WO2015092291A1 - Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels - Google Patents

Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels Download PDF

Info

Publication number
WO2015092291A1
WO2015092291A1 PCT/FR2014/053419 FR2014053419W WO2015092291A1 WO 2015092291 A1 WO2015092291 A1 WO 2015092291A1 FR 2014053419 W FR2014053419 W FR 2014053419W WO 2015092291 A1 WO2015092291 A1 WO 2015092291A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
electric compressor
heat engine
air
intake
Prior art date
Application number
PCT/FR2014/053419
Other languages
English (en)
Inventor
Sébastien Potteau
Pascal Menegazzi
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Priority to EP14830822.4A priority Critical patent/EP3084167A1/fr
Priority to US15/106,513 priority patent/US20160348572A1/en
Publication of WO2015092291A1 publication Critical patent/WO2015092291A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/145Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B35/00Engines characterised by provision of pumps for sucking combustion residues from cylinders
    • F02B35/02Engines characterised by provision of pumps for sucking combustion residues from cylinders using rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of thermal engines, and more particularly to a motor vehicle engine assembly comprising an air intake system and an electric compressor configured to improve the scavenging of residual flue gases.
  • the sweep is used to proceed to the removal of residual flue gases to reduce their concentrations and thus improve the behavior of the engine, including knocking.
  • the residual flue gases generate rattling because they increase the temperature of the mixture during compression of the fresh air and fuel mixture.
  • These residual burnt gases also limit the air filling of the engine by taking the place thereof.
  • the sweeping is used especially at low speed and high load because, in this zone, the exhaust pressure is lower than the intake pressure which makes it possible to circulate the gases from the intake to the exhaust .
  • the intake and exhaust valves are opened at the same time.
  • turbocharger has a certain response time (turbo-lag according to the English terminology), time lapse where the enthalpy of the exhaust gas is still not enough to turn the turbine of the turbocharger at the ideal rate.
  • scanning can only be done in the low speed and high load zone because it is only in this zone that scanning is possible, which limits the extent of the zone.
  • the present invention therefore aims to overcome one or more of the disadvantages of the systems of the prior art by providing a set for a heat engine comprising an electric compressor to improve the elimination residual flue gases, and to prevent the rattling that results from the presence of these gases in large quantities.
  • the present invention proposes an assembly comprising: an intake duct extending between an air inlet and a heat engine,
  • an electric compressor disposed on the intake duct upstream of the heat engine; a valve disposed upstream of the heat engine, the electric compressor being configured to enable sweeping on the residual flue gases.
  • the electric compressor is equipped with a variable reluctance motor.
  • the use of an electric compressor according to the invention makes it possible to overcome the duration of going up in the turbo-compressor mode. It is thus possible to scan over a wider area and on smaller loads.
  • the use of the electric compressor also has the advantage of allowing fresh air to be swept into the pollution zone. This makes it possible to inject air into the exhaust which allows the catalyst to rise more rapidly.
  • the assembly comprises a variable distribution system.
  • the electric compressor is integrated in a bypass circuit comprising a bypass means configured to direct the air admitted through the electric compressor during a transient phase.
  • the assembly comprises a direct injection system.
  • the invention also relates to a method of controlling an assembly according to the invention, comprising, during a mode of operation of the engine at low speed: a step of activation of the electric compressor,
  • the method comprises a step of regulating the flow of air admitted with a valve.
  • the invention also relates to the use of the assembly according to the invention for sweeping the residual gases unburned from the engine.
  • the use of the assembly is done during a mode of operation of the engine at low speed of a vehicle.
  • FIG. 1 is a schematic and partial representation of an engine architecture involving an electric air compressor according to the invention.
  • the present invention relates to an assembly comprising a heat engine, an air intake system and an electric air compressor.
  • an electric compressor is understood to mean an air compressor, whether volumetric or not and for example centrifugal or radial, driven by an electric motor, for the purpose of supercharging a heat engine.
  • the compressor is an air supercharger.
  • the electric motor of the electric compressor is a DC or AC synchronous motor, or any type of electric motor of the same type.
  • the electric motor is a variable reluctance motor (also called SRM machine for Switched Reluctance Motor according to English terminology).
  • the electric compressor is therefore generally activated to increase the mass of the intake air.
  • the electric compressor is associated with a bypass circuit (also called bypass in the English terminology) to bypass it when necessary, as described later in the description.
  • the electric compressor is disposed upstream of the heat engine.
  • the heat engine has a two-stage operation.
  • the heat engine has a four-stroke operation.
  • the assembly according to the invention comprises at least one catalyst disposed at the output of the heat engine, on the exhaust line.
  • the assembly comprises several catalysts.
  • the assembly according to the invention comprises a variable distribution system of the type VVT (for variable valve timing according to the English terminology) or VVL (for variable valve lift according to the English terminology).
  • VVT variable valve timing according to the English terminology
  • VVL variable valve lift according to the English terminology.
  • the use of the electric compressor is during the operating modes of the engine at low speed and low or high load of the engine.
  • Low speed means engine operation between 1000 and 3000 rpm, and low or high loads, the fact that the engine operates at 10 to 90% of its load.
  • the use of the electric compressor also has the advantage of allowing fresh air to be swept into the pollution zone. This makes it possible to inject air into the exhaust which allows the catalyst to rise more rapidly.
  • the use of the electric compressor thus also has the advantage of reducing the heating time of the engine. This reduces the use of precious metals on the catalyst and / or to be able to limit its thermal stresses by installing it further in the exhaust line.
  • the assembly concerned by the present invention comprises a thermal motor 2 with an intake duct 4 and an electric compressor 5.
  • This engine 2 comprises a motor unit 3 comprising a plurality of cylinders, four in number in the figure, intended to receive a mixture of oxidant and fuel, and for example gasoline as fuel and clean air or a mixture air / recirculating gas as the oxidant.
  • the combustion in the cylinders generates the work of the engine 2.
  • the operation of the engine 2 is conventional: the air is admitted into the cylinders, is compressed, burned and expelled in the form of exhaust gas.
  • This engine 2 has an input connected to the intake duct 4 and an output connected to a gas exhaust circuit 10.
  • the inlet 11 of the intake duct 4 defines the inlet through which the fresh air admitted enters the assembly while the outlet 12 of the exhaust circuit 10 defines the outlet through which the exhaust gases are discharged from the exhaust pipe. all.
  • the intake duct 4 opens into an intake manifold 7 which thus forms an intake air inlet box in the combustion chamber 3 of the engine 2.
  • intake duct 4 is meant the admission duct for the intake air, the flow of which is represented by the arrow Fl, this duct being situated between the air intake 11 and the engine 2.
  • the intake duct 4 comprises a mechanical compressor 111 of the intake air.
  • the intake duct 4 upstream of the intake manifold 7 of the air in the engine 2, the intake duct 4 comprises a valve 8 comprising a butterfly type shutter whose function is to regulate the flow of air admitted for the regulation of the engine speed.
  • This valve 8 is controlled by an engine control unit well known to those skilled in the art (also called ECU which stands for Engine Control Unit according to the English terminology), and makes it possible to regulate the amount of air introduced into the engine and necessary to combustion.
  • the output of the engine 2 is formed by a manifold 9 of the exhaust gas. The latter is connected to a channel or conduit 124 for exhaust gases forming part of the gas exhaust system.
  • the exhaust circuit 10 comprises a turbine 121, integral in rotation with the mechanical compressor 111 of the intake air and forming with it a turbocharger.
  • the turbine 121 is driven by the exhaust gas of the exhaust path 124, whose flow is shown schematically by the arrow F2. According to one embodiment, this flow passes through the catalyst 122.
  • the assembly comprises an electric compressor 5.
  • This compressor 5 is driven by a not shown electric motor whose control is for example carried out by the engine control unit.
  • the electric compressor 5 is arranged in the loop of the intake duct 4.
  • the electric compressor 5 is disposed upstream of the butterfly valve.
  • the electric compressor 5 is disposed downstream of the butterfly valve 8.
  • the electric compressor is integrated in a branch circuit 51 (also called bypass circuit according to the English terminology) comprising a valve type of bypass means 52.
  • This valve 52 is for example a butterfly valve.
  • This valve 52 is for example controlled by the engine control unit.
  • the branch circuit 51 in association with the bypass means 52 generally allows the intake air arriving via the intake circuit 4 to circulate through the electric compressor or to bypass it, by closing or opening the bypass means 52.
  • the valve-type bypass means 52 is disposed on a first conduit 510, of the branch circuit 51, different from that of the electric compressor 5 so that when the valve is closed the intake air is directed 02 to the second duct 511 where the electric compressor 5 is arranged.
  • the intake air circulates 01 in the first duct 510 and does not pass through the electric compressor 5.
  • the electric compressor is activated via the engine control unit and compresses the intake air circulating in the intake duct. This compressed air is then sent directly into the engine 2 via the butterfly valve 8.
  • the scanning is then performed in a conventional manner.
  • the admitted gases "push" the unburned residual gases which are thus evacuated. This is possible because the intake and exhaust valves are open.
  • the phase of use of the electric compressor according to the invention that is to say at low speed, can then be followed by an established phase according to which the whole is controlled so that the electric compressor is not not powered.
  • This method of controlling an assembly as defined above thus makes it possible, during a mode of operation of the engine at low speed, to activate the electric compressor and to compress with the latter all or part of the intake air circulating in the intake duct, which allows to increase more quickly the air flow in the engine and promotes a faster sweep.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

La présente invention concerne un ensemble comprenant: un conduit d'admission (4) s'étendant entre une entrée (11) d'air et un moteur thermique (2), un moteur thermique (2), un compresseur électrique (5) disposé sur le conduit d'admission en amont du moteur thermique (2), une vanne (8), disposée en amont du moteur thermique (2) lecompresseur électrique (5) étant configuré pour permettre de réaliser du balayage sur les gaz brulés résiduels.

Description

ENSEMBLE COMPRENANT UN MOTEUR THERMIQUE ET UN COMPRESSEUR ELECTRIQUE CONFIGURE POUR FAIRE DU BALAYAGE DES
GAZ BRULES RESIDUELS
La présente invention concerne le domaine des moteurs thermiques, et plus particulièrement un ensemble pour moteur thermique de véhicule automobile comprenant un système d'admission d'air et un compresseur électrique configuré pour améliorer le balayage des gaz brûlés résiduels.
Actuellement, dans les moteurs turbo essence à injection directe, on utilise le balayage afin de procéder à l'élimination des gaz brûlés résiduels pour en réduire leurs concentrations et donc améliorer le comportement du moteur, et notamment le cliquetis. En effet, les gaz brûlés résiduels sont générateur du cliquetis car ils augmentent la température du mélange lors de la compression du mélange air frais et carburant. Ces gaz brûlés résiduels limitent également le remplissage en air du moteur en prenant la place de celui-ci.
Sur les moteurs essence, le balayage est utilisé surtout à bas régime et forte charge car, dans cette zone, la pression d'échappement est plus faible que la pression admission ce qui permet de faire circuler les gaz de l'admission vers l'échappement. Pour réaliser cela, on ouvre en même temps les soupapes admission et échappement.
Un problème avec cette technique est qu'il est nécessaire d'attendre que le turbocompresseur se mette en route pour que le balayage se mette en œuvre. En effet, le turbocompresseur a un certain temps de réponse (turbo-lag selon la terminologie anglaise), laps de temps où l'enthalpie des gaz d'échappement ne suffit pas encore à faire tourner la turbine du turbocompresseur au régime idéal. De plus, le balayage ne peut se faire que dans la zone faible régime et forte charge car c'est uniquement dans cette zone que le balayage est possible, ce qui limite l'étendue de la zone.
La présente invention a donc pour objet de pallier un ou plusieurs des inconvénients des systèmes de l'art antérieur en proposant un ensemble pour moteur thermique comprenant un compresseur électrique permettant d'améliorer l'élimination des gaz brûlés résiduels, et d'empêcher le cliquetis qui résulte de la présence de ces gaz en grande quantité.
Pour cela la présente invention propose un ensemble comprenant : - un conduit d'admission s'étendant entre une entrée d'air et un moteur thermique,
- un moteur thermique,
- un compresseur électrique disposé sur le conduit d'admission en amont du moteur thermique, - une vanne, disposée en amont du moteur thermique, le compresseur électrique étant configuré pour permettre de réaliser du balayage sur les gaz brûlés résiduels.
Selon un mode de réalisation de l'invention, le compresseur électrique est équipé d'un moteur à reluctance variable. L'utilisation d'un compresseur électrique selon l'invention permet de s'affranchir de la durée de monter en régime du turbocompresseur. Il est ainsi possible de réaliser du balayage sur une zone plus élargie et sur de plus faibles charges.
L'utilisation du compresseur électrique présente également l'avantage de permettre de faire du balayage d'air frais dans la zone pollution. Cela permet de faire de l'injection d'air à l'échappement ce qui permet une montée en température plus rapide du catalyseur.
Selon un mode de réalisation de l'invention, l'ensemble comprend un système de distribution variable.
Selon un mode de réalisation de l 'invention, le compresseur électrique est intégré dans un circuit de dérivation comportant un moyen de dérivation configuré pour diriger l'air admis à travers le compresseur électrique lors d'une phase transitoire. Selon un mode de réalisation de l'invention, l'ensemble comprend un système d'injection directe.
Ainsi l'utilisation du compresseur électrique avec un système de distribution variable et un système d'injection directe permet de repousser la limite cliquetis à bas régime et d'étendre la zone de balayage pour des fortes charges et de faire de l'injection d'air à l'échappement.
L'invention concerne également un procédé de commande d'un ensemble selon l'invention, comportant, lors d'un mode de fonctionnement du moteur à bas régime: une étape d'activation du compresseur électrique,
- une étape de circulation de l'air admis à travers le compresseur électrique, une étape de balayage des gaz résiduels imbrulés du moteur.
Selon un mode de réalisation de l'invention, le procédé comprend une étape de régulation du débit de l'air admis avec une vanne.
L'invention concerne également l'utilisation de l'ensemble selon l'invention pour balayer les gaz résiduels imbrulés du moteur.
Selon un mode de réalisation de l'invention, l'utilisation de l'ensemble se fait lors d'un mode de fonctionnement du moteur à bas régime d'un véhicule.
D'autres buts, caractéristiques et avantages de l'invention seront mieux compris et apparaîtront plus clairement à la lecture de la description faite, ci-après, en se référant à la figure 1 annexée, donnée à titre d'exemple et qui est une représentation schématique et partielle d'une architecture moteur impliquant un compresseur électrique d'air selon l'invention.
La présente invention se rapporte à un ensemble comportant un moteur thermique, un système d'admission d'air et un compresseur électrique d'air.
La présente invention concerne l'ensemble des moteurs thermiques, Diesel, essences, gaz, éthanol, ou un mélange de ces constituants, suralimentés ou pas. Dans la suite de la description, on entend par compresseur électrique, un compresseur d'air, volumétrique ou non et par exemple centrifuge ou radial, entraîné par un moteur électrique, dans le but de suralimenter un moteur thermique.
Selon un mode de réalisation de l'invention le compresseur est un compresseur de suralimentation en air.
Selon un mode de réalisation de l'invention, le moteur électrique du compresseur électrique est un moteur à courant continu ou alternatif, synchrone, ou tout type de moteur électrique du même type.
Plus précisément, selon un mode de réalisation de l'invention, le moteur électrique est un moteur à reluctance variable (également appelée machine SRM pour Switched Reluctance Motor selon la terminologie anglaise).
Le compresseur électrique est donc généralement activé pour augmenter la masse de l'air admis. Dans le cadre de l'invention, le compresseur électrique est associé à un circuit de dérivation (également appelé by-pass selon la terminologie anglaise) permettant de le contourner lorsque cela est nécessaire, comme décrit plus loin dans la description.
Dans le cadre de l'invention, le compresseur électrique est disposé en amont du moteur thermique.
Selon un mode de réalisation de l'invention, le moteur thermique a un fonctionnement deux temps.
Selon un autre mode de réalisation de l'invention, le moteur thermique a un fonctionnement quatre temps.
Selon un autre mode de réalisation de l'invention, l'ensemble selon l'invention comporte au moins un catalyseur disposé en sortie du moteur thermique, sur la ligne d'échappement.
Selon un mode de réalisation de l'invention, l'ensemble comporte plusieurs catalyseurs. Selon un mode de réalisation de l'invention, l'ensemble selon l'invention comporte un système de distribution variable de type VVT (pour variable valve timing selon la terminologie anglaise) ou VVL (pour variable valve lift selon la terminologie anglaise). Dans le cadre de l'invention, l'utilisation du compresseur électrique se fait pendant les modes de fonctionnement du moteur à bas régime et faible ou forte charge du moteur.
On entend par bas régime, un fonctionnement du moteur compris entre 1000 et 3000 tr/min, et par faibles ou fortes charges, le fait que le moteur fonctionne à 10 à 90 % de sa charge.
L'utilisation d'un compresseur électrique selon l'invention permet de s'affranchir de la durée de monter en régime du turbocompresseur. Il est ainsi possible de réaliser du balayage sur une zone plus élargie et sur de plus faibles charges.
L'utilisation du compresseur électrique présente également l'avantage de permettre de faire du balayage d'air frais dans la zone pollution. Cela permet de faire de l'injection d'air à l'échappement ce qui permet une montée en température plus rapide du catalyseur.
Ainsi l'utilisation du compresseur électrique avec un système de distribution variable et un système d'injection directe permet de :
- Repousser la limite cliquetis à bas régime et d'étendre la zone de balayage pour des fortes charges. En effet, lors du balayage pour de forte charge, l'utilisation du compresseur électrique permet d'accroître le balayage lors du croisement de soupapes admission et échappement, c'est-à-dire lorsque les soupapes admission et échappement sont ouvertes en même temps.
Faire de l'injection d'air à l'échappement toujours sur le même principe mais cette fois-ci plutôt sur les faibles charges pour permettre une mise en action catalyseur plus rapide. L'utilisation du compresseur électrique présente ainsi également l'avantage de réduire la durée d'échauffement du moteur. Cela permet de réduire le recours aux métaux précieux sur le catalyseur et/ou de pouvoir limiter ses contraintes thermiques en l'installant plus loin dans la ligne d'échappement.
L'ensemble concerné par la présente invention, dont un mode de réalisation est illustré sur la figure 1, comprend un moteur 2 thermique avec un conduit d'admission 4 et un compresseur électrique 5.
Ce moteur 2 comporte un bloc moteur 3 comportant une pluralité de cylindres, au nombre de quatre sur la figure, destinés à recevoir un mélange de comburant et de carburant, et par exemple l'essence comme carburant et de l'air pur ou un mélange air/gaz de recirculation comme comburant.
La combustion dans les cylindres génère le travail du moteur 2. Le fonctionnement du moteur 2 est classique : l'air est admis dans les cylindres, y est comprimé, brûlé puis expulsé sous forme de gaz d'échappement.
Ce moteur 2 a une entrée reliée au conduit d'admission 4 et une sortie reliée à un circuit d'échappement de gaz 10.
L'entrée 11 du conduit d'admission 4 définit l'entrée par laquelle l'air frais admis pénètre dans l'ensemble tandis que la sortie 12 du circuit d'échappement 10 définit la sortie par laquelle les gaz d'échappement sont évacués de l'ensemble.
Le conduit d'admission 4 débouche dans un collecteur d'admission 7 qui forme ainsi une boîte d'entrée de l'air admis dans la chambre de combustion 3 du moteur 2.
On entend par conduit d'admission 4 la canalisation d'admission pour l'air admis, dont le flux est représenté par la flèche Fl, cette canalisation étant située entre l'entré 11 d'air et le moteur 2.
Selon un mode de réalisation de l'invention le conduit d'admission 4 comporte un compresseur mécanique 111 de l'air admis.
Selon un mode de réalisation de l'invention, en amont du collecteur d'admission 7 de l'air dans le moteur 2, le conduit d'admission 4 comporte une vanne 8 comportant un obturateur de type papillon dont la fonction est de régler le débit de l'air admis pour la régulation du régime moteur. Cette vanne 8 est commandée par une unité de commande moteur bien connue de l'homme du métier (également appelé ECU qui signifie Engine Control Unit selon la terminologie anglaise), et permet de réguler la quantité d'air introduite dans le moteur et nécessaire à la combustion. La sortie du moteur 2 est formée par un collecteur 9 des gaz d'échappement. Ce dernier est relié à une voie ou canalisation 124 d'échappement des gaz faisant partie du circuit d'échappement de gaz.
Selon un mode de réalisation de l'invention, le circuit d'échappement 10 comporte une turbine 121, solidaire en rotation du compresseur mécanique 111 de l'air admis et formant avec lui un turbocompresseur. La turbine 121 est entraînée par les gaz d'échappement de la voie d'échappement 124, dont le flux est schématisé par la flèche F2. Selon un mode de réalisation, ce flux traverse le catalyseur 122.
Comme illustré sur la figure 1, l'ensemble comprend un compresseur électrique 5. Ce compresseur 5 est entraîné par un moteur électrique non représenté dont la commande est par exemple effectuée par l'unité de commande moteur. Le compresseur électrique 5 est disposé dans la boucle du conduit d'admission 4.
Dans une première variante de l'invention, le compresseur électrique 5 est disposé en amont de la vanne 8 papillon.
Dans une deuxième variante de l'invention non illustrée, le compresseur électrique 5 est disposé en aval de la vanne 8 papillon.
Selon un mode de réalisation de l'invention, le compresseur électrique est intégré dans un circuit de dérivation 51 (également appelé circuit by-pass selon la terminologie anglaise) comportant un moyen de dérivation 52 du type vanne. Cette vanne 52 est par exemple une vanne papillon. Cette vanne 52 est par exemple commandée par l'unité de commande du moteur. Le circuit de dérivation 51 en association avec le moyen de dérivation 52 permet en général à l'air admis arrivant via le circuit d'admission 4 de circuler à travers le compresseur électrique ou bien de le contourner, par la fermeture ou l'ouverture du moyen de dérivation 52. Le moyen de dérivation 52 de type vanne est disposé sur un premier conduit 510, du circuit de dérivation 51, différent de celui du compresseur électrique 5 de façon à ce que lorsque la vanne est fermée l'air admis soit dirigé 02 vers le deuxième conduit 511 où est disposé le compresseur électrique 5.
Ainsi en dehors des phases de fonctionnement du moteur où le compresseur est utilisé, et dans le cadre de l'invention en dehors des phases bas régime, l'air admis circule 01 dans le premier conduit 510 et ne traverse pas le compresseur électrique 5.
Le fonctionnement de l'ensemble selon l'invention est le suivant.
Lors d'un mode de fonctionnement du moteur à bas régime transitoire, le compresseur électrique est activé via l'unité de commande moteur et comprime l'air admis circulant dans le conduit d'admission. Cet air comprimé est ensuite envoyé directement dans le moteur 2 via la vanne papillon 8.
Le balayage est alors réalisé de manière classique. Les gaz admis « poussent » les gaz résiduels imbrulés qui sont ainsi évacuées. Cela est possible par le fait que les soupapes admission et échappement sont ouvertes. La phase d'utilisation du compresseur électrique selon l'invention, c'est-à-dire à bas régime, peut ensuite être suivie d'une phase établie selon laquelle on commande l'ensemble de manière à ce que le compresseur électrique ne soit pas alimenté.
Ce procédé de commande d'un ensemble tel que défini ci-dessus, permet ainsi lors d'un mode de fonctionnement du moteur à bas régime, d'activer le compresseur électrique et de comprimer à l'aide de ce dernier tout ou partie de l'air admis circulant dans le conduit d'admission, ce qui permet d'augmenter plus rapidement le débit d'air dans le moteur et favorise un balayage plus rapide.
La portée de la présente invention ne se limite pas aux détails donnés ci-dessus et permet des modes de réalisation sous de nombreuses autres formes spécifiques sans s'éloigner du domaine d'application de l'invention. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, et peuvent être modifiés sans toutefois sortir de la portée définie par les revendications.

Claims

REVEN DICATIONS
1. Ensemble comprenant : un conduit d'admission (4) s'étendant entre une entrée (11) d'air et un moteur thermique (2), un moteur thermique (2), un compresseur électrique (5) disposé sur le conduit d'admission en amont du moteur thermique (2), une vanne (8), disposée en amont du moteur thermique (2) le compresseur électrique (5) étant configuré pour permettre de réaliser du balayage sur les gaz brûlés résiduels.
2. Ensemble selon la revendication 1, comprenant un système de distribution variable.
3. Ensemble selon une des revendications 1 ou 2, dans lequel le compresseur électrique (5) est intégré da ns un circuit de dérivation (51) comportant un moyen de dérivation (52) configuré pour diriger l'air admis à travers le compresseur électrique (5) lors d'une phase transitoire.
4. Ensemble selon une des revendications 1 à 3, comprenant un système d'injection directe.
5. Ensemble selon une des revendications 1 à 4, da ns lequel le compresseur électrique est équipé d'un moteur à reluctance variable.
6. Procédé de commande d'un ensemble selon l'une des revendications 1 à 5, comportant, lors d'un mode de fonctionnement du moteur à bas régime: une étape d'activation du compresseur électrique (5), - une étape de circulation de l'air admis à travers le compresseur électrique
(5), une étape de balayage des gaz résiduels imbrulés du moteur.
7. Procédé selon la revendication 6, comprenant une étape de régulation du débit de l'air admis avec une vanne (8).
8. Utilisation de l'ensemble selon une des revendications 1 à 5 pour balayer les gaz résiduels imbrulés du moteur.
9. Utilisation de l'ensemble selon la revendication 8, lors d'un mode de fonctionnement du moteur à bas régime d'un véhicule.
PCT/FR2014/053419 2013-12-19 2014-12-18 Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels WO2015092291A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14830822.4A EP3084167A1 (fr) 2013-12-19 2014-12-18 Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels
US15/106,513 US20160348572A1 (en) 2013-12-19 2014-12-18 Assembly including a heat engine and an electrical compressor configured such as to scavenge residual burnt gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362995A FR3015562B1 (fr) 2013-12-19 2013-12-19 Ensemble comprenant un moteur thermique et un compresseur electrique configure pour faire du balayage des gaz brules residuels
FR1362995 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015092291A1 true WO2015092291A1 (fr) 2015-06-25

Family

ID=50289978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/053419 WO2015092291A1 (fr) 2013-12-19 2014-12-18 Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels

Country Status (4)

Country Link
US (1) US20160348572A1 (fr)
EP (1) EP3084167A1 (fr)
FR (1) FR3015562B1 (fr)
WO (1) WO2015092291A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080626A (ja) * 2016-11-16 2018-05-24 三菱自動車工業株式会社 エンジンの制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015563A1 (fr) * 2013-12-19 2015-06-26 Valeo Sys Controle Moteur Sas Ensemble comprenant un moteur thermique et un compresseur electrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041289A2 (fr) * 1999-03-31 2000-10-04 Cooper Cameron Corporation Unité compresseur à entaínement direct
FR2828714A1 (fr) * 2001-08-16 2003-02-21 Bosch Gmbh Robert Procede et dispositif de mise en oeuvre d'un moteur a combustion interne
US20090094978A1 (en) * 2007-10-12 2009-04-16 Mazda Motor Corporation Supercharger for an engine
US20090228187A1 (en) * 2008-03-06 2009-09-10 Hitachi, Ltd Variable valve actuation system of internal combustion engine and control apparatus of internal combustion engine
WO2013126232A1 (fr) * 2012-02-20 2013-08-29 Borgwarner Inc. Turbocompresseur à assistance électrique refroidi par fluide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH109005A (de) * 1924-03-15 1925-04-16 Bbc Brown Boveri & Cie Spülluft- bezw. Aufladegebläseanlage für Schiffs-Dieselmaschinen, insbesondere für Unterseeboote.
DE102013008826A1 (de) * 2013-05-24 2014-11-27 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041289A2 (fr) * 1999-03-31 2000-10-04 Cooper Cameron Corporation Unité compresseur à entaínement direct
FR2828714A1 (fr) * 2001-08-16 2003-02-21 Bosch Gmbh Robert Procede et dispositif de mise en oeuvre d'un moteur a combustion interne
US20090094978A1 (en) * 2007-10-12 2009-04-16 Mazda Motor Corporation Supercharger for an engine
US20090228187A1 (en) * 2008-03-06 2009-09-10 Hitachi, Ltd Variable valve actuation system of internal combustion engine and control apparatus of internal combustion engine
WO2013126232A1 (fr) * 2012-02-20 2013-08-29 Borgwarner Inc. Turbocompresseur à assistance électrique refroidi par fluide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080626A (ja) * 2016-11-16 2018-05-24 三菱自動車工業株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
FR3015562B1 (fr) 2018-02-23
US20160348572A1 (en) 2016-12-01
EP3084167A1 (fr) 2016-10-26
FR3015562A1 (fr) 2015-06-26

Similar Documents

Publication Publication Date Title
EP3084198B1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configuré pour chauffer les gaz d'admission
EP2867515B1 (fr) Ensemble comprenant un moteur thermique et un compresseur electrique
FR2818310A1 (fr) Dispositif et procede de chauffage d'un catalyseur de gaz d'echappement pour moteur a combustion interne a suralimentation
WO2010012919A1 (fr) Moteur a combustion interne suralimente equipe d'un circuit de recirculation de gazes d'echappement flexible et procede de mise en action du moteur
WO2013190198A1 (fr) Groupe moteur avec ligne de recirculation
WO2018083400A1 (fr) Système d'injection d'air dans un circuit d'échappement de gaz d'un moteur thermique suralimenté
WO2015092291A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels
FR3037357A1 (fr) Procede de chauffage d’un systeme d’echappement d’un ensemble moteur a combustion interne par injection d’air
EP3084164A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique
CN110637150B (zh) 压缩天然气发动机的进气排气构造
FR3068388A1 (fr) Systeme de regeneration d'un filtre a particules avec pompe a air electrique
FR2870887A1 (fr) Procede de gestion d'un moteur a combustion interne
JP4032773B2 (ja) 内燃機関
WO2012150393A1 (fr) Circuit d'alimentation d'air, moteur turbocompresse et procede de controle de la combustion d'un moteur turbocompresse
EP1106804A1 (fr) Procédé de commande d'un groupe motopropulseur de véhicules automobile pour augmenter la richesse des gaz d'échappement en phase de régénération d'un piège à oxydes d'azote.
WO2017162971A1 (fr) Procede de deceleration d'un compresseur electrique et compresseur electrique associe
FR3089557A1 (fr) Ensemble comprenant un moteur et un compresseur électrique configuré pour chauffer les gaz d’échappement
WO2017042311A1 (fr) Compresseur electrique avec vanne de contournement
FR2902832A1 (fr) Procede de pilotage d'un moteur a combustion interne comportant des moyens de filtrage lors d'une phase de regeneration de ces moyens de filtrage et pour un regime au ralenti
FR2689180A1 (fr) Dispositif de suralimentation d'un moteur à combustion interne utilisant deux compresseurs en parallèles.
FR2922268A1 (fr) Moteur a essence a circuit egr basse pression
FR3053404B1 (fr) Ensemble de circulation de gaz d’echappement d’un moteur thermique
FR3044363B1 (fr) Systeme moteur avec circuit de recirculation des gaz brules
FR3066784A1 (fr) Compresseur electrique avec vanne de contournement
EP4276297A1 (fr) Procédé de réglage de la recirculation partielle des gaz d'échappement à l'admission d'un moteur diesel

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014830822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014830822

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15106513

Country of ref document: US