WO2013190198A1 - Groupe moteur avec ligne de recirculation - Google Patents

Groupe moteur avec ligne de recirculation Download PDF

Info

Publication number
WO2013190198A1
WO2013190198A1 PCT/FR2013/051157 FR2013051157W WO2013190198A1 WO 2013190198 A1 WO2013190198 A1 WO 2013190198A1 FR 2013051157 W FR2013051157 W FR 2013051157W WO 2013190198 A1 WO2013190198 A1 WO 2013190198A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
pressure exhaust
line
high pressure
phase
Prior art date
Application number
PCT/FR2013/051157
Other languages
English (en)
Inventor
Diego Rafael Veiga Pagliari
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Priority to CN201380032508.3A priority Critical patent/CN104471229B/zh
Priority to EP13728491.5A priority patent/EP2867514A1/fr
Publication of WO2013190198A1 publication Critical patent/WO2013190198A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/41Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories characterised by the arrangement of the recirculation passage in relation to the engine, e.g. to cylinder heads, liners, spark plugs or manifolds; characterised by the arrangement of the recirculation passage in relation to specially adapted combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/71Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a motor unit of a motor vehicle, and in particular the recirculation line of the combustion gases.
  • a motor unit comprising a combustion engine which opens, on the one hand, an exhaust line which is fed by a set of high pressure exhaust valves during a high pressure exhaust phase, and on the other hand, a recirculation line which is fed by a set of low pressure exhaust valves during a low pressure exhaust phase and which is configured to be isolated from the exhaust line.
  • the invention aims to achieve a motor group configured to allow an improvement in the physics of combustion of the engine, and thus an increase in engine power consumption.
  • the invention relates to a motor unit comprising a combustion engine which opens, on the one hand, an exhaust line which is fed by a set of high pressure exhaust valves during a phase high-pressure exhaust system, and on the other hand, a recirculation line which is fed by a set of low-pressure exhaust valves during a low-pressure exhaust phase and which is configured so that it can be isolated from the exhaust line, as it comprises a deactivation system which, when it is activated, is adapted to keep at least one high-pressure exhaust valve closed during the high-pressure exhaust phase, and in particular several valves, simultaneously and / or alternatively.
  • the presence of the deactivation system makes it possible to send, if necessary, in the recirculation line, high pressure combustion gases that usually are sent into the exhaust line. It is thus possible to send in the recirculation line a gas richer in fuel than when the deactivation system is activated. As a result, the gases in recirculation are richer and may have a higher dihydrogen concentration than usual. As a result, the physics of combustion of the engine is improved (particularly with regard to knocking) due to the composition of the gases introduced into the engine.
  • the recirculation line comprises a catalytic device for producing dihydrogen.
  • the power unit comprises a bypass line which is fed by a low pressure exhaust manifold disposed between the low pressure exhaust valve assembly and the recirculation line. , which opens into the exhaust line, and which comprises an insulation system for isolating the exhaust line of the low pressure exhaust manifold.
  • the isolation system is a three-way valve disposed at the junction of the low pressure exhaust manifold, the recirculation line and the bypass line.
  • the invention also relates to a control method of a motor unit comprising a combustion engine which opens, on the one hand, an exhaust line which is fed by a set of high pressure exhaust valves during a high pressure exhaust phase, and, secondly, a recirculation line which is fed by a set of low pressure exhaust valves during a low pressure exhaust phase and which is configured so as to be isolated of the exhaust line, the engine comprising a system of deactivation adapted to keep closed, when it is activated, at least one high pressure exhaust valve, and in particular several simultaneously and / or alternatively, such that, when a high pressure exhaust valve is kept closed during a phase of high pressure exhaust, the recirculation line is isolated from the exhaust line during the low pressure exhaust phase that succeeds this phase of high pressure exhaust.
  • the insulation of the exhaust line of the recirculation line is achieved by closing an insulation system disposed in a bypass line opening on the one hand, in the exhaust line, and, secondly, between the set of low pressure exhaust valves and the recirculation line.
  • the deactivation system when activated, it keeps closed every same high pressure exhaust valve which can be deactivated. It is thus always the same high pressure exhaust valve that can be deactivated.
  • the deactivation system when activated, it keeps closed in turn, during a deactivation period, each high-pressure exhaust valve which can be deactivated.
  • the amount of fuel injected into a combustion chamber of the engine, the high pressure exhaust valve is intended to be kept closed during the next high pressure exhaust phase, is determined by so that the flue gas produced in this chamber has a richness of at least 1.
  • Figure 1 illustrates a motor unit according to a first configuration according to the present invention
  • FIG. 2 illustrates a motor unit according to a second configuration according to the present invention, the combustion gases produced in one of the combustion chambers being unable to access the high-pressure exhaust manifold, and the low-pressure exhaust manifold being isolated from the exhaust line;
  • Figure 3 illustrates the displacement of the valves and the use of the combustion gases in the case where the deactivation system is not activated.
  • Figure 4 illustrates the displacement of the valves and the use of combustion gases in the case where the deactivation system is activated.
  • the invention relates to a motor vehicle, and more particularly to a motor unit 1 of a motor vehicle.
  • the engine group 1 comprises an internal combustion engine 2, in this case, a gasoline engine.
  • This engine comprises combustion chambers 3 (here, four in number) which are fueled.
  • Each combustion chamber 3 is supplied with air by an air collector 4 common to all rooms 3, the air collector 4 forming the downstream end of an intake pipe 5.
  • the driving of intake 5 comprises an air valve 6 which controls the air flow admitted into the engine 2.
  • each combustion chamber 3 From each combustion chamber 3 opens two exhaust pipes 7, 8, one 7, high pressure, connecting the combustion chamber 3 to a high pressure exhaust manifold 9, the other 8, low pressure connecting the combustion chamber 3 to a low-pressure exhaust manifold 10.
  • the engine 2 At the engine 2 are associated two exhaust manifolds 9, 10, each of these two exhaust manifolds 9, 10 being fed by all the chambers engine combustion 2.
  • a camshaft of admission carries only the first set of cams. It is known today of the technologies of the camshafts with two distinct laws and interdisputedphasables. The invention applies equally to all types of engines, associated with one or more camshafts. It also applies to motors without camshaft ("camless" in English), where the valves are actuated by electromagnetic actuators.
  • Both sets of exhaust cams include a series of high pressure exhaust cam for controlling the supply of the high pressure exhaust manifold 9, and a series of low pressure exhaust cams for control.
  • the two sets of exhaust cams may either be carried by a single exhaust camshaft or carried by two exhaust camshafts, one bearing all the high pressure exhaust cams, the other all the low pressure exhaust cams.
  • the two series of exhaust cams are angularly offset relative to one another so as to have a decoupling of the supply of the two exhaust manifolds 9, 10.
  • the high pressure exhaust manifold 9 feeds an exhaust line January 1 which comprises a turbine 12 and, downstream of the latter, a pollution control system 13 for treating the gases before their exit into the atmosphere.
  • the exhaust line January 1 is the only line fed by the high pressure exhaust manifold 9 so that the exhaust gas contained in the latter can only drive the turbine 12 and then be sent to the pollution control system 13.
  • the pollution control system may comprise a catalytic oxidation device for oxidizing in particular the unburnt, carbon monoxide and nitrogen oxides, a catalytic reduction device to reduce in particular the oxides nitrogen.
  • the low-pressure exhaust manifold 10 feeds a recirculation line 14 for the reintroduction of the exhaust gas into the engine 2.
  • the recirculation line 14 opens into the intake pipe 5, upstream of the valve.
  • the recirculation line 14 opens into the inlet pipe 5 upstream of a compressor 15 which is driven by the turbine 12 and which forms, with the latter, a turbocharger.
  • a heat exchanger 16 is disposed in the intake duct 5 between the compressor 15 and the air valve 6 in order to allow the regulation of the temperature of the gases admitted into the engine 2 (essentially, to allow their cooling) .
  • a recirculation valve 17 is disposed in the recirculation line 14 and controls the flow of gas flowing in the latter.
  • the recirculation line 14 comprises a catalytic device for producing dihydrogen 18 which makes it possible to produce dihydrogen from fuel.
  • the recirculation line 14 comprises, upstream of the catalytic device for producing hydrogen 18, a fuel injector 19 in order to have a sufficient quantity of fuel at the inlet of the catalytic device for producing the fuel. dihydrogen 18 to allow the production of dihydrogen.
  • Other solutions are possible to allow fuel to be present in the recirculation line 14: for example, a late injection of fuel into at least one combustion chamber 3 when the low pressure exhaust valve associated with this the chamber is in an open position (and preferably when the high pressure exhaust valve associated with this chamber is in a closed position), ie a fuel injection in the intake pipe 5 when the intake valve and the valve low pressure exhaust are both in an open position (and preferably when the high pressure exhaust valve is in a closed position).
  • the recirculation line 14 comprises, upstream of the catalytic device for producing hydrogen 18 and downstream of the fuel injector 19, a heater 20 allowing to increase the temperature of the gases so as to facilitate the production of dihydrogen is carried out in the catalytic device 18.
  • a cooler 21 for cooling the recirculating gas is disposed in the recirculation line 14, downstream of the catalytic device for producing dihydrogen 18. This cooler 21 allows to cool the recirculation gas once the dihydrogen produced so as to reduce the bulk of the recirculation line 14.
  • the recirculation line 14 comprises, in the first embodiment, upstream to downstream, from the low pressure exhaust manifold 10: the fuel injector 19, the heater 20, the device catalytic production of dihydrogen 18, the cooler 21 and the recirculation valve 17, before opening into the intake pipe 5.
  • the recirculation line 14 is similar to that shown in Figure 1 with the difference that it does not include a catalytic device for producing dihydrogen or injector fuel, nor heater.
  • a bypass line 22 connects the low pressure exhaust manifold 10 to the exhaust line 1 1 bypassing the turbine 12.
  • the bypass line 22 opens in the exhaust line January 1 upstream of the treatment system 13.
  • the bypass line 22 and the recirculation line 14 have a common origin low-pressure exhaust manifold 10.
  • the bypass line 22 comprises an isolation system 23 allowing. This isolation system 23 also makes it possible to control the gas flow bypassing the turbine 12.
  • the insulation system 23 is a three-way valve 23 which is arranged at the junction of the low exhaust manifold. pressure 10, the recirculation line 14 and the bypass line 22.
  • the motor unit also comprises a deactivation system that, when it is activated, to keep closed at least one high pressure exhaust valve.
  • the three curves 24, 25, 26 of FIG. 3 represent, respectively, the movement of the non-deactivated high pressure exhaust valves, the low pressure exhaust valves and the intake valves as a function of the angular position. crankshaft relative to the position of combustion top dead point (corresponding to 0 °).
  • FIG. 3 also shows two phases 27, 28 which overlap very slightly, and which represent the use of the exhaust gases produced either by all the combustion chambers 3 when the deactivation system is not activated, or only all Combustion chambers whose high-pressure exhaust valves are not deactivated when the deactivation system is activated.
  • the high and low pressure exhaust cams are angularly offset so that the opening of the non-deactivated high pressure exhaust valves is controlled in advance by an angle of about 100 °. before controlling the opening of the low pressure exhaust valves (in this case, about 90 ° for high p r ession exhaust valves, and about 190 ° for low pressure exhaust valves), and that the closure of the non-deactivated high pressure exhaust valves is controlled in advance by an angle of approximately 65 ° before the control of the closure of the low pressure exhaust valves (in this case, at approximately 340 ° for high pressure exhaust valves, and approximately 405 ° for low pressure exhaust valves).
  • the non-deactivated high pressure exhaust valves are the only open valves (90 ° angle to the 190 ° angle), which corresponds to a phase 27 where the turbine 12 is activated by the high pressure exhaust gas.
  • the exhaust products in the combustion chambers 3 whose high pressure exhaust valves are not deactivated are used to drive the turbine 12.
  • the non-deactivated high pressure exhaust valves and the low pressure exhaust valves are the only open valves (from the angle 190 ° to the angle 340 °), which corresponds to a phase wherein the two exhaust manifolds 9, 10 are energized, the low pressure manifold 10, even when no high pressure exhaust valve is turned off, being the most fed manifold. It is thus possible, according to the opening and closing angles of the high and low pressure exhaust valves, to send to the turbine 12 the quantity of high pressure exhaust gas necessary to obtain the requested power, then to decrease the flow of the high pressure exhaust gas due to the opening of the low pressure exhaust valves.
  • the low pressure exhaust valves and the intake valves are the only open valves (from the angle 340 ° to the angle 405 °), which corresponds to a time when, from With these positions, it is possible to send fuel into the low-pressure exhaust manifold 10 by injecting the fuel into the intake pipe 5.
  • the second and third times form a phase 28 where the recirculation line 14 and the bypass line 22 may be fed alternately or cumulatively exhaust gas, depending on the position of the three-way valve 23.
  • the high pressure exhaust phase corresponds to the moment when the non-deactivated high pressure exhaust valves are open, that is to say at the first and second time.
  • the low pressure exhaust phase corresponds to the moment when the low pressure exhaust valves are open, that is to say at the second and third times.
  • the intake phase corresponds to the moment when the intake valves are open, that is to say at the third and fourth time. It is thus possible, depending on the choice of sending the low pressure exhaust gas, either to use only the recirculation line 14 (with also a possibility of enriching the hydrogen gas in case of presence of a catalytic device for producing dihydrogen 18), or to use only the exhaust line January 1 by taking the bypass line 22 (used as a discharge valve of the turbine 12).
  • the recirculation line 14 comprises a catalytic device for producing hydrogen 18
  • the simultaneous opening of the intake valves and the low pressure exhaust valves during the third stage makes it possible to send fresh air directly upstream of the catalytic device for producing dihydrogen 18 and have a favorable richness at the inlet of this catalytic device 18.
  • FIG. 4 shows the same three curves 24, 25, 26 of FIG. 3. It also represents three phases 29, 30, 31 which represent the use of the exhaust gases produced by all the combustion chambers 3 when the deactivation system is activated.
  • the exhaust gases are discharged in the same way as when the deactivation system is not activated (as shown in FIG. 3).
  • the exhaust gases remain confined in the chamber as long as the low pressure exhaust valves are closed.
  • phase 29 represents, on the one hand, the exhaust, towards the high pressure exhaust manifold 9, of the exhaust gases produced in the combustion chambers 3, the valves of which high pressure exhaust are not deactivated, and, secondly, the confinement of the exhaust gases in the combustion chambers 3 whose high pressure exhaust valves are deactivated.
  • Phase 30 represents, on the one hand, the exhaust towards the high and low pressure exhaust manifolds 9, 10 of the exhaust gases produced in the combustion chambers 3 whose high pressure exhaust valves are not deactivated, and on the other hand, the exhaust, to the low-pressure exhaust manifold 10, the exhaust gas produced in the combustion chambers 3 whose high pressure exhaust valves are deactivated.
  • the phase 31 represents the exhaust, towards the low-pressure exhaust manifold 10, of the exhaust gases produced in all the combustion chambers 3.
  • the deactivation system can disable the high pressure exhaust valves, one of several or all the combustion chambers 3 of the engine. Preferably, the deactivation system makes it possible to deactivate the high pressure valves of several of the combustion chambers. When several high pressure exhaust valves are thus deactivated, they can be simultaneously or alternatively.
  • the deactivation system can be configured to always disable the (the) same (s) valve (s) high pressure exhaust. Instead, it can be controlled so as to alternately deactivate each of the high-pressure exhaust valves that can be deactivated, the time during which a high-pressure exhaust valve can be deactivated is the deactivated valve that can depend on a duration engine operation or a number of combustion cycles.
  • the insulation system 23 is in an insulating position the exhaust line January 1 of the recirculation line during the low pressure exhaust phase that succeeds this phase of high pressure exhaust.
  • the amount of fuel introduced into each combustion chamber 3 of the engine 2 can be determined so that the fuel richness of the exhaust gas produced in this chamber 3 reaches a certain value.
  • the amount of fuel introduced into each combustion chamber 3 whose high pressure exhaust valve is intended to be kept closed during the next high pressure exhaust phase is determined so that the exhaust gas produced by this room 3 has a richness of at least 1.
  • a control system makes it possible to control the various members of the engine group 1, in particular the deactivation system, the three-way valve 23 and the supply of the different fuel combustion chambers.
  • the control system activates the deactivation system and controls the three-way valve in its position isolating the low-pressure exhaust manifold 10 of the exhaust line January 1.
  • the invention thus makes it possible to optimize the recirculation loop of the engine 2 supercharged by the turbocharger in order to produce recirculating gases having a rich composition and then, for example using a catalytic device for the production of dihydrogen, which will be reinjected into the engine 2. And this without creating a penalty on the performance of the engine group 1.
  • the recirculation line 14 is completely decoupled from the pollution control system 13. Therefore, when the deactivation system is activated, the gas intended for the line of recirculation 14 have a richness greater than 1 in order to increase the production of dihydrogen.
  • the deactivation of the high-pressure exhaust valves makes it possible to vary the flow of exhaust gas sent to the turbine 12 with respect to the exhaust gas sent to the recirculation line 14, makes it possible to choose the number of valves.
  • high-pressure exhaust system kept closed, and allows independent control of the high and low pressure exhaust valves.
  • the insulation of the exhaust line 1 1 of the low pressure exhaust manifold prevents the combustion gases from the combustion chamber whose high pressure exhaust valve is deactivated. go to the turbine 12 and the pollution control system 13. There is therefore no loss of fuel and dihydrogen.
  • the recirculation line 14 may not include a catalytic device for producing dihydrogen, the dihydrogen circulating in the recirculation line 14 is then produced by the fuel enrichment in the combustion chamber 3 whose exhaust valve high pressure is off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne un groupe moteur (1) comprenant un moteur à combustion (2) duquel débouche, d'une part, une ligne d'échappement (11) qui est alimentée par un ensemble de soupapes d'échappement haute pression pendant une phase d'échappement haute pression, et, d'autre part, une ligne de recirculation (14) qui est alimentée par un ensemble de soupapes d'échappement basse pression pendant une phase d'échappement basse pression et qui est configurée de façon à pouvoir être isolée de la ligne d'échappement (11). Selon l'invention, le groupe moteur (1) comprend un système de désactivation qui, quand il est activé, est adapté à maintenir fermée au moins une soupape d'échappement haute pression pendant la phase d'échappement haute pression.

Description

GROUPE MOTEUR AVEC LIGNE DE RECIRCULATION
[001 ] L'invention concerne un groupe moteur d'un véhicule automobile, et notamment la ligne de recirculation des gaz de combustion.
[002] On connaît un groupe moteur comprenant un moteur à combustion duquel débouche, d'une part, une ligne d'échappement qui est alimentée par un ensemble de soupapes d'échappement haute pression pendant une phase d'échappement haute pression, et, d'autre part, une ligne de recirculation qui est alimentée par un ensemble de soupapes d'échappement basse pression pendant une phase d'échappement basse pression et qui est configurée de façon à pouvoir être isolée de la ligne d'échappement.
[003] L'invention vise à réaliser un groupe moteur configuré pour permettre une amélioration de la physique de la combustion du moteur, et ainsi une augmentation des gains en consommation du moteur.
[004] Selon un premier aspect, l'invention porte sur un groupe moteur comprenant un moteur à combustion duquel débouche, d'une part, une ligne d'échappement qui est alimentée par un ensemble de soupapes d'échappement haute pression pendant une phase d'échappement haute pression, et, d'autre part, une ligne de recirculation qui est alimentée par un ensemble de soupapes d'échappement basse pression pendant une phase d'échappement basse pression et qui est configurée de façon à pouvoir être isolée de la ligne d'échappement, tel qu'il comprend un système de désactivation qui, quand il est activé, est adapté à maintenir fermée au moins une soupape d'échappement haute pression pendant la phase d'échappement haute pression, et notamment plusieurs soupapes, simultanément et/ou alternativement.
[005] De ce fait et du fait de l'avance de l'ouverture des soupapes d'échappement haute pression par rapport à l'ouverture des soupapes basse pression, la présence du système de désactivation permet d'envoyer, si nécessaire, dans la ligne de recirculation, des gaz de combustion haute pression qui usuellement sont envoyés dans la ligne d'échappement. Il est ainsi possible d'envoyer dans la ligne de recirculation un gaz plus riche en carburant que lorsque le système de désactivation est activé. De ce fait les gaz en recirculation sont plus riches et peuvent avoir une concentration en dihydrogène plus élevée qu'usuellement. En conséquence la physique de la combustion du moteur est améliorée (notamment concernant le cliquetis) du fait de la composition des gaz introduits dans le moteur.
[006] Selon un premier mode de réalisation de l'invention, la ligne de recirculation comprend un dispositif catalytique de production de dihydrogène.
[007] De ce fait, une production de dihydrogène peut être réalisée dans la ligne de recirculation.
[008] Selon un second mode de réalisation de l'invention, le groupe moteur comprend une conduite de dérivation qui est alimentée par un collecteur d'échappement basse pression disposé entre l'ensemble de soupapes d'échappement basse pression et la conduite de recirculation, qui débouche dans la ligne d'échappement, et qui comprend un système d'isolation permettant d'isoler la ligne d'échappement du collecteur d'échappement basse pression.
[009] De ce fait, il est possible, selon les besoins, soit d'isoler le collecteur d'échappement basse pression de la ligne d'échappement (par exemple, quand le système de désactivation est activé afin de ne pas amoindrir l'effet de la désactivation d'une ou plusieurs soupapes d'échappement haute pression), soit de permettre à une partie des gaz provenant du collecteur d'échappement basse pression d'aller dans la lige d'échappement.
[0010] Selon un troisième mode de réalisation de l'invention, le système d'isolation est une vanne trois voies disposée à la jonction du collecteur d'échappement basse pression, de la ligne de recirculation et de la ligne de dérivation.
[001 1 ] L'invention concerne également un procédé de commande d'un groupe moteur comprenant un moteur à combustion duquel débouche, d'une part, une ligne d'échappement qui est alimentée par un ensemble de soupapes d'échappement haute pression pendant une phase d'échappement haute pression, et, d'autre part, une ligne de recirculation qui est alimentée par un ensemble de soupapes d'échappement basse pression pendant une phase d'échappement basse pression et qui est configurée de façon à pouvoir être isolée de la ligne d'échappement, le moteur comprenant un système de désactivation adapté à maintenir fermée, quand il est activé, au moins une soupape d'échappement haute pression, et notamment plusieurs simultanément et/ou alternativement, tel que, lorsqu'une soupape d'échappement haute pression est maintenue fermée pendant une phase d'échappement haute pression, la ligne de recirculation est isolée de la ligne d'échappement pendant la phase d'échappement basse pression qui succède à cette phase d'échappement haute pression.
[0012] De ce fait, les gaz de combustion produits dans chaque chambre de combustion dont la soupape haute pression a été activée, d'une part sont envoyés entièrement dans le collecteur d'échappement basse pression, et, d'autre part, sont obligés d'aller vers la ligne de recirculation.
[0013] Selon un premier mode de réalisation, l'isolation de la ligne d'échappement de la ligne de recirculation est réalisée par la fermeture d'un système d'isolation disposé dans une ligne de dérivation débouchant, d'une part, dans la ligne d'échappement, et, d'autre part, entre l'ensemble de soupapes d'échappement basse pression et la conduite de recirculation.
[0014] Selon un second mode de réalisation, quand le système de désactivation est activé, il maintient fermé chaque même soupape d'échappement haute pression qui peut être désactivée. C'est ainsi toujours la même soupape d'échappement haute pression qui peut être désactivée.
[0015] Selon un troisième mode de réalisation, quand le système de désactivation est activé, il maintien fermé à tour de rôle, pendant une période de désactivation, chaque soupape d'échappement haute pression qui peut être désactivée.
[0016] Selon un quatrième mode de réalisation, la quantité de carburant injecté dans une chambre de combustion du moteur dont la soupape d'échappement haute pression est destinée à être maintenue fermée lors de la prochaine phase d'échappement haute pression, est déterminée de sorte que le gaz de combustion produit dans cette chambre a une richesse au moins égale à 1 .
[0017] De ce fait, il est possible d'optimiser la richesse des gaz de combustion qui sont introduits dans la ligne de recirculation. [0018] D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
• la figure 1 illustre un groupe moteur selon une première configuration conforme à la présente invention ;
• la figure 2 illustre un groupe moteur selon une seconde configuration conforme à la présente invention, les gaz de combustion produits dans une des chambres de combustion ne pouvant accéder à au collecteur d'échappement haute pression, et le collecteur d'échappement basse pression étant isolé de la ligne d'échappement ;
• la figure 3 illustre le déplacement des soupapes et l'utilisation des gaz de combustion dans le cas où le système de désactivation n'est pas activé ; et
• la figure 4 illustre le déplacement des soupapes et l'utilisation des gaz de combustion dans le cas où le système de désactivation est activé.
[0019] L'invention se rapporte à un véhicule automobile, et plus particulièrement à un groupe moteur 1 d'un véhicule automobile.
[0020] Le groupe moteur 1 comprend un moteur à combustion interne 2, en l'occurrence, un moteur à essence. Ce moteur comprend des chambres de combustion 3 (ici, au nombre de quatre) qui sont alimentées en carburant.
[0021 ] Chaque chambre de combustion 3 est alimentée en air par un collecteur d'air 4 commun à toutes les chambres 3, le collecteur d'air 4 formant l'extrémité aval d'une conduite d'admission 5. La conduite d'admission 5 comprend une vanne d'air 6 qui permet de contrôler le débit d'air admis dans le moteur 2.
[0022] De chaque chambre de combustion 3 débouche deux conduites d'échappement 7, 8, l'une 7, haute pression, reliant la chambre de combustion 3 à un collecteur d'échappement haute pression 9, l'autre 8, basse pression, reliant la chambre de combustion 3 à un collecteur d'échappement basse pression 10. Ainsi, au moteur 2 sont associés deux collecteurs d'échappement 9, 10, chacun de ces deux collecteurs d'échappement 9, 10 étant alimenté par toutes les chambres de combustion du moteur 2.
[0023] Au moteur 2 sont également associées trois séries de cames : une première série de cames d'admission commandant des soupapes d'admission permettant de contrôler l'alimentation du moteur 2 en air, et deux séries de cames d'échappement commandant des soupape d'échappement permettant de contrôler l'échappement des gaz de combustion hors des chambres de combustion 3 Classiquement, un arbre à cames d'admission ne porte que la première série de cames. Il est connu aujourd'hui des technologies des arbres à cames avec deux lois distinctes et interdéphasables. L'invention s'applique indifféremment à tous types de moteurs, associé à un ou plusieurs arbres à cames. Elle s'applique également à des moteurs sans arbre à cames (« camless » en anglais), où les soupapes sont actionnées par des actionneurs électromagnétiques.
[0024] Les deux séries de cames d'échappement comprennent une série de came d'échappement haute pression permettant le contrôle de l'alimentation du collecteur d'échappement haute pression 9, et une série de cames d'échappement basse pression permettant le contrôle de l'alimentation du collecteur d'échappement basse pression 10. Les deux séries de cames d'échappement peuvent soit être portées par un unique arbre à cames d'échappement, soit portées par deux arbres à cames d'échappement, l'un portant toutes les cames d'échappement haute pression, l'autre toute les cames d'échappement basse pression. En tout état de cause, les deux séries de cames d'échappement sont décalées angulairement l'une par rapport à l'autre de façon à avoir un découplage de l'alimentation des deux collecteurs d'échappement 9, 10.
[0025] Le collecteur d'échappement haute pression 9 alimente une ligne d'échappement 1 1 qui comprend une turbine 12 et, en aval de cette dernière, un système de dépollution 13 permettant de traiter les gaz avant leur sortie dans l'atmosphère. Dans les présents exemples, la ligne d'échappement 1 1 est la seule ligne alimentée par le collecteur d'échappement haute pression 9 de sorte que les gaz d'échappement contenus dans ce dernier ne peuvent qu'entraîner la turbine 12 puis être envoyés dans le système de dépollution 13. Typiquement, le système de dépollution peut comprendre un dispositif catalytique d'oxydation permettant d'oxyder notamment les imbrûlés, le monoxyde de carbone et les oxydes d'azote, un dispositif catalytique de réduction permettant de réduire notamment les oxydes d'azote. [0026] Le collecteur d'échappement basse pression 10 alimente une ligne de recirculation 14 permettant la réintroduction des gaz d'échappement dans le moteur 2. La ligne de recirculation 14 débouche dans la conduite d'admission 5, en amont de la vanne d'air 6. Par ailleurs, la ligne de recirculation 14 débouche dans la conduite d'admission 5 en amont d'un compresseur 15 qui est entraîné par la turbine 12 et qui forme, avec cette dernière, un turbocompresseur. Classiquement un échangeur de chaleur 16 est disposé dans la conduite d'admission 5 entre le compresseur 15 et la vanne d'air 6 afin de permettre la régulation de la température des gaz admis dans le moteur 2 (essentiellement, afin de permettre leur refroidissement).
[0027] De plus, une vanne de recirculation 17 est disposée dans la ligne de recirculation 14 et permet de contrôler le débit de gaz circulant dans cette dernière.
[0028] Dans le premier mode de réalisation illustré à la figure 1 , la ligne de recirculation 14 comprend un dispositif catalytique de production de dihydrogène 18 qui permet de produire du dihydrogène à partir de carburant.
[0029] En outre, dans cet exemple, la ligne de recirculation 14 comprend, en amont du dispositif catalytique de production de dihydrogène 18, un injecteur de carburant 19 afin d'avoir une quantité suffisante de carburant en entrée du dispositif catalytique de production de dihydrogène 18 pour permettre la production de dihydrogène. D'autres solutions sont possibles pour permettre à du carburant d'être présent dans la ligne de recirculation 14 : par exemple, soit une injection tardive de carburant dans au moins une chambre de combustion 3 quand la soupape d'échappement basse pression associée à cette chambre est dans une position ouverte (et de préférence quand la soupape d'échappement haute pression associée à cette chambre est dans une position fermée), soit une injection de carburant dans la conduite d'admission 5 quand la soupape d'admission et la soupape d'échappement basse pression sont toutes deux dans une position ouverte (et de préférence quand la soupape d'échappement haute pression est dans une position fermée).
[0030] Par ailleurs, toujours dans cet exemple, la ligne de recirculation 14 comprend, en amont du dispositif catalytique de production d'hydrogène 18 et en aval de l'injecteur de carburant 19, un réchauffeur 20 permettant d'augmenter la température des gaz de façon à faciliter la production de dihydrogène se réalise dans le dispositif catalytique 18.
[0031 ] De plus, un refroidisseur 21 permettant de refroidir les gaz en recirculation est disposé dans la ligne de recirculation 14, en aval du dispositif catalytique de production de dihydrogène 18. Ce refroidisseur 21 permet de refroidir les gaz de recirculation une fois le dihydrogène produit de façon à réduire l'encombrement de la ligne de recirculation 14.
[0032] De ce fait, la ligne de recirculation 14 comprend, dans le premier mode de réalisation, d'amont en aval, depuis le collecteur d'échappement basse pression 10 : l'injecteur de carburant 19, le réchauffeur 20, le dispositif catalytique de production de dihydrogène 18, le refroidisseur 21 et la vanne de recirculation 17, avant de déboucher dans la conduite d'admission 5.
[0033] Dans le second mode de réalisation illustré à la figure 2, la ligne de recirculation 14 est similaire à celle représentée à la figure 1 à la différence qu'elle ne comprend ni dispositif catalytique de production de dihydrogène, ni d'injecteur de carburant, ni de réchauffeur.
[0034] Par ailleurs, dans les présents modes de réalisation, une conduite de dérivation 22 relie le collecteur d'échappement basse pression 10 à la ligne d'échappement 1 1 en contournant la turbine 12. Ici, la conduite de dérivation 22 débouche dans la ligne d'échappement 1 1 en amont du système de traitement 13. Ainsi, la ligne de dérivation 22 et la ligne de recirculation 14 ont pour origine commune le collecteur d'échappement basse pression 10. Afin de pouvoir isoler la ligne d'échappement 1 1 du collecteur d'échappement basse pression 10, la conduite de dérivation 22 comprend un système d'isolation 23 permettant. Ce système d'isolation 23 permet également de contrôler le débit de gaz contournant la turbine 12. Dans les présents modes de réalisation, le système d'isolation 23 est une vanne trois voies 23 qui est disposée à la jonction du collecteur d'échappement basse pression 10, de la ligne de recirculation 14 et de la ligne de dérivation 22.
[0035] Le groupe moteur comprend également un système de désactivation qui permet, quand il est activé, de maintenir fermée au moins une soupape d'échappement haute pression. [0036] Les trois courbes 24, 25, 26 de la figure 3 représentent, respectivement, le mouvement des soupapes d'échappement haute pression non désactivées, des soupapes d'échappement basse pression et des soupapes d'admission en fonction de la position angulaire du vilebrequin par rapport à la position de point mort haut de combustion (correspondant à 0°). La figure 3 représente également deux phases 27, 28 qui se chevauchent très légèrement, et qui représentent l'utilisation des gaz d'échappement produits soit par toutes les chambres de combustion 3 quand le système de désactivation n'est pas activé, soit uniquement toutes les chambres de combustion dont les soupapes d'échappement haute pression ne sont pas désactivées quand le système de désactivation est activé.
[0037] Dans les présents modes de réalisation, les cames d'échappement haute et basse pression sont angulairement décalées de sorte que l'ouverture des soupapes d'échappement haute pression non désactivées est commandée en avance d'un angle d'environ 100° avant la commande de l'ouverture des soupapes d'échappement basse pression (en l'occurrence, à environ 90° pour les soupapes d'échappement haute pression, et environ 190° pour les soupapes d'échappement basse pression), et que la fermeture des soupapes d'échappement haute pression non désactivées est commandée en avance d'un angle d'environ 65° avant la commande ce la fermeture des soupapes d'échappement basse pression (en l'occurrence, à environ 340° pour les soupapes d'échappement haute pression, et environ 405° pour les soupapes d'échappement basse pression).
[0038] Ainsi, après la combustion du carburant dans une chambre de combustion 3 (angle à 0°) ayant une soupape d'échappement haute pression non désactivées (ce qui concerne soit toutes les soupapes d'échappement haute pression du moteur 1 quand le système de désactivation n'est pas activé, soit uniquement toutes les soupapes d'échappement haute pression non désactivées du moteur 1 quand le système de désactivation est activé) :
[0039] Dans un premier temps, les soupapes d'échappement haute pression non désactivées sont les seules soupapes ouvertes (de l'angle 90° à l'angle 190°), ce qui correspond à une phase 27 où la turbhe 12 est activée par les gaz d'échappement haute pression. De ce fait, tous les gaz d'échappement produits dans les chambres de combustion 3 dont les soupapes d'échappement haute pression ne sont pas désactivées sont utilisés pour entraîner la turbine 12.
[0040] Dans un second temps, les soupapes d'échappement haute pression non désactivées et les soupapes d'échappement basse pression sont les seules soupapes ouvertes (de l'angle 190° à I'angle340°), ce qui correspond à une phase où les deux collecteurs d'échappement 9, 10 sont alimentés, le collecteur basse pression 10, même quand aucune soupape d'échappement haute pression est désactivée, étant le collecteur le plus alimenté. Il est ainsi possible, selon les angles d'ouverture et de fermeture des soupapes d'échappement haute et basse pression, d'envoyer à la turbine 12 la quantité de gaz d'échappement haute pression nécessaire pour obtenir la puissance demandée, puis de diminuer le débit des gaz d'échappement haute pression du fait de l'ouverture des soupapes d'échappement basse pression.
[0041 ] Dans un troisième temps, les soupapes d'échappement basse pression et les soupapes d'admission sont les seules soupapes ouvertes (de l'angle 340° à l'angle 405°), ce qui correspond à un temps où, du fait de ces positions, il est possible d'envoyer du carburant dans le collecteur d'échappement basse pression 10 en injectant le carburant dans la conduite d'admission 5.
[0042] Les second et troisième temps forment une phase 28 où la ligne de recirculation 14 et la conduite de dérivation 22 peuvent être alimentées alternativement ou cumulativement en gaz d'échappement, selon la position de la vanne trois voies 23.
[0043] Dans un quatrième temps, seules les soupapes d'admission sont ouvertes (de l'angle 405° à l'angle 595°).
[0044] La phase d'échappement haute pression correspond au moment où les soupapes d'échappement haute pression non désactivées sont ouvertes, c'est-à-dire aux premier et second temps. La phase d'échappement basse pression correspond au moment où les soupapes d'échappement basse pression sont ouvertes, c'est-à-dire aux second et troisième temps. La phase d'admission correspond au moment où les soupapes d'admission sont ouvertes, c'est-à-dire aux troisième et quatrième temps. [0045] Il est ainsi possible, selon le choix de l'envoi des gaz d'échappement basse pression, soit de n'utiliser que la ligne de recirculation 14 (avec également une possibilité d'enrichissement des gaz en dihydrogène en cas de présence d'un dispositif catalytique de production de dihydrogène 18), soit de n'utiliser que la ligne d'échappement 1 1 en empruntant la ligne de dérivation 22 (utilisée comme une soupape de décharge de la turbine 12).
[0046] En outre, dans le premier exemple où la ligne de recirculation 14 comprend un dispositif catalytique de production de dihydrogène 18, l'ouverture simultanée des soupapes d'admission et des soupapes d'échappement basse pression pendant le troisième temps permet d'envoyer de l'air frais directement en amont du dispositif catalytique de production de dihydrogène 18 et d'avoir une richesse favorable à l'entrée de ce dispositif catalytique 18.
[0047] Ainsi, pendant la phase d'échappement qui correspond aux trois premiers temps, la pression dans les cylindres 3 est réduite, ce qui permet de mieux les vidanger et de réduire le taux des gaz résiduels.
[0048] La figure 4 reprend les mêmes trois courbes 24, 25, 26 de la figure 3. Elle représente également trois phases 29, 30, 31 qui représentent l'utilisation des gaz d'échappement produits par toutes les chambres de combustion 3 quand le système de désactivation est activé.
[0049] Pour les chambres à combustion 3 dont les soupapes d'échappement haute pression ne sont pas désactivées, les gaz d'échappement sont évacués de la même manière que lorsque le système de désactivation n'est pas activé (comme illustré à la figure 3). Pour la (ou les) chambres à combustion 3 dont les soupapes d'échappement haute pression sont désactivées, les gaz d'échappement restent confinés dans la chambre tant que les soupapes d'échappement basse pression sont fermée.
[0050] Ainsi, à la figure 4, la phase 29 représente, d'une part, l'échappement, vers le collecteur d'échappement haute pression 9, des gaz d'échappement produits dans les chambres à combustion 3 dont les soupapes d'échappement haute pression ne sont pas désactivées, et, d'autre part, le confinement des gaz d'échappement dans les chambres à combustion 3 dont les soupapes d'échappement haute pression sont désactivées. La phase 30 représente d'une part, l'échappement, vers les collecteurs d'échappement haute et basse pression 9, 10 des gaz d'échappement produits dans les chambres à combustion 3 dont les soupapes d'échappement haute pression ne sont pas désactivées, et, d'autre part, l'échappement, vers le collecteur d'échappement basse pression 10, des gaz d'échappement produits dans les chambres à combustion 3 dont les soupapes d'échappement haute pression sont désactivées. La phase 31 représente l'échappement, vers le collecteur d'échappement basse pression 10, des gaz d'échappement produits dans toutes les chambres à combustion 3.
[0051 ] Le système de désactivation peut permettre de désactiver les soupapes d'échappement haute pression, d'une de plusieurs ou de toutes les chambres à combustion 3 du moteur. De préférence, le système de désactivation permet de désactiver les soupapes haute pression de plusieurs des chambres de combustion. Quand plusieurs soupapes d'échappement haute pression sont ainsi désactivées, elles peuvent l'être simultanément ou alternativement.
[0052] Le système de désactivation peut être configuré de façon à toujours désactiver la (les) même(s) soupape(s) d'échappement haute pression. Au contraire, il peut être commandé de façon à désactiver de façon alternative chacune des soupapes d'échappement haute pression pouvant être désactivées, la durée pendant laquelle une soupape d'échappement haute pression pouvant être désactivée est la soupape désactivée pouvant dépendre d'une durée de fonctionnement du moteur ou d'un nombre de cycles de combustion.
[0053] Afin d'obliger les gaz d'échappement produits par les chambres de combustion 3 dont les soupapes d'échappement haute pression sont désactivées à emprunter uniquement la ligne de recirculation 14, lorsque le système de désactivation est activé pendant une phase d'échappement haute pression, le système d'isolation 23 est dans une position isolant la ligne d'échappement 1 1 de la ligne de recirculation pendant la phase d'échappement basse pression qui succède à cette phase d'échappement haute pression. [0054] En outre, la quantité de carburant introduite dans chaque chambre de combustion 3 du moteur 2 peut être déterminée de sorte que la richesse en carburant des gaz d'échappement produits dans cette chambre 3 atteigne une certaine valeur. De préférence, la quantité de carburant introduite dans chaque chambre de combustion 3 dont la soupape d'échappement haute pression est destinée à être maintenue fermée lors de la prochaine phase d'échappement haute pression est déterminée de sorte que le gaz d'échappement produit par cette chambre 3 a une richesse au moins égale à 1 .
[0055] Un système de commande permet de commander les différents organes du groupe moteur 1 , notamment le système de désactivation, la vanne trois voies 23 et l'alimentation des différentes chambres de combustion en carburant.
[0056] Ainsi, selon la situation de vie du véhicule, quand il est opportun d'avoir des gaz en recirculation riches en dihydrogène (le dihydrogène pouvant être produit dans au moins une chambre de combustion recevant une quantité de carburant suffisante pour produire un mélange riche et/ou dans le dispositif catalytique de production de dihydrogène), le système de commande active le système de désactivation et commande la vanne trois voies dans sa position isolant le collecteur d'échappement basse pression 10 de la ligne d'échappement 1 1 . De ce fait, il est possible d'avoir des gaz de combustion circulant dans la ligne de recirculation avec une richesse supérieure à 1 , et ceci d'autant plus si la chambre de combustion 3 dont la soupape d'échappement haute pression est désactivée reçoit une quantité importante de carburant.
[0057] L'invention permet ainsi d'optimiser la boucle de recirculation du moteur 2 suralimenté par le turbocompresseur afin de produire des gaz en recirculation ayant une composition riche pour ensuite, par exemple à l'aide d'un dispositif catalytique de production de dihydrogène, qui seront réinjectés dans le moteur 2. Et ceci sans création d'une pénalité sur la performance du groupe moteur 1 .
[0058] Lorsque la vanne à trois voies 23 est fermée, la ligne de recirculation 14 est complètement découplée du système de dépollution 13. De ce fait, quand le système de désactivation est activée, les gaz destinés à la ligne de recirculation 14 ont une richesse supérieure à 1 afin d'augmenter la production de dihydrogène.
[0059] Ainsi, la désactivation des soupapes à l'échappement haute pression permet de varier le débit de gaz échappement envoyé à la turbine 12 par rapport au gaz d'échappement envoyé à la ligne de recirculation 14, permet de choisir le nombre de soupapes d'échappement haute pression maintenues fermées, et permet de contrôler de façon indépendante les soupapes d'échappement haute et basse pression.
[0060] De plus, l'isolation de la ligne d'échappement 1 1 du collecteur d'échappement basse pression permet d'empêcher les gaz de combustion provenant de la chambre de combustion dont la soupape d'échappement haute pression est désactivée d'aller vers la turbine 12 et le système de dépollution 13. Il n'y a donc pas de perte de carburant et de dihydrogène.
[0061 ] La ligne de recirculation 14 pourrait ne pas comprendre de dispositif catalytique de production de dihydrogène, le dihydrogène circulant dans la ligne de recirculation 14 étant alors produit par l'enrichissement en carburant dans la chambre de combustion 3 dont la soupape d'échappement haute pression est désactivée.

Claims

REVENDICATIONS
1 . Groupe moteur (1 ) comprenant un moteur à combustion (2) duquel débouche, d'une part, une ligne d'échappement (1 1 ) qui est alimentée par un ensemble de soupapes d'échappement haute pression pendant une phase d'échappement haute pression, et, d'autre part, une ligne de recirculation (14) qui est alimentée par un ensemble de soupapes d'échappement basse pression pendant une phase d'échappement basse pression et qui est configurée de façon à pouvoir être isolée de la ligne d'échappement (1 1 ), caractérisé en ce qu'il comprend un système de désactivation qui, quand il est activé, est adapté à maintenir fermées plusieurs soupapes d'échappement haute pression pendant la phase d'échappement haute pression, simultanément et/ou alternativement.
2. Groupe moteur (1 ) selon la revendication 1 , caractérisé en ce que la ligne de recirculation (14) comprend un dispositif catalytique de production de dihydrogène (18).
3. Groupe moteur (1 ) selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend une conduite de dérivation (22) qui est alimentée par un collecteur d'échappement basse pression (10) disposé entre l'ensemble de soupapes d'échappement basse pression et la conduite de recirculation (14), qui débouche dans la ligne d'échappement (1 1 ), et qui comprend un système d'isolation (23) permettant d'isoler la ligne d'échappement (1 1 ) du collecteur d'échappement basse pression (10).
4. Groupe moteur (1 ) selon la revendication 3, caractérisé en ce que le système d'isolation (23) est une vanne trois voies (23) disposée à la jonction du collecteur d'échappement basse pression (10), de la ligne de recirculation (14) et de la ligne de dérivation (22).
5. Procédé de commande d'un groupe moteur (1 ) comprenant un moteur à combustion (2) duquel débouche, d'une part, une ligne d'échappement (1 1 ) qui est alimentée par un ensemble de soupapes d'échappement haute pression pendant une phase d'échappement haute pression, et, d'autre part, une ligne de recirculation (14) qui est alimentée par un ensemble de soupapes d'échappement basse pression pendant une phase d'échappement basse pression et qui est configurée de façon à pouvoir être isolée de la ligne d'échappement (1 1 ), le moteur (2) comprenant un système de désactivation adapté à maintenir fermées, quand il est activé, plusieurs soupapes d'échappement haute pression simultanément ou alternativement, caractérisé en ce que lorsqu'une soupape d'échappement haute pression est maintenue fermée pendant une phase d'échappement haute pression, la ligne de recirculation (14) est isolée de la ligne d'échappement (1 1 ) pendant la phase d'échappement basse pression qui succède à cette phase d'échappement haute pression.
Procédé de commande d'un groupe moteur (1 ) selon la revendication 5, caractérisé en ce que l'isolation de la ligne d'échappement (1 1 ) de la ligne de recirculation (14) est réalisée par la fermeture d'un système d'isolation (23) disposé dans une ligne de dérivation (22) débouchant, d'une part, dans la ligne d'échappement (1 1 ), et, d'autre part, entre l'ensemble de soupapes d'échappement basse pression et la conduite de recirculation (14).
Procédé de commande d'un groupe moteur selon l'une des revendications 5 et 6, caractérisé en ce que, quand le système de désactivation est activé, il maintien fermé chaque même soupape d'échappement haute pression qui peut être désactivée.
Procédé de commande d'un groupe moteur selon l'une des revendications 5 et 6, caractérisé en ce que, quand le système de désactivation est activé, il maintien fermé à tour de rôle, pendant une période de désactivation, chaque soupape d'échappement haute pression qui peut être désactivée.
Procédé de commande d'un groupe moteur selon l'une des revendications 5 à 8, caractérisé en ce que la quantité de carburant injecté dans une chambre de combustion (3) du moteur (2) dont la soupape d'échappement haute pression est destinée à être maintenue fermée lors de la prochaine phase d'échappement haute pression, est déterminée de sorte que le gaz de combustion produit dans cette chambre (3) a une richesse au moins égale à 1 .
PCT/FR2013/051157 2012-06-21 2013-05-24 Groupe moteur avec ligne de recirculation WO2013190198A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380032508.3A CN104471229B (zh) 2012-06-21 2013-05-24 具有循环管路的动力装置
EP13728491.5A EP2867514A1 (fr) 2012-06-21 2013-05-24 Groupe moteur avec ligne de recirculation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255810A FR2992356B1 (fr) 2012-06-21 2012-06-21 Groupe moteur avec ligne de recirculation
FR1255810 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013190198A1 true WO2013190198A1 (fr) 2013-12-27

Family

ID=48614058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051157 WO2013190198A1 (fr) 2012-06-21 2013-05-24 Groupe moteur avec ligne de recirculation

Country Status (4)

Country Link
EP (1) EP2867514A1 (fr)
CN (1) CN104471229B (fr)
FR (1) FR2992356B1 (fr)
WO (1) WO2013190198A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223155A (zh) * 2016-12-16 2018-06-29 福特环球技术公司 用于分流式排气发动机系统的系统和方法
DE102017209741B3 (de) 2017-06-09 2018-12-13 Ford Global Technologies, Llc Aufgeladene fremdgezündete Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
US20190032579A1 (en) * 2016-12-16 2019-01-31 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US11073113B2 (en) * 2019-03-19 2021-07-27 Hyundai Motor Company Exhaust manifold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005781A (ko) 2016-07-06 2018-01-17 현대자동차주식회사 차량용 연료 개질 시스템
US10683817B2 (en) * 2016-12-16 2020-06-16 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030980A (ja) * 2000-07-18 2002-01-31 Mitsubishi Motors Corp 過給機付きエンジンのegr装置
US20080022680A1 (en) * 2006-07-26 2008-01-31 Gingrich Jess W Apparatus and method for increasing the hydrogen content of recirculated exhaust gas in fuel injected engines
WO2010149563A1 (fr) * 2009-06-25 2010-12-29 Avl List Gmbh Procédé permettant de faire fonctionner un moteur à combustion interne
US20110000470A1 (en) * 2008-02-22 2011-01-06 Borgwarner Inc. Controlling exhaust gas flow divided between turbocharging and exhaust gas recirculating
DE102009049614A1 (de) * 2009-10-16 2011-04-21 Emcon Technologies Germany (Augsburg) Gmbh Abgasrückführungsventil
US20110167815A1 (en) * 2010-09-09 2011-07-14 Ford Global Technologies, Llc Method and system for turbocharging an engine
FR2957383A1 (fr) * 2010-03-12 2011-09-16 Peugeot Citroen Automobiles Sa Moteur a combustion interne comprenant un moyen de production d'hydrogene dispose dans le flux principal de gaz d'echappement
US20120023935A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9902491L (sv) * 1999-06-30 2000-12-31 Saab Automobile Förbränningsmotor med avgasåtermatning
EP2076663A4 (fr) * 2006-09-13 2010-11-24 Borgwarner Inc Intégration d'un refroidisseur d'air d'échappement dans un turbocompresseur
FR2909718B1 (fr) * 2006-12-11 2009-02-27 Jean Melchior Moteur a combustion interne suralimente
US8096125B2 (en) * 2009-12-23 2012-01-17 Ford Global Technologies, Llc Methods and systems for emission system control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030980A (ja) * 2000-07-18 2002-01-31 Mitsubishi Motors Corp 過給機付きエンジンのegr装置
US20080022680A1 (en) * 2006-07-26 2008-01-31 Gingrich Jess W Apparatus and method for increasing the hydrogen content of recirculated exhaust gas in fuel injected engines
US20110000470A1 (en) * 2008-02-22 2011-01-06 Borgwarner Inc. Controlling exhaust gas flow divided between turbocharging and exhaust gas recirculating
WO2010149563A1 (fr) * 2009-06-25 2010-12-29 Avl List Gmbh Procédé permettant de faire fonctionner un moteur à combustion interne
DE102009049614A1 (de) * 2009-10-16 2011-04-21 Emcon Technologies Germany (Augsburg) Gmbh Abgasrückführungsventil
FR2957383A1 (fr) * 2010-03-12 2011-09-16 Peugeot Citroen Automobiles Sa Moteur a combustion interne comprenant un moyen de production d'hydrogene dispose dans le flux principal de gaz d'echappement
US20110167815A1 (en) * 2010-09-09 2011-07-14 Ford Global Technologies, Llc Method and system for turbocharging an engine
US20120023935A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223155A (zh) * 2016-12-16 2018-06-29 福特环球技术公司 用于分流式排气发动机系统的系统和方法
US20190032579A1 (en) * 2016-12-16 2019-01-31 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US10731573B2 (en) * 2016-12-16 2020-08-04 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
CN108223155B (zh) * 2016-12-16 2022-05-27 福特环球技术公司 用于分流式排气发动机系统的系统和方法
DE102017209741B3 (de) 2017-06-09 2018-12-13 Ford Global Technologies, Llc Aufgeladene fremdgezündete Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
US10704505B2 (en) 2017-06-09 2020-07-07 Ford Global Technologies, Llc Methods and systems for a blow-off line
US11073113B2 (en) * 2019-03-19 2021-07-27 Hyundai Motor Company Exhaust manifold

Also Published As

Publication number Publication date
EP2867514A1 (fr) 2015-05-06
FR2992356A1 (fr) 2013-12-27
CN104471229B (zh) 2017-11-17
CN104471229A (zh) 2015-03-25
FR2992356B1 (fr) 2016-04-15

Similar Documents

Publication Publication Date Title
US8666640B2 (en) Control apparatus and control method for internal combustion engine
EP1726805B1 (fr) Procédé de contrôle du balayage des gaz brûlés d'un moteur à injection indirecte, notamment moteur suralimenté, et moteur utilisant un tel procédé
WO2013190198A1 (fr) Groupe moteur avec ligne de recirculation
EP1914409B1 (fr) Procédé de contrôle d'un moteur à combustion interne et moteur utilisant un tel procédé
EP2129891B1 (fr) Moteur a combustion interne suralimente
FR2893676A1 (fr) Procede pour controler l'admission et/ou l'echappement d'au moins un cylindre desactive d'un moteur a combustion interne
FR2853011A1 (fr) Moteur alternatif a recirculation de gaz brules destine a la propulsion des vehicules automobiles et procede de turbocompression de ce moteur
FR3037357A1 (fr) Procede de chauffage d’un systeme d’echappement d’un ensemble moteur a combustion interne par injection d’air
FR2992027A1 (fr) Procede de pilotage de l'introduction de carburant dans un moteur
WO2018083400A1 (fr) Système d'injection d'air dans un circuit d'échappement de gaz d'un moteur thermique suralimenté
EP2620631A1 (fr) Groupe moteur à deux collecteurs d'échappement
FR2868481A1 (fr) Procede de controle de la recirculation des gaz d'echappement d'un moteur suralimente a combustion interne et moteur utilisant un tel procede
EP1807617A2 (fr) Procédé de commande d'un moteur de véhicule via des lois de levée de soupapes
EP3084164A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique
FR2884875A1 (fr) Systeme d'alimentation a balayage pour moteur essence suralimente a injection indirecte
WO2014001667A1 (fr) Groupe moteur avec ligne de recirculation
WO2015092291A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels
EP1207288B1 (fr) Procédé de commande d'un moteur à combustion interne en vue de réaliser une combustion homogène
WO2015055911A1 (fr) Moteur a combustion a systeme dedie de reintroduction ou recirculation de gaz d'echappement
EP1106804A1 (fr) Procédé de commande d'un groupe motopropulseur de véhicules automobile pour augmenter la richesse des gaz d'échappement en phase de régénération d'un piège à oxydes d'azote.
FR2914366A1 (fr) Procede de controle du fonctionnement d'un moteur a combustion interne en mode de combustion a autoallumage controle et moteur utilisant un tel procede
FR2721653A1 (fr) Procédé et dispositif de réduction des émissions de polluants d'un moteur à combustion interne.
EP3004619B1 (fr) Dispositif de recirculation variable de gaz d'echappement
FR2836514A1 (fr) Procede et dispositif de commande du fonctionnement d'un moteur a combustion interne
FR3089557A1 (fr) Ensemble comprenant un moteur et un compresseur électrique configuré pour chauffer les gaz d’échappement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013728491

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE