EP3084164A1 - Ensemble comprenant un moteur thermique et un compresseur électrique - Google Patents

Ensemble comprenant un moteur thermique et un compresseur électrique

Info

Publication number
EP3084164A1
EP3084164A1 EP14830823.2A EP14830823A EP3084164A1 EP 3084164 A1 EP3084164 A1 EP 3084164A1 EP 14830823 A EP14830823 A EP 14830823A EP 3084164 A1 EP3084164 A1 EP 3084164A1
Authority
EP
European Patent Office
Prior art keywords
electric compressor
assembly
engine
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP14830823.2A
Other languages
German (de)
English (en)
Inventor
Florent David
Sébastien Potteau
Jean-Baptiste SIEGWART
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes de Controle Moteur SAS
Original Assignee
Valeo Systemes de Controle Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes de Controle Moteur SAS filed Critical Valeo Systemes de Controle Moteur SAS
Publication of EP3084164A1 publication Critical patent/EP3084164A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to the field of spark ignition engines, and more particularly an assembly for a motor vehicle engine comprising an air intake system and an electric compressor configured to increase the degradation of the ignition advance.
  • spark-ignition engines In cold starts, spark-ignition engines generate more pollutant emissions, such as unburned hydrocarbons, carbon monoxide or nitrogen oxides (NOx), due in particular to the combustion at lower temperatures, condensation fuel and local extinguishing of the flame on the cold walls, which do not succeed in being post-treated by the catalyst, whose action only starts at about 350 ° C.
  • pollutant emissions such as unburned hydrocarbons, carbon monoxide or nitrogen oxides (NOx)
  • the current solution on gasoline engines is to degrade the ignition timing, and to compensate this degradation by increasing the amount of air admitted, in order to achieve the desired engine torque by the driver.
  • turbocharger can manifest a certain response time (turbo-lag according to the English terminology), time lapse where the enthalpy of the exhaust gas is not yet enough to turn the turbocharger turbine at the ideal rate.
  • one solution is to reduce the ignition advance degradation.
  • This reduction in ignition advance degradation makes it possible to increase the effective torque, while waiting for the quantity of air to be sufficient to allow advance degradation.
  • This reduction in degradation is a brake on the generation of high temperature exhaust required for the proper treatment of unburnt. This solution results in high pollutant emissions.
  • the present invention therefore aims to overcome one or more of the disadvantages of the prior art systems by proposing a set for a thermal engine comprising an electric compressor to improve both the polluting emissions and the fuel consumption at the same time.
  • a set for a thermal engine comprising an electric compressor to improve both the polluting emissions and the fuel consumption at the same time.
  • the present invention proposes an assembly comprising: an intake duct extending between an air inlet and a heat engine, a heat engine, an electric compressor disposed on the intake duct upstream of the heat engine, the electric compressor being configured to allow to degrade the ignition advance during a transient phase.
  • the electric compressor is equipped with a variable reluctance motor.
  • the assembly comprises at least one valve, disposed upstream of the heat engine and downstream of the electric compressor, regulating the flow of air admitted into the engine.
  • the electric compressor is integrated in a bypass circuit comprising a bypass means configured to direct the intake air through the electric compressor during a transient phase.
  • the assembly comprises a heat exchanger disposed on the intake duct.
  • the electric compressor is disposed upstream of the heat exchanger, and upstream of the valve.
  • the electric compressor and the valve are arranged upstream of the heat exchanger.
  • the invention also relates to a method for controlling an assembly according to the invention, comprising, during a transitional phase: a step of activation of the electric compressor, a step of circulation of the air admitted through the electric compressor. a step of deterioration of the ignition advance.
  • the method comprises a step of regulating the flow of air admitted with a valve.
  • the invention also relates to the use of the assembly according to the invention for degrading the ignition advance during a transient phase.
  • the transient phase is a start-up phase.
  • FIG. 1 is a schematic and partial representation of an engine architecture involving an electric compressor according to the invention, according to a first variant of the invention
  • FIG. 2 is a schematic and partial representation of an engine architecture involving an electric compressor according to the invention, according to a second variant of the invention,
  • FIG. 3 is a representation of the results obtained during use of the device according to the invention.
  • the present invention relates to an assembly comprising a heat engine, an air intake system and an electric compressor.
  • an electric compressor is understood to mean an air compressor, whether volumetric or not and for example centrifugal or radial, driven by an electric motor, for the purpose of supercharging a heat engine.
  • the compressor is an air supercharger.
  • the electric motor of the electric compressor is a DC or AC synchronous motor, or any type of electric motor of the same type.
  • the electric motor is a variable reluctance motor (also called SRM machine for Switched Reluctance Motor according to English terminology).
  • the electric compressor is therefore generally activated to increase the density of the intake air.
  • the electric compressor is associated with a bypass circuit (also called bypass in the English terminology) to bypass it when necessary, as described later in the description.
  • the electric compressor is disposed upstream of the heat engine.
  • the heat engine has a two-stage operation.
  • the heat engine has a four-stroke operation.
  • the assembly according to the invention comprises at least one catalyst disposed at the output of the heat engine, on the exhaust line. According to one embodiment of the invention, the assembly comprises several catalysts.
  • the use of the electric compressor is during the transient phases of use of the engine.
  • the electric compressor This makes it possible to increase the flow rate, of fresh air admitted, more quickly, which limits the increase of the yield in advance.
  • This limitation of the increase of the feed efficiency gives rise to further deterioration in advance, and therefore generates more exhaust temperature.
  • the exhaust temperature rises faster, and the catalyst temperature also.
  • the use of the electric compressor has the advantage of reducing the heating time of the engine. This makes it possible to reduce the use of precious metals on the catalyst and to be able to limit its thermal stresses by installing it further in the exhaust line. The use of the electric compressor thus makes it possible to reduce the polluting emissions and to respect the future homologation cycles.
  • transient phase is understood to mean the phase of operation of the engine during start-up, and more specifically during warm-up of the engine (warm-up).
  • the assembly 1 engine concerned by the present invention comprises a thermal engine 2 with an intake duct 4 and an electric compressor 5.
  • This engine 2 comprises a motor unit 3 comprising a plurality of cylinders, four in number in the figure, intended to receive a mixture of oxidant and fuel, and for example gasoline as fuel and clean air or a mixture air / recirculating gas as the oxidant.
  • the combustion in the cylinders generates the work of the engine 2.
  • the operation of the engine 2 is conventional: the air is admitted into the cylinders, is compressed, burned and expelled in the form of exhaust gas.
  • This engine 2 has an input connected to the intake duct 4 and an output connected to a gas exhaust circuit 10.
  • the inlet 11 of the intake duct 4 defines the inlet through which the fresh air admitted enters the assembly 1 while the outlet 12 of the exhaust circuit 10 defines the outlet through which the exhaust gases are discharged. of the set 1.
  • the intake duct 4 opens into an intake manifold 7 which thus forms an intake air inlet box in the combustion chamber 3 of the engine 2.
  • intake duct 4 is meant the admission duct for the intake air, the flow of which is represented by the arrow Fl, this duct being situated between the air intake 11 and the engine 2.
  • the intake duct 4 comprises a mechanical compressor 111 of the intake air.
  • the intake duct 4 comprises a heat exchanger 6 also called charge air cooler, allowing the cooling of the intake air, and for example the air from the mechanical compressor 111.
  • the heat exchanger 6 ensures a heat exchange between the intake air and the heat transfer fluid of the heat exchanger 6.
  • the gases are at a temperature close to that of the fluid heat exchanger heat exchanger 6.
  • This heat exchanger can be air / air or air / water.
  • the intake duct 4 upstream of the intake manifold 7 of the air in the engine 2, the intake duct 4 comprises a valve 8 comprising a butterfly type shutter whose function is to regulate the air flow admitted for the regulation of the engine speed.
  • This valve 8 is controlled by an engine control unit well known to those skilled in the art (also called ECU which stands for Engine Control Unit according to the English terminology), and makes it possible to regulate the amount of air introduced into the engine and necessary to combustion.
  • the output of the engine 2 is formed by a manifold 9 of the exhaust gas. The latter is connected to a channel or conduit 124 for exhaust gases forming part of the gas exhaust system.
  • the exhaust circuit 10 comprises a turbine 121, integral in rotation with the mechanical compressor 111 of the intake air and forming with it a turbocharger.
  • the turbine 121 is driven by the exhaust gas of the exhaust path 124, whose flow is shown schematically by the arrow F2.
  • the flow passes through the catalyst 122.
  • the assembly 1 comprises an electric compressor 5.
  • This compressor 5 is driven by a not shown electric motor whose control is for example carried out by the engine control unit.
  • the electric compressor 5 is arranged in the loop of the intake duct 4.
  • the electric compressor 5 is disposed upstream of the heat exchanger 6, itself disposed downstream of the valve 8 butterfly.
  • the electric compressor 5 is disposed upstream of the butterfly valve 8, itself disposed upstream of the heat exchanger 6.
  • the electric compressor is integrated in a branch circuit 51 (also called bypass circuit according to the English terminology) comprising a valve-type bypass means 52.
  • This valve 52 is for example a butterfly valve.
  • This valve 52 is for example controlled by the engine control unit.
  • the branch circuit 51 in association with the bypass means 52 generally allows the intake air arriving via the intake circuit 4 to circulate through the electric compressor or to bypass it, by closing or opening the bypass means 52.
  • the valve-type bypass means 52 is disposed on a first conduit 510, of the bypass circuit 51, different from that of the electric compressor 5 so that when the valve is closed the intake air is directed to the second conduit 511 where the electric compressor 5 is located.
  • the admitted air circulates in the first duct 510 and does not pass through the electric compressor 5.
  • the operation of the assembly according to the invention is as follows. During a transient phase, the electric compressor is activated via the engine control unit and compresses the intake air circulating in the intake duct.
  • This compressed air is then sent either directly into the engine via the heat exchanger 6 and then the butterfly valve 8, either via the butterfly valve 8 and then the heat exchanger 6.
  • the transient phase can then be followed by an established phase in which the assembly is controlled so that the electric compressor is not powered.
  • This control method of an assembly as defined above thus allows during a transient phase, to activate the electric compressor and to compress using the latter all or part of the intake air flowing in the intake duct, which allows to increase more quickly the air flow in the engine.
  • FIG. 3 illustrate the increase of the exhaust temperature as a function of the ignition advance.
  • the use of the electric compressor makes it possible to obtain more air flow, which will allow iso engine torque to have more degradation in advance and therefore to increase the temperature of the exhaust gas.
  • the other effect will be an increase in the flow rate of the intake air and thus the exhaust enthalpy with heating or catalysts faster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

La présente invention concerne un ensemble (1) comprenant: un conduit d'admission (4) s'étendant entre une entrée (11) d'air et un moteur thermique (2), un moteur thermique (2), un compresseur électrique (5) disposé sur le conduit d'admission en amont du moteur thermique (2), le compresseur électrique (5) étant configuré pour permettre de dégrader l'avance à l'allumage lors d'une phase transitoire.

Description

ENSEMBLE COMPRENANT UN MOTEUR THERMIQUE
ET UN COMPRESSEUR ELECTRIQUE
La présente invention concerne le domaine des moteurs à allumage commandé, et plus particulièrement un ensemble pour moteur thermique de véhicule automobile comprenant un système d'admission d'air et un compresseur électrique configurés pour augmenter la dégradation de l'avance à l'allumage.
Lors des démarrages à froid, les moteurs à allumage commandé génèrent davantage d'émissions polluantes, telles que les hydrocarbures imbrûlés, le monoxyde de carbone ou les oxydes d'azote (NOx), dues notamment à la combustion à plus basse température, la condensation du carburant et l'extinction locale de la flamme sur les parois froides, qui ne réussissent pas à être post-traités par le catalyseur, dont l'action ne s'amorce qu'à partir d'environ 350°C.
Le futur cycle d'homologation des véhicules (WLTC pour Worldwide harmonized
Light vehicles Test Procédures selon la terminologie anglaise) étant plus dynamique que l'actuel, il est aujourd'hui nécessaire de diminuer encore plus les émissions polluantes et la consommation de carburant pour respecter les futures normes. Cela implique un besoin de réduire le temps de mise en activation du catalyseur. Ce travail d'amélioration porte notamment sur les phases transitoires de fonctionnement du moteur, telles que le démarrage, les changements de vitesse, les freinages ou les arrêts des moteurs.
Une solution pour diminuer cette génération d'hydrocarbures imbrûlés, lors des démarrages du véhicule, est d'effectuer une phase d'échauffement du moteur (warm-up selon la terminologie anglaise), qui va, en augmentant la température échappement, permettre une meilleure efficacité du catalyseur, plus rapidement. Un inconvénient de cette technique provient du fait que la phase d'échauffement est très coûteuse en carburant.
Pour réduire la durée de cette phase de mise en action du catalyseur, la solution actuelle sur les moteurs essence est de dégrader l'avance à l'allumage, et de compenser cette dégradation par une augmentation de la quantité d'air admise, afin d'atteindre le couple moteur souhaité par le conducteur.
Cependant, lors d'un régime transitoire avec de fortes charges, c'est-à-dire lorsque le conducteur accélère soudainement, la quantité d'air admise n'augmente pas immédiatement. Ce phénomène est particulièrement sensible avec un moteur équipé d'un turbocompresseur. En effet, le turbocompresseur peut manifester un certain temps de réponse (turbo-lag selon la terminologie anglaise), laps de temps où l'enthalpie des gaz d'échappement ne suffit pas encore à faire tourner la turbine du turbocompresseur au régime idéal.
Pour compenser ce temps de réponse, une solution consiste à diminuer la dégradation d'avance à l'allumage. Cette diminution de dégradation d'avance à l'allumage permet d'augmenter le couple effectif, en attendant que la quantité d'air soit suffisante pour permettre une dégradation d'avance. Cette diminution de la dégradation est un frein à la génération de haute température à l'échappement nécessaire pour le bon traitement des imbrûlés. Cette solution a comme conséquence des émissions polluantes élevées.
Pour compenser cela, il est nécessaire de
mettre plus de métaux précieux sur le catalyseur, de façon à en améliorer l'efficacité, ce qui engendre un surcoût non négligeable, et
- installer le catalyseur au plus près possible de la sortie moteur, pour limiter les pertes thermiques dans les conduits, ce qui engendre des difficultés d'intégration et des contraintes thermiques moyennes supérieures sur le catalyseur en fonctionnement à chaud. Ce dernier effet a pour conséquence un vieillissement accéléré du catalyseur, qui compense de façon négative le bénéfice de l'augmentation des métaux précieux.
La présente invention a donc pour objet de pallier un ou plusieurs des inconvénients des systèmes de l'art antérieur en proposant un ensemble pour moteur thermique comprenant un compresseur électrique permettant d'améliorer à la fois les émissions polluantes et la consommation de carburant lors de l'utilisation du véhicule. Pour cela la présente invention propose un ensemble comprenant : un conduit d'admission s'étendant entre une entrée d'air et un moteur thermique, un moteur thermique, - un compresseur électrique disposé sur le conduit d'admission en amont du moteur thermique, le compresseur électrique étant configuré pour permettre de dégrader l'avance à l'allumage lors d'une phase transitoire.
Selon un mode de réalisation de l'invention, le compresseur électrique est équipé d'un moteur à reluctance variable.
Le compresseur électrique permet ainsi d'augmenter le débit, d'air frais admis, plus rapidement, ce qui limite l'augmentation du rendement d'avance, réduit la durée d'échauffement du moteur et permet ainsi de diminuer les émissions polluantes et de respecter les futurs cycles d'homologation. Selon un mode de réalisation de l'invention, l'ensemble comprend au moins une vanne, disposée en amont du moteur thermique et en aval du compresseur électrique, régulant le débit l'air admis dans le moteur thermique.
Selon un mode de réalisation de l'invention, le compresseur électrique est intégré dans un circuit de dérivation comportant un moyen de dérivation configuré pour diriger l'air admis à travers le compresseur électrique lors d'une phase transitoire.
Selon un mode de réalisation de l'invention, l'ensemble comprend un échangeur de chaleur disposé sur le conduit d'admission.
Selon un mode de réalisation de l'invention, le compresseur électrique est disposé en amont de l'échangeur de chaleur, et en amont de la vanne. Selon un mode de réalisation de l'invention, le compresseur électrique et la vanne sont disposés en amont de l'échangeur de chaleur. L'invention concerne également un procédé de commande d'un ensemble selon l'invention, comportant, lors d'une phase transitoire: une étape d'activation du compresseur électrique, une étape de circulation de l'air admis à travers le compresseur électrique, - une étape de dégradation de l'avance à l'allumage.
Selon un mode de réalisation de l'invention, le procédé comprend une étape de régulation du débit de l'air admis avec une vanne.
L'invention concerne également l'utilisation de l'ensemble selon l'invention pour dégrader l'avance à l'allumage lors d'une phase transitoire. Selon un mode de réalisation de l'invention, la phase transitoire est une phase de démarrage.
D'autres buts, caractéristiques et avantages de l'invention seront mieux compris et apparaîtront plus clairement à la lecture de la description faite, ci-après, en se référant aux figures annexées, données à titre d'exemple et dans lesquelles:
- la figure 1 est une représentation schématique et partielle d'une architecture moteur impliquant un compresseur électrique selon l'invention, selon une première variante de l'invention,
- la figure 2 est une représentation schématique et partielle d'une architecture moteur impliquant un compresseur électrique selon l'invention, selon une deuxième variante de l'invention,
- la figure 3 est une représentation des résultats obtenus lors de l'utilisation du dispositif selon l'invention. La présente invention se rapporte à un ensemble comportant un moteur thermique, un système d'admission d'air et un compresseur électrique.
La présente invention concerne l'ensemble des moteurs thermiques, essences, gaz, éthanol, ou un mélange de ces constituants, suralimentés ou pas. Dans la suite de la description, on entend par compresseur électrique, un compresseur d'air, volumétrique ou non et par exemple centrifuge ou radial, entraîné par un moteur électrique, dans le but de suralimenter un moteur thermique.
Selon un mode de réalisation de l'invention le compresseur est un compresseur de suralimentation en air.
Selon un mode de réalisation de l'invention, le moteur électrique du compresseur électrique est un moteur à courant continu ou alternatif, synchrone, ou tout type de moteur électrique du même type.
Plus précisément, selon un mode de réalisation de l'invention, le moteur électrique est un moteur à reluctance variable (également appelée machine SRM pour Switched Reluctance Motor selon la terminologie anglaise).
Le compresseur électrique est donc généralement activé pour augmenter la masse volumique de l'air admis. Dans le cadre de l'invention, le compresseur électrique est associé à un circuit de dérivation (également appelé by-pass selon la terminologie anglaise) permettant de le contourner lorsque cela est nécessaire, comme décrit plus loin dans la description.
Dans le cadre de l'invention, le compresseur électrique est disposé en amont du moteur thermique.
Selon un mode de réalisation de l'invention, le moteur thermique a un fonctionnement deux temps.
Selon un autre mode de réalisation de l'invention, le moteur thermique a un fonctionnement quatre temps.
L'ensemble selon l'invention comporte au moins un catalyseur disposé en sortie du moteur thermique, sur la ligne d'échappement. Selon un mode de réalisation de l'invention, l'ensemble comporte plusieurs catalyseurs.
Dans le cadre de l'invention, l'utilisation du compresseur électrique se fait pendant les phases transitoires d'utilisation du moteur. Le compresseur électrique permet ainsi d'augmenter le débit, d'air frais admis, plus rapidement, ce qui limite l'augmentation du rendement d'avance. Cette limitation de l'augmentation du rendement d'avance engendre une plus grande dégradation d'avance, et engendre donc plus de température à l'échappement. La température d'échappement monte plus vite, et la température catalyseur également.
L'utilisation du compresseur électrique présente l'avantage de réduire la durée d'échauffement du moteur. Cela permet de réduire le recours aux métaux précieux sur le catalyseur et de pouvoir limiter ses contraintes thermiques en l'installant plus loin dans la ligne d'échappement. L'utilisation du compresseur électrique permet ainsi de diminuer les émissions polluantes et de respecter les futurs cycles d'homologation.
Dans le cadre de l'invention, on entend par phase transitoire, la phase de fonctionnement du moteur lors du démarrage, et plus précisément lors de réchauffement du moteur (warm-up). L'ensemble 1 moteur concerné par la présente invention, dont un mode de réalisation est illustré sur les figures 1 et 2, comprend un moteur 2 thermique avec un conduit d'admission 4 et un compresseur électrique 5.
Ce moteur 2 comporte un bloc moteur 3 comportant une pluralité de cylindres, au nombre de quatre sur la figure, destinés à recevoir un mélange de comburant et de carburant, et par exemple l'essence comme carburant et de l'air pur ou un mélange air/gaz de recirculation comme comburant.
La combustion dans les cylindres génère le travail du moteur 2. Le fonctionnement du moteur 2 est classique : l'air est admis dans les cylindres, y est comprimé, brûlé puis expulsé sous forme de gaz d'échappement. Ce moteur 2 a une entrée reliée au conduit d'admission 4 et une sortie reliée à un circuit d'échappement de gaz 10. L'entrée 11 du conduit d'admission 4 définit l'entrée par laquelle l'air frais admis pénètre dans l'ensemble 1 tandis que la sortie 12 du circuit d'échappement 10 définit la sortie par laquelle les gaz d'échappement sont évacués de l'ensemble 1.
Le conduit d'admission 4 débouche dans un collecteur d'admission 7 qui forme ainsi une boîte d'entrée de l'air admis dans la chambre de combustion 3 du moteur 2.
On entend par conduit d'admission 4 la canalisation d'admission pour l'air admis, dont le flux est représenté par la flèche Fl, cette canalisation étant située entre l'entré 11 d'air et le moteur 2.
Selon un mode de réalisation de l'invention le conduit d'admission 4 comporte un compresseur mécanique 111 de l'air admis.
Selon un mode de réalisation de l'invention, le conduit d'admission 4 comporte un échangeur de chaleur 6 également appelé refroidisseur d'air de suralimentation, permettant le refroidissement de l'air admis, et par exemple l'air issus du compresseur mécanique 111. L'échangeur de chaleur 6 assure un échange thermique entre l'air admis et le fluide caloporteur de l'échangeur de chaleur 6. En sortie de l'échangeur de chaleur 6, les gaz sont à une température proche de celle du fluide caloporteur de l'échangeur de chaleur 6. Cet échangeur de chaleur peut être air/air ou air/eau.
Selon un mode de réalisation de l'invention, en amont du collecteur d'admission 7 de l'air dans le moteur 2, le conduit d'admission 4 comporte une vanne 8 comportant un obturateur de type papillon dont la fonction est de régler le débit de l'air admis pour la régulation du régime moteur. Cette vanne 8 est commandée par une unité de commande moteur bien connue de l'homme du métier (également appelé ECU qui signifie Engine Control Unit selon la terminologie anglaise), et permet de réguler la quantité d'air introduite dans le moteur et nécessaire à la combustion. La sortie du moteur 2 est formée par un collecteur 9 des gaz d'échappement. Ce dernier est relié à une voie ou canalisation 124 d'échappement des gaz faisant partie du circuit d'échappement de gaz. Selon un mode de réalisation de l'invention, le circuit d'échappement 10 comporte une turbine 121, solidaire en rotation du compresseur mécanique 111 de l'air admis et formant avec lui un turbocompresseur. La turbine 121 est entraînée par les gaz d'échappement de la voie d'échappement 124, dont le flux est schématisé par la flèche F2. Selon un mode de réalisation, le flux traverse le catalyseur 122.
Comme illustré sur la figure 1, l'ensemble 1 comprend un compresseur électrique 5. Ce compresseur 5 est entraîné par un moteur électrique non représenté dont la commande est par exemple effectuée par l'unité de commande moteur. Le compresseur électrique 5 est disposé dans la boucle du conduit d'admission 4. Dans une première variante de l'invention, le compresseur électrique 5 est disposé en amont de l'échangeur de chaleur 6, lui-même disposé en aval de la vanne 8 papillon.
Dans une deuxième variante de l'invention, le compresseur électrique 5 est disposé en amont de la vanne 8 papillon, elle-même disposée en amont de l'échangeur de chaleur 6. Selon un mode de réalisation de l'invention, le compresseur électrique est intégré dans un circuit de dérivation 51 (également appelé circuit by-pass selon la terminologie anglaise) comportant un moyen de dérivation 52 du type vanne. Cette vanne 52 est par exemple une vanne papillon. Cette vanne 52 est par exemple commandée par l'unité de commande du moteur. Le circuit de dérivation 51 en association avec le moyen de dérivation 52 permet en général à l'air admis arrivant via le circuit d'admission 4 de circuler à travers le compresseur électrique ou bien de le contourner, par la fermeture ou l'ouverture du moyen de dérivation 52. Le moyen de dérivation 52 de type vanne est disposé sur un premier conduit 510, du circuit de dérivation 51, différent de celui du compresseur électrique 5 de façon à ce que lorsque la vanne est fermée l'air admis soit dirigé vers le deuxième conduit 511 où est disposé le compresseur électrique 5.
Ainsi en dehors des phases de fonctionnement du moteur où le compresseur est utilisé, et dans le cadre de l'invention en dehors des phases transitoires, l'air admis circule dans le premier conduit 510 et ne traverse pas le compresseur électrique 5.
Le fonctionnement de l'ensemble selon l'invention est le suivant. Lors d'une phase transitoire, le compresseur électrique est activé via l'unité de commande moteur et comprime l'air admis circulant dans le conduit d'admission.
Cet air comprimé est ensuite envoyé soit directement dans le moteur via l'échangeur de chaleur 6 puis la vanne papillon 8, soit via la vanne papillon 8 puis l'échangeur de chaleur 6.
La phase transitoire peut ensuite être suivie d'une phase établie selon laquelle on commande l'ensemble de manière à ce que le compresseur électrique ne soit pas alimenté.
Ce procédé de commande d'un ensemble tel que défini ci-dessus, permet ainsi lors d'une phase transitoire, d'activer le compresseur électrique et de comprimer à l'aide de ce dernier tout ou partie de l'air admis circulant dans le conduit d'admission, ce qui permet d'augmenter plus rapidement le débit d'air dans le moteur.
Les résultats sur la figure 3, illustrent l'augmentation de la température échappement en fonction de l'avance à l'allumage. Ainsi, plus on dégrade l'avance, plus la température échappement est importante ce qui permet de chauffer le catalyseur plus rapidement.
Ainsi, l'utilisation du compresseur électrique permet d'obtenir plus de débit d'air, ce qui va permettre à iso couple moteur d'avoir plus de dégradation d'avance et donc d'augmenter la température des gaz d'échappement. L'autre effet, va être une augmentation du débit de l'air admis et donc de l'enthalpie échappement avec un chauffage du ou des catalyseurs plus rapide.
La diminution de la durée de mise en action du catalyseur a pour effet une diminution des polluants et une amélioration de la consommation de carburant. La portée de la présente invention ne se limite pas aux détails donnés ci-dessus et permet des modes de réalisation sous de nombreuses autres formes spécifiques sans s'éloigner du domaine d'application de l'invention. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, et peuvent être modifiés sans toutefois sortir de la portée définie par les revendications.

Claims

REVEN DICATIONS
1. Ensemble (1) comprenant : un conduit d'admission (4) s'étendant entre une entrée (11) d'air et un moteur thermique (2), un moteur thermique (2), un compresseur électrique (5) disposé sur le conduit d'admission en amont du moteur thermique (2), le compresseur électrique (5) étant configuré pour permettre de dégrader l'avance à l'allumage lors d'une phase transitoire.
2. Ensemble (1) selon la revendication 1, comprenant au moins une vanne (8), disposée en amont du moteur thermique (2) et en aval du compresseur électrique (5), régulant le débit l'air admis dans le moteur thermique (2).
3. Ensemble (1) selon une des revendications 1 ou 2, dans lequel le compresseur électrique (5) est intégré dans un circuit de dérivation (51) comportant un moyen de dérivation (52) configuré pour diriger l'air admis à travers le compresseur électrique (5) lors d'une phase transitoire.
4. Ensemble (1) selon une des revendications 1 à 3, comprenant un échangeur de chaleur (6) disposé sur le conduit d'admission (4).
5. Ensemble (1) selon la revendication 4, da ns lequel le compresseur électrique (5) est disposé en amont de l'échangeur de chaleur (6), et en amont de la vanne (8).
6. Ensemble (1) selon une des revendications 4 ou 5, dans lequel le compresseur électrique (5) et la vanne (8) sont disposés en amont de l'échangeur de chaleur (6).
7. Ensemble selon une des revendications 1 à 6, da ns lequel le compresseur électrique est équipé d'un moteur à reluctance variable.
8. Procédé de commande d'un ensemble (1) selon l'une des revendications 1 à 7, comportant, lors d'une phase transitoire:
- une étape d'activation du compresseur électrique (5),
- une étape de circulation de l'air admis à travers le compresseur électrique (5),
- une étape de dégradation de l'avance à l'allumage.
9. Procédé selon la revendication 8, comprenant une étape de régulation du débit de l'air admis avec une vanne (8).
10. Utilisation de l'ensemble (1) selon une des revendications 1 à 7 pour dégrader l'avance à l'allumage lors d'une phase transitoire.
11. Utilisation de l'ensemble (1) selon la revendication 10, la phase transitoire étant une phase de démarrage.
EP14830823.2A 2013-12-19 2014-12-18 Ensemble comprenant un moteur thermique et un compresseur électrique Pending EP3084164A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362998A FR3015563A1 (fr) 2013-12-19 2013-12-19 Ensemble comprenant un moteur thermique et un compresseur electrique
PCT/FR2014/053420 WO2015092292A1 (fr) 2013-12-19 2014-12-18 Ensemble comprenant un moteur thermique et un compresseur électrique

Publications (1)

Publication Number Publication Date
EP3084164A1 true EP3084164A1 (fr) 2016-10-26

Family

ID=50424499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14830823.2A Pending EP3084164A1 (fr) 2013-12-19 2014-12-18 Ensemble comprenant un moteur thermique et un compresseur électrique

Country Status (4)

Country Link
US (1) US20160348632A1 (fr)
EP (1) EP3084164A1 (fr)
FR (1) FR3015563A1 (fr)
WO (1) WO2015092292A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040743B1 (fr) * 2015-09-09 2020-03-20 Valeo Systemes De Controle Moteur Compresseur electrique avec vanne de contournement
FR3047273B1 (fr) * 2016-01-28 2020-01-03 Valeo Systemes De Controle Moteur Systeme de gestion d'air d'admission pour un moteur thermique de vehicule automobile
CN109372628A (zh) * 2018-10-30 2019-02-22 东风商用车有限公司 一种电动增压实现米勒循环柴油发动机系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215779A1 (de) * 2002-04-10 2003-11-06 Bosch Gmbh Robert Brennkraftmaschine mit einer Aufladevorrichtung
DE102012009288A1 (de) * 2011-05-19 2012-11-22 Volkswagen Aktiengesellschaft Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135098A (en) * 1998-10-06 2000-10-24 Engineered Machine Products, Inc. Flow-through controllable air charger
JP2001280145A (ja) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd 過給機付きエンジンの制御装置
AU2002227502A1 (en) * 2000-07-28 2002-02-13 Visteon Global Technologies, Inc. Internal combustion engine supercharger
DE10062377B4 (de) * 2000-12-14 2005-10-20 Siemens Ag Vorrichtung und Verfahren zum Beheizen eines Abgaskatalysators für eine aufgeladene Brennkraftmaschine
DE50212015D1 (de) * 2002-04-15 2008-05-15 Ford Global Tech Llc Ladesystem für eine Brennkraftmaschine sowie Verfahren zu dessen Regelung
US6675579B1 (en) * 2003-02-06 2004-01-13 Ford Global Technologies, Llc HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting
JP3952974B2 (ja) * 2003-03-17 2007-08-01 トヨタ自動車株式会社 内燃機関の制御装置
JP3933075B2 (ja) * 2003-03-27 2007-06-20 日産自動車株式会社 電動過給機構の制御装置
DE10322481A1 (de) * 2003-05-19 2004-12-16 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
JP2005061243A (ja) * 2003-08-18 2005-03-10 Nissan Motor Co Ltd 内燃機関の過給装置
US7287521B2 (en) * 2005-09-21 2007-10-30 Ford Global Technologies Llc System and method for improved engine starting using heated intake air
US8141357B2 (en) * 2007-10-12 2012-03-27 Mazda Motor Corporation Supercharger for an engine
GB2493915A (en) * 2011-08-19 2013-02-27 Bamford Excavators Ltd Internal combustion engine with turbocharger, supercharger and supercharger bypass
JP5303049B1 (ja) * 2012-03-27 2013-10-02 三菱電機株式会社 電動過給機を備えた内燃機関制御装置
FR3015562B1 (fr) * 2013-12-19 2018-02-23 Valeo Systemes De Controle Moteur Ensemble comprenant un moteur thermique et un compresseur electrique configure pour faire du balayage des gaz brules residuels
DE102016201770B3 (de) * 2016-02-05 2017-06-29 Ford Global Technologies, Llc Selbstzündende und für den HCCI-Betrieb geeignete Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
US10132252B2 (en) * 2016-08-22 2018-11-20 Hyundai Motor Company Engine system
KR101826571B1 (ko) * 2016-08-30 2018-02-07 현대자동차 주식회사 엔진 시스템
KR20180038308A (ko) * 2016-10-06 2018-04-16 현대자동차주식회사 엔진 시스템
JP6227086B1 (ja) * 2016-10-11 2017-11-08 三菱電機株式会社 過給機付き内燃機関の制御装置及び制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215779A1 (de) * 2002-04-10 2003-11-06 Bosch Gmbh Robert Brennkraftmaschine mit einer Aufladevorrichtung
DE102012009288A1 (de) * 2011-05-19 2012-11-22 Volkswagen Aktiengesellschaft Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015092292A1 *

Also Published As

Publication number Publication date
WO2015092292A1 (fr) 2015-06-25
US20160348632A1 (en) 2016-12-01
FR3015563A1 (fr) 2015-06-26

Similar Documents

Publication Publication Date Title
EP3084198B1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configuré pour chauffer les gaz d'admission
WO2008125762A1 (fr) Circuit de gaz d'echappement egr basse pression avec prise en compte du chauffage de l'habitacle
WO2009068504A1 (fr) Dispositif et procede de depollution et de chauffage pour vehicule automobile
WO2005116414A1 (fr) Systeme ameliore de regulation de la temperature des gaz admis dans un moteur
WO2015092292A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique
WO2008148976A2 (fr) Systeme d'admission pour vehicule automobile equipe d'un systeme egr
EP3535483A1 (fr) Système d'injection d'air dans un circuit d'échappement de gaz d'un moteur thermique suralimenté
EP3163042B1 (fr) Procédé d'alimentation électrique d'un dispositif de chauffage des gaz d'échappement d'un groupe motopropulseur d'un véhicule automobile et véhicule associé
FR2948421A1 (fr) Procede de gestion de la circulation d'un fluide caloporteur dans un circuit de refroidissement d'un moteur thermique de vehicule automobile.
WO2015092291A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels
FR2880074A1 (fr) Refroidissement et rechauffage de l'air d'admission d'un moteur
FR3109802A1 (fr) Chauffage de système de dépollution de moteur thermique comportant un e-turbo
EP3141733B1 (fr) Groupe motopropulseur comportant une conduite de recirculation des gaz d'échappement non refroidie et procédé associé
WO2017006025A1 (fr) Circuit de recirculation de gaz d'echappement pour un moteur thermique a allumage commande
EP3347581A1 (fr) Compresseur électrique avec vanne de contournement
FR2922268A1 (fr) Moteur a essence a circuit egr basse pression
FR3053407B1 (fr) Ensemble de circulation de gaz d’echappement d’un moteur thermique
FR3053404B1 (fr) Ensemble de circulation de gaz d’echappement d’un moteur thermique
FR2876419A1 (fr) Procede et dispositif d'alimentation en comburant d'un moteur a explosion
FR3060054A1 (fr) Procede de recirculation des gaz brules avec un compresseur electrique
FR3089557A1 (fr) Ensemble comprenant un moteur et un compresseur électrique configuré pour chauffer les gaz d’échappement
EP4291761A1 (fr) Système egr avec préchauffage de dispositif de dépollution
FR2876418A1 (fr) Procede et dispositif d'admission d'un melange comburant dans un moteur
EP2024630A1 (fr) Moteur a combustion interne ayant un circuit de recirculation des gaz d'echappement
EP2128414A1 (fr) Procédé de contrôle moteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SIEGWART, JEAN-BAPTISTE

Inventor name: POTTEAU, SEBASTIEN

Inventor name: DAVID, FLORENT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170817

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS