dimethyl-4,7-diphenyl-1,10-phenanthroline (so-called BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (So-called tBu-PBD), 4,4′-bis (9H-carbazol-9-yl) biphenyl (so-called BND),
  • the proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
  • Metal complex benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene, quinoxaline compound, phenanthroline derivative, 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Quality silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
  • the formation method of the electron transport layer is not limited, and can be formed by a wet coating method or a dry coating method.
  • the electron transport layer is prepared by dissolving the electron transport layer material in an appropriate solvent to prepare a composition for forming an electron transport layer. It is formed by removing.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron donating material examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, compounds thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF), sodium, Alkali metals such as potassium, cesium, lithium and rubidium are used.
  • the thickness of the electron injection layer 3e is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • the formation method of the electron injection layer is not limited, and can be formed by a wet coating method or a dry coating method.
  • the electron injection layer is prepared by dissolving the electron injection layer material in a suitable solvent to prepare a composition for forming an electron injection layer. It is formed by removing.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • the distance between the light emitting point and the reflective metal film 4 is optically set to 3 times (odd times) of ⁇ / 4. That is, in the light emitting layer 3c, the optical distance from the conductive film CF is 1/4 of the emission peak wavelength of the light emitting layer 3c, and the optical distance from the reflective metal film 4 is the light emission of the light emitting layer 3c. It has a light emitting surface which is an odd multiple of 3 times or more of 1/4 of the peak wavelength.
  • the conductive film CF functioning as a cathode for applying a strong electric field is disposed at a position closer to the light emitting layer 3 c than the reflective metal film 4.
  • the distance between the light emitting point of the light emitting layer 3c and the conductive film CF is optically set to ⁇ / 4. This is a value that takes into account thin-film interference, and utilizes the property that when reflected by the reflective metal film 4, a phase difference of ⁇ occurs in the round trip in the optical path length, and the ⁇ phase changes in metal reflection.
  • the phase can be the same as the phase of the light traveling from the point toward the extraction layer.
  • the end of energy is located in the middle of the translucent dielectric film TF with the conductive film CF interposed therebetween, and the reflective metal film 4 Not reached. That is, it is preferable that the reflective metal film 4 is disposed at a position separated from the light emitting surface by a half wavelength or more of the light emission peak wavelength of the light emitting layer 3c.
  • the refractive index of the conductive film CF on the light emitting layer side and the outer translucent dielectric film T side is equal to or greater than that, the total reflection condition is not satisfied at all angles within the circle indicated by the broken line, and evanescent light is not generated. Neither plasmon resonance occurs.
  • the evanescent light oozes from the high refractive index side to the low refractive index side at the time of total reflection, and the evanescent light oozed from the low refractive index layer with a thin film (thickness below wavelength) has a high refractive index on the outside. It has the property of returning to the original light. Further, the surface plasmon generated by the evanescent light and the light incident from a predetermined angle resonates (plasmon resonance), resulting in a plasmon loss, and the level of the reflected light rapidly decreases. However, no evanescent light is generated in this embodiment.
  • light L3 within an obliquely upward critical angle passes through the hole transport layer 3b, the hole injection layer 3a, and the translucent electrode layer 2 as it is.
  • Light L4 having a critical angle or more at the interface between the translucent electrode layer 2 and the glass substrate proceeds while repeatedly attenuated total reflection.
  • the downward light L6 does not generate evanescent light, and is reflected by the reflective metal film 4 so that the optical path length is ⁇ / 4. Further, because of the metal reflection at the reflective metal film 4, the phase is further shifted by ⁇ , and eventually the light has the same phase as the emitted light. Therefore, because the phase is the same as that of the upward light, they are output in an intensified manner.
  • the thickness of the reflective metal film 4 is increased to about 200 nm in this embodiment, the evanescent light does not ooze out to the outside and is a metal reflection.
  • the conductive film CF is disposed at a position close to the light emitting layer 3c, that is, ⁇ / 4, the relatively thick reflective metal film 4 is disposed at 3 ⁇ ⁇ / 4, and the conductive film CF and the reflective metal film 4 are disposed.
  • a translucent dielectric film TF having a refractive index equal to or higher than that of the organic layer is provided between the conductive film CF and the reflective metal film 4, thereby reducing loss during light emission and plasmon loss. The effect which suppresses can be acquired.
  • the refractive index of the conductive film CF is ignored in the description as a model, it is necessary to consider the refractive index of the conductive film to be used when actually creating the film.
  • the organic EL element of the modification shown in FIG. 4 has a plurality of protrusions that penetrate the translucent dielectric film TF and contact the conductive film CF, each of which is electrically connected from the reflective metal film 4 to the conductive film CF.
  • Conductor connection portion 4a is a plate made of the same material as the reflective metal film 4, and they are formed on the reflective metal film 4 in a frame shape.
  • Each of the divided translucent dielectric films TF shown in FIG. 4 has a rectangular parallelepiped shape.
  • the translucent dielectric film TF divided by the conductor connection portion 4a is provided in a matrix so that each is surrounded by the reflective metal film 4, the conductor connection portion 4a, and the conductive film CF.
  • the plurality of translucent dielectric films TF divided by the conductor connection portion 4a have substantially the same rectangular parallelepiped shape, but are substantially uniform on a flat interface (XY plane) with the conductive film CF. It may be arranged with a high distribution density and may be arranged periodically, and the period is preferably sufficiently larger than the wavelength of light generated in the organic layer 3.
  • the organic EL element of the modification shown in FIG.5 and FIG.6 is provided with the reflective inclination part 4b which gave the inclination angle from now on the reflective metal film 4 of the cell enclosed by the conductor connection part 4a.
  • a concave mirror can be comprised for every cell enclosed by the conductor connection part 4a.
  • a quadrangular pyramid concave mirror can be provided under the translucent dielectric film TF for each cell surrounded by the conductor connecting portion 4a.
  • the cells of the conductive dielectric film TF may be arranged in all lattices having the same pitch and the same size and intersecting each other at an angle of 60 degrees.
  • the shape, size, and height of each of the divided translucent dielectric films TF may be configured randomly. In the case of random arrangement of the cells (translucent dielectric film TF) surrounded by the conductor connection portion 4a, random reflection is obtained, and the light scattering effect is increased.
  • FIG. 10 is a perspective view showing a modification of each shape of the translucent dielectric film TF surrounded by the conductor connecting portion 4a and the reflective inclined portion 4b.
  • the translucent dielectric film TF may be composed of a polyhedron in addition to a rectangular parallelepiped shape, such as a quadrangular pyramid shape as shown in FIG. 10A, a hexagonal pyramid shape as shown in FIG. It may be oval or conical as shown in (c).
  • a quadrangular pyramid shape as shown in FIG. 10A
  • a hexagonal pyramid shape as shown in FIG. It may be oval or conical as shown in (c).
  • each shape of the translucent dielectric film TF is a cone is illustrated, but the translucent dielectric film TF has a truncated cone shape or a truncated pyramid shape. Also good.
  • Each vertex of the translucent dielectric film TF may be round and warped.
  • the inner surfaces of the plurality of cells surrounded by the conductor connecting portion 4a and the reflective inclined portion 4b exhibit the effect of a concave mirror. Furthermore, by adopting a configuration in which the translucent dielectric film TF is embedded at the interface of the conductive film CF (cathode), the applied voltage as the cathode can be applied in a balanced manner. Moreover, since it functions as a reflection part of the conductor connection part 4a, light can be extracted outside with a relatively short optical path length and a relatively small number of reflections, and the light extraction efficiency can be dramatically improved.
  • a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1.
  • a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by lamination of inorganic material films.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescence element including an organic layer including a light-emitting layer sandwiched between a light-transmitting electrode layer and a reflective metal electrode layer. The reflective metal electrode layer has, laminated in order from the organic layer side, a conductive film, a light-transmitting dielectric film, and a reflective metal film. The light-transmitting dielectric film has at least the same refractive index as the organic layer. At least part of the reflective metal film is electrically connected to the conductive film.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element.
 透明なガラス基板上の陽極と陰極の電極層の間に発光層を含む有機層が挟持された有機エレクトロルミネッセンス素子(以下、有機EL素子と称する)が知られている。この有機EL素子においては、陽極と陰極の間に電圧を印加すると発光層が発光する。発光光は陽極を透明とすることにより陽極とガラス基板を介して取り出される。ところが、発光層から発せられた光は陽極-ガラス界面間及びガラス-空気界面間での全反射により閉じ込められて消衰する故に、発光層で生成された光のうち約20%程度の光しか外部に取り出すことができない。そこで、この問題に対して、例えば、透明基板上の2つの透明電極の間に有機発光層を設けた有機EL素子において、光取り出し側の反対側透明電極上に高屈折率層及びミラー層を積層することにより、導波損失を減らす構造が提案されている(例えば特許文献1参照)。 2. Description of the Related Art An organic electroluminescence element (hereinafter referred to as an organic EL element) in which an organic layer including a light emitting layer is sandwiched between an anode electrode layer and a cathode electrode layer on a transparent glass substrate is known. In this organic EL element, when a voltage is applied between the anode and the cathode, the light emitting layer emits light. The emitted light is extracted through the anode and the glass substrate by making the anode transparent. However, since the light emitted from the light emitting layer is confined and extinguished by total reflection between the anode-glass interface and between the glass-air interface, only about 20% of the light generated in the light emitting layer is emitted. It cannot be taken out. Therefore, for this problem, for example, in an organic EL element in which an organic light emitting layer is provided between two transparent electrodes on a transparent substrate, a high refractive index layer and a mirror layer are provided on the opposite transparent electrode on the light extraction side. A structure for reducing waveguide loss by stacking has been proposed (see, for example, Patent Document 1).
特開2011-233288号公報JP 2011-233288 A
 特許文献1は、有機EL素子内の高屈折率層により、発光層からの発光がプラズモンモードに結合しにくくなると示唆している。しかしながら、ミラー層で全反射が生じる場合には所定の角度でプラズモン損失は発生する。また、特許文献1の有機EL素子では、高屈折率層に例えば有色の無機酸化物を使用している故に、かかる有色の高屈折率層では減衰散乱が生じる。さらに、特許文献1はミラー層として金属の他に誘電体多層膜の使用を推奨している。しかしながら、この場合、誘電体多層膜への光の入射角度により反射率が異なる故に、光取り出し効率を十分上げられない。さらに、誘電体多層膜でも高反射率が期待できるが、角度依存性が高く、照明のように全方面への発光が求められている場合、誘電体多層膜はミラー層として適当ではない。 Patent Document 1 suggests that the high refractive index layer in the organic EL element makes it difficult for light emitted from the light emitting layer to be coupled to the plasmon mode. However, when total reflection occurs in the mirror layer, plasmon loss occurs at a predetermined angle. Moreover, in the organic EL element of Patent Document 1, since, for example, a colored inorganic oxide is used for the high refractive index layer, attenuation scattering occurs in the colored high refractive index layer. Further, Patent Document 1 recommends the use of a dielectric multilayer film in addition to metal as a mirror layer. However, in this case, the light extraction efficiency cannot be sufficiently increased because the reflectance varies depending on the incident angle of light on the dielectric multilayer film. Furthermore, high reflectivity can be expected even with a dielectric multilayer film, but when the angle dependency is high and light emission in all directions is required like illumination, the dielectric multilayer film is not suitable as a mirror layer.
 本発明は、上記した点に鑑みてなされたものであり、光取り出し効率を向上させることができる有機エレクトロルミネッセンス素子を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide an organic electroluminescence element capable of improving light extraction efficiency.
 本発明の有機エレクトロルミネッセンス素子は、透光性電極層及び反射金属電極層の間に挟持され発光層を含む有機層を含む有機エレクトロルミネッセンス素子であって、
 前記反射金属電極層は、前記有機層に接する透光性の導電性膜と、前記導電性膜に接しかつ前記有機層の屈折率と同等以上の屈折率を有する透光性誘電体膜と、前記透光性誘電体膜に接する反射金属膜と、を有し、前記反射金属膜の少なくとも一部が前記導電性膜へ電気的に接続されていることを特徴とする。
The organic electroluminescence device of the present invention is an organic electroluminescence device comprising an organic layer sandwiched between a translucent electrode layer and a reflective metal electrode layer and comprising a light emitting layer,
The reflective metal electrode layer includes a translucent conductive film in contact with the organic layer, a translucent dielectric film in contact with the conductive film and having a refractive index equal to or greater than a refractive index of the organic layer, A reflective metal film in contact with the translucent dielectric film, wherein at least a part of the reflective metal film is electrically connected to the conductive film.
図1は本発明の実施例である有機EL素子の構成を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing a configuration of an organic EL element which is an embodiment of the present invention. 図2は図1に示す有機EL素子の積層構成を模式的に示す概略断面図である。FIG. 2 is a schematic cross-sectional view schematically showing a laminated structure of the organic EL element shown in FIG. 図3は、本発明の他の実施例である有機EL素子の一部の断面図である。FIG. 3 is a partial cross-sectional view of an organic EL device according to another embodiment of the present invention. 図4は、本発明の他の実施例である有機EL素子の構成を模式的に示す一部切り欠き斜視図である。FIG. 4 is a partially cutaway perspective view schematically showing a configuration of an organic EL element which is another embodiment of the present invention. 図5は、本発明の他の実施例である有機EL素子の一部の断面図である。FIG. 5 is a partial cross-sectional view of an organic EL device according to another embodiment of the present invention. 図6は、本発明の他の実施例である有機EL素子の一部の断面図である。FIG. 6 is a partial cross-sectional view of an organic EL device according to another embodiment of the present invention. 図7は、本発明の他の実施例の有機EL素子の反射金属電極層を示す一部切り欠き斜視図である。FIG. 7 is a partially cutaway perspective view showing a reflective metal electrode layer of an organic EL device according to another embodiment of the present invention. 図8は、本発明の他の実施例の有機EL素子の反射金属電極層を示す一部切り欠き斜視図である。FIG. 8 is a partially cutaway perspective view showing a reflective metal electrode layer of an organic EL device according to another embodiment of the present invention. 図9は、本発明の他の実施例の有機EL素子の反射金属電極層を示す一部切り欠き斜視図である。FIG. 9 is a partially cutaway perspective view showing a reflective metal electrode layer of an organic EL device according to another embodiment of the present invention. 図10は、本発明の他の実施例の有機EL素子の分割された透光性誘電体膜の一部を示す斜視図である。FIG. 10 is a perspective view showing a part of a divided translucent dielectric film of an organic EL element according to another embodiment of the present invention.
 以下、本発明の実施例について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に示すように、本発明の実施例である有機EL素子は、透光性基板1上に、透光性電極層2、有機層3、導電性膜CF、反射金属膜4及び透光性誘電体膜TFが順に積層され、構成されている。有機層3に接する透光性の導電性膜CFと透光性誘電体膜TFと反射金属膜4が複合電極として反射金属電極層を構成している。導電性膜CFが陰極として機能し、反射金属膜4が反射部として機能し、透光性誘電体膜TFが中継部として機能する。 As shown in FIG. 1, an organic EL element according to an embodiment of the present invention includes a translucent electrode layer 2, an organic layer 3, a conductive film CF, a reflective metal film 4, and a translucent substrate on a translucent substrate 1. The conductive dielectric films TF are sequentially stacked. The translucent conductive film CF, the translucent dielectric film TF, and the reflective metal film 4 in contact with the organic layer 3 constitute a reflective metal electrode layer as a composite electrode. The conductive film CF functions as a cathode, the reflective metal film 4 functions as a reflection part, and the translucent dielectric film TF functions as a relay part.
 図1に示すように、反射金属膜4は、導電性膜CFとともに透光性誘電体膜TFを挟み、さらに発光領域の周囲の接続部にて導電性膜CFへ電気的に接続されている。これにより、導電性膜CFの近い距離から有機層3へ電界を加えることができ同時に、導電性膜CFが薄膜なのでプラズモン損失が少なくなる。有機層3から離れかつ厚く電気抵抗の小さい反射金属膜4に導電性膜CFが接続されているので、導電性膜内の電圧降下を抑えることができる。 As shown in FIG. 1, the reflective metal film 4 sandwiches the translucent dielectric film TF together with the conductive film CF, and is further electrically connected to the conductive film CF at the connection portion around the light emitting region. . As a result, an electric field can be applied to the organic layer 3 from a distance close to the conductive film CF, and at the same time, the plasmon loss is reduced because the conductive film CF is a thin film. Since the conductive film CF is connected to the reflective metal film 4 which is away from the organic layer 3 and is thick and has a small electric resistance, a voltage drop in the conductive film can be suppressed.
 反射金属膜4には、限定されないが、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Although the reflective metal film 4 is not limited, for example, a metal such as aluminum, silver, copper, nickel, chromium, gold, or platinum is used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 導電性膜CF及び反射金属膜4の間に挟持される透光性誘電体膜TFを構成する透光性材料は、その屈折率が有機層3特に導電性膜CFに接する有機層の屈折率と同等以上の有機材料から選択される。例えば、透光性誘電体膜TFは正孔輸送性化合物から構成される。正孔輸送性化合物からなる透光性誘電体膜TFは、正孔輸送性化合物が電子を流さない材料なので、電子移動を阻止する層として機能する。透光性誘電体膜TFにより、反射金属膜4に電子が流れ、陰極になることを防止し、発光効率を上昇させることができる。 The translucent material constituting the translucent dielectric film TF sandwiched between the conductive film CF and the reflective metal film 4 has a refractive index of the organic layer 3, particularly the organic layer in contact with the conductive film CF. Is selected from organic materials equivalent to or better than For example, the translucent dielectric film TF is made of a hole transporting compound. The translucent dielectric film TF made of a hole transporting compound functions as a layer that blocks electron transfer because the hole transporting compound is a material that does not flow electrons. The translucent dielectric film TF can prevent electrons from flowing into the reflective metal film 4 to become a cathode, and can increase luminous efficiency.
 なお、本明細書において、「屈折率が同等」とは、一方の屈折率と他方の屈折率との差が0.3未満、好ましくは0.2以下、とりわけ好ましくは0.1以下であることをいう。また屈折率が「低い」又は「高い」とは、測定上差が生じる程度に「低く」又は「高」ければよいが、実際上は0.1を超えて、好ましくは0.2を超えて、より好ましくは0.3以上、更に好ましくは0.4以上、とりわけ好ましくは0.5以上差があって低い又は高いことを示す。 In the present specification, “equivalent refractive index” means that the difference between one refractive index and the other refractive index is less than 0.3, preferably 0.2 or less, particularly preferably 0.1 or less. That means. Further, the refractive index “low” or “high” may be “low” or “high” to such an extent that a difference in measurement occurs, but in practice, it exceeds 0.1, preferably exceeds 0.2. More preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, indicating a low or high difference.
 図2に示すように、透光性電極層2と反射金属電極層の間に挟持された有機層3は、順に積層された正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d及び電子注入層3eである。有機層3は発光積層体であり、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成であってもよい。有機層3は、上記積層構造から正孔輸送層3bを省いて構成しても、正孔注入層3aを省いて構成しても、正孔注入層3aと電子輸送層3dを省いて構成してもよい。 As shown in FIG. 2, the organic layer 3 sandwiched between the translucent electrode layer 2 and the reflective metal electrode layer is composed of a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron stacked in order. A transport layer 3d and an electron injection layer 3e. The organic layer 3 is a light-emitting laminated body, and is not limited to these laminated structures, and may have a laminated structure including at least a light-emitting layer or a charge transport layer that can also be used. The organic layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
 有機層3を成膜する手法として、スパッタリング法や真空蒸着法などの乾式塗布法や、スクリーン印刷、スプレー法、インクジェット法、スピンコート法、グラビア印刷、ロールコータ法などの湿式塗布法が知られている。例えば、正孔注入層、正孔輸送層、発光層を湿式塗布法でベタ膜として均一に成膜して、電子輸送層及び電子注入層を、それぞれ乾式塗布法でベタ膜として均一に順次成膜してもよい。また、すべての機能層を湿式塗布法でベタ膜として均一に順次成膜してもよい。 Known methods for forming the organic layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. ing. For example, the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed as a solid film by a wet coating method, and the electron transport layer and the electron injection layer are uniformly formed sequentially as a solid film by a dry coating method. A film may be formed. Alternatively, all the functional layers may be uniformly and sequentially formed as a solid film by a wet coating method.
 発光層3cまでの機能層に正孔を供給する陽極の透光性電極層2は、ITO(Indium-tin-oxide)やZnO、ZnO-Al(所謂、AZO)、In-ZnO(所謂、IZO)、SnO-Sb(所謂、ATO)、RuOなどにより構成され得る。さらに、透光性電極層2は、有機EL材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 The anode translucent electrode layer 2 for supplying holes to the functional layers up to the light emitting layer 3c is made of ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3. It can be composed of —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode layer 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the organic EL material.
 透光性電極層2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The translucent electrode layer 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 発光層3cまでの機能層に電子を供給する陰極の導電性膜CFの材料としては、効率良く電子注入を行う為に仕事関数の低い金属が含まれることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。なお、導電性膜CFの材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The material of the cathode conductive film CF that supplies electrons to the functional layers up to the light emitting layer 3c preferably contains a metal having a low work function in order to perform electron injection efficiently. For example, tin, magnesium, indium A suitable metal such as calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. In addition, only 1 type may be used for the material of conductive film CF, and 2 or more types may be used together by arbitrary combinations and ratios.
 導電性膜CFは、10S/m以上の電気伝導率を有する電気伝導体からなり、可視光波長帯域内で50%以上の透過率を有する金属薄膜である。導電性膜CFの材料には、金属の他に、電気伝導率を有するグラファイト、グラフェン(graphene)などの炭素が含まれる。導電性膜CFの膜厚20nmの銀薄膜は透過率50%を有する。同金属薄膜としての膜厚10nmのAl膜は透過率50%を有する。同金属薄膜としての膜厚20nmのMgAg合金膜は透過率50%を有する。なお、金属薄膜で導電性膜CFを構成する場合、その膜厚の下限値は5nmあれば導電性を確保することができる。 The conductive film CF is a metal thin film made of an electric conductor having an electric conductivity of 10 6 S / m or more and having a transmittance of 50% or more in the visible light wavelength band. The material of the conductive film CF includes, in addition to metals, carbon such as graphite and graphene having electrical conductivity. The silver thin film with a thickness of 20 nm of the conductive film CF has a transmittance of 50%. An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%. The 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%. When the conductive film CF is formed of a metal thin film, the conductivity can be ensured if the lower limit of the film thickness is 5 nm.
 導電性膜CFはスパッタ法や真空蒸着法などにより有機層3上に形成される。 The conductive film CF is formed on the organic layer 3 by sputtering or vacuum deposition.
 有機層3は透光性電極層2及び導電性膜CFの間に接して挟持されている故に、透光性電極層2と導電性膜CFとを介して有機層3に駆動電圧が印加されることにより、有機層3内の発光層3cにおいて生成された光は透光性電極層2を通過して、さらに導電性膜CFを通して反射金属膜4で反射した後に透光性電極層2を通過して透光性基板1の表面から取り出される。 Since the organic layer 3 is sandwiched between and in contact with the translucent electrode layer 2 and the conductive film CF, a driving voltage is applied to the organic layer 3 through the translucent electrode layer 2 and the conductive film CF. Thus, the light generated in the light emitting layer 3c in the organic layer 3 passes through the translucent electrode layer 2 and is further reflected by the reflective metal film 4 through the conductive film CF. It passes through and is taken out from the surface of the translucent substrate 1.
 [有機層3の機能層]
 [正孔注入層]
 正孔注入層3aは、電子受容性化合物(所謂、正孔輸送性化合物)を含有する層とすることが好ましい。
[Functional layer of organic layer 3]
[Hole injection layer]
The hole injection layer 3a is preferably a layer containing an electron accepting compound (so-called hole transporting compound).
 湿式塗布法で形成する場合、正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。溶媒としては、限定されるものではないが、例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート(所謂、PGMEA)などの脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。 When forming by a wet coating method, the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer. Examples of the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like. Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (so-called PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, and phenetole. , Aromatic ethers such as 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole.
 エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。 Examples of the ester solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Can be mentioned.
 アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 Examples of the amide solvent include N, N-dimethylformamide and N, N-dimethylacetamide. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
 正孔輸送性化合物は、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。 The hole transporting compound may be a polymer compound such as a polymer or a low molecular compound such as a monomer, but is preferably a low molecular compound.
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン銅(所謂、CuPc)に代表されるフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。ここで誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives represented by phthalocyanine copper (so-called CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, tertiary amines with fluorene groups. Examples include linked compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon. Here, the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. There may be.
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(所謂、PEDOT/PSS)もまた好ましい。さらに、PEDOT/PSSのポリマーの末端をメタクリレートなどでキャップしたものであってもよい。 As the hole transporting compound, a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a polythiophene derivative, in high molecular weight polystyrene sulfonic acid (so-called PEDOT / PSS) is also preferable. Furthermore, the end of the polymer of PEDOT / PSS may be capped with methacrylate or the like.
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。 The hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. In the case of containing two or more kinds of hole transporting compounds, the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が高すぎると膜厚ムラが生じる可能性があり、また、低すぎると成膜された正孔注入層に欠陥が生じる可能性がある。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
 正孔注入層形成用組成物は電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の有機EL材料、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition to the electron-accepting compound, the composition for forming a hole injection layer may further contain other components. Examples of other components include various organic EL materials, binder resins, coatability improvers, and the like. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
 湿式塗布法により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶媒と混合して成膜用の組成物を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。 When forming a hole injection layer by a wet coating method, usually, a material for forming the hole injection layer is mixed with an appropriate solvent to prepare a film-forming composition, and this hole injection layer forming composition The hole injection layer is formed by applying the material onto the anode by an appropriate technique, forming a film, and drying.
 正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。 The film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
 [正孔輸送層]
 正孔輸送層3bの材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
[Hole transport layer]
The material of the hole transport layer 3b may be any material that has been conventionally used as a constituent material of the hole transport layer. For example, it is exemplified as the hole transport compound used in the above-described hole injection layer. Things. In addition, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatics Group derivatives, metal complexes and the like. Also, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like. These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
 湿式塗布法で正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。 When the hole transport layer is formed by a wet coating method, a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then dried after wet film formation.
 正孔輸送層形成用組成物に、正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件なども正孔注入層の形成の場合と同様である。 In addition to the hole transporting compound, the hole transporting layer forming composition contains a solvent. The solvent used is the same as that used for the composition for forming the hole injection layer. The film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
 正孔輸送層は、正孔輸送性化合物の他、各種の有機EL材料、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole transport layer may contain various organic EL materials, a binder resin, a coating property improving agent and the like in addition to the hole transporting compound.
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 上記したように少なくとも正孔注入層3a又は正孔輸送層3bは厚く塗布されることが好ましいので、陽極2から発光層3cまでの正孔注入層3a及び/又は正孔輸送層3bの膜厚の合計は少なくとも100nmであることが好ましい。 As described above, since at least the hole injection layer 3a or the hole transport layer 3b is preferably applied thick, the film thickness of the hole injection layer 3a and / or the hole transport layer 3b from the anode 2 to the light emitting layer 3c. Is preferably at least 100 nm.
 [発光層]
 発光層3cは赤、緑及び青発光の独立した発光層であってもそれらの混合発光層であってもよい、また、正孔輸送の性質を有する化合物(正孔輸送性化合物)、或いは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有させることもできる。有機EL材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として適宜使用してもよい。有機EL材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。
[Light emitting layer]
The light emitting layer 3c may be a red, green and blue light emitting independent light emitting layer or a mixed light emitting layer thereof, a compound having a property of transporting holes (hole transporting compound), or A compound having an electron transporting property (electron transporting compound) can also be contained. An organic EL material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be appropriately used as a host material. There is no particular limitation on the organic EL material, and a substance that emits light at a desired emission wavelength and has good emission efficiency may be used.
 有機EL材料としては、任意の公知の材料を適用可能である。例えば、蛍光材料であってもよく、燐光材料であってもよいが、内部量子効率の観点から燐光材料を用いることが好ましい。発光層は単層構造としても、或いは所望により複数の材料からなる多層構造とすることもできる。例えば、青色発光層は蛍光材料を用い、緑色や赤色の発光層は燐光材料を用いるなど、様々な組み合わせで用いてもよい。また、発光層の間に拡散防止層を設けることもできる。 Any known material can be applied as the organic EL material. For example, it may be a fluorescent material or a phosphorescent material, but it is preferable to use a phosphorescent material from the viewpoint of internal quantum efficiency. The light emitting layer may have a single layer structure or a multilayer structure made of a plurality of materials as desired. For example, a fluorescent material may be used for the blue light emitting layer, and a phosphorescent material may be used for the green and red light emitting layers. Further, a diffusion preventing layer can be provided between the light emitting layers.
 青色発光を与える蛍光材料(青色蛍光色素)としては、例えば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体などが挙げられる。 Examples of fluorescent materials (blue fluorescent dyes) that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
 緑色発光を与える蛍光材料(緑色蛍光色素)としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。 Examples of the fluorescent material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
 黄色発光を与える蛍光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。 Examples of fluorescent materials that give yellow light emission (yellow fluorescent dyes) include rubrene and perimidone derivatives.
 赤色発光を与える蛍光材料(赤色蛍光色素)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。 Examples of fluorescent materials that give red light emission (red fluorescent dyes) include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzoates. Examples thereof include thioxanthene derivatives and azabenzothioxanthene.
 燐光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。 The phosphorescent material is selected from, for example, the long-period periodic table (hereinafter referred to as the long-period periodic table when referring to “periodic table” unless otherwise specified). An organometallic complex containing a metal can be given. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。 Specific examples of phosphorescent materials include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenyl). Pyridine) platinum, tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
 有機EL材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。有機EL材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる機能層のモルフォロジー変化を招来する場合がある。一方、有機EL材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、湿式塗布法で形成する場合の溶媒に溶解させる際に時間を要したりする傾向がある。 The molecular weight of the compound used as the organic EL material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. Is in the range of 400 or more. If the molecular weight of the organic EL material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be deteriorated when the film is formed, or the morphology of the functional layer will be changed due to migration, etc. There is a case. On the other hand, if the molecular weight of the organic EL material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve the organic EL material in a solvent when formed by a wet coating method.
 なお、有機EL材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせと比率で併用してもよい。発光層における有機EL材料の割合は、通常0.05重量%以上、通常35重量%以下である。有機EL材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の有機EL材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。発光層における含有量が最も多い成分をホスト材料とより少ない成分をゲスト材料と呼ぶ。 In addition, only 1 type may be used for an organic EL material, and 2 or more types may be used together by arbitrary combinations and a ratio. The proportion of the organic EL material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the organic EL material is too small, uneven light emission may occur, and if the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of organic EL material, it is made for the total content of these to be contained in the said range. The component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material.
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3aにおける正孔輸送性化合物として例示した各種の化合物のほか、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(所謂、NPB)に代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン類や、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミンなどのスターバースト構造を有する芳香族アミン化合物や、トリフェニルアミンの四量体から成る芳香族アミン化合物や、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレンなどのスピロ化合物などが挙げられる。 The light emitting layer may contain a hole transporting compound as a constituent material. Here, among the hole transporting compounds, examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3a described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (so-called NPB) are attached to the nitrogen atom. Substituted aromatic diamines, aromatic amine compounds having a starburst structure such as 4,4 ′, 4 ″ -tris (1-naphthylphenylamino) triphenylamine, and aromatics composed of tetramers of triphenylamine And spiro compounds such as 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene.
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
 発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(所謂、BND)や、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(所謂、PyPySPyPy)や、バソフェナントロリン(所謂、BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(所謂、BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(所謂、tBu-PBD)や、4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(所謂、CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The light emitting layer may contain an electron transporting compound as a constituent material. Here, among the electron transporting compounds, examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (so-called BND), 2 , 5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (so-called PyPySPyPy), bathophenanthroline (so-called BPhen), 2,9 -Dimethyl-4,7-diphenyl-1,10-phenanthroline (so-called BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (So-called tBu-PBD), 4,4′-bis (9H-carbazol-9-yl) biphenyl (so-called CBP), etc. In the light-emitting layer, an electron-transporting compound is included. , It may be used alone, or as a combination of two or more kinds in any combination and in any ratio.
 発光層における電子輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
 湿式塗布法で形成する場合、発光層は、上記発光層材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。よって、湿式塗布法で形成する場合、発光層塗布液には、発光層となるべき少なくとも2種類の固形分(ホスト材料とゲスト材料)が溶質として溶媒に分散又は溶解されて、調製される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。 In the case of forming by a wet coating method, the light emitting layer is prepared by dissolving the above light emitting layer material in an appropriate solvent to prepare a composition for forming a light emitting layer. Is formed. Therefore, in the case of forming by a wet coating method, the light emitting layer coating solution is prepared by dispersing or dissolving at least two kinds of solid contents (host material and guest material) to be the light emitting layer as a solute in a solvent. The solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
 発光層を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。 The ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. In addition, when using 2 or more types of solvents mixed as a solvent for light emitting layers, it is made for the sum total of these solvents to satisfy | fill this range.
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。 The film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
 [電子輸送層]
 電子輸送層3dは、有機EL素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる電子輸送性化合物より形成される。
[Electron transport layer]
The electron transport layer 3d is provided for the purpose of further improving the light emission efficiency of the organic EL element, and efficiently transports electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. It is formed from an electron transporting compound capable of forming
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極の導電性膜CF又は電子注入層3eからの電子注入効率が高く、且つ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、Alq3や10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン、キノキサリン化合物、フェナントロリン誘導体、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 As the electron transporting compound used for the electron transporting layer, usually, the electron injection efficiency from the cathode conductive film CF or the electron injection layer 3e is high, and the injected electrons with high electron mobility are efficiently used. A compound that can be transported is used. Examples of compounds that satisfy such conditions include metal complexes of Alq3 and 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, and 5-hydroxyflavones. Metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene, quinoxaline compound, phenanthroline derivative, 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Quality silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, only 1 type may be used for the material of an electron carrying layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
 電子輸送層の形成方法に制限はなく、湿式塗布法または乾式塗布法で形成することができる。湿式塗布法で形成する場合、電子輸送層は、上記電子輸送層材料を適切な溶媒に溶解させて電子輸送層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。 The formation method of the electron transport layer is not limited, and can be formed by a wet coating method or a dry coating method. In the case of forming by a wet coating method, the electron transport layer is prepared by dissolving the electron transport layer material in an appropriate solvent to prepare a composition for forming an electron transport layer. It is formed by removing. The solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。 The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 [電子注入層]
 電子注入層3eは、陰極から注入された電子を効率良く電子輸送層や発光層へ注入する役割を果たす。例えば、電子注入層3eには、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物が挙げられる。また、有機電子輸送化合物の電子注入層3eに電子供与性材料をドープすることにより、電子注入効率を高めることができる。電子供与性材料には、例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)や、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属などなどが用いられる。電子注入層3eの膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
[Electron injection layer]
The electron injection layer 3e plays a role of efficiently injecting electrons injected from the cathode into the electron transport layer and the light emitting layer. For example, the electron injection layer 3e includes organic electron transport compounds represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and aluminum complexes of 8-hydroxyquinoline. Further, the electron injection efficiency can be increased by doping the electron injection layer 3e of the organic electron transport compound with an electron donating material. Examples of the electron donating material include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, compounds thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF), sodium, Alkali metals such as potassium, cesium, lithium and rubidium are used. The thickness of the electron injection layer 3e is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
 電子注入層の形成方法に制限はなく、湿式塗布法または乾式塗布法で形成することができる。湿式塗布法で形成する場合、電子注入層は、上記電子注入層材料を適切な溶媒に溶解させて電子注入層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。 The formation method of the electron injection layer is not limited, and can be formed by a wet coating method or a dry coating method. In the case of forming by a wet coating method, the electron injection layer is prepared by dissolving the electron injection layer material in a suitable solvent to prepare a composition for forming an electron injection layer. It is formed by removing. The solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
 図3を参照しつつ有機EL素子の動作を、発光層3cに560nmを中心ピ-ク波長(以下λという)とする発光スペクトルの発光材料を用いた場合で説明する。 The operation of the organic EL element will be described with reference to FIG. 3 in the case where a light emitting material having an emission spectrum having a central peak wavelength (hereinafter referred to as λ) of 560 nm is used for the light emitting layer 3c.
 本実施例において、発光点と反射金属膜4間の距離は光学的にλ/4の3倍(奇数倍)に設定してある。すなわち、発光層3cは、導電性膜CFからの光学的距離が発光層3cの発光ピ-ク波長の1/4であり、かつ、反射金属膜4からの光学的距離が発光層3cの発光ピ-ク波長の1/4の3倍以上の奇数倍である発光面を有する。電界を強く与えるため陰極とし機能する導電性膜CFは反射金属膜4よりも発光層3cに近い位置に配置される。 In this embodiment, the distance between the light emitting point and the reflective metal film 4 is optically set to 3 times (odd times) of λ / 4. That is, in the light emitting layer 3c, the optical distance from the conductive film CF is 1/4 of the emission peak wavelength of the light emitting layer 3c, and the optical distance from the reflective metal film 4 is the light emission of the light emitting layer 3c. It has a light emitting surface which is an odd multiple of 3 times or more of 1/4 of the peak wavelength. The conductive film CF functioning as a cathode for applying a strong electric field is disposed at a position closer to the light emitting layer 3 c than the reflective metal film 4.
 発光層3cの発光点と導電性膜CFとの距離は光学的にλ/4に設定している。これは薄膜干渉を考慮した値で、反射金属膜4で反射するとき、光路長で往復でπの位相差が発生し、かつ金属反射においてはπ位相が変化する性質を利用したもので、発光点から取り出し層へ向かう光の位相と同じ位相にすることができる。 The distance between the light emitting point of the light emitting layer 3c and the conductive film CF is optically set to λ / 4. This is a value that takes into account thin-film interference, and utilizes the property that when reflected by the reflective metal film 4, a phase difference of π occurs in the round trip in the optical path length, and the π phase changes in metal reflection. The phase can be the same as the phase of the light traveling from the point toward the extraction layer.
 光の最小径は波長サイズであるので、最小限の発光点での光のエネルギー分布の径は560nmということができる。発光層を含む有機層の平均屈折率を1.8とすれば、エネルギー分布は物理的には560/1.8=311nm(半径155.5nm)の距離範囲内である。 Since the minimum diameter of light is the wavelength size, the diameter of the energy distribution of light at the minimum emission point can be 560 nm. If the average refractive index of the organic layer including the light emitting layer is 1.8, the energy distribution is physically within the distance range of 560 / 1.8 = 311 nm (radius 155.5 nm).
 図3において発光点から半径155.5nmの破線で示す円を重ねてみるとエネルギーの端が、導電性膜CFを挟んで透光性誘電体膜TFの中間程に位置し、反射金属膜4に達していない。すなわち、反射金属膜4は、発光面から発光層3cの発光ピ-ク波長の1/2波長分以上離れた位置に配置されていることが好ましい。 In FIG. 3, when the circle shown by the broken line having a radius of 155.5 nm is overlapped from the light emitting point, the end of energy is located in the middle of the translucent dielectric film TF with the conductive film CF interposed therebetween, and the reflective metal film 4 Not reached. That is, it is preferable that the reflective metal film 4 is disposed at a position separated from the light emitting surface by a half wavelength or more of the light emission peak wavelength of the light emitting layer 3c.
 導電性膜CFの発光層側と外側の透光性誘電体膜T側との屈折率は同等以上なので、破線で示す円内すべての角度において全反射条件が成立せず、エバネッセント光は発生せず、プラズモン共鳴も起きない。 Since the refractive index of the conductive film CF on the light emitting layer side and the outer translucent dielectric film T side is equal to or greater than that, the total reflection condition is not satisfied at all angles within the circle indicated by the broken line, and evanescent light is not generated. Neither plasmon resonance occurs.
 エバネッセント光は全反射の時の高屈折率側から低屈折率側に染み出し、低屈折率層が薄膜(波長以下膜厚)で染み出したエバネッセント光がその外側の屈折率が高いものがあればもとの光に戻る性質がある。また、エバネッセント光と所定の角度から入射した光により生じる表面プラズモンとが共鳴を起こし(プラズモン共鳴)、プラズモン損失となり、反射光のレベルが急激に減少する。しかし、本実施例ではエバネッセント光は発生しない。 The evanescent light oozes from the high refractive index side to the low refractive index side at the time of total reflection, and the evanescent light oozed from the low refractive index layer with a thin film (thickness below wavelength) has a high refractive index on the outside. It has the property of returning to the original light. Further, the surface plasmon generated by the evanescent light and the light incident from a predetermined angle resonates (plasmon resonance), resulting in a plasmon loss, and the level of the reflected light rapidly decreases. However, no evanescent light is generated in this embodiment.
 図3において上向きの光L1は反射金属膜4で反射した光と同じ位相なので、強め合って、ガラス基板1から出力される。 In FIG. 3, since the upward light L1 has the same phase as the light reflected by the reflective metal film 4, it is strengthened and output from the glass substrate 1.
 図3において横向きの光L2は発光した時点で、エネルギー分布内に存在するが、全反射条件を満足しないので、そのまま横向きに光は減衰しながら進む。 In FIG. 3, when the lateral light L2 is emitted, it exists in the energy distribution, but does not satisfy the total reflection condition.
 図3において斜め上向きの臨界角以内の光L3はそのまま正孔輸送層3b、正孔注入層3a及び透光性電極層2を通過する。透光性電極層2及びガラス基板界面で臨界角以上の光L4は全反射を繰り返し減衰しながら進む。 In FIG. 3, light L3 within an obliquely upward critical angle passes through the hole transport layer 3b, the hole injection layer 3a, and the translucent electrode layer 2 as it is. Light L4 having a critical angle or more at the interface between the translucent electrode layer 2 and the glass substrate proceeds while repeatedly attenuated total reflection.
 図3において斜め下の光L5は発光時点で導電性膜CFをよぎる。そのまま光が進み、反射金属膜4へ至る。この場合もエバネッセント光は発生せず、プラズモン共鳴も生じない。 In FIG. 3, obliquely lower light L5 crosses the conductive film CF at the time of light emission. The light travels as it is and reaches the reflective metal film 4. Also in this case, evanescent light is not generated and plasmon resonance does not occur.
 図3において下向きの光L6もエバネッセント光は生じず、反射金属膜4で反射され光路長がλ/4なので位相は往復でλ/2ずれる。さらに反射金属膜4での金属反射のため、位相がさらにπずれており、結局発光した光と同じ位相の光となっている。よって、上へ向かった光と同位相のため、強め合って出力される。 In FIG. 3, the downward light L6 does not generate evanescent light, and is reflected by the reflective metal film 4 so that the optical path length is λ / 4. Further, because of the metal reflection at the reflective metal film 4, the phase is further shifted by π, and eventually the light has the same phase as the emitted light. Therefore, because the phase is the same as that of the upward light, they are output in an intensified manner.
 反射の際、反射金属膜4が薄く反射金属膜4の外側の屈折率が内側より低い場合は、臨界角以上で全反射する。エバネッセント光も発生し、表面プラズモンを励起し、所定の角度でプラズモン共鳴が生じ、プラズモン損失が発生する。 When reflecting, if the reflective metal film 4 is thin and the refractive index outside the reflective metal film 4 is lower than the inside, total reflection is performed at a critical angle or more. Evanescent light is also generated to excite surface plasmons, plasmon resonance occurs at a predetermined angle, and plasmon loss occurs.
 しかし本実施例では反射金属膜4の厚みを200nm程度に厚くしているため、エバネッセント光はあまり外に染み出さず、金属反射となっている。 However, since the thickness of the reflective metal film 4 is increased to about 200 nm in this embodiment, the evanescent light does not ooze out to the outside and is a metal reflection.
 以上のように、導電性膜CFを発光層3cに近い位置すなわちλ/4に配置し、比較的厚い反射金属膜4を3×λ/4に配置し、導電性膜CFと反射金属膜4とを接続し、導電性膜CFと反射金属膜4間に有機層と同等以上の屈折率を有する透光性誘電体膜TFを設けて構成したので、発光時の損失を減少し、プラズモン損失を抑える効果を得ることができる。なお、説明ではモデルとして説明するのに導電性膜CFの屈折率を無視したが実際に作成する時は使用する導電性膜の屈折率を考慮する必要がある。 As described above, the conductive film CF is disposed at a position close to the light emitting layer 3c, that is, λ / 4, the relatively thick reflective metal film 4 is disposed at 3 × λ / 4, and the conductive film CF and the reflective metal film 4 are disposed. And a translucent dielectric film TF having a refractive index equal to or higher than that of the organic layer is provided between the conductive film CF and the reflective metal film 4, thereby reducing loss during light emission and plasmon loss. The effect which suppresses can be acquired. In the description, although the refractive index of the conductive film CF is ignored in the description as a model, it is necessary to consider the refractive index of the conductive film to be used when actually creating the film.
 [変形例]
 図4に他の実施例として有機EL素子の変形例を示す。なお、上記実施例と同一符号で示した構成部分は、上記実施例の有機EL素子と同様であるので、それらの説明は省略する。上記実施例では反射金属膜4の端縁部にて導電性膜CFに接する接続部を設けたが、反射金属膜4は、当該接続部として、発光領域において透光性誘電体膜TFを貫通して導電性膜CFに接する少なくとも1つの突出部を有するように、構成できる。
[Modification]
FIG. 4 shows a modification of the organic EL element as another embodiment. In addition, since the component shown with the same code | symbol as the said Example is the same as that of the organic EL element of the said Example, those description is abbreviate | omitted. In the above-described embodiment, the connection portion that contacts the conductive film CF is provided at the edge of the reflective metal film 4, but the reflective metal film 4 penetrates the translucent dielectric film TF in the light emitting region as the connection portion. Thus, it can be configured to have at least one protrusion in contact with the conductive film CF.
 図4に示す変形例の有機EL素子は、透光性誘電体膜TFを貫通して導電性膜CFに接する突出部、各々が反射金属膜4から導電性膜CFに電気的に接続した複数の導体接続部4aを有している。各導体接続部4aは反射金属膜4と同一材料からなる板状であり、それらが反射金属膜4上に枠状に形成されている。図4に示す分割された透光性誘電体膜TFの各々は直方体形状を有する。導体接続部4aで分割された透光性誘電体膜TFは、各々が反射金属膜4と導体接続部4aと導電性膜CFに囲まれるように、マトリクス状に設けられている。複数の導体接続部4aで反射金属膜4と導電性膜CFとを接続することで、より均一に有機層3へ電子注入可能となる。複数の導体接続部4aは、導電性膜CF及び反射金属膜4の間において透光性誘電体膜TFの厚さ方向に伸長し両面が反射面として作用する故に、光の取りだし効率が向上して好ましい。 The organic EL element of the modification shown in FIG. 4 has a plurality of protrusions that penetrate the translucent dielectric film TF and contact the conductive film CF, each of which is electrically connected from the reflective metal film 4 to the conductive film CF. Conductor connection portion 4a. Each conductor connection portion 4 a is a plate made of the same material as the reflective metal film 4, and they are formed on the reflective metal film 4 in a frame shape. Each of the divided translucent dielectric films TF shown in FIG. 4 has a rectangular parallelepiped shape. The translucent dielectric film TF divided by the conductor connection portion 4a is provided in a matrix so that each is surrounded by the reflective metal film 4, the conductor connection portion 4a, and the conductive film CF. By connecting the reflective metal film 4 and the conductive film CF with the plurality of conductor connection portions 4a, electrons can be injected into the organic layer 3 more uniformly. Since the plurality of conductor connecting portions 4a extend in the thickness direction of the translucent dielectric film TF between the conductive film CF and the reflective metal film 4 and both surfaces act as reflecting surfaces, the light extraction efficiency is improved. It is preferable.
 導体接続部4aにより分割された複数の透光性誘電体膜TFは、互いに略同一の直方体形状を有しているが、導電性膜CFとの平坦な界面(XY平面)上にて略均一な分布密度で配置され、周期的に配置されてもよく、その周期は、有機層3において生成される光の波長よりも十分に大きいことが好ましい。 The plurality of translucent dielectric films TF divided by the conductor connection portion 4a have substantially the same rectangular parallelepiped shape, but are substantially uniform on a flat interface (XY plane) with the conductive film CF. It may be arranged with a high distribution density and may be arranged periodically, and the period is preferably sufficiently larger than the wavelength of light generated in the organic layer 3.
 図5及び図6に他の実施例として有機EL素子の更なる変形例を示す。なお、図4に示す実施例と同一符号で示した構成部分は、上記実施例の有機EL素子と同様であるので、それらの説明は省略する。 5 and 6 show further modifications of the organic EL element as another embodiment. In addition, since the component shown with the same code | symbol as the Example shown in FIG. 4 is the same as that of the organic EL element of the said Example, those description is abbreviate | omitted.
 図5及び図6に示す変形例の有機EL素子は、導体接続部4aに囲まれたセルの反射金属膜4上にこれから傾斜角度をつけた反射傾斜部4bを備えている。これにより、導体接続部4aに囲まれたセルごとに凹面鏡を構成できる。有機EL素子に、複数の導体接続部4aの隣接する同士間の反射金属膜4上に反射傾斜部4bが設けられることにより、基板側への光取り出し効率が向上する。図5に示す反射傾斜部4bの傾斜よりも図6に示すもののほうが急峻な傾斜角度でかつ、セルのピッチも短くセル密度の高いものとなっている。 The organic EL element of the modification shown in FIG.5 and FIG.6 is provided with the reflective inclination part 4b which gave the inclination angle from now on the reflective metal film 4 of the cell enclosed by the conductor connection part 4a. Thereby, a concave mirror can be comprised for every cell enclosed by the conductor connection part 4a. By providing the organic EL element with the reflective inclined portion 4b on the reflective metal film 4 between adjacent conductor connection portions 4a, the light extraction efficiency to the substrate side is improved. 6 has a steeper inclination angle and a shorter cell pitch and a higher cell density than the inclination of the reflective inclined portion 4b shown in FIG.
 図7に示すように、導体接続部4aに囲まれたセルごと四角錐形状凹面鏡を透光性誘電体膜TFの下に設けることが出来るが、更に図8に示すように、複数の透光性誘電体膜TFのセルは、各々の円形形状、大きさが同一に形成され互いに60度の角度で交差する等ピッチの全格子に配置してもよい。また、図9に示すように、それぞれの分割された透光性誘電体膜TFの形状、大きさ、高さはランダムに構成してもよい。導体接続部4aに囲まれたセル(透光性誘電体膜TF)のランダム配置の場合はランダムな反射が得られ、光の散乱効果を大きくする。 As shown in FIG. 7, a quadrangular pyramid concave mirror can be provided under the translucent dielectric film TF for each cell surrounded by the conductor connecting portion 4a. However, as shown in FIG. The cells of the conductive dielectric film TF may be arranged in all lattices having the same pitch and the same size and intersecting each other at an angle of 60 degrees. Further, as shown in FIG. 9, the shape, size, and height of each of the divided translucent dielectric films TF may be configured randomly. In the case of random arrangement of the cells (translucent dielectric film TF) surrounded by the conductor connection portion 4a, random reflection is obtained, and the light scattering effect is increased.
 図10は、それぞれ導体接続部4aと反射傾斜部4bに囲まれた透光性誘電体膜TFの各々の形状の変形例を示す斜視図である。透光性誘電体膜TFは、直方体形状以外に多面体で構成されていてもよく、図10(a)に示すように四角錐状、図10(b)に示すように六角錐状、図10(c)に示すように楕円又は円錐状であってもよい。なお、上記の説明においては、透光性誘電体膜TFの各々の形状を錐体とした場合を例示したが、透光性誘電体膜TFの形状は円錐台状や角錐台状であってもよい。また。透光性誘電体膜膜TFの各々の頂点が丸く弾頭状になっていても良い。 FIG. 10 is a perspective view showing a modification of each shape of the translucent dielectric film TF surrounded by the conductor connecting portion 4a and the reflective inclined portion 4b. The translucent dielectric film TF may be composed of a polyhedron in addition to a rectangular parallelepiped shape, such as a quadrangular pyramid shape as shown in FIG. 10A, a hexagonal pyramid shape as shown in FIG. It may be oval or conical as shown in (c). In the above description, the case where each shape of the translucent dielectric film TF is a cone is illustrated, but the translucent dielectric film TF has a truncated cone shape or a truncated pyramid shape. Also good. Also. Each vertex of the translucent dielectric film TF may be round and warped.
 上記の変形例によれば、導体接続部4aと反射傾斜部4bに囲まれた複数のセルの内面が凹面鏡の効果を発揮する。さらに、導電性膜CF(陰極)の界面に透光性誘電体膜TFを埋設した構成としたことで、陰極としての印加電圧をバランスよく加えることができる。また、導体接続部4aの反射部分として機能するので、比較的短い光路長及び比較的少ない反射回数で外部に光を取り出すことができ、光取り出し効率を飛躍的に向上させることができる。 According to the above modification, the inner surfaces of the plurality of cells surrounded by the conductor connecting portion 4a and the reflective inclined portion 4b exhibit the effect of a concave mirror. Furthermore, by adopting a configuration in which the translucent dielectric film TF is embedded at the interface of the conductive film CF (cathode), the applied voltage as the cathode can be applied in a balanced manner. Moreover, since it functions as a reflection part of the conductor connection part 4a, light can be extracted outside with a relatively short optical path length and a relatively small number of reflections, and the light extraction efficiency can be dramatically improved.
 なお、上記の何れの実施例では、透光性基板1として、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの合成樹脂の透明板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機EL素子が劣化することがあるので好ましくない。よって、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。 In any of the above-described embodiments, a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1. In particular, a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 なお、上記の何れの実施例では有機層を発光積層体としているが、無機材料膜の積層によっても発光積層体を構成できる。 In any of the above-described embodiments, the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by lamination of inorganic material films.
1  透光性基板
2  透光性電極層
3  有機層
3a  正孔注入層
3b  正孔輸送層
3c  発光層
3d  電子輸送層
3e  電子注入層
4  反射金属膜
4a  導体接続部
TF  透光性誘電体膜
CF  導電性膜
DESCRIPTION OF SYMBOLS 1 Translucent substrate 2 Translucent electrode layer 3 Organic layer 3a Hole injection layer 3b Hole transport layer 3c Light emitting layer 3d Electron transport layer 3e Electron injection layer 4 Reflective metal film 4a Conductor connection part TF Translucent dielectric film CF conductive film

Claims (7)

  1.  透光性電極層及び反射金属電極層の間に挟持され発光層を含む有機層を含む有機エレクトロルミネッセンス素子であって、
     前記反射金属電極層は、前記有機層に接する透光性の導電性膜と、前記導電性膜に接しかつ前記有機層の屈折率と同等以上の屈折率を有する透光性誘電体膜と、前記透光性誘電体膜に接する反射金属膜と、を有し、前記反射金属膜の少なくとも一部が前記導電性膜へ電気的に接続されていることを特徴とする有機エレクトロルミネッセンス素子。
    An organic electroluminescence device including an organic layer sandwiched between a light-transmitting electrode layer and a reflective metal electrode layer and including a light-emitting layer,
    The reflective metal electrode layer includes a translucent conductive film in contact with the organic layer, a translucent dielectric film in contact with the conductive film and having a refractive index equal to or greater than a refractive index of the organic layer, An organic electroluminescence element, comprising: a reflective metal film in contact with the translucent dielectric film, wherein at least a part of the reflective metal film is electrically connected to the conductive film.
  2.  前記発光層は、前記導電性膜からの光学的距離が前記発光層の発光ピ-ク波長の1/4であり、かつ、前記反射金属膜からの光学的距離が前記発光層の発光ピ-ク波長の1/4の3倍以上の奇数倍である発光面を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 The light emitting layer has an optical distance from the conductive film that is ¼ of the light emitting peak wavelength of the light emitting layer, and an optical distance from the reflective metal film that is the light emitting peak of the light emitting layer. 2. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device has a light emitting surface that is an odd multiple of 3 times or more of a quarter wavelength.
  3.  前記反射金属膜は、前記発光層の発光ピ-ク波長の1/2波長分以上前記発光面から離れた位置に配置されていることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 2, wherein the reflective metal film is disposed at a position separated from the light emitting surface by a half wavelength or more of a light emission peak wavelength of the light emitting layer.
  4.  前記導電性膜は、可視光波長帯域内で50%以上の透過率を有する金属薄膜であることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 2, wherein the conductive film is a metal thin film having a transmittance of 50% or more in a visible light wavelength band.
  5.  前記反射金属膜は、その端縁部において前記導電性膜に接する接続部を有することを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence element according to claim 2, wherein the reflective metal film has a connection portion in contact with the conductive film at an edge portion thereof.
  6.  前記反射金属膜は、前記透光性誘電体膜を貫通して前記導電性膜に接する少なくとも1つの突出部を有することを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence element according to claim 2, wherein the reflective metal film has at least one protrusion that penetrates the translucent dielectric film and contacts the conductive film.
  7.  前記反射金属膜は、前記突出部の側面に反射傾斜部を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 6, wherein the reflective metal film has a reflective inclined portion on a side surface of the protruding portion.
PCT/JP2012/065534 2012-06-18 2012-06-18 Organic electroluminescence element WO2013190620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065534 WO2013190620A1 (en) 2012-06-18 2012-06-18 Organic electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065534 WO2013190620A1 (en) 2012-06-18 2012-06-18 Organic electroluminescence element

Publications (1)

Publication Number Publication Date
WO2013190620A1 true WO2013190620A1 (en) 2013-12-27

Family

ID=49768251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065534 WO2013190620A1 (en) 2012-06-18 2012-06-18 Organic electroluminescence element

Country Status (1)

Country Link
WO (1) WO2013190620A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036969A (en) * 2000-10-25 2003-02-07 Matsushita Electric Ind Co Ltd Light emitting element, and display unit and illumination device using the same
JP2003332067A (en) * 2002-05-14 2003-11-21 Casio Comput Co Ltd Light emitting panel
JP2004253389A (en) * 2003-02-18 2004-09-09 Eastman Kodak Co Multicolor organic light-emitting display
WO2006098188A1 (en) * 2005-03-17 2006-09-21 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2011040411A (en) * 2008-04-22 2011-02-24 Nippon Zeon Co Ltd Organic electroluminescent light source device
JP2012146641A (en) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd Light-emitting device and illuminating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036969A (en) * 2000-10-25 2003-02-07 Matsushita Electric Ind Co Ltd Light emitting element, and display unit and illumination device using the same
JP2003332067A (en) * 2002-05-14 2003-11-21 Casio Comput Co Ltd Light emitting panel
JP2004253389A (en) * 2003-02-18 2004-09-09 Eastman Kodak Co Multicolor organic light-emitting display
WO2006098188A1 (en) * 2005-03-17 2006-09-21 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2011040411A (en) * 2008-04-22 2011-02-24 Nippon Zeon Co Ltd Organic electroluminescent light source device
JP2012146641A (en) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd Light-emitting device and illuminating device

Similar Documents

Publication Publication Date Title
JP5694019B2 (en) Organic electroluminescent element, display device and lighting device
KR102122188B1 (en) Organic electroluminescent element and organic electroluminescent device
JP5499482B2 (en) Organic electroluminescence device, organic EL display and organic EL lighting
JP5884213B2 (en) Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL display, and organic EL lighting
US9399428B2 (en) Mirror device
JP6062954B2 (en) Mirror device
JP5321700B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP5912174B2 (en) Organic electroluminescence panel and manufacturing method thereof
TWI576408B (en) Film-forming ink, film-forming method, liquid droplet discharging device, method for preparing light-emitting element, light-emitting element, light-emitting device and electronic apparatus
JP2010209320A (en) Composition for organic electroluminescent element, method for producing organic electroluminescent element, organic electroluminescent element, organic el display and organic el lighting
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
WO2013190656A1 (en) Organic electroluminescence element
WO2013190620A1 (en) Organic electroluminescence element
JP5527105B2 (en) Film forming ink, film forming method, and light emitting element manufacturing method
JP2013131574A (en) Ink for deposition, deposition method, manufacturing method of light-emitting element, light-emitting element, light-emitting device and electronic apparatus
WO2013150593A1 (en) Organic electroluminescent panel and method for producing same
JP6185109B2 (en) Organic electroluminescence panel and manufacturing method thereof
WO2012176276A1 (en) Organic electric field light emitting element
JP2014220248A (en) Method of manufacturing organic electroluminescent element
JP5569630B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP5527104B2 (en) Film forming ink, film forming method, and light emitting element manufacturing method
JP2010192474A (en) Organic electroluminescent element, organic el display, and organic el lighting
JP6340404B2 (en) Light emitting device
WO2014073072A1 (en) Mirror device
JP2010239008A (en) Organic electroluminescent element, organic el display, and organic el illumination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP