WO2013187438A1 - シス-5-ヒドロキシ-l-ピペコリン酸の生物学的な製造方法 - Google Patents

シス-5-ヒドロキシ-l-ピペコリン酸の生物学的な製造方法 Download PDF

Info

Publication number
WO2013187438A1
WO2013187438A1 PCT/JP2013/066218 JP2013066218W WO2013187438A1 WO 2013187438 A1 WO2013187438 A1 WO 2013187438A1 JP 2013066218 W JP2013066218 W JP 2013066218W WO 2013187438 A1 WO2013187438 A1 WO 2013187438A1
Authority
WO
WIPO (PCT)
Prior art keywords
cis
protein
acid
pipecolic acid
seq
Prior art date
Application number
PCT/JP2013/066218
Other languages
English (en)
French (fr)
Inventor
藤井 匡
圭輔 田村
Original Assignee
日本マイクロバイオファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本マイクロバイオファーマ株式会社 filed Critical 日本マイクロバイオファーマ株式会社
Priority to US14/407,576 priority Critical patent/US9611490B2/en
Priority to CN201380030961.0A priority patent/CN104395466A/zh
Priority to EP13804143.9A priority patent/EP2873730A4/en
Priority to JP2014521374A priority patent/JP6276178B2/ja
Priority to CA2876558A priority patent/CA2876558C/en
Publication of WO2013187438A1 publication Critical patent/WO2013187438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a genetically modified microorganism having the ability to produce cis-5-hydroxy-L-pipecolic acid and a method for producing cis-5-hydroxy-L-pipecolic acid using these microorganisms.
  • Cis-5-hydroxy-L-pipecolic acid is a kind of modified amino acid having a structure in which a hydroxyl group is introduced into L-pipecolic acid, and is a useful substance as a synthetic intermediate material for pharmaceuticals.
  • L-pipecolic acid is produced from L-lysine by Escherichia coli having the following polynucleotide (sometimes referred to as DNA).
  • DNA polynucleotide
  • the lat gene (SEQ ID NO: 1) derived from Flavobacterium lutescens IFO3084 strain as an example of the above a), and the proC gene derived from E. coli (SEQ ID NO: 3) as an example of the above b) Yes. Since Escherichia coli originally has the proC gene, the lat gene has been introduced, and Escherichia coli expressing the gene has the ability to produce L-pipecolic acid. In addition, it has been reported that DNA encoding a protein having lysine-specific permeation activity, for example, E. coli having an lysP gene (SEQ ID NO: 4) derived from E. coli has improved the production rate of L-pipecolic acid.
  • BAB52605 protein or CAC47686 protein derived from Mesohizobium loti MAFF303099 has been reported to have the ability to convert L-proline to cis-4-hydroxyproline (Patent Document 2).
  • the amino acid sequence of the BAB52605 protein is registered as the accession number BAB52605 in the database GenBank.
  • the base sequence is registered in the database GenBank as accession number BA000012 (SEQ ID NO: 7: loti gene).
  • CAC47686 protein is considered to be a beneficial enzyme for unnatural amino acid synthesis, but has the following problems. Problem 1) When this protein is expressed in E. coli using a general method, it is insolubilized and inactivated. Problem 2) When this protein is subjected to in vitro reaction, it is quickly denatured. Problem 3) When this protein is subjected to an in vitro reaction, almost the same amount of cis-3-hydroxypipecolic acid accumulates from L-pipecolic acid together with cis-5-hydroxy-L-pipecolic acid.
  • Non-Patent Document 3 avoiding the problem 1), in order to express the CAC47686 protein in E. coli, the protein expression is induced at a low temperature by using a cold shock promoter, and GroEL / GroES of Streptomyces coelicolor is co-expressed. Etc.
  • L-pipecolic acid is used to hydroxylate live E. coli cells expressing this protein, but this method is actually effective. It is not clear whether there was. No workaround for problem 3) is presented. Thus, it was considered difficult to produce cis-5-hydroxy-L-pipecolic acid using E. coli expressing CAC47686 protein.
  • BAB52605 protein is also likely to have the ability to convert CAC47686 protein as well as L- pipecolic acid cis-5-hydroxy -L- pipecolic acid were considered, as shown in the examples herein, the loti gene The productivity of cis-5-hydroxy-L-pipecolic acid in E. coli expressing the encoded BAB52605 protein was found to be relatively low. In addition, the identity of the amino acid sequence of BAB52605 protein and CAC47686 protein is 66%.
  • EFV12517 protein as Seguniriparasu-Rugosasu (Segniliparus rugosus) ATCC BAA-974-derived protein, its amino acid sequence is registered as Accession No. EFV12517 database GenBank.
  • the base sequence is registered in the database GenBank as accession number ACZI01000186 (REGION: 1378..2229) (SEQ ID NO: 8: shortcis gene).
  • the EFV12517 protein is annotated in GenBank as aspartyl / Asparginyl beta-hydroxylase, and as shown in the Examples of the present invention, L-pipecolic acid was cis-expressed in E. coli expressing the EFV12517 protein.
  • Escherichia coli expressing a protein encoded by a polynucleotide (SEQ ID NO: 2: cis gene) expressed from 48 bases (corresponding to 16 amino acids) upstream of the annotation of the EFV12517 protein is cis-5th position of L-pipecolic acid.
  • SEQ ID NO: 2: cis gene a polynucleotide expressed from 48 bases (corresponding to 16 amino acids) upstream of the annotation of the EFV12517 protein is cis-5th position of L-pipecolic acid.
  • the present invention was completed by finding that it has hydroxylase activity and can convert L-pipecolic acid into cis-5-hydroxy-L-pipecolic acid.
  • the present invention provides the following: [1] A step of producing cis-5-hydroxy-L-pipecolic acid using L-pipecolic acid as a substrate by a microorganism containing in a state capable of expressing any one of the following polynucleotides (A) to (F): A process for producing cis-5-hydroxy-L-pipecolic acid or a pharmacologically acceptable salt thereof or a solvate thereof, comprising: (A) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 2; (B) cis-5-hydroxy-L-pipecolic acid which hybridizes with a polynucleotide comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 2 under stringent conditions and uses L-pipecolic acid as a substrate A polynucleotide encoding a protein having an activity to catalyze a reaction to produce (C) having an activity of catalyzing a reaction having at least 85% identity with
  • a polynucleotide encoding a protein having an activity of catalyzing a reaction for producing L-aminoadipic acid-delta-semialdehyde using L-lysine as a substrate is derived from Flavobacterium lutescens [ [2] The production method according to [2].
  • the microorganism is Escherichia coli, and originally has a polynucleotide encoding a protein having an activity of catalyzing a reaction for producing L-pipecolic acid using delta1-piperidein-6-carboxylic acid as a substrate, [2] or [3] The production method according to [3].
  • polynucleotide according to any one of (A) to (F) below: (A) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 2; (B) cis-5-hydroxy-L-pipecolic acid which hybridizes with a polynucleotide comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 2 under stringent conditions and uses L-pipecolic acid as a substrate; A polynucleotide encoding a protein having an activity to catalyze a reaction to produce (C) having an activity of catalyzing a reaction having at least 85% identity with the base sequence shown in SEQ ID NO: 2 and producing cis-5-hydroxy-L-pipecolic acid using L-pipecolic acid as a substrate; A polynucleotide encoding a protein having; (D) a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 25; (
  • a protein having an activity to catalyze a reaction for producing ⁇ -ketoglutaric acid and / or a protein having an activity to catalyze a reaction for producing L-pipecolic acid using delta1-piperidein-6-carboxylic acid as a substrate The vector for transforming a microorganism according to [6] or [7], further comprising a polynucleotide.
  • [9] A genetically modified microorganism transformed with the vector according to any one of [6] to [8]. [10] transformed with the polynucleotide according to [5] and a polynucleotide encoding a protein having an activity of catalyzing a reaction to produce L-aminoadipate-delta-semialdehyde using L-lysine as a substrate; A genetically modified E. coli having the ability to produce cis-5-hydroxy-L-pipecolic acid using L-lysine as a starting material.
  • the protein according to any one of the following (d) to (f): (D) a protein comprising the amino acid sequence set forth in SEQ ID NO: 25; (E) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 25, and cis-5-hydroxy-L using L-pipecolic acid as a substrate A protein having the activity of catalyzing a reaction that produces pipecolic acid; (F) Catalyzing a reaction comprising an amino acid sequence having at least 85% identity with the amino acid sequence set forth in SEQ ID NO: 25 and producing cis-5-hydroxy-L-pipecolic acid using L-pipecolic acid as a substrate A protein having the activity of [12] Cis-5-hydroxy-L-pipecolic acid or a drug thereof comprising the step of producing the cis-5-hydroxy-L-pipecolic acid by allowing the protein according to [11] to act on L-pipecolic acid A method
  • a protein having an activity of catalyzing a reaction for producing L-aminoadipic acid-delta-semialdehyde using L-lysine as a substrate is allowed to act on L-lysine. And subsequent conversion of L-aminoadipic acid-delta-semialdehyde to delta1-piperidein-6-carboxylic acid; and the resulting delta1-piperidein-6-carboxylic acid is converted to delta1-piperidein
  • the production method according to [12] further comprising the step of producing a L-pipecolic acid by allowing a protein having an activity to catalyze a reaction of producing L-pipecolic acid using -6-carboxylic acid as a substrate.
  • the present invention provides a process for producing cis-5-hydroxy-L-pipecolic acid represented by the following structural formula (I), a pharmacologically acceptable salt thereof, or a solvate thereof.
  • the method for producing cis-5-hydroxy-L-pipecolic acid of the present invention may comprise the following steps (1) to (3): (1) Using L-lysine as a substrate, L-aminoadipic acid-delta-semialdehyde is produced, and then L-aminoadipic acid-delta-semialdehyde is converted to delta1-piperidein-6-carboxylic acid Process; (2) a step of producing L-pipecolic acid using delta 1-piperidein-6-carboxylic acid as a substrate; and (3) a step of producing cis-5-hydroxy-L-pipecolic acid using L-pipecolic acid as a substrate.
  • the method for producing cis-5-hydroxy-L-pipecolic acid of the present invention includes the step (3) described above.
  • Step (3) is a protein having an activity of catalyzing a reaction for producing cis-5-hydroxy-L-pipecolic acid using L-pipecolic acid as a substrate, ie, L-pipecolic acid cis-5-position hydroxylase (Cis). Is used to produce cis-5-hydroxy-L-pipecolic acid using L-pipecolic acid as a substrate.
  • This step can be carried out biologically by expressing Cis in an organism having the cis gene.
  • any one of the following polynucleotides (A) to (F) or any one of the following proteins (d) to (f) can be used as the cis gene or protein.
  • A a polynucleotide comprising the base sequence set forth in SEQ ID NO: 2;
  • B cis-5-hydroxy-L-pipecolic acid which hybridizes with a polynucleotide comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 2 under stringent conditions and uses L-pipecolic acid as a substrate
  • a polynucleotide encoding a protein having an activity to catalyze a reaction to produce C
  • D a polynucleotide compris
  • the Cis protein used in the examples is EFV12517 protein (in the present invention, sometimes referred to as “Shortcis protein”. It is encoded by the nucleotide sequence of SEQ ID NO: 8. In GenBank, it is annotated as aspartyl / asparginyl beta-hydroxylase. 48), that is, a protein comprising an upstream portion of 16 amino acids. However, the Shortcis protein itself is not known for its ability to convert L-pipecolic acid to cis-5-hydroxy-L-pipecolic acid, and was not actually detectable (see Example 2).
  • the Meliloti protein having 34% amino acid sequence identity with the Cis protein used in the examples has the ability to convert L-pipecolic acid into cis-5-hydroxy-L-pipecolic acid.
  • Non-Patent Document 3 is known to have various problems as described above.
  • the Loti protein having 33% amino acid sequence identity with the Cis protein used in the Examples was found to be cis-5-hydroxy-L-pipecoline when expressed in Escherichia coli. It is known that the acid productivity is relatively low (see Example 3), and the amino acid sequence identity between Loti (BAB52605) protein and Meliloti (CAC47686) protein is 66%, and the Loti protein depends on Escherichia coli. It is presumed that the production of cis-5-hydroxy-L-pipecolic acid using the protein obtained and expressed has the same difficulties as the meliloti protein.
  • cis gene and protein can be from Seguniriparasu genus, and more particularly, can be from Seguniriparasu-Rugosasu further when certain, Seguniriparasu-Rugosasu (Segniliparus rugosus) ATCC BAA-974 derived from possible.
  • the polynucleotides (B) to (F) and the proteins (e) to (f) described above should be referred to as mutants of the cis gene and the Cis protein used in the examples.
  • mutants of the cis gene and the Cis protein used in the examples Those skilled in the art consider that such a mutant has no desired activity in the case of lack of information on the motif related to the Cis protein used in the examples or the upstream 16 amino acid sequence, It can be designed as appropriate.
  • the Cis protein used in the examples includes Aspartyl / Asparaginyl beta-hydroxylase region (Position: 26..174) and L-proline 3-hydroxylase, C-terminal region (Position: 190. .274).
  • mutant Cis is used.
  • An example of mutant Cis is a protein consisting of the amino acid sequence of SEQ ID NO: 26, encoded by a polynucleotide consisting of the base sequence of SEQ ID NO: 23, which is used in the examples of the present specification.
  • the base sequence of SEQ ID NO: 23 differs from the base sequence of cis (SEQ ID NO: 2) used in the Examples by 2 bases (in 897 bases), and the amino acid sequence of SEQ ID NO: 26 is the amino acid sequence of Cis used in the Examples It differs from the sequence (SEQ ID NO: 25) by 1 amino acid (in 299 amino acids).
  • the identity between the amino acid sequence of SEQ ID NO: 26 and that of SEQ ID NO: 25 is 99.7%.
  • the amino acid sequence (SEQ ID NO: 26) of the mutant Cis used in the Examples is also encoded by the base sequence of SEQ ID NO: 7 to 34% with respect to the amino acid sequence of the Meliloti protein encoded by the base sequence of SEQ ID NO: 6. It is 29% identical to the amino acid sequence of the Loti protein.
  • the hybridization conditions in any of the polynucleotides are Molecular Cloning. A Laboratory Manual. 2nd ed. (According to Sambrook et al., Cold Spring Harbor Laboratory Press) and Hybridization of Nucleic Acid Immobilization on Solid Support (according to 198) Can do.
  • hybridization is performed at 45 ° C. in the presence of a 2 ⁇ concentration SSC solution and 50% formamide, and then a 0.1 ⁇ concentration SSC solution (1 ⁇
  • the composition of the concentration SSC solution is 150 mM sodium chloride and 15 mM sodium citrate), and the conditions for washing the filter at 60 ° C. may be used.
  • hybridization is performed at 50 ° C. in the presence of a 2 ⁇ concentration SSC solution and 50% formamide, and then a 0.1 ⁇ concentration SSC solution) is used. The conditions for washing the filter at 65 ° C. may be used.
  • the number of amino acids to be substituted when referred to as “an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and / or added” is, unless otherwise specified, Any protein is not particularly limited as long as the protein comprising the amino acid sequence has a desired function, but it is about 1 to 9 or 1 to 4 or a substitution with an amino acid having similar properties. There can be a greater number of substitutions and the like. Means for preparing polynucleotides or proteins according to such amino acid sequences are well known to those skilled in the art.
  • the search and analysis relating to the identity of the base sequence or amino acid sequence can be performed by an algorithm or program (for example, BLASTN, BLASTP, BLASTX, ClustalW) well known to those skilled in the art.
  • an algorithm or program for example, BLASTN, BLASTP, BLASTX, ClustalW
  • Those skilled in the art can appropriately set parameters when using a program, and the default parameters of each program may be used. Specific techniques for these analysis methods are also well known to those skilled in the art.
  • identity refers to at least 70%, preferably 80% or more, more preferably 85% or more, and still more preferably in any case, unless otherwise specified. It refers to sequence identity of 90% or more, more preferably 95% or more, more preferably 97.5% or more, more preferably 99% or more.
  • polynucleotide or gene and protein or enzyme used in the present invention can be prepared by those skilled in the art using conventional techniques.
  • the method for producing cis-5-hydroxy-L-pipecolic acid of the present invention may include the step (1) described above.
  • Step (1) uses L-lysine 6-aminotransferase (Lat) as a protein having an activity of catalyzing a reaction for producing L-aminoadipic acid-delta-semialdehyde using L-lysine as a substrate.
  • L-aminoadipic acid-delta-semialdehyde is produced using lysine as a substrate; and subsequently L-aminoadipic acid-delta-semialdehyde is converted to delta1-piperidein-6-carboxylic acid.
  • This step can be carried out biologically by expressing Lat in an organism having the lat gene.
  • any one of the following polynucleotides (A ′) to (F ′) or any one of the following proteins (d ′) to (f ′) is used. be able to.
  • a ′ a polynucleotide comprising the base sequence set forth in SEQ ID NO: 1;
  • B ′ L-aminoadipic acid-delta-semialdehyde which hybridizes with a polynucleotide comprising a base sequence complementary to the base sequence set forth in SEQ ID NO: 1 under stringent conditions and uses L-lysine as a substrate
  • nucleotide sequence and amino acid sequence of lat derived from Flavobacterium lutescens IFO 3084 are shown in SEQ ID NOs: 1 and 22 in the Sequence Listing.
  • the lat gene or protein can be from the genus Flavobacterium, more particularly from Flavobacterium lutecens, and more particularly from Flavobacterium lutesense IFO 3084. obtain.
  • the method for producing cis-5-hydroxy-L-pipecolic acid of the present invention may include the step (2) described above.
  • Step (2) uses a protein having an activity of catalyzing a reaction for producing L-pipecolic acid using delta1-piperidein-6-carboxylic acid as a substrate, that is, pyrophosphate-5-carboxylic acid reductase (ProC),
  • ProC pyrophosphate-5-carboxylic acid reductase
  • This step can be carried out biologically using an organism having the proC gene.
  • ProC is an enzyme that E. coli originally has.
  • ProC originally possessed by Escherichia coli may be used as the enzyme for the step (2), and exogenous ProC is used for the purpose of strengthening or the like. May be.
  • “including in an expressible state” is not limited to exogenous polynucleotides unless otherwise specified, and includes polynucleotides originally present.
  • any or all of the above steps (1) to (3) can be carried out biologically.
  • a typical example of biological implementation is in a microbial cell that contains the required gene in an expressible state.
  • a microorganism for use in the biological production method of cis-5-hydroxy-L-pipecolic acid can be obtained by transforming a host microorganism with a suitably constructed vector.
  • the present invention also provides such a genetically modified microorganism and vector.
  • An example of an organism used for the practice of the present invention is a microorganism, a more specific example is a prokaryote, and a more specific example is E. coli.
  • “genetically modified microorganism” refers to a microorganism (bacteria, actinomycetes, yeast, filamentous form) in which a gene derived from another organism is introduced into a specific microorganism using a gene recombination technique, unless otherwise specified.
  • the gene transfer technique used there means not only gene recombination using a vector such as a plasmid but also homologous recombination techniques.
  • cis-5-hydroxylase activity of L-lysine 6-aminotransferase enzyme activity protein (Lat), pyrroline-5-carboxylate reductase enzyme activity protein (ProC), and L-pipecolic acid It is possible to obtain a genetically modified microorganism capable of expressing a gene encoding each of the proteins (Cis) having a protein and capable of directly producing cis-5-hydroxy-L-pipecolic acid from L-lysine it can. Further, cis-5-hydroxy-L-pipecolic acid can be efficiently produced by culturing such a genetically modified microorganism and collecting it from the culture solution.
  • the genetically modified microorganism provided by the present invention may have a gene encoding a protein having a lysine-specific permeation protein activity (LysP) so that it can be expressed.
  • LysP lysine-specific permeation protein activity
  • SEQ ID NO: 4 shows the base sequence of the lysP gene derived from E. coli.
  • the genetically modified microorganism provided by the present invention may further contain a gene encoding a protein having an activity of catalyzing a reaction for producing ⁇ -ketoglutarate.
  • Amino acid hydroxylases represented by L-pipecolic acid cis-5-position hydroxylase require ⁇ -ketoglutaric acid in the hydroxylation reaction (Non-patent Document 3). It is also known that L-lysine 6-aminotransferase also requires ⁇ -ketoglutaric acid during its transamination reaction and converts it into glutamic acid (EC 2.6.1.36). Therefore, when L-pipecolic acid is produced from L-lysine using a microorganism capable of expressing these proteins, it is imagined that it is important to regenerate ⁇ -ketoglutarate.
  • Glutamate dehydrogenase (EC 1.4.1.2) is known as an enzyme that regenerates glutamate to ⁇ -ketoglutarate, and the reaction by this enzyme can be coupled with the reaction by L-lysine 6-aminotransferase.
  • SEQ ID NO: 5 Bacillus subtilis subsp. subtilis str. The base sequence of 168-derived locG gene is shown.
  • a polynucleotide encoding a protein having the cis-5-hydroxylase activity of L-pipecolic acid used in the biological method for producing cis-5-hydroxy-L-pipecolic acid of the present invention is known in the art. According to a known method (for example, the colony hybridization method described in Molecular Cloning. A Laboratory Manual. 2nd ed), it can be obtained from the cells of an appropriate microorganism. Preferable examples of such microorganisms include a strain belonging to the genus Segniliparas, more specifically a strain belonging to Segniriparas rugosas, and more specifically, Segniriparas rugosas ATCC BAA-974. Alternatively, as in the examples of the present invention, DNA encoding a protein having the cis-5-hydroxylase activity of L-pipecolic acid may be artificially synthesized.
  • the DNA represented by SEQ ID NO: 2 contains an open reading frame (ORF) of cis (base 1 to base 897).
  • the recombinant which is one embodiment of the present invention includes a polynucleotide encoding an enzyme involved in L-pipecolic acid biosynthesis (eg, Lat, ProC, LysP, RocG), and L-pipecolic acid cis-5th water. It is a genetically modified microorganism having a polynucleotide encoding oxidase (Cis), and can be produced by a method of incorporating both of these DNAs into a host microorganism.
  • an enzyme involved in L-pipecolic acid biosynthesis eg, Lat, ProC, LysP, RocG
  • L-pipecolic acid cis-5th water eg, Lat, ProC, LysP, RocG
  • It is a genetically modified microorganism having a polynucleotide encoding oxidase (Cis), and can be produced by a method of incorporating both of these DNAs into a host microorganism.
  • any microorganism can be used as long as it can incorporate the target DNA and can produce the target cis-5-hydroxy-L-pipecolic acid.
  • Preferred microorganisms include strains belonging to Escherichia coli such as E. coli BL21 (DE3) strain.
  • the means for incorporating and expressing foreign polynucleotides in the host for example, Molecular Cloning. A Laboratory Manual. 2nd ed, Current Protocols in Molecular Biology (edited by Frederick M. Ausubel et al., 1987) and the like.
  • the host and plasmid-vector system is not particularly limited as long as the target polynucleotide can be stably maintained and expressed in the host.
  • the plasmid may contain an autonomously replicating sequence, a promoter sequence, a terminator sequence, a drug resistance gene, and the like.
  • the type of plasmid is not limited to an autonomously replicating plasmid, but is expected to be used. It may be an integrative plasmid having a sequence homologous to a certain region of the host genome.
  • the site for incorporating the polynucleotide of interest may be either on the plasmid or on the genome of the host microorganism.
  • pUC19 or pRSFDuet-1 is used as an autonomously replicating vector
  • lac or T7 is used as a promoter sequence
  • lacZ terminator or T7 terminator is used as a terminator sequence
  • ampicillin is used as a drug resistance gene.
  • a resistance gene, a kanamycin resistance gene, etc. can be mentioned, respectively.
  • Cis-5-hydroxy-L-pipecolic acid production strain can be obtained.
  • the method for measuring the product may follow the method described in the examples of the present invention.
  • the biological production method of cis-5-hydroxy-L-pipecolic acid of the present invention is typically carried out by culturing a genetically modified microorganism.
  • a genetically modified microorganism Those skilled in the art can appropriately design the culture conditions for microorganisms according to the microorganisms used.
  • Escherichia coli is used as a host, an appropriate amount of microorganism is inoculated on a general-purpose medium containing an antibiotic as a selection marker, if necessary, at 20 ° C. to 40 ° C. for 6 hours to 72 hours, preferably 9 hours to
  • the cells can be grown by culturing for 60 hours, more preferably 12 to 48 hours, with stirring or shaking at 100 to 400 rpm, if necessary.
  • L-lysine or a salt thereof as a starting material, if necessary, ⁇ -ketoglutaric acid or a salt thereof, and if necessary, an appropriate inducer (for example, isopropyrothio- ⁇ -galactoside (IPTG) And stirring or shaking at 100 to 400 rpm, if necessary, at 20 to 40 ° C. for 3 to 72 hours, preferably 4 to 60 hours, more preferably 6 to 48 hours.
  • IPTG isopropyrothio- ⁇ -galactoside
  • L-lysine or the like can be supplied and the culture can be terminated.
  • the initial concentration of L-lysine can be, for example, 2 to 32 g / L, more specifically 4 to 16 g / L
  • the initial concentration of ⁇ -ketoglutarate is, for example, 0 to 16 g / L, more specifically 0 to It can be 8 g / L.
  • the initial concentration of ⁇ -ketoglutaric acid can be, for example, 1 to 16 g / L, more specifically 2 to 8 g / L.
  • a preferred example of the recombinant E. coli of the present invention is a recombinant E. coli having the ability to produce 50 mg or more of cis-5-hydroxy-L-pipecolic acid per liter of culture solution.
  • cis-5-hydroxy-L-pipecolic acid or a pharmacologically acceptable salt thereof or a solvate thereof cis-5-hydroxy-L-pipecolic acid is described as an example.
  • the explanation also applies to pharmacologically acceptable salts of cis-5-hydroxy-L-pipecolic acid or solvates thereof, unless otherwise specified, and those skilled in the art
  • the method for producing cis-5-hydroxy-L-pipecolic acid can be modified to a method for producing a pharmacologically acceptable salt thereof or a solvate thereof.
  • the term “pharmacologically acceptable salt or solvate thereof” includes alkali metal salts (for example, sodium salts, potassium salts), alkaline earth metal salts (for example, magnesium salts, Calcium salt), ammonium salt, mono-, di- or tri-lower (alkyl or hydroxyalkyl) ammonium salt (eg ethanolammonium salt, diethanolammonium salt, triethanolammonium salt, tromethamine salt), hydrochloride, hydrobromic acid Salt, hydroiodide, nitrate, phosphate, sulfate, formate, acetate, citrate, oxalate, fumarate, maleate, succinate, malate, tartrate, Trichloroacetate, trifluoroacetate, methanesulfonate, benzenesulfonate, p-toluenesulfonate, It includes Chirensuruhon salts and naphthalene sulfonate.
  • the salt may be an anhydride or a solvate
  • the solvate includes a hydrate, a methanol solvate, an ethanol solvate, a propanol solvate, and a 2-propanol solvate.
  • Example 1 Construction of pRSF duet-Cis
  • the nucleotide sequence of SEQ ID NO: 1 as a reference, the 5 'end Nco I primer was added site lac-lat-NcoF2 (see SEQ ID NO: 9) and 5' end Spe I primer were added to the site lat-XhoR (SEQ Designed and created.
  • a PCR reaction was performed using these two primers and Flavobacterium lutescens IFO3084 genomic DNA as a template. PCR reaction was performed using KOD-Plus-Ver. 2 (TOYOBO) was used, and a two-stage reaction in which denaturation was performed at 98 ° C. for 20 seconds, annealing was performed at 60 ° C.
  • primer lysP-SD-XhoF (see SEQ ID NO: 11) with an Xho I site added to the 5 ′ end and primer lysP-KpnR (sequence with a Kpn I site added to the 5 ′ end) No. 12) was designed and created (SIGMA GENOSSYS).
  • SIGMA GENOSSYS a PCR reaction was performed in the same manner as described above using these two primers and E. coli K12-derived JM109 strain genomic DNA as a template. From this PCR amplification reaction solution, a DNA fragment having a size of about 1.5 kbp containing lysP was recovered. The obtained DNA fragment was digested with restriction enzymes Xho I and Kpn I to obtain a lysP fragment.
  • primer proC-SD-KpnF (see SEQ ID NO: 13) with a Kpn I site added at the 5 ′ end and primer proC-BamR (sequence with a Bam HI site added at the 5 ′ end) No. 14) was designed and created.
  • a PCR reaction was performed in the same manner as described above using these two kinds of primers and E. coli K12 JM109 strain genomic DNA as a template. From this PCR amplification reaction solution, a DNA fragment having a size of about 1.0 kbp containing proC was recovered. The obtained DNA fragment was digested with restriction enzymes Kpn I and Bam HI to obtain a proC fragment.
  • plasmid digests pRSFDuet-1 a obtained by digesting with restriction enzymes Nco I and Bam HI, lat fragment, LysP fragments, and proC fragments DNA Ligation Kit ver. 2 (Takara Bio Inc.) was used for ligation into four parties.
  • pRSFDuet-1 a Natural Chemical Company
  • restriction enzymes Nco I and Bam HI restriction enzymes Nco I and Bam HI
  • lat fragment lat fragment
  • LysP fragments fragments
  • proC fragments DNA Ligation Kit ver. 2
  • primer locG-SD-BamF (see SEQ ID NO: 15) with a Bam HI site added to the 5 ′ end and primer rcG- with an Xba I site added to the 5 ′ end XbaR (see SEQ ID NO: 16) was designed and created.
  • these two types of primers and Bacillus subtilis subtilis subsp. subtilis str. PCR reaction was performed in the same manner as described above using 168 strain genomic DNA as a template. From this PCR amplification reaction solution, a DNA fragment having a size of about 1.3 kbp containing rcG was recovered. The obtained DNA fragment was digested with restriction enzymes Bam HI and Xba I to obtain a locG fragment.
  • the plasmid digest obtained by digesting pRSF-LLP with the restriction enzymes BamHI and XbaI and the locG fragment were ligated to construct a plasmid pRSF-PA having lat , lysP , proC and locG genes.
  • nucleotide sequence of SEQ ID NO: 8 send 5 'primer terminus was added Nde I site segni-short-NdeF (SEQ reference numeral 17) and 5' end by adding a Bgl II site primer segni-cis-BglR (See SEQ ID NO: 18) designed and created.
  • artificial gene synthesis was performed according to the nucleotide sequence of SEQ ID NO: 8 (GenScript), and PCR was performed in the same manner as described above using this as a template.
  • a DNA fragment having a size of about 0.9 kbp containing cis was recovered from the PCR amplification reaction solution. That the obtained DNA fragment was digested with restriction enzymes Nde I and Bgl II were the cisShort fragment.
  • plasmid digest the pRSF-PA was obtained by digesting with restriction enzymes Nde I and Bgl II, and ligated cisShort fragment, lat, lysP, proC, each gene RocG, and genes encoding EFV12517 protein (shortcis)
  • a plasmid pRSF-CisShort was constructed.
  • nucleotide sequence of SEQ ID NO: 2 as a reference, 5 were added to Bgl II site 'primer terminus was added Nde I site segni-cis-NdeF2 (SEQ reference numeral 19) and 5' end primer segni-cis-BglR (See SEQ ID NO: 18) designed and created.
  • artificial gene synthesis was performed according to the nucleotide sequence of SEQ ID NO: 2 (GenScript), and a PCR reaction was performed in the same manner as described above using this as a template.
  • a DNA fragment having a size of about 0.9 kbp containing cis was recovered from the PCR amplification reaction solution. The obtained DNA fragment was digested with restriction enzymes Nde I and Bgl II to obtain a cis fragment.
  • plasmid digest the pRSF-PA was obtained by digesting with restriction enzymes Nde I and Bgl II, and ligated cis fragment, lat, lysP, proC, rocG , and plasmid pRSF-Cis with cis each gene (Fig. 2) Built.
  • nucleotide sequence of SEQ ID NO: 1 as a reference 5 primers were added 'primer was added Nco I sites on the ends lac-lat-NcoF2 (SEQ ID NO: 9 refer) and 5' end Afl II site lat- (Spe) AflR2 (see SEQ ID NO: 20) was designed and created.
  • a PCR reaction was performed using these two primers and the plasmid pRSF-Cis as a template. From this PCR amplification reaction solution, a DNA fragment having a size of about 1.5 kbp containing lat was recovered. That the obtained DNA fragment was digested with restriction enzymes Nco I and Afl II was used as a lat2 fragment.
  • plasmid digest the pRSF-Cis obtained was digested with the restriction enzymes Nco I and Afl II, and ligated lat2 fragment to construct plasmid pRSF-LatCis having lat and cis gene.
  • the 5 'end Nco I primer was added site loti-SD-PacF (see SEQ ID NO: 21) and 5' end Avr II primers were added to the site loti-AvrR (SEQ No. 22) was designed and created.
  • PCR reaction was performed using these two primers and Mesozobium roti MAFF303099 genomic DNA as a template. From this PCR amplification reaction solution, a DNA fragment having a size of about 0.9 kbp containing a gene encoding the BAB52605 protein was recovered. The obtained DNA fragment was digested with restriction enzymes Pac I and Afl II to obtain a loti fragment.
  • a plasmid digest obtained by digesting pRSF-Cis with restriction enzymes Pac I and Afl II, and a loti fragment were ligated, and each gene of lat , lysP , proC , rotG and a gene encoding BAB52605 protein ( loti )
  • a plasmid pRSF-Loti was constructed.
  • segni-cis-NdeF2 and segni-cis-BglR were used as primers and pRSF-Cis was used as a template, respectively, and PCR was performed using conditions 5 of Diversify TM PCR Random Mutagenesis Kit (Clontech).
  • a DNA fragment having a size of about 0.9 kbp was recovered from the PCR amplification reaction solution. The obtained DNA fragment was digested with restriction enzymes Nde I and Bgl II to obtain a mutant-cis fragment.
  • plasmid digest the pRSF-PA was obtained by digesting with restriction enzymes Nde I and Bgl II, and ligated Mutant-cis fragment, plasmid digests obtained by digesting with restriction pRSF-PA enzyme Nde I and Bgl II
  • the mutant-cis fragment was ligated to construct a plasmid pRSF-MutCisLibrary having lat , lysP , proC , and locG genes, and a mutant cis gene.
  • Example 2 Production test 1 of cis-5-hydroxy-L-pipecolic acid] Using a plasmid pRSF-Cis (FIG. 2), pRSF-CisShort, pRSF-PA, pRSF-LatCis and pRSFDuet-1, an E. coli one-shot BL21 (DE3) competent cell (Life Technologies Japan) was transformed. BL21 (DE3) / pRSF-Cis, BL21 (DE3) / pRSF-CisShort, BL21 (DE3) / pRSF-PABL21 (DE3) / pRSF-LatCis and BL21 (DE3) / pRSFDuet-1, respectively.
  • M9SEED liquid medium 3.39% Na 2 HPO 4 , 1.5% KH 2 PO 4 , 0.25% calcium chloride, 0.5% ammonium chloride, containing kanamycin sulfate (25 ⁇ g / ml).
  • M9SEED liquid medium 3.39% Na 2 HPO 4 , 1.5% KH 2 PO 4 , 0.25% calcium chloride, 0.5% ammonium chloride, containing kanamycin sulfate (25 ⁇ g / ml).
  • kanamycin sulfate 25 ⁇ g / ml
  • 1% casamino acid 0.002% thymine
  • 0.1 mM calcium chloride 0.1 mM iron sulfate
  • 0.4% glucose 0.001 mM magnesium chloride
  • the sample solution was converted to FDLA by the following method using N ⁇ - (5-Fluoro-2,4-dinitrophenyl) -L-leucinamide (L-FDLA) (Tokyo Chemical Industry Co., Ltd.).
  • the amount of L-lysine, L-pipecolic acid and cis-5-hydroxy-L-pipecolic acid was measured by HPLC and LC / MS for the obtained FDLA solution.
  • the HPLC and LC / MS analysis charts are shown in FIGS.
  • the quantitative results are shown in Table 1.
  • the measurement conditions of HPLC and LC / MS are shown below.
  • the BL21 (DE3) / pRSF-Cis strain (containing lat , lysP , proC , locG , cis genes on the plasmid) and the BL21 (DE3) / pRSF-LatCis strain (containing lat and cis genes on the plasmid) are also cis. It produced -5-hydroxy-L-pipecolic acid and L-pipecolic acid.
  • E. coli expressing the EFV12517 protein encoded by the shortcis gene could not detect the ability to convert L-pipecolic acid to cis-5-hydroxy-L-pipecolic acid, but more than the annotation of EFV12517 protein.
  • E. coli expressing a protein encoded by a polynucleotide ( cis gene) expressed from 48 bases (corresponding to 16 amino acids) upstream converts L-pipecolic acid to cis-5-hydroxy-L-pipecolic acid. It had acid cis-5-hydroxylase activity.
  • the homology between the amino acid sequence of the protein encoded by the cis gene and the amino acid sequences of CAC47686 protein and BAB52605 protein was 34% and 33%, respectively.
  • Escherichia coli expressing the protein encoded by the cis gene exhibits the cis-5-hydroxylase activity of L-pipecolic acid, which converts L-pipecolic acid into cis-5-hydroxy-L-pipecolic acid. It was considered difficult to guess from the known information.
  • BL21 (DE3) / pRSF-Loti strain lat , lysP , proC on the plasmid
  • BL21 (DE3) / pRSF-Cis strain containing lat , lysP , proC , locG , cis genes on the plasmid.
  • RocG and loti genes the amount of cis-5-hydroxy-L-pipecolic acid produced was about 1/30. This indicates that the amount of cis-5-hydroxy-L-pipecolic acid obtained is relatively small when E. coli expressing the BAB52605 protein encoded by the loti gene is used.
  • the BL21 (DE3) / pRSF-Cis strain compared to the BL21 (DE3) / pRSF-Cis strain, the BL21 (DE3) / pRSF-MutCis1 strain (containing lat , lysP , proC , rocG and mutant cis genes on the plasmid) is also cis-5-hydroxy- The L-pipecolic acid production was equal or better.
  • the nucleotide sequence of this mutant cis gene was analyzed using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and the result is shown in SEQ ID NO: 23.
  • Cis-5-hydroxy-L-pipecolic acid production test 3 Strains obtained by transforming E. coli one-shot BL21 (DE3) competent cells using plasmids pRSF-Cis and pRSF-Cis ⁇ proC ⁇ rocG were designated as BL21 (DE3) / pRSF-Cis and BL21 (DE3) / pRSF-Cis ⁇ proC ⁇ rocG, respectively. These strains were cultured and analyzed in the same manner as in Example 2, and the amounts of L-pipecolic acid and cis-5-hydroxy-L-pipecolic acid were measured. Table 3 shows the measurement results.
  • the BL21 (DE3) / pRSF-Cis ⁇ proC ⁇ rocG strain ( lat , lysP , cis on the plasmid) was compared to the BL21 (DE3) / pRSF-Cis strain (containing lat , lysP , proC , locG , and cis genes on the plasmid).
  • the cis-5-hydroxy-L-pipecolic acid production was about 2/3. From this, it was shown that the amount of cis-5-hydroxy-L-pipecolic acid obtained was larger when the proC and locG genes were contained on the plasmid in addition to both the lat and lysP genes.
  • Plasmid pRSF- Cis ⁇ proC in which the proC gene of plasmid pRSF-Cis was deleted was prepared as follows. A PCR reaction was performed using primer proCX-SpeF and primer proCrocGX-SpeR and pRSF-Cis as a template. A DNA fragment from which the proC gene of plasmid pRSF-Cis was deleted was recovered from this PCR amplification reaction solution. The resulting DNA fragment was digested with restriction enzymes Spe I, and self-ligated, E. pRSF-Cis ⁇ proC was constructed by transforming E. coli JM109 Competent Cells (Takara Bio Inc.).
  • plasmid pRSF-Cis ⁇ rocG shaved rocG gene of the plasmid pRSF-Cis uses primers rocGX-SpeF and primer procX-SPER
  • plasmid pRSF-Cis ⁇ proC ⁇ rocG shaved proC gene and rocG gene gene of the plasmid pRSF-Cis is It was prepared using the primer rocGX-SpeF and the primer proCrocGX-SpeR.
  • Strains transformed with E. coli one-shot BL21 (DE3) competent cells (Life Technologies Japan) using plasmids pRSF-Cis, pRSF-Cis ⁇ proC, pRSF-Cis ⁇ procG, and pRSF-Cis ⁇ proC ⁇ rocG were respectively BL21 (DE3) / pRSF -Cis, BL21 (DE3) / pRSF-Cis ⁇ proC, BL21 (DE3) / pRSF-Cis ⁇ rocG, and BL21 (DE3) / pRSF-Cis ⁇ proC ⁇ rocG.
  • M9SEED liquid medium 3.39% Na 2 HPO 4 , 1.5% KH 2 PO 4 , 0.25% calcium chloride, 0.5% ammonium chloride, containing kanamycin sulfate (25 ⁇ g / ml).
  • M9SEED liquid medium 3.39% Na 2 HPO 4 , 1.5% KH 2 PO 4 , 0.25% calcium chloride, 0.5% ammonium chloride, containing kanamycin sulfate (25 ⁇ g / ml).
  • kanamycin sulfate 25 ⁇ g / ml
  • 1% casamino acid 0.002% thymine
  • 0.1 mM calcium chloride 0.1 mM iron sulfate
  • 0.4% glucose 0.001 mM magnesium chloride
  • SEQ ID NO: 1 base sequence of lat SEQ ID NO: 2: base sequence of cis SEQ ID NO: 3: base sequence of proC SEQ ID NO: 4: base sequence of lysP SEQ ID NO: 5: base sequence of locG SEQ ID NO: 6: base sequence of SEQ ID NO: meliloti 7: nucleotide sequence of loti SEQ ID NO: 8: nucleotide sequence of shortcis SEQ ID NO: 9: primer lac-lat-NcoF2 SEQ ID NO: 10: primer lat-XhoR SEQ ID NO: 11: primer lysP-SD-XhoF SEQ ID NO: 12: primer lysP-KpnR SEQ ID NO: 13: proC-SD-KpnF SEQ ID NO: 14: primer proC-BamR SEQ ID NO: 15: primer locG-SD-BamF SEQ ID NO: 16: primer locG-XbaR Sequence number 17: Primer segni-short-

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、シス-5-ヒドロキシ-L-ピペコリン酸の製造方法を提供する。本発明の製造方法においては、シス-5-ヒドロキシ-L-ピペコリン酸を直接生産可能な遺伝子組換え微生物を用いることができる。本発明は、そのような遺伝子組換え微生物をも提供する。本発明の好ましい態様においては、L-ピペコリン酸の生合成に関与するタンパク質をコードするDNAおよびL-ピペコリン酸のシス-5位水酸化酵素活性を有するタンパク質をコードするDNAを有する遺伝子組換え微生物を培地で培養し、その培養液からシス-5-ヒドロキシ-L-ピペコリン酸を採取することを特徴とする。

Description

シス-5-ヒドロキシ-L-ピペコリン酸の生物学的な製造方法
 本発明は、シス-5-ヒドロキシ-L-ピペコリン酸を生産する能力を有する遺伝子組換え微生物、およびそれらの微生物を用いたシス-5-ヒドロキシ-L-ピペコリン酸の製造方法に関する。
 シス-5-ヒドロキシ-L-ピペコリン酸は、L-ピペコリン酸にヒドロキシル基が導入された構造を有する修飾アミノ酸の一種であり、医薬品の合成中間原料として有用な物質である。
 一方、L-ピペコリン酸(または2-ピペリジンカルボン酸もしくはL-ホモプロリン)の生物学的な製造方法は既に報告されている(非特許文献1、非特許文献2、および特許文献1)。これらの報告においては、以下のポリヌクレオチド(DNAということもある)を有する大腸菌により、L-リジンからL-ピペコリン酸を製造している。
a)L-リジン 6-アミノトランスフェラーゼ酵素活性を有するタンパク質をコードするポリヌクレオチド
b)ピロリン-5-カルボン酸リダクターゼ酵素活性を有するタンパク質をコードするポリヌクレオチド
 これらの報告では、上記a)の例としてフラボバクテリウム ルテセンス(Flavobacterium lutescens)IFO3084株由来のlat遺伝子(配列番号1)、上記b)の例として大腸菌由来proC遺伝子(配列番号3)が挙げられている。大腸菌は元来proC遺伝子を有しているので、lat遺伝子が導入されており、該遺伝子を発現する大腸菌はL-ピペコリン酸生産能を有する。またリジン特異的透過活性を有するタンパク質をコードするDNA、例えば大腸菌由来lysP遺伝子(配列番号4)をも有する大腸菌により、L-ピペコリン酸の生産速度が向上したことが報告されている。
 アルファルファ根粒菌シノリゾビウム・メリロチ(Sinorhizobium meliloti)1021由来のCAC47686タンパク質は、L-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換する能力を有することが報告されている(非特許文献3)。このアミノ酸配列は、データベースGenBankにアクセッション番号CAC47686として登録されている。塩基配列は、データベースGenBankにアクセッション番号AL591792として登録されている(配列番号6)。
 他方、ミヤコグサ根粒菌メソリゾビウム・ロチ(Mesorhizobium loti)MAFF303099由来のBAB52605タンパク質、またはCAC47686タンパク質は、L-プロリンをシス-4-ヒドロキシプロリンに変換する能力を有することが報告されている(特許文献2)。BAB52605タンパク質のアミノ酸配列は、データベースGenBankにアクセッション番号BAB52605として登録されている。塩基配列は、データベースGenBankにアクセッション番号BA000012として登録されている(配列番号7:loti遺伝子)。
WO2001/048216(特許第4516712号) WO2009/139365
Biosci. Biotechnol. Biochem., 66 (3), 622-627, 2002 Biosci. Biotechnol. Biochem., 66 (9), 1981-1984, 2002 Adv. Synth. Catal., 353, 1375-1383, 2011
 CAC47686タンパク質は、非天然アミノ酸合成の為の有益な酵素であると考えられるが、以下の問題点を有している。
問題点1)このタンパク質を一般的な方法を用いて大腸菌で発現させた場合、不溶化して不活化する。
問題点2)このタンパク質をin vitroの反応に供した場合、速やかに変性する。
問題点3)このタンパク質をin vitroの反応に供した場合、L-ピペコリン酸から、シス-5-ヒドロキシ-L-ピペコリン酸と共に、シス-3-ヒドロキシピペコリン酸もほぼ同量蓄積する。
 非特許文献3中では、問題点1)を回避しつつ、CAC47686タンパク質を大腸菌で発現させるために、コールドショックプロモーターを用い、低温でタンパク質発現を誘導し、Streptomyces coelicolorのGroEL/GroESを共発現させるなどしている。また、問題点2)を回避する方法の一つとして、このタンパク質を発現した大腸菌の生菌体にL-ピペコリン酸を供して水酸化させるアイディアを挙げているが、この方法が実際に有効であったかどうかまでは明らかにしていない。問題点3)の回避方法については提示されていない。このように、CAC47686タンパク質を発現した大腸菌を用いるシス-5-ヒドロキシ-L-ピペコリン酸の製造には困難が多いと考えられた。
 BAB52605タンパク質もCAC47686タンパク質と同様にL-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換する能力を有する可能性が考えられたが、本明細書の実施例で示す通り、loti遺伝子にコードされたBAB52605タンパク質を発現した大腸菌のシス-5-ヒドロキシ-L-ピペコリン酸の生産性は、比較的低いことが分かった。なお、BAB52605タンパク質とCAC47686タンパク質とのアミノ酸配列の同一性は66%である。
 一方、EFV12517タンパク質は、セグニリパラス・ルゴサス(Segniliparus rugosus)ATCC BAA-974由来のタンパク質として、そのアミノ酸配列は、データベースGenBankにアクセッション番号EFV12517として登録されている。塩基配列は、データベースGenBankにアクセッション番号ACZI01000186 (REGION: 1378..2229)として登録されている(配列番号8:shortcis遺伝子)。EFV12517タンパク質はGenBankではアスパルチル/アスパルギニル ベータ-水酸化酵素 (aspartyl/Asparaginyl beta-hydroxylase)としてアノテーションされており、本発明の実施例で示す通り、EFV12517タンパク質を発現した大腸菌にはL-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換する能力は検出できなかった。しかしながら、EFV12517タンパク質のアノテーションよりも48塩基(16アミノ酸相当)上流から発現させたポリヌクレオチド(配列番号2:cis遺伝子)にコードされたタンパク質を発現する大腸菌が、L-ピペコリン酸のシス-5位水酸化酵素活性を有しており、L-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換できることを見出し、本発明を完成した。
 本発明は、以下を提供する:
[1]  下記の(A)~(F)のいずれか一のポリヌクレオチドを発現可能な状態で含む微生物により、L-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する工程を含む、シス-5-ヒドロキシ-L-ピペコリン酸もしくはその薬理学上許容される塩またはそれらの溶媒和物の製造方法:
(A)配列番号2に記載の塩基配列からなるポリヌクレオチド;
(B)配列番号2に記載の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(C)配列番号2に記載の塩基配列と少なくとも85%以上の同一性を有し、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(D)配列番号25に記載のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(E)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(F)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド。
[2]  微生物が、L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド、およびデルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドを、発現可能な状態でさらに含み:
 L-リジンを基質として、L-アミノアジピン酸-デルタ-セミアルデヒドを生成し、続いてL-アミノアジピン酸-デルタ-セミアルデヒドがデルタ1-ピペリデイン-6-カルボン酸へ変換される工程;および
 デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する工程
をさらに含む、[1]に記載の製造方法。
[3]  L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドが、フラボバクテリウム ルテセンス(Flavobacterium lutescens)由来である、[2]に記載の製造方法。
[4]  微生物が大腸菌であり、デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドを元来有する、[2]または[3]に記載の製造方法。
[5]  下記の(A)~(F)のいずれか一のポリヌクレオチド:
(A)配列番号2に記載の塩基配列からなるポリヌクレオチド;
(B)配列番号2に記載の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(C)配列番号2に記載の塩基配列と少なくとも85%以上の同一性を有し、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(D)配列番号25に記載のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(E)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(F)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド。
[6]  [5]に記載のポリヌクレオチドを含む、形質転換用ベクター。
[7]  L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドをさらに含む、[6]に記載の微生物の形質転換用ベクター。
[8]  α-ケトグルタル酸を生成する反応を触媒する活性を有するタンパク質および/またはデルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドをさらに含む、[6]または[7]に記載の微生物の形質転換用ベクター。
[9]  [6]~[8]のいずれか一に記載のベクターにより形質転換された、遺伝子組換え微生物。
[10]  [5]に記載のポリヌクレオチド、およびL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドにより形質転換され、L-リジンを出発物質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する能力を有する、遺伝子組換え大腸菌。
[11]  下記の(d)~(f)のいずれか一のタンパク質:
(d)配列番号25に記載のアミノ酸配列からなるタンパク質;
(e)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質;
(f)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質。
[12]  L-ピペコリン酸に、[11]に記載のタンパク質を作用させ、シス-5-ヒドロキシ-L-ピペコリン酸を生成する工程を含む、シス-5-ヒドロキシ-L-ピペコリン酸もしくはその薬理学上許容される塩またはそれらの溶媒和物の製造方法。
[13]  L-リジンに、L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質を作用させ、L-アミノアジピン酸-デルタ-セミアルデヒドを生成し、続いてL-アミノアジピン酸-デルタ-セミアルデヒドがデルタ1-ピペリデイン-6-カルボン酸へ変換される工程;および
 得られたデルタ1-ピペリデイン-6-カルボン酸に、デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質を作用させ、L-ピペコリン酸を生成する工程
をさらに含む、[12]に記載の製造方法。
[14]  シス-5-ヒドロキシ-L-ピペコリン酸を培養液1L当り50mg以上生産する能力を有する、[9]または[10]に記載の遺伝子組換え微生物または遺伝子組換え大腸菌。
本発明の製造方法の一例、L-リジンからシス-5-ヒドロキシ-L-ピペコリン酸への変換経路 プラスミドpRSF-Cis(実施例1参照) BL21(DE3)/pRSF-Cis株の生産物のHPLCチャート(実施例2参照) BL21(DE3)/pRSF-Cis株の生産物のLC/MSチャート(実施例2参照)。上3点は200μg/mL標準品、下2点はBL21(DE3)/pRSF-Cis株が生産したもの。 酵素lat、酵素cis、変異cisの塩基配列およびアミノ酸配列
 本発明は、は、下記の式(I)構造式で表されるシス-5-ヒドロキシ-L-ピペコリン酸もしくはその薬理学上許容される塩またはそれらの溶媒和物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000001
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の製造方法は下記の工程(1)~(3)を含みうる:
(1)L-リジンを基質として、L-アミノアジピン酸-デルタ-セミアルデヒドを生成し、続いてL-アミノアジピン酸-デルタ-セミアルデヒドがデルタ1-ピペリデイン-6-カルボン酸へ変換される工程;
(2)デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する工程;および
(3)L-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する工程。
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の製造方法は、上述した工程(3)を含む。工程(3)は、L-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質、すなわちL-ピペコリン酸シス-5位水酸化酵素(Cis)を用いて、L-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する工程である。この工程は、cis遺伝子を有する生物にCisを発現させ、生物学的に実施することができる。
 本発明においては、cis遺伝子またはタンパク質として、下記の(A)~(F)のいずれか一のポリヌクレオチド、または下記の(d)~(f)のいずれか一のタンパク質を用いることができる。
(A)配列番号2に記載の塩基配列からなるポリヌクレオチド;
(B)配列番号2に記載の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(C)配列番号2に記載の塩基配列と少なくとも85%以上の同一性を有し、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(D)配列番号25に記載のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(E)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(F)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド。
(d)配列番号25に記載のアミノ酸配列からなるタンパク質;
(e)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質;
(f)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質。
 配列表の配列番号2および25に、本発明者らが特定し、本明細書の実施例で用いたcisの塩基配列およびアミノ酸配列を示した。
 配列番号25の全長のCisタンパク質のアミノ酸配列について、同一性の高い配列を検索したところ、配列番号6の塩基配列によりコードされるCAC47686タンパク質(本発明では、「Melilotiタンパク質」ということもある。)のアミノ酸配列に対して34%、配列番号7の塩基配列によりコードされるBAB52605タンパク質(本発明では、「Lotiタンパク質」ということもある。)のアミノ酸配列に対して33%の同一性が認められた。詳細には、前者に関しては、Score = 163 bits (413), Expect = 6e-45, Method: Compositional matrix adjust. Identities = 93/275 (34%), Positives = 146/275 (53%), Gaps = 9/275 (3%)であり、後者に関しては、Score = 159 bits (402), Expect = 3e-43, Method: Compositional matrix adjust. Identities = 87/260 (33%), Positives = 139/260 (53%), Gaps = 6/260 (2%)であった。これらより高い同一性を有する配列は認められなかった。なお、同一性の確認には、NCBIより提供されているblastpを用いた。
 実施例で用いたCisタンパク質は、EFV12517タンパク質(本発明では、「Shortcisタンパク質」ということもある。配列番号8の塩基配列によりコードされる。GenBankではアスパルチル/アスパルギニル ベータ-水酸化酵素としてアノテーションされている。)の48塩基、すなわち16アミノ酸上流部分を含んで構成されるタンパク質である。しかし、Shortcisタンパク質自体には、L-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換する能力は知られておらず、また実際にも検出できなかった(実施例2参照)。
 また、実施例で用いたCisタンパク質と34%のアミノ酸配列同一性を有するMelilotiタンパク質は、L-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換する能力を有することが知られている(前掲非特許文献3)が、すでに述べたように種々の問題点を有することが分かっている。一方で、実施例で用いたCisタンパク質と33%のアミノ酸配列同一性を有するLotiタンパク質は、本発明者らの検討によると、大腸菌で発現させた場合に、シス-5-ヒドロキシ-L-ピペコリン酸の生産性が比較的低いことがわかっている(実施例3参照)ほか、Loti(BAB52605)タンパク質とMeliloti(CAC47686)タンパク質とのアミノ酸配列の同一性は66%であり、Lotiタンパク質の大腸菌による発現、得られたタンパク質を用いたシス-5-ヒドロキシ-L-ピペコリン酸の製造には、Melilotiタンパク質と同様の困難を抱えていることが推測される。
 本発明の一態様においては、cis遺伝子およびタンパク質は、セグニリパラス属由来であり得、より特定すると、セグニリパラス・ルゴサス由来であり得、さらに特定すると、セグニリパラス・ルゴサス(Segniliparus rugosus)ATCC BAA-974由来であり得る。
 上述した(B)~(F)のポリヌクレオチドおよび(e)~(f)のタンパク質は、実施例で用いたcis遺伝子およびCisタンパク質の変異体というべきものである。このような変異体は、当業者であれば、実施例で用いたCisタンパク質に関するモチーフ等の情報や、上流の16アミノ酸配列が欠如している場合には所望の活性がないことに配慮し、適宜設計することができる。本発明者らの検討によると、実施例で用いたCisタンパク質は、Aspartyl/Asparaginyl beta-hydroxylase領域(Position: 26..174)とL-proline 3-hydroxylase, C-terminal領域(Position: 190..274)を有することがわかっている。なおモチーフ解析は、配列が示されていれば、公開されているwebsite、例えば、GenomeNet (http://www.genome.jp/))におけるPfam等を利用して、当業者であれば適宜実施でき、また、あるタンパク質がL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するか否かは、当業者であれば、本明細書の記載を参照にして、適宜評価することができる。
 本発明の一態様においては、変異型Cisが用いられる。変異型Cisの例は、本明細書の実施例で用いられている、配列番号23の塩基配列からなるポリヌクレオチドによってコードされる、配列番号26のアミノ酸配列からなるタンパク質である。配列番号23の塩基配列は、実施例で用いたcisの塩基配列(配列番号2)とは2塩基(897塩基中)が異なり、配列番号26のアミノ酸配列は、実施例で用いたCisのアミノ酸配列(配列番号25)とは1アミノ酸(299アミノ酸中)が異なる。配列番号26のアミノ酸配列と配列番号25のそれとの同一性は、99.7%である。
 実施例で用いた変異型Cisのアミノ酸配列(配列番号26)はまた、配列番号6の塩基配列によりコードされるMelilotiタンパク質のアミノ酸配列に対して34%、配列番号7の塩基配列によりコードされるLotiタンパク質のアミノ酸配列に対して29%、同一である。
 本発明でポリヌクレオチドに関し、「ストリンジェントな条件下でハイブリダイズする」というときは、特に記載した場合を除き、いずれのポリヌクレオチドにおいても、ハイブリダイゼーションの条件は、Molecular Cloning. A Laboratory Manual. 2nd ed.(Sambrook et al.,Cold Spring Harbor Laboratory Press)およびHybridization of Nucleic Acid Immobilization on Solid Supports(ANALYTICAL BIOCHEMISTRY 138,267-284(1984))の記載に従い、取得しようとするポリヌクレオチドに合わせて適宜選定することができる。例えば85%以上の同一性を有するDNAを取得する場合、2倍濃度のSSC溶液および50%ホルムアミドの存在下、45℃でハイブリダイゼーションを行った後、0.1倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用い、60℃でフィルターを洗浄する条件を用いればよい。また90%以上の同一性を有するDNAを取得する場合、2倍濃度のSSC溶液および50%ホルムアミドの存在下、50℃でハイブリダイゼーションを行った後、0.1倍濃度のSSC溶液)を用い、65℃でフィルターを洗浄する条件を用いればよい。
 また、本発明でタンパク質に関し、「1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列」というときの置換等されるアミノ酸の個数は、特に記載した場合を除き、いずれのタンパク質においても、そのアミノ酸配列からなるタンパク質が所望の機能を有する限り特に限定されないが、1~9個または1~4個程度であるか、性質の似たアミノ酸への置換であれば、さらに多くの個数の置換等がありうる。このようなアミノ酸配列に係るポリヌクレオチドまたはタンパク質を調製するための手段は、当業者にはよく知られている。
 本発明で塩基配列(ヌクレオチド配列ということもある。)またはアミノ酸配列に関し「「同一性」というときは、特に記載した場合を除き、いずれの塩基配列またはアミノ酸配列においても、2つの配列を最適の態様で整列させた場合に、2つの配列間で共有する一致したヌクレオチドまたはアミノ酸の個数の百分率を意味する。すなわち、同一性=(一致した位置の数/位置の全数)×100で算出でき、市販されているアルゴリズムを用いて計算することができる。また、このようなアルゴリズムは、Altschul et al.,J.Mol.Biol.215(1990)403-410に記載されるNBLASTおよびXBLASTプログラム中に組込まれている。より詳細には、塩基配列またはアミノ酸配列の同一性に関する検索・解析は、当業者には周知のアルゴリズムまたはプログラム(例えば、BLASTN、BLASTP、BLASTX、ClustalW)により行うことができる。プログラムを用いる場合のパラメーターは、当業者であれば適切に設定することができ、また各プログラムのデフォルトパラメーターを用いてもよい。これらの解析方法の具体的な手法もまた、当業者には周知である。
 本明細書において、塩基配列またはアミノ酸配列に関し、同一性というときは、特に記載した場合を除き、いずれの場合も、少なくとも70%、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは97.5%以上さらに好ましくは99%以上の配列の同一性を指す。
 本発明で用いるポリヌクレオチドまたは遺伝子、およびタンパク質または酵素は、当業者であれば、従来技術を利用して調製することができる。
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の製造方法は、上述した工程(1)を含んでもよい。工程(1)は、L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質、すなわちL-リジン 6-アミノトランスフェラーゼ(Lat)を用いて、L-リジンを基質として、L-アミノアジピン酸-デルタ-セミアルデヒドを生成し;続いてL-アミノアジピン酸-デルタ-セミアルデヒドがデルタ1-ピペリデイン-6-カルボン酸へ変換される工程である。この工程は、lat遺伝子を有する生物にLatを発現させ、生物学的に実施することができる。
 本発明においては、lat遺伝子またはタンパク質として、下記の(A’)~(F’)のいずれか一のポリヌクレオチド、または下記の(d’)~(f’)のいずれか一のタンパク質を用いることができる。
(A’)配列番号1に記載の塩基配列からなるポリヌクレオチド;
(B’)配列番号1に記載の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(C’)配列番号1に記載の塩基配列と少なくとも85%以上の同一性を有し、かつL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(D’)配列番号24に記載のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(E’)配列番号24に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
(F’)配列番号24に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド。
(d’)配列番号24に記載のアミノ酸配列からなるタンパク質;
(e’)配列番号24に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質;
(f’)配列番号24に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質。
 配列表の配列番号1および22に、フラボバクテリウム・ルテセンス(Flavobacterium lutescens)IFO3084由来のlatの塩基配列およびアミノ酸配列を示した。
 本発明においては、lat遺伝子またはタンパク質として、種々の生物由来のものを用いうる。本発明の一態様においては、lat遺伝子およびタンパク質は、フラボバクテリウム属由来であり得、より特定すると、フラボバクテリウム・ルテセンス由来であり得、さらに特定すると、フラボバクテリウム・ルテセンス IFO3084由来であり得る。
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の製造方法は、上述した工程(2)を含んでもよい。工程(2)は、デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質、すなわちピロリン酸-5-カルボン酸還元酵素(ProC)を用い、デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する工程である。この工程は、proC遺伝子を有する生物を用い、生物学的に実施することができる。
 配列表の配列番号3および25に、大腸菌由来のproCの塩基配列およびアミノ酸配列を示した。また、proCについては、前掲特許文献1を参照することができる。
 ProCは、大腸菌が元来有する酵素である。本発明の製造方法を大腸菌を用いて実施する場合は、工程(2)のための酵素として、大腸菌が元来有するProCを利用してもよく、強化等の目的で、外来のProCを利用してもよい。本発明で「発現可能な状態で含む」というときは、特に記載した場合を除き、そのポリヌクレオチドは外来のものに限られず、元来有しているものも含む。
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の製造方法は、上記の工程(1)~(3)のいずれかまたはすべてを、生物学的に実施することができる。生物学的実施の典型的な例は、必要な遺伝子を発現可能な状態で含む微生物細胞内で実施することである。シス-5-ヒドロキシ-L-ピペコリン酸の生物学的な製造方法に用いるための微生物は、宿主微生物を適切に構成されたベクターにより形質転換することにより得ることができる。本発明は、このような遺伝子組換え微生物、ベクターをも提供する。本発明の実施のために用いられる生物の例は微生物であり、より具体的な例は、原核生物であり、さらに具体的な例は、大腸菌である。
 本発明で「遺伝子組換え微生物」というときは、特に記載した場合を除き、遺伝子組換え技術を用いて特定の微生物に別の生物由来の遺伝子を導入した微生物(細菌、放線菌、酵母、糸状菌等)を意味し、それに用いる遺伝子導入の手法は、プラスミド等のベクターを用いた遺伝子組換えだけでなく、相同組換え等の手法も包含する。
 本発明により、L-リジン 6-アミノトランスフェラーゼ酵素活性を有するタンパク質(Lat)、ピロリン-5-カルボン酸リダクターゼ酵素活性を有するタンパク質(ProC)、およびL-ピペコリン酸のシス-5位水酸化酵素活性を有するタンパク質(Cis)それぞれをコードする遺伝子を発現可能に有しており、L-リジンからシス-5-ヒドロキシ-L-ピペコリン酸を直接生産することが可能な遺伝子組換え微生物を得ることができる。また、そのような遺伝子組換え微生物を培養し、培養液中から採取することによりシス-5-ヒドロキシ-L-ピペコリン酸を効率よく生産することができる。
 本発明により提供される遺伝子組換え微生物は、いずれの態様においても、リジン特異的透過タンパク質活性を有するタンパク質(LysP)をコードする遺伝子を発現可能に有していてもよい。L-ピペコリン酸の生物学的な製造方法においては、LysPの利用により、L-ピペコリン酸の生産速度が向上したことが報告されており、同様の観点から、シス-5-ヒドロキシ-L-ピペコリン酸の生物学的な製造方法においても、LysPが有用でありうる。配列番号4に大腸菌由来lysP遺伝子の塩基配列を示した。
 本発明により提供される遺伝子組換え微生物は、いずれの態様においても、さらにα-ケトグルタル酸を生成する反応を触媒する活性を有するタンパク質をコードする遺伝子を発現可能な状態で含んでいてもよい。L-ピペコリン酸シス-5位水酸化酵素に代表されるアミノ酸水酸化酵素類は、その水酸化反応に際しα-ケトグルタル酸を要求する(非特許文献3)。また、L-リジン 6-アミノトランスフェラーゼもそのアミノ基転移反応に際しα-ケトグルタル酸を要求し、それをグルタミン酸に変換することが知られている(EC 2.6.1.36 )。従って、これらのタンパク質が発現可能な微生物を利用してL-リジンからL-ピペコリン酸を製造する際には、α-ケトグルタル酸を再生することが重要であることが想像される。
 グルタミン酸をα-ケトグルタル酸に再生する酵素としてはグルタミン酸デヒドロゲナーゼ(EC 1.4.1.2)が知られており、この酵素による反応はL-リジン 6-アミノトランスフェラーゼによる反応と共役しうる。配列番号5に、枯草菌バチルス・サブチリス(Bacillus subtilis)subsp. subtilis str. 168由来のrocG遺伝子の塩基配列を示した。
 以下、本発明の実施態様についてさらに具体的に説明する。
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の生物学的な製造方法に用いる、L-ピペコリン酸のシス-5位水酸化酵素活性を有するタンパク質をコードするポリヌクレオチドは、当該技術分野で周知の方法(例えば、Molecular Cloning. A Laboratory Manual. 2nd edに記載されたコロニーハイブリダイゼーション法)に従って、適切な微生物の菌体から得ることができる。このような微生物の好ましい例として、セグニリパラス属に属する菌株、より詳細にはセグニリパラス・ルゴサスに属する菌株、より具体的には、セグニリパラス・ルゴサス ATCC BAA-974を挙げることができる。または、本発明の実施例のように、L-ピペコリン酸のシス-5位水酸化酵素活性を有するタンパク質をコードするDNAを人工的に合成しても良い。
 実施例で人工合成した、EFV12517タンパク質のアノテーションよりも48塩基(16アミノ酸相当)上流から発現させたL-ピペコリン酸のシス-5位水酸化酵素活性を有するタンパク質をコードするポリヌクレオチドは配列表の配列番号2に示すとおりである。この配列番号2で示されるDNAには、cis(塩基1~塩基897)のオープン・リーディング・フレーム(ORF)が含まれている。
 本発明の一態様である組換え体は、L-ピペコリン酸の生合成に関与する酵素(例えば、Lat、ProC、LysP、RocG)をコードするポリヌクレオチド、およびL-ピペコリン酸シス-5位水酸化酵素(Cis)をコードするポリヌクレオチドを保有する遺伝子組換え微生物であり、宿主微生物にこれらのDNAの両方を組み込む方法により作製することができる。
 宿主は、目的のDNAを組み込むことができ、目的のシス-5-ヒドロキシ-L-ピペコリン酸を生産できる微生物であれば特に制限はなく使用できる。好ましい微生物として大腸菌(Escherichia coli)に属する菌株、例えば大腸菌BL21(DE3)株等を挙げることができる。
 宿主に外来のポリヌクレオチドを組み込み発現させるための手段には、特に制限はないが、例えばMolecular Cloning. A Laboratory Manual. 2nd ed、Current Protocols in Molecular Biology(edited by Frederick M. Ausubel et al., 1987)等に記載された方法を用いて行うことができる。宿主、プラスミド-ベクター系は、目的のポリヌクレオチドが宿主中で安定に保持、発現できる系であれば特に制限はない。またプラスミドは、目的のポリヌクレオチド以外に、自律複製配列、プロモーター配列、ターミネーター配列、薬剤耐性遺伝子等を含んでいてもよく、プラスミドの種類としては、自律複製性プラスミドだけでなく、使用が予定される宿主のゲノムの一定領域と相同の配列をもつ組込み型プラスミドであってもよい。目的のポリヌクレオチドを組み込む部位は、プラスミド上または宿主微生物のゲノム上のいずれでもあってもよい。
 宿主として大腸菌を用いる場合は、自律複製型ベクターとしてpUC19やpRSFDuet-1等を、プロモーター配列としてはlacやT7等を、ターミネーター配列としては、lacZ terminatorやT7 terminator等を、薬剤耐性遺伝子としてはアンピシリン耐性遺伝子やカナマイシン耐性遺伝子等を、それぞれ挙げることができる。
 遺伝子組換え大腸菌で本発明を実施する場合、L-ピペコリン酸の生合成に関与するタンパク質のうちのLat、およびCisの導入は重要であるが、ProC、LysPおよびRocGの導入の適否は、目的生産物の量、同時に生産されるL-ピペコリン酸の有無および程度、出発物質であるL-リジンの利用率等を考慮し、適宜設計することができる。
 このようにして調製した遺伝子組換え微生物を培養し、シス-5-ヒドロキシ-L-ピペコリン酸の生産性を、従来技術の方法の方法により評価し、適切な組換体を選択することにより、有用なシス-5-ヒドロキシ-L-ピペコリン酸の生産株を得ることができる。生産物の測定方法は、本発明の実施例の記載の方法にしたがってもよい。
 本発明のシス-5-ヒドロキシ-L-ピペコリン酸の生物学的な製造方法は、典型的には遺伝子組換え微生物を培養することにより実施される。微生物の培養条件は、当業者であれば、用いる微生物に応じ、適宜設計することができる。宿主として大腸菌を用いる場合、必要に応じ、選択マーカーとしての抗生物質を含む汎用な培地に適切な量の微生物を接種し、20℃~40℃で、6時間~72時間、好ましくは9時間~60時間、より好ましくは12時間~48時間、必要に応じ、100~400rpmで撹拌または振とうしながら培養し、菌体を増殖させることができる。この培養中または培養後に、出発物質としてのL-リジンまたはその塩、必要に応じ、α-ケトグルタル酸またはその塩、さらに必要に応じ、適切な誘導物質(例えば、isopropylthio-β-galactoside(IPTG))を供給し、さらに20℃~40℃で、3時間~72時間、好ましくは4時間~60時間、より好ましくは6時間~48時間、必要に応じ、100~400rpmで撹拌または振とうすることにより、培養液中に目的物質が得られる。L-リジン等の供給のタイミングや、培養の終点は、当業者であれば、目的物質の生産量等を勘案し、適宜決定できるが、事前に行った小スケールでの培養結果に基づいて、あらかじめ決定しておいた時間が経過した際に、L-リジン等を供給し、また培養を終了することができる。
 L-リジンの初発濃度は、例えば2~32g/L、より特定すると4~16g/Lとすることができ、α-ケトグルタル酸の初発濃度は、例えば0~16g/L、より特定すると0~8g/Lとすることができる。あるいはα-ケトグルタル酸の初発濃度は、例えば1~16g/L、より特定すると2~8g/Lとすることができる
 本発明の遺伝子組換え大腸菌の好ましい例は、シス-5-ヒドロキシ-L-ピペコリン酸を培養液1L当り50mg以上生産する能力を有する、遺伝子組換え大腸菌である。
 本発明では、「シス-5-ヒドロキシ-L-ピペコリン酸もしくはその薬理学上許容される塩またはそれらの溶媒和物」のうち、シス-5-ヒドロキシ-L-ピペコリン酸を例に説明することがあるが、その説明は、特に記載した場合を除き、シス-5-ヒドロキシ-L-ピペコリン酸の薬理学上許容される塩またはそれらの溶媒和物にも当てはまり、また当業者であれば、適宜必要な工程を加えて、シス-5-ヒドロキシ-L-ピペコリン酸の製造方法を、その薬理学上許容される塩またはそれらの溶媒和物の製造方法に改変できる。なお、本発明で「薬理学上許容される塩またはそれらの溶媒和物」というときは、塩には、アルカリ金属塩(例えばナトリウム塩、カリウム塩)、アルカリ土類金属塩(例えばマグネシウム塩、カルシウム塩)、アンモニウム塩、モノ-、ジ-またはトリ-低級(アルキルまたはヒドロキシアルキル)アンモニウム塩(例えばエタノールアンモニウム塩、ジエタノールアンモニウム塩、トリエタノールアンモニウム塩、トロメタミン塩)、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、リン酸塩、硫酸塩、ギ酸塩、酢酸塩、クエン酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、コハク酸塩、リンゴ酸塩、酒石酸塩、トリクロロ酢酸塩、トリフルオロ酢酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、メシチレンスルホン酸塩およびナフタレンスルホン酸塩が含まれる。
 また、塩は、無水物、または溶媒和物であってよく、溶媒和物には、水和物、メタノール和物、エタノール和物、プロパノール和物、および2-プロパノール和物が含まれる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されるものではない。
 〔実施例1.pRSFduet-Cisの構築〕
 配列番号1の塩基配列を参考にして、5’末端にNcoIサイトを付加したプライマーlac-lat-NcoF2(配列番号9参照)および5’末端にSpeIサイトを付加したプライマーlat-XhoR(配列番号10参照)を設計し、作成した。次に、この2種のプライマーとフラボバクテリウム ルテセンス(Flavobacterium lutescens)IFO3084株ゲノムDNAをテンプレートとして用いてPCR反応を行った。PCR反応は、KOD-Plus-Ver.2(TOYOBO社)を用い、変性を98℃20秒間、アニーリングを60℃20秒間、伸長を68℃90秒間行う2段階の反応を30回繰り返した。このPCR増幅反応液からlatを含む約1.5kbpの大きさのDNA断片をWizard PCR Preps DNA Purification System(Promega社)によって回収した。得られたDNA断片を制限酵素NcoIとXhoIで消化したものをlat断片とした。
 配列番号4の塩基配列を参考にして、5’末端にXhoIサイトを付加したプライマーlysP-SD-XhoF(配列番号11参照)および5’末端にKpnIサイトを付加したプライマーlysP-KpnR(配列番号12参照)を設計し作成した(SIGMA GENOSYS社)。次に、この2種のプライマーと大腸菌K12由来JM109株ゲノムDNAをテンプレートとして用いて上記と同様にPCR反応を行った。このPCR増幅反応液からlysPを含む約1.5kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素XhoIとKpnIで消化したものをlysP断片とした。
 配列番号3の塩基配列を参考にして、5’末端にKpnIサイトを付加したプライマーproC-SD-KpnF(配列番号13参照)および5’末端にBamHIサイトを付加したプライマーproC-BamR(配列番号14参照)を設計し作成した。次に、この2種のプライマーと大腸菌 K12 JM109株ゲノムDNAをテンプレートとして用いて上記と同様にPCR反応を行った。このPCR増幅反応液からproCを含む約1.0kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素KpnIとBamHIで消化したものをproC断片とした。
 pRSFDuet-1(Novergen社)を制限酵素NcoIとBamHIにより消化して得たプラスミド消化物と、lat断片、lysP断片、およびproC断片をDNA Ligation Kit ver.2(タカラバイオ社)を用いて四者ライゲーションし、E. coli JM109 Competent Cells(タカラバイオ社)を形質転換することにより、latlysP、およびproC各遺伝子を有するプラスミドpRSF-LLPを構築した。
 次に、配列番号5の塩基配列を参考にして、5’末端にBamHIサイトを付加したプライマーrocG-SD-BamF(配列番号15参照)および5’末端にXbaIサイトを付加したプライマーrocG-XbaR(配列番号16参照)を設計し作成した。次に、この2種のプライマーと枯草菌バチルス・サブチリスsubsp. subtilis str. 168株ゲノムDNAをテンプレートとして用いて上記と同様にPCR反応を行った。このPCR増幅反応液からrocGを含む約1.3kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素BamHIとXbaIで消化したものをrocG断片とした。
 pRSF-LLPを制限酵素BamHIとXbaIにより消化して得たプラスミド消化物と、rocG断片をライゲーションし、latlysPproC、およびrocG各遺伝子を有するプラスミドpRSF-PAを構築した。
 配列番号8の塩基配列を参考にして、5’末端にNdeIサイトを付加したプライマーsegni-short-NdeF(配列番号17参照)および5’末端にBglIIサイトを付加したプライマーsegni-cis-BglR(配列番号18参照)を設計し作成した。次に、配列番号8の塩基配列の通りに人工遺伝子合成を行い(GenScript社)、これをテンプレートとして用いて上記と同様にPCR反応を行った。このPCR増幅反応液からcisを含む約0.9kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素NdeIとBglIIで消化したものをcisShort断片とした。
 pRSF-PAを制限酵素NdeIとBglIIにより消化して得たプラスミド消化物と、cisShort断片をライゲーションし、latlysPproCrocGの各遺伝子、およびEFV12517タンパク質をコードする遺伝子(shortcis)を有するプラスミドpRSF-CisShortを構築した。
 配列番号2の塩基配列を参考にして、5’末端にNdeIサイトを付加したプライマーsegni-cis-NdeF2(配列番号19参照)および5’末端にBglIIサイトを付加したプライマーsegni-cis-BglR(配列番号18参照)を設計し作成した。次に、配列番号2の塩基配列の通りに人工遺伝子合成を行い(GenScript社)、これをテンプレートとして用いて上記と同様にPCR反応を行った。このPCR増幅反応液からcisを含む約0.9kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素NdeIとBglIIで消化したものをcis断片とした。
 pRSF-PAを制限酵素NdeIとBglIIにより消化して得たプラスミド消化物と、cis断片をライゲーションし、latlysPproCrocG、およびcis各遺伝子を有するプラスミドpRSF―Cis(図2)を構築した。
 配列番号1の塩基配列を参考にして、5’末端にNcoIサイトを付加したプライマーlac-lat-NcoF2(配列番号9参照)および5’末端にAflIIサイトを付加したプライマーlat-(Spe)AflR2(配列番号20参照)を設計し作成した。次に、この2種のプライマーとプラスミドpRSF-Cisをテンプレートとして用いてPCR反応を行った。このPCR増幅反応液からlatを含む約1.5kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素NcoIとAflIIで消化したものをlat2断片とした。
 pRSF-Cisを制限酵素NcoIとAflIIにより消化して得たプラスミド消化物と、lat2断片をライゲーションし、latおよびcis遺伝子を有するプラスミドpRSF-LatCisを構築した。
 配列番号7の塩基配列を参考にして、5’末端にNcoIサイトを付加したプライマーloti-SD-PacF(配列番号21参照)および5’末端にAvrIIサイトを付加したプライマーloti-AvrR(配列番号22参照)を設計し作成した。次に、この2種のプライマーとメソリゾビウム・ロチ MAFF303099株ゲノムDNAをテンプレートとして用いてPCR反応を行った。このPCR増幅反応液からBAB52605タンパク質をコードする遺伝子を含む約0.9kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素PacIとAflIIで消化したものをloti断片とした。
 pRSF-Cisを制限酵素PacIとAflIIにより消化して得たプラスミド消化物と、loti断片をライゲーションし、latlysPproCrocGの各遺伝子、およびBAB52605タンパク質をコードする遺伝子(loti)を有するプラスミドpRSF―Lotiを構築した。
 最後に、プライマーとしてsegni-cis-NdeF2およびsegni-cis-BglR、テンプレートとしてpRSF-Cisをそれぞれ用い、DiversifyTM PCR Random Mutagenesis Kit(Clonteck社)の条件5を用いてPCR反応を行った。このPCR増幅反応液から約0.9kbpの大きさのDNA断片を回収した。得られたDNA断片を制限酵素NdeIとBglIIで消化したものをmutant-cis断片とした。pRSF-PAを制限酵素NdeIとBglIIにより消化して得たプラスミド消化物と、mutant-cis断片をライゲーションし、pRSF-PAを制限酵素NdeIとBglIIにより消化して得たプラスミド消化物と、mutant-cis断片をライゲーションし、latlysPproCrocGの各遺伝子、および変異型cis遺伝子を有するプラスミドpRSF-MutCisLibraryを構築した。
 〔実施例2. シス-5-ヒドロキシ-L-ピペコリン酸生産試験1〕
 プラスミドpRSF-Cis(図2)、pRSF-CisShort、pRSF-PA、pRSF-LatCisおよびpRSFDuet-1を用いて、大腸菌ワンショットBL21(DE3)コンピテントセル(ライフテクノロジーズジャパン社)を形質転換した株をそれぞれBL21(DE3)/pRSF-Cis、BL21(DE3)/pRSF-CisShort、BL21(DE3)/pRSF-PABL21(DE3)/pRSF-LatCisおよびBL21(DE3)/pRSFDuet-1とした。これらの株をカナマイシン硫酸塩(25μg/ml)を含むM9SEED液体培地(3.39% Na2HPO4、1.5% KH2PO4、0.25%塩化カルシウム、0.5%塩化アンモニウム、1% カザミノ酸、0.002% チミン、0.1mM塩化カルシウム、0.1mM硫酸鉄、0.4% グルコース、0.001mM 塩化マグネシウム)に接種し、30℃で22時間220rpmで振とう培養した。この培養液10μLをカナマイシン硫酸塩(30μg/mL)とOvernight Express Autoinduction Systems(メルク社)を含むM9Cis培地(3.39% Na2HPO4、1.5% KH2PO、0.25% 塩化ナトリウム、0.5% 塩化アンモニウム、1% カザミノ酸、0.002% チミン、0.1mM 塩化カルシウム、0.1mM 硫酸鉄、80μg/ml 5-アミノレブリン酸、0.01%)に添加した後、30℃で9時間220rpmで振とう培養した。ここで40% L-リジン塩酸塩10μL(終濃度8g/L)、20% α-ケトグルタル酸 10μL(終濃度4g/L)、100mM IPTG 0.5μL(終濃度0.1mM)、および50% Glycerol 5μL(終濃度0.5%)を加え、さらに30℃、220rpmで振とう培養した。培養開始後24時間の時点で培養液の遠心上清を回収し、LC/MS分析サンプル調製に充てた。
 サンプリング液についてNα-(5-Fluoro-2,4-dinitrophenyl)-L-leucinamide(L-FDLA)(東京化成工業社)を用い、以下の方法によりFDLA化した。
 サンプリング液の遠心上清の10倍希釈液20μLに1M NaHCO3 6.25μLと1% L-FDLAアセトン溶液30μLとを加え37℃で一時間保温した。1N HCLを6.25μL加え反応を停止し、アセトニトリル60μLを加え希釈したものをFDLA化液とした。
 得られたFDLA化液についてHPLCおよびLC/MSにてL-リジン、L-ピペコリン酸およびシス-5-ヒドロキシ-L-ピペコリン酸の量を測定した。HPLCおよびLC/MS分析チャートを図3および図4に示した。定量結果を表1に示した。また、HPLCおよびLC/MSの測定条件を以下に示す。
 分析条件
カラム:CAPCELLPAK C18 SG120,4.6×150mm,5μm
流速:1.0mL/min
移動相:A;0.1%酢酸 B;アセトニトリル
グラジエント:0-9min(B:30-65%),9.01-12min(B:90%),12.01-15min(B:30%)
検出:340nm
注入量:5μL
カラム温度:40℃
MS:Agilent 6320 (Ion trap)
Mode:ESI/APCI positive
Scan Range:m/z 100-900
 分析時間:15分
 保持時間:L-リジン 10.0分
      L-ピペコリン酸 8.5分
      シス-5-ヒドロキシ-L-ピペコリン酸 5.8分
Figure JPOXMLDOC01-appb-T000002
 この結果、BL21(DE3)/pRSFDuet-1株ではL-ピペコリン酸およびシス-5-ヒドロキシ-L-ピペコリン酸の生産が確認できなかったのに対して、BL21(DE3)/pRSF-CisShort株(プラスミド上にlatlysPproCrocGshortcis各遺伝子含有)およびBL21(DE3)/pRSF―PA株(プラスミド上にlatlysPproCrocG各遺伝子含有)ではL-ピペコリン酸を生産していた。また、BL21(DE3)/pRSF-Cis株(プラスミド上にlatlysPproCrocGcis各遺伝子含有)およびBL21(DE3)/pRSF―LatCis株(プラスミド上にlatおよびcis遺伝子含有)ではシス-5-ヒドロキシ-L-ピペコリン酸とL-ピペコリン酸を生産していた。
 このことより、L-ピペコリン酸生産能を有する株にcis遺伝子を導入すること(ここではlat遺伝子とcis遺伝子の共発現)により、シス-5-ヒドロキシ-L-ピペコリン酸を直接生産できること、さらにlysPproCおよびrocG遺伝子をも共発現することによりその生産性が向上しうることが示された。尚、L-ピペコリン酸の標品としてL-Pipecolic Acid(東京化成工業株式会社)、シス-5-ヒドロキシ-L-ピペコリン酸の標品として(2S,5S)-5-Hydroxypipecolic Acid (SV ChemBIOTECH.INC)を用いた。
 このように、shortcis遺伝子にコードされたEFV12517タンパク質を発現した大腸菌にはL-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換する能力は検出できなかったが、EFV12517タンパク質のアノテーションよりも48塩基(16アミノ酸相当)上流から発現させたポリヌクレオチド(cis遺伝子)にコードされたタンパク質を発現した大腸菌は、L-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換するL-ピペコリン酸のシス-5位水酸化酵素活性を有していた。さらに、このcis遺伝子にコードされるタンパク質のアミノ酸配列と、CAC47686タンパク質およびBAB52605タンパク質のアミノ酸配列との相同性はそれぞれ34%および33%であった。
 以上のことから、cis遺伝子にコードされたタンパク質を発現した大腸菌が、L-ピペコリン酸をシス-5-ヒドロキシ-L-ピペコリン酸に変換するL-ピペコリン酸のシス-5位水酸化酵素活性を有することは、既知情報からは推測しがたいと考えられた。
 〔実施例3.シス-5-ヒドロキシ-L-ピペコリン酸生産試験2〕
 プラスミドpRSF-Cis、pRSF-LotiおよびpRSF-MutCisを用いて大腸菌ワンショットBL21(DE3)コンピテントセルを形質転換した株をそれぞれBL21(DE3)/pRSF-CisおよびBL21(DE3)/pRSF-Lotiとした。また、プラスミドpRSF-MutCisLibraryを用いて大腸菌ワンショットBL21(DE3)コンピテントセルを形質転換した株のうちの一株を、BL21(DE3)/pRSF-MutCis1とした。これらの株を実施例2と同様に培養および分析を行い、L-ピペコリン酸およびシス-5-ヒドロキシ-L-ピペコリン酸の量を測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果、BL21(DE3)/pRSF-Cis株(プラスミド上にlatlysPproCrocGcis各遺伝子含有)に比べ、BL21(DE3)/pRSF-Loti株(プラスミド上にlatlysPproCrocGloti各遺伝子含有)では、シス-5-ヒドロキシ-L-ピペコリン酸生産量は約1/30であった。このことより、loti遺伝子がコードするBAB52605タンパク質を発現した大腸菌を用いた場合、得られるシス-5-ヒドロキシ-L-ピペコリン酸の量が比較的少ないことが示された。
 一方、BL21(DE3)/pRSF-Cis株に比べ、BL21(DE3)/pRSF―MutCis1株(プラスミド上にlatlysPproCrocG、変異型cis各遺伝子含有)でも、シス-5-ヒドロキシ-L-ピペコリン酸生産量は同等以上であった。この変異型cis遺伝子の塩基配列をBigDye Terminator v3.1 Cycle Sequencing Kit(AppliedBiosystems社)を用いて解析した結果を配列番号23に示した。この結果、cis遺伝子塩基配列とこの変異型cis遺伝子塩基配列は全897塩基中2塩基が異なる為、両遺伝子塩基配列の相同性は99.7%であった。このことより、cis遺伝子塩基配列との相同性が99.7%以上である遺伝子がコードするタンパク質を発現した大腸菌を用いたシス-5-ヒドロキシ-L-ピペコリン酸製造が可能であることが示された。
 〔実施例4. シス-5-ヒドロキシ-L-ピペコリン酸生産試験3〕
 プラスミドpRSF-Cis、およびpRSF-CisΔproCΔrocGを用いて大腸菌ワンショットBL21(DE3)コンピテントセルを形質転換した株をそれぞれBL21(DE3)/pRSF-CisおよびBL21(DE3)/pRSF-CisΔproCΔrocGとした。これらの株を実施例2と同様に培養および分析を行い、L-ピペコリン酸およびシス-5-ヒドロキシ-L-ピペコリン酸の量を測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 この結果、BL21(DE3)/pRSF-Cis株(プラスミド上にlatlysPproCrocGcis各遺伝子含有)に比べ、BL21(DE3)/pRSF-CisΔproCΔrocG株(プラスミド上にlatlysPcis各遺伝子含有)では、シス-5-ヒドロキシ-L-ピペコリン酸生産量は約2/3であった。このことより、latおよびlysP両遺伝子に加えproCおよびrocG遺伝子をもプラスミド上に含有する場合の方が、得られるシス-5-ヒドロキシ-L-ピペコリン酸の量が多いことが示された。
 〔実施例5. シス-5-ヒドロキシ-L-ピペコリン酸生産試験4〕
 プラスミドpRSF-CisのproC遺伝子、rocG遺伝子、もしくはこれら両遺伝子を削る為、以下のプライマーを作製した。
プライマーproCrocGX-SpeR (配列番号27参照)
プライマーproCX-SpeR (配列番号28参照)
プライマーrocGX-SpeF (配列番号29参照)
プライマーproCX-SpeF (配列番号30参照)
 プラスミドpRSF-CisのproC遺伝子を削ったプラスミドpRSF-CisΔproCは、以下のように作製した。プライマーproCX-SpeFとプライマーproCrocGX-SpeRを用い、pRSF-Cisをテンプレートとして用いてPCR反応を行った。このPCR増幅反応液からプラスミドpRSF-CisのproC遺伝子を削ったDNA断片を回収した。得られたDNA断片を制限酵素SpeIで消化し、セルフライゲーションし、E. coli JM109 Competent Cells(タカラバイオ社)を形質転換することにより、pRSF-CisΔproCを構築した。同様に、プラスミドpRSF-CisのrocG遺伝子を削ったプラスミドpRSF-CisΔrocGはプライマーrocGX-SpeFとプライマーproCX-SpeRを用い、プラスミドpRSF-CisのproC遺伝子とrocG遺伝子遺伝子を削ったプラスミドpRSF-CisΔproCΔrocGは、プライマーrocGX-SpeFとプライマーproCrocGX-SpeRを用いて作製した。
 プラスミドpRSF-Cis、pRSF-CisΔproC、pRSF-CisΔrocG、およびpRSF-CisΔproCΔrocGを用いて、大腸菌ワンショットBL21(DE3)コンピテントセル(ライフテクノロジーズジャパン社)を形質転換した株をそれぞれBL21(DE3)/pRSF-Cis、BL21(DE3)/pRSF-CisΔproC、BL21(DE3)/pRSF-CisΔrocG、およびBL21(DE3)/pRSF-CisΔproCΔrocGとした。これらの株をカナマイシン硫酸塩(25μg/ml)を含むM9SEED液体培地(3.39% Na2HPO4、1.5% KH2PO4、0.25%塩化カルシウム、0.5%塩化アンモニウム、1% カザミノ酸、0.002% チミン、0.1mM塩化カルシウム、0.1mM硫酸鉄、0.4% グルコース、0.001 mM 塩化マグネシウム)に接種し、30℃で9時間220rpmで振とう培養した。この培養液10μLをカナマイシン硫酸塩(30μg/mL)、L-リジン塩酸塩(終濃度8g/L)、α-ケトグルタル酸(終濃度2g/L)およびOvernight Express Autoinduction Systems(メルク社)を含むM9Cis培地(3.39% Na2HPO4、1.5% KH2PO、0.25% 塩化ナトリウム、0.5% 塩化アンモニウム、1% カザミノ酸、0.002% チミン、 0.1mM 塩化カルシウム、0.1mM 硫酸鉄、80μg/ml 5-アミノレブリン酸、0.01%)に添加した後、30℃で15時間220rpmで振とう培養した。ここで40% L-リジン塩酸塩5μL(終濃度4g/L)、20% α-ケトグルタル酸 5μL(終濃度2g/L)、100mM IPTG 0.5μL(終濃度0.1mM)、および50% グリセロール 5μL(終濃度0.5%)を加え、さらに30℃、220rpmで振とう培養した。培養開始後39時間の時点で培養液の遠心上清を回収し、LC/MS分析サンプル調製に充てた。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 この結果、この培養条件では、BL21(DE3)/pRSF-CisΔrocGおよびBL21(DE3)/pRSF-CisΔproCΔrocGの方が、BL21(DE3)/pRSF-Cisより、シス-5-ヒドロキシ-L-ピペコリン酸の生産量が多かった。
配列番号1:latの塩基配列
配列番号2:cisの塩基配列
配列番号3:proCの塩基配列
配列番号4:lysPの塩基配列
配列番号5:rocGの塩基配列
配列番号6:melilotiの塩基配列
配列番号7:lotiの塩基配列
配列番号8:shortcisの塩基配列
配列番号9:プライマーlac-lat-NcoF2
配列番号10:プライマーlat-XhoR
配列番号11:プライマーlysP-SD-XhoF
配列番号12:プライマーlysP-KpnR
配列番号13:proC-SD-KpnF
配列番号14:プライマーproC-BamR
配列番号15:プライマーrocG-SD-BamF
配列番号16:プライマーrocG-XbaR
配列番号17:プライマーsegni-short-NdeF
配列番号18:プライマーsegni-cis-BglR
配列番号19:プライマーsegni-cis-NdeF2
配列番号20:プライマーlat-(Spe)AflR2
配列番号21:プライマーloti-SD-PacF
配列番号22:プライマーloti-AvrR
配列番号23:変異型cisの塩基配列
配列番号24:latがコードするタンパク質のアミノ酸配列
配列番号25:cisがコードするタンパク質のアミノ酸配列
配列番号26:変異型cisがコードするタンパク質のアミノ酸配列
配列番号27:プライマーproCrocGX-SpeR
配列番号28:プライマーproCX-SpeR
配列番号29:プライマーrocGX-SpeF
配列番号30:プライマーproCX-SpeF

Claims (14)

  1.  下記の(A)~(F)のいずれか一のポリヌクレオチドを発現可能な状態で含む微生物により、L-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する工程を含む、シス-5-ヒドロキシ-L-ピペコリン酸もしくはその薬理学上許容される塩またはそれらの溶媒和物の製造方法:
    (A)配列番号2に記載の塩基配列からなるポリヌクレオチド;
    (B)配列番号2に記載の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
    (C)配列番号2に記載の塩基配列と少なくとも85%以上の同一性を有し、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
    (D)配列番号25に記載のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (E)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
    (F)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド。
  2.  微生物が、L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド、およびデルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドを、発現可能な状態でさらに含み:
     L-リジンを基質として、L-アミノアジピン酸-デルタ-セミアルデヒドを生成し、続いてL-アミノアジピン酸-デルタ-セミアルデヒドがデルタ1-ピペリデイン-6-カルボン酸へ変換される工程;および
     デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する工程
    をさらに含む、請求項1に記載の製造方法。
  3.  L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドが、フラボバクテリウム ルテセンス(Flavobacterium lutescens)由来である、請求項2に記載の製造方法。
  4.  微生物が大腸菌であり、デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドを元来有する、請求項2または3に記載の製造方法。
  5.  下記の(A)~(F)のいずれか一のポリヌクレオチド:
    (A)配列番号2に記載の塩基配列からなるポリヌクレオチド;
    (B)配列番号2に記載の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
    (C)配列番号2に記載の塩基配列と少なくとも85%以上の同一性を有し、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
    (D)配列番号25に記載のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (E)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド;
    (F)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチド。
  6.  請求項5に記載のポリヌクレオチドを含む、形質転換用ベクター。
  7.  L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドをさらに含む、請求項6に記載の微生物の形質転換用ベクター。
  8.  α-ケトグルタル酸を生成する反応を触媒する活性を有するタンパク質および/またはデルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドをさらに含む、請求項6または7に記載の微生物の形質転換用ベクター。
  9.  請求項6~8のいずれか1項に記載のベクターにより形質転換された、遺伝子組換え微生物。
  10.  請求項5に記載のポリヌクレオチド、およびL-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質をコードするポリヌクレオチドにより形質転換され、L-リジンを出発物質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する能力を有する、遺伝子組換え大腸菌。
  11.  下記の(d)~(f)のいずれか一のタンパク質:
    (d)配列番号25に記載のアミノ酸配列からなるタンパク質;
    (e)配列番号25に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質;
    (f)配列番号25に記載のアミノ酸配列と少なくとも85%以上の同一性を有するアミノ酸配列からなり、かつL-ピペコリン酸を基質としてシス-5-ヒドロキシ-L-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質。
  12.  L-ピペコリン酸に、請求項11に記載のタンパク質を作用させ、シス-5-ヒドロキシ-L-ピペコリン酸を生成する工程を含む、シス-5-ヒドロキシ-L-ピペコリン酸もしくはその薬理学上許容される塩またはそれらの溶媒和物の製造方法。
  13.  L-リジンに、L-リジンを基質としてL-アミノアジピン酸-デルタ-セミアルデヒドを生成する反応を触媒する活性を有するタンパク質を作用させ、L-アミノアジピン酸-デルタ-セミアルデヒドを生成し、続いてL-アミノアジピン酸-デルタ-セミアルデヒドがデルタ1-ピペリデイン-6-カルボン酸へ変換される工程;および
     得られたデルタ1-ピペリデイン-6-カルボン酸に、デルタ1-ピペリデイン-6-カルボン酸を基質としてL-ピペコリン酸を生成する反応を触媒する活性を有するタンパク質を作用させ、L-ピペコリン酸を生成する工程
    をさらに含む、請求項12に記載の製造方法。
  14.  シス-5-ヒドロキシ-L-ピペコリン酸を培養液1L当り50mg以上生産する能力を有する、請求項9または10に記載の遺伝子組換え微生物または遺伝子組換え大腸菌。
PCT/JP2013/066218 2012-06-13 2013-06-12 シス-5-ヒドロキシ-l-ピペコリン酸の生物学的な製造方法 WO2013187438A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/407,576 US9611490B2 (en) 2012-06-13 2013-06-12 Biological method for producing cis-5-hydroxy-L-pipecolic acid
CN201380030961.0A CN104395466A (zh) 2012-06-13 2013-06-12 顺式-5-羟基-l-六氢吡啶甲酸的生物学制备方法
EP13804143.9A EP2873730A4 (en) 2012-06-13 2013-06-12 BIOLOGICAL PROCESS FOR THE PREPARATION OF CIS-5-HYDROXY-L-PIPECOLIC ACID
JP2014521374A JP6276178B2 (ja) 2012-06-13 2013-06-12 シス−5−ヒドロキシ−l−ピペコリン酸の生物学的な製造方法
CA2876558A CA2876558C (en) 2012-06-13 2013-06-12 Biological method for producing cis-5-hydroxy-l-pipecolic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012133876 2012-06-13
JP2012-133876 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187438A1 true WO2013187438A1 (ja) 2013-12-19

Family

ID=49758258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066218 WO2013187438A1 (ja) 2012-06-13 2013-06-12 シス-5-ヒドロキシ-l-ピペコリン酸の生物学的な製造方法

Country Status (6)

Country Link
US (1) US9611490B2 (ja)
EP (1) EP2873730A4 (ja)
JP (1) JP6276178B2 (ja)
CN (2) CN104395466A (ja)
CA (1) CA2876558C (ja)
WO (1) WO2013187438A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098774A1 (ja) * 2013-12-26 2015-07-02 株式会社カネカ 光学活性環状イミノ酸の製造方法
WO2015115398A1 (ja) * 2014-01-31 2015-08-06 株式会社エーピーアイ コーポレーション ピペコリン酸4位水酸化酵素およびそれを利用した4-ヒドロキシアミノ酸の製造法
WO2016076159A1 (ja) * 2014-11-12 2016-05-19 株式会社エーピーアイ コーポレーション シス-5-ヒドロキシ-l-ピペコリン酸の製造方法
WO2017057730A1 (ja) * 2015-10-02 2017-04-06 株式会社エーピーアイ コーポレーション ヒドロキシ-l-ピペコリン酸の製造方法
WO2022138969A1 (ja) * 2020-12-25 2022-06-30 株式会社エーピーアイ コーポレーション 変異型L-ピペコリン酸水酸化酵素及びそれを利用したcis-5-ヒドロキシ-L-ピペコリン酸の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117866868B (zh) * 2024-03-12 2024-05-28 天津科技大学 一种l-高脯氨酸生产菌株及其构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048216A1 (fr) 1999-12-28 2001-07-05 Mercian Corporation Methode de production biologique d'acide l-pipecolique
WO2009139365A1 (ja) 2008-05-12 2009-11-19 学校法人 早稲田大学 シス-4-ヒドロキシ-l-プロリン製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE534361C2 (sv) * 2009-10-23 2011-07-26 Idea Ab R Metod för tillverkning av ett kompositmaterial

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048216A1 (fr) 1999-12-28 2001-07-05 Mercian Corporation Methode de production biologique d'acide l-pipecolique
JP4516712B2 (ja) 1999-12-28 2010-08-04 メルシャン株式会社 L−ピペコリン酸の生物学的な製造方法
WO2009139365A1 (ja) 2008-05-12 2009-11-19 学校法人 早稲田大学 シス-4-ヒドロキシ-l-プロリン製造方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Hybridization of Nucleic Acid Immobilization on Solid Supports", ANALYTICAL BIOCHEMISTRY, vol. 138, 1984, pages 267 - 284
"Molecular Cloning A Laboratory Manual"
"Molecular Cloning A Laboratory Manual", 1987, article "Current Protocols in Molecular Biology"
ADV. SYNTH. CATAL., vol. 353, 2011, pages 1375 - 1383
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, no. 3, 2002, pages 622 - 627
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, no. 9, 2002, pages 1981 - 1984
DATABASE GENBANK [online] 9 September 2013 (2013-09-09), EARL, A.M.: "HYPOTHETICAL PROTEIN HMPREF9336_02629 [SEGNILIPARUS RUGOSUS ATCC BAA-974]", XP003034297, Database accession no. EFV12517.2 *
EARL M. ASHLEE ET AL.: "High quality draft genome sequence of Segniliparus rugosus CDC 945T=(ATCC BAA-974T)", STAND. GENOMIC SCI., vol. 5, 2011, pages 389 - 397, XP055181792 *
KLEIN CHRISTIAN ET AL.: "A Simple Procedure for Selective Hydroxylation of L-Proline and L-Pipecolic Acid with Recombinantly Expressed Proline Hydroxylases", ADV. SYNTH. CATAL., vol. 353, 2011, pages 1375 - 1383, XP055181796 *
SAMBROOK ET AL.: "Molecular Cloning A Laboratory Manual", COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2873730A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098774A1 (ja) * 2013-12-26 2015-07-02 株式会社カネカ 光学活性環状イミノ酸の製造方法
JPWO2015098774A1 (ja) * 2013-12-26 2017-03-23 株式会社カネカ 光学活性環状イミノ酸の製造方法
WO2015115398A1 (ja) * 2014-01-31 2015-08-06 株式会社エーピーアイ コーポレーション ピペコリン酸4位水酸化酵素およびそれを利用した4-ヒドロキシアミノ酸の製造法
WO2016076159A1 (ja) * 2014-11-12 2016-05-19 株式会社エーピーアイ コーポレーション シス-5-ヒドロキシ-l-ピペコリン酸の製造方法
EP3219805A4 (en) * 2014-11-12 2017-11-08 API Corporation Method for manufacturing cis-5-hydroxy-l-pipecolic acid
US10087473B2 (en) 2014-11-12 2018-10-02 Api Corporation Method for manufacturing cis-5-hydroxy-L-pipecolic acid
WO2017057730A1 (ja) * 2015-10-02 2017-04-06 株式会社エーピーアイ コーポレーション ヒドロキシ-l-ピペコリン酸の製造方法
WO2022138969A1 (ja) * 2020-12-25 2022-06-30 株式会社エーピーアイ コーポレーション 変異型L-ピペコリン酸水酸化酵素及びそれを利用したcis-5-ヒドロキシ-L-ピペコリン酸の製造方法

Also Published As

Publication number Publication date
EP2873730A4 (en) 2016-05-11
JPWO2013187438A1 (ja) 2016-02-04
EP2873730A1 (en) 2015-05-20
US20150211035A1 (en) 2015-07-30
CA2876558C (en) 2020-08-04
US9611490B2 (en) 2017-04-04
CN111485008A (zh) 2020-08-04
CN104395466A (zh) 2015-03-04
CA2876558A1 (en) 2013-12-19
JP6276178B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
KR102094875B1 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
JP6276178B2 (ja) シス−5−ヒドロキシ−l−ピペコリン酸の生物学的な製造方法
CN109825538B (zh) 一种手性2-氨基-1-丁醇的合成方法
CN111032682A (zh) 用于工业生物催化的工程化转氨酶多肽
AU2014291007B2 (en) A Novel Modified Ornithine Decarboxylase Protein And A Use Thereof
KR20160097691A (ko) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
WO2003027301A1 (fr) Procede permettant de produire un alcool au moyen d'un micro-organisme
CN112746067B (zh) 用于制备d-鸟氨酸的赖氨酸脱羧酶突变体
KR101940647B1 (ko) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
US8691960B2 (en) Oxidoreductases for enantioselective reactions
US20030175909A1 (en) Novel thermostable galactose isomerase and tagatose production thereby
CN111057686A (zh) 一种醇脱氢酶突变体及应用
US7022502B2 (en) Process for the biological production of L-pipecolic acid
CN113122563A (zh) 构建r-3-氨基丁酸生产菌的方法
CN113061593A (zh) 一种l-苹果酸脱氢酶突变体及其应用
JP2020036576A (ja) コエンザイムA(CoA)によるフィードバック阻害を受けないパントテン酸キナーゼ
CN108866017B (zh) 一种酶法制备β-羟基-β-甲基丁酸的方法
JP4120964B2 (ja) 高度好熱菌由来セリンアセチルトランスフェラーゼ及びそれをコードする遺伝子、並びにl−システインの酵素合成法
WO2000008170A1 (fr) Gene participant a la production d'acide homoglutamique, et utilisation associee
WO2013191138A1 (ja) トランス-3-ヒドロキシ-l-プロリンの製造方法
CN109790554B (zh) 通过对微生物代谢途径的基因修饰来制备伸长的2-酮酸和其c5-c10化合物的方法
JP6484467B2 (ja) 2−アミノブタン酸の製造方法およびアスパラギン酸デカルボキシラーゼの使用方法
CN117625564A (zh) 一种赤藓糖还原酶突变体及其应用
CN116286702A (zh) 一种天冬氨酸脱氢酶突变体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521374

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2876558

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14407576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013804143

Country of ref document: EP