WO2013187280A1 - 車載用の電装用バッテリ - Google Patents

車載用の電装用バッテリ Download PDF

Info

Publication number
WO2013187280A1
WO2013187280A1 PCT/JP2013/065420 JP2013065420W WO2013187280A1 WO 2013187280 A1 WO2013187280 A1 WO 2013187280A1 JP 2013065420 W JP2013065420 W JP 2013065420W WO 2013187280 A1 WO2013187280 A1 WO 2013187280A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sub
lead
terminal
vehicle
Prior art date
Application number
PCT/JP2013/065420
Other languages
English (en)
French (fr)
Inventor
岡田 渉
正雄 西藤
文夫 安富
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/399,844 priority Critical patent/US20150104676A1/en
Priority to JP2014521276A priority patent/JPWO2013187280A1/ja
Publication of WO2013187280A1 publication Critical patent/WO2013187280A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a vehicle-mounted electrical battery that can effectively use regenerative energy generated by regenerative braking for power storage, and more particularly to a vehicle-mounted electrical battery that can be mounted in place of a conventional lead battery.
  • the vehicle-mounted electrical battery disclosed in Patent Document 1 has a lithium battery connected in parallel with a lead battery that is electrically connected to the alternator of the vehicle.
  • this in-vehicle electrical battery is configured so that the internal resistance and open circuit voltage of the lead battery and the lithium battery are set so as to satisfy predetermined conditions, so that the lead battery and the lithium battery do not pass through the DC / DC converter. Connected in parallel to reduce costs.
  • the vehicle fixes the mount on which the lead battery is arranged, places the lead battery on the mount, and arranges the pressing metal on the upper surface of the lead battery.
  • the lead metal is fixed by connecting the holding bracket to the platform.
  • the platform is shaped so that a lead battery of a prescribed size can be placed on it.
  • a conventional automotive battery equipped with a lithium battery connected in parallel with the lead battery has a lead battery placed on the mounting base, and further, the lithium battery connected in parallel with the lead battery is placed separately from the lead battery. There is a need to.
  • the lead battery is placed in the engine room, but since the engine and various equipment are placed in the engine room, a lithium battery is placed separately from the lead battery and connected to the lead battery in parallel.
  • the present invention was developed for the purpose of solving this drawback.
  • An important object of the present invention is to connect a sub-battery in parallel with a lead battery, and as easily as a single lead battery, the power loss of wiring connecting the lead battery and the sub-battery can be reduced easily and easily.
  • the in-vehicle electrical battery according to the present invention includes a lead battery 1 having a rectangular parallelepiped shape and a sub battery 2 connected in parallel with the lead battery 1.
  • the lead battery 1 is a rectangular parallelepiped having a length (L) longer than the width (W), and the first main terminal 3A and the second main terminal 3B, which are positive and negative electrode terminals, are arranged on the long side on one side of the rectangular parallelepiped. It is unevenly distributed and arranged at both ends of the upper surface.
  • the first main terminal 3 ⁇ / b> A is used as an output terminal 9 to which a vehicle lead wire is connected
  • the second main terminal 3 ⁇ / b> B is connected to the sub-battery 2.
  • the sub-battery 2 has a structure in which a plurality of unit cells 21 are housed in an exterior case 20.
  • the in-vehicle electric battery is a lead battery in which an outer case 20 is disposed outside the end of the lead battery 1 in the longitudinal direction and outside the end of the lead battery 1 approaching the second main terminal 3B side. 1 and the sub-battery 2 are connected.
  • the above-mentioned battery for electrical equipment connects a sub-battery in parallel with a lead battery, and as with a single lead battery, it reduces the power loss of wiring connecting the lead battery and the sub-battery as easily and easily.
  • the lead battery and the sub-battery can be installed at the optimum positions. This is because the above-described vehicle-mounted electrical battery has the sub-battery outer case disposed outside the end of the lead battery in the longitudinal direction and outside the end of the lead battery that approaches the second connection terminal side. This is because the lead battery and the sub-battery are connected in an integrated structure.
  • the above-mentioned on-board electrical battery can be installed directly on the lead battery platform instead of the lead battery, because the external battery can have the same shape as the large-capacity lead battery while the sub battery is integrated. is there. Further, since the sub battery is disposed outside the end portion of the lead battery, the bus bar connecting the sub battery and the lead battery in parallel can be shortened, and the electric resistance of the bus bar can be reduced to reduce the power loss.
  • the in-vehicle electrical battery according to the present invention is such that the sub battery 2 has the second sub terminal 4B connected to the second main terminal 3B of the lead battery 1 on the upper surface of the outer case 20, and the lead battery 1 It can be arranged at the end on the second main terminal 3B side.
  • the second sub-terminal of the sub-battery and the second main terminal of the lead battery can be brought close to each other and connected by a bus bar having a small electric resistance, and the electric resistance of the bus bar can be made smaller. The power loss due to can be made smaller.
  • the sub battery 2 is the upper surface of the outer case 20, and the first sub terminal 4A and the second sub terminal 4B are arranged at both ends in the width direction.
  • the two sub terminals 4B can be connected to the second main terminal 3B of the lead battery 1.
  • the first sub-terminal and the second sub-terminal of the sub-battery are separated from each other, so that the second sub-battery of the sub-battery can be prevented while preventing the negative and negative sub-terminals from being short-circuited.
  • the sub-terminal is connected to the second main terminal of the lead battery with a short bus bar, so that the power loss of the bus bar can be reduced.
  • the vehicle-mounted electrical battery according to the present invention includes a first bus bar in which the first main terminal 3A of the lead battery 1 and the first sub terminal 4A of the sub battery 2 are arranged on the upper surface of the lead battery 1. By connecting with 5A, the upper surface of the first bus bar 5A can be insulated.
  • the above vehicle-mounted electrical battery insulates the bus bar connecting the first main terminal of the lead battery and the first sub terminal of the sub battery, so that the voltage bus bar connected to the battery is not exposed on the upper surface, It can be installed safely on a platform like a conventional lead battery and used safely.
  • the lateral width (w) of the outer case 20 of the sub-battery 2 can be set to a dimension that does not protrude in the width direction of the lead battery 1. Since the sub-battery does not protrude in the width direction of the lead battery, this on-vehicle electrical battery can be installed on the platform on which the lead battery is installed instead of the lead battery without the sub-battery.
  • the height (h) of the outer case 20 of the sub-battery 2 can be set so as not to protrude in the vertical direction of the lead battery 1.
  • This in-vehicle electrical battery can be conveniently placed in an engine room or the like where the sub battery does not protrude upward from the lead battery and the height is limited instead of the lead battery while the sub battery is connected to the lead battery.
  • the vehicle-mounted electrical battery according to the present invention can make the lateral width (w) of the outer case 20 of the sub-battery 2 substantially equal to the lateral width (W) of the lead battery 1.
  • This electric vehicle battery for in-vehicle use can have the same width as the outline of a lead battery with a large capacity while connecting the sub battery in parallel with the lead battery.
  • Table 1 shows the outline standard of the lead battery for Europe
  • Table 2 shows the outline standard of the lead battery for Japan.
  • lead batteries differ only in length depending on capacity, and have the same width and height. Therefore, an in-vehicle electrical battery in which the sub battery and the lead battery are connected in parallel and the width (w) of the sub battery is the same as the width (W) of the lead battery is the same as that of the lead battery having a large capacity. Thus, it can be remounted as it is on the lead battery platform.
  • the lead battery platform provided in the vehicle is sized to install large and small lead batteries with different capacities, so the vehicle-mounted electrical battery with the same external shape as the lead battery replaces the conventional lead battery. There is a feature that can be installed on the platform as it is.
  • the height (h) of the outer case 20 of the sub-battery 2 can be made substantially equal to the height (H) of the lead battery 1.
  • This in-vehicle electrical battery has a sub-battery height (h) that is almost the same as that of a lead battery, so it can be installed on a platform instead of a lead battery, making it convenient for narrow engine rooms with limited height. Can be used for
  • the sub-battery 2 can be any one of a nickel hydride battery, a nickel cadmium battery, and a non-aqueous electrolyte battery.
  • FIG. 1 shows a charging current between a nickel metal hydride battery and a lead battery charged with regenerative energy.
  • the charging current of the lead battery is only 25 A, and the charging current of the nickel metal hydride battery is extremely high at about 170 A. . That is, the charging current of the nickel metal hydride battery is about 7 times that of the lead battery. From this, it is clear that when a lead battery is charged with regenerative energy, the charging current becomes small and the regenerative energy cannot be efficiently recovered, and when the regenerative energy is recovered with a nickel metal hydride battery, it can be effectively recovered.
  • the generator when regenerative energy brakes a vehicle, the generator is driven by the energy of the vehicle's motion to generate electricity, but regenerative braking generates a large amount of energy in a short time, so the power generation time is short,
  • the generated current becomes extremely large.
  • the generated electric power may be 20 Wh to 50 Wh in one regenerative braking in which the traveling vehicle stops. If the regenerative energy of one time is 20 Wh and the time required for the vehicle to stop by regenerative braking is 36 seconds, the generated power during regenerative braking is 2000 W, and the charging current of the battery of 12 V is extremely large at about 170 A. .
  • the time for stopping by regenerative braking is shorter than 36 seconds, so that the charging current for regenerative braking is further increased.
  • the on-vehicle electrical battery that collects a large amount of regenerative energy can efficiently store the regenerative energy in the nickel metal hydride battery by connecting the nickel metal hydride battery that increases the charging current in parallel to the lead battery.
  • An in-vehicle electric battery that can efficiently store electric power by regenerative braking consumes less fuel to charge the battery, and can significantly improve the fuel efficiency of the vehicle.
  • the discharge current is large, for example, when the engine is started or when heavy load electrical components are frequently used, the load of the lead battery can be reduced, which helps to maintain the life of the lead battery.
  • the optimum operating voltage is determined for the lead battery, and it is preferably used in the range of 12 to 15V.
  • the sub-battery is constituted by a nickel metal hydride battery
  • the voltage of the nickel metal hydride voltage is 1.35 V when the SOC is 50%, and 13.5 V is obtained by connecting ten nickel metal hydride batteries in series. Therefore, an in-vehicle electrical battery having a nickel-metal hydride battery as a sub-battery is likely to be within the range of 12 to 15 V, which is the optimum operating voltage of a lead battery, during charging and discharging (for example, in the range of SOC 20 to 80%).
  • the DC / DC converter and the configuration described in Patent Document 1 are not required, and the battery for electrical equipment can be configured with a simple configuration.
  • the nickel cadmium battery shows charge / discharge characteristics similar to those of a nickel metal hydride battery, a regenerative energy can also be efficiently recovered by an in-vehicle electric battery connected to the nickel cadmium battery as a sub battery in parallel with the lead battery.
  • in-vehicle electrical batteries that use a non-battery electrolyte battery as a sub-battery the non-aqueous electrolyte battery has an extremely large capacity with respect to volume and weight compared to a lead battery, and the charge / discharge capacity can be increased while downsizing.
  • the vehicle-mounted electrical battery according to the present invention includes output switches SW1, SW2, and SW3 connected in series with the sub-battery 2, and a control circuit 15 that controls the output switches SW1, SW2, and SW3 to be turned on and off.
  • the control circuit 15 can detect either the remaining capacity or the voltage of the sub-battery 2 and control the output switches SW1, SW2, and SW3.
  • the on-vehicle electrical battery described above has a feature that it can reduce the deterioration and prolong the life while effectively charging and discharging the sub-battery. This is because the sub-battery can be prevented from being overcharged or discharged by controlling the output switch.
  • the vehicle-mounted electrical battery according to the present invention has a connector 6 for connecting the lead battery 1 and the sub battery 2 in an integrated structure, and the lead terminal 1 and the sub terminal 4 of the sub battery 2 are connected by a metal plate bus bar 5.
  • the bus bar 5 of this metal plate can be used together with the coupler 6 by connecting.
  • the above-described battery for electrical equipment has a feature that the connecting tool can be simplified because the sub-battery is connected to the lead battery with the bus bar, and is also used in the connecting tool that connects the sub-battery to the lead battery in an integrated structure.
  • the bus bar 5 formed by connecting the second main terminal 3B of the lead battery 1 and the second sub-terminal 4B of the sub-battery 2 can be used together with the connector 6. it can.
  • the bus bar 5 formed by connecting the first main terminal 3 ⁇ / b> A of the lead battery 1 and the first sub-terminal 4 ⁇ / b> A of the sub-battery 2 can be used together with the connector 6. it can.
  • FIG. 1 is a perspective view of an in-vehicle electrical battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view of the in-vehicle electrical battery shown in FIG. 2. It is a schematic plan view of the vehicle-mounted electrical battery provided with the lead battery of another structure. It is a schematic plan view of the vehicle-mounted electrical battery provided with the lead battery of another structure. It is a schematic plan view which shows an example of a coupling tool.
  • 1 is a circuit diagram of an in-vehicle electrical battery according to an embodiment of the present invention. It is a circuit diagram of the vehicle-mounted electrical equipment battery concerning other embodiment of this invention. It is a circuit diagram of the vehicle-mounted electrical equipment battery concerning other embodiment of this invention. It is a circuit diagram of the vehicle-mounted electrical equipment battery concerning other embodiment of this invention.
  • the in-vehicle electrical battery shown in the perspective view of FIG. 2 includes a lead battery 1 having an overall shape of a rectangular parallelepiped, and a sub battery 2 connected in parallel with the lead battery 1.
  • the battery 2 is connected to the unitary structure.
  • the lead battery 1 is a rectangular parallelepiped whose length (L) is longer than the lateral width (W), and the positive and negative main terminals 3 are unevenly distributed on the long side of one side of the rectangular parallelepiped and arranged at both ends of the upper surface.
  • the lead battery 1 is unevenly distributed on the long side located on the lower left side, and the positive and negative main terminals 3 are arranged at both ends of the upper surface.
  • the main terminal 3 is cylindrical and has a tapered shape that slightly narrows upward. In FIG.
  • the first main terminal 3A arranged on the left side of the upper surface of the lead battery 1 is used as the output terminal 9 of the battery for electrical equipment to which the vehicle lead wire is connected, and the second main terminal 3A arranged on the right side.
  • the main terminal 3 ⁇ / b> B is connected to the sub terminal 4 of the sub battery 2.
  • the sub-battery 2 houses a plurality of unit cells 21 in an outer case 20.
  • the outer case 20 is formed into a box shape with an insulating material such as plastic.
  • the outer case 20 has positive and negative sub-terminals 4 protruding from the upper surface.
  • the positive and negative sub-terminals 4 are disposed at both ends in the width direction.
  • the sub terminal 4 has the same shape as the main terminal 3 of the lead battery 1. That is, the sub-terminal 4 of the sub-battery 2 is cylindrical and has a tapered shape that becomes slightly thinner upward.
  • the sub terminal on the positive side of the sub battery 2 has the same shape as the main terminal 3 on the positive side of the lead battery 1, and the sub terminal 4 on the negative side of the sub battery 2 has the same shape as the main terminal 3 on the negative side of the lead battery 1. It is said.
  • the sub-terminal 4 of the sub-battery 2 can be used as an output terminal 9 of the battery for electrical equipment, that is, a terminal to which a vehicle lead wire is connected.
  • the sub-battery 2 is outside the end in the longitudinal direction of the lead battery 1 and outside the end close to the second main terminal 3B side of the lead battery 1, on the lower right outside of the lead battery 1 in FIG.
  • the exterior case 20 is disposed and connected to the lead battery 1 in an integrated structure.
  • the lead battery 1 and the sub-battery 2 are connected to the integrated structure via the bus bar 5 or are connected to the integrated structure by binding the periphery with a bind bar or the like (not shown).
  • the sub-battery 2 is connected to the lead battery 1 in an integral structure, but is connected in an integral structure that can be detached. When the lead battery 1 having a shorter life than the sub-battery 2 is deteriorated, the vehicle-mounted electrical battery can release the integrated structure and replace the lead battery 1, so that the sub-battery 2 can be used effectively.
  • the width (w) of the outer case 20 of the sub-battery 2 is substantially equal to the width (W) of the lead battery 1
  • the height (h) of the sub-battery 2 is set to the height (H) of the battery. It is almost equal to.
  • the width (w) and height (h) of the sub-battery 2 are substantially equal to the lead battery 1 in the state where the sub-battery 2 is connected to the lead battery 1 in an integrated structure, which is the same as the lead battery 1 having a large capacity.
  • the size can be fixed on the mounting base, for example, within ⁇ 10% of the size of the lead battery 1.
  • the in-vehicle electrical battery that connects the sub-battery 2 to the lead battery 1 in an integrated structure can be mounted on the vehicle in place of a lead battery having a large capacity, that is, only a long length, with the same external shape as the lead battery 1.
  • the outer case 20 of the sub-battery 2 is dimensioned so that the width (w) does not protrude in the width direction of the lead battery 1, that is, the width (W) of the lead battery 1 is narrower and the height (h) is less than the lead battery 1.
  • the dimension of the lead battery 1 that does not protrude in the vertical direction, that is, the height (H) of the lead battery 1 can also be made lower.
  • This in-vehicle electric battery can also be set in a vehicle in place of the long lead battery 1 having a large capacity.
  • the sub-battery 2 is configured such that the second sub-terminal 4B connected to the second main terminal 3B of the lead battery 1 is an upper surface of the exterior case 20 and is an end of the lead battery 1 on the second main terminal 3B side. (The lower left side of the exterior case 20 in FIG. 2).
  • the second sub-terminal 4B of the sub-battery 2 is in the vicinity of the second main terminal 3B of the lead battery 1 and is connected to each other by the second bus bar 5B.
  • the lead battery 1 mounted on the vehicle has two types (the last model is R or L) in which the positive and negative main terminals 3 are arranged at opposite positions.
  • the sub-battery 2 is connected to the lead batteries 1A and 1B in an integrated structure, and can be used by being mounted on a vehicle in the same manner as the two types of lead batteries 1A and 1B.
  • the battery for electrical equipment shown in FIG. 3 and FIG. 4 is connected to the sub battery 2 on the side surface located on the right side in the figure, outside the end of the lead battery 1 in the longitudinal direction. Therefore, the battery for electrical equipment shown in FIG. 3 and FIG.
  • the electrical battery shown in FIG. 5 is the both ends of the upper surface of the lead battery 1, and the main terminal 3 arranged on the right side in the drawing is the first main terminal 3A, and the main terminal 3 arranged on the left side.
  • the terminal 3 is a second main terminal 3B.
  • the output terminal 9 of the battery for electrical equipment is a terminal for connecting the lead wire 8 of the vehicle.
  • positive and negative output terminals 9 to which the lead wires 8 are connected are arranged at both ends of the upper surface. Therefore, the lead wire 8 can be similarly connected in place of the lead battery 1.
  • the electrical battery shown in FIG. 4 uses the first main terminal 3A of the lead battery 1B as a negative output terminal 9B, and the second sub terminal 4B of the sub battery 2 as a positive output terminal 9A.
  • the battery for electrical equipment can also use the positive / negative output terminal 9 as the positive / negative main terminal 3 of the lead battery 1 as shown by the chain line in FIGS. 3 and FIG. 5, the first main terminal 3A of the lead battery 1 is used as the positive output terminal 9A, and the second main terminal 3B of the lead battery 1 is negative as shown by the chain line in the figure. This is the side output terminal 9B.
  • the electrical battery shown in FIG. 4 uses the first main terminal 3A of the lead battery 1 as a negative output terminal 9B, and the second main terminal 3B of the lead battery 1 as a positive output as shown by the chain line in the figure. Terminal 9A is used.
  • an electrical battery having one output terminal 9 as a second sub terminal 4B of the sub battery 2 or a second main terminal 3B of the lead battery 1 is a vehicle. Can be connected in a more preferable state. This is because the position of one output terminal 9 of the battery for electrical equipment can be switched and connected to the position of the second sub terminal 4B of the sub battery 2 and the second main terminal 3B of the lead battery 1.
  • the lead wire of the vehicle connected to the output terminal 9 of the electrical equipment battery is made as short as possible in order to reduce the power loss, it cannot be connected if the position of the output terminal 9 of the electrical equipment battery to be connected is shifted.
  • the electrical battery provided with the output terminal 9 at the same position as the lead battery 1 can be used in place of the lead battery 1 to connect the lead wires, and the output terminals 9 to which the lead wires are connected are two places. In the battery for electrical equipment, a lead wire can be connected to the preferred output terminal 9.
  • the sub-battery 2 in which the positive and negative sub-terminals 4 are arranged at both ends in the width direction on the upper surface of the outer case 20 is connected to the lead battery 1 in a horizontal plane 180 in a horizontal plane.
  • the positive and negative main terminals 3 can be connected to the two types of lead batteries 1A and 1B opposite to each other and used in an integrated structure.
  • the position where the sub-battery 2 is connected is changed outside the longitudinal end of the lead battery 1, that is, the connecting position of the sub-battery 2 is reversed left and right in the figure. By doing so, it can be used by being connected to the two types of lead batteries 1A and 1B in an integrated structure.
  • the first sub terminal 4A and the first main terminal 3A are connected by the first bus bar 5A, and the second sub terminal 4B and the second main terminal 3B are connected to each other. Are connected by the second bus bar 5B.
  • the first sub terminal 4A and the first main terminal 3A are arranged at diagonal positions on the upper surface of the battery for electrical equipment, and the second sub terminal 4B and the second main terminal 3B are arranged close to each other.
  • a first bus bar 5A shown in FIG. 2 is a metal plate having an L shape as a whole, and both ends are bent downward in a stepped manner to provide connection portions 5a.
  • the sub terminal 4A and the first main terminal 3A are connected.
  • the first bus bar 5A is disposed on the upper surfaces of the lead battery 1 and the sub-battery 2, and insulates the upper surfaces except for the connecting portions 5a at both ends.
  • the first bus bar 5A can insulate not only the upper surface but also the entire circumference.
  • the first bus bar 5A can be insulated by applying an insulating material to the surface, or by adhering an insulating film to the surface, or by laminating an insulating sheet or an insulating plate.
  • the second bus bar 5B shown in FIG. 2 is a long and narrow metal plate shorter than the first bus bar 5A, and both ends are bent downward in a stepped manner to provide a connection portion 5a.
  • the connection portion 5a is connected to the second bus bar 5B.
  • the main terminal 3B and the second sub terminal 4B are connected.
  • the first bus bar 5A and the second bus bar 5B are formed of a relatively strong metal plate, but may be a flexible bus bar having flexibility.
  • the flexible bus bar include a stack of several thin metal plates of about 0.1 to 0.2 mm, and a metal wire, for example, a wire or wire braided in a mesh shape.
  • [Connector 6] 2 has a through hole 5b in the connecting portion 5a of the first bus bar 5A and the second bus bar 5B, and the main terminal 3 and the sub terminal 4 are inserted into the through hole 5b. 3 and the sub-terminal 4 are fixed.
  • the first bus bar 5 ⁇ / b> A and the second bus bar 5 ⁇ / b> B are also used as a connector 6 that connects the lead battery 1 and the sub battery 2 with the connecting portions 5 a at both ends thereof being fixed to the main terminal 3 and the sub terminal 4.
  • the battery for electrical equipment that fixes the connection portions 5a at both ends of the bus bar 5 made of a metal plate to the main terminal 3 of the lead battery 1 and the sub terminal 4 of the sub battery 2 also uses the bus bar 5 as the connector 6, Lead battery 1 and sub-battery 2 can be firmly connected at the top.
  • the battery for electrical equipment in which the bus bar 5 is also used as the connection tool 6 and the upper part is connected is shown in FIG. 6, the bind bar 11 of the connection tool 6 surrounding the lead battery 1 and the sub-battery 2.
  • the lead battery 1 and the sub-battery 2 can be firmly connected in an integrated structure.
  • the sub-battery 2 in FIG. 2 houses a plurality of unit cells 21 in an outer case 20.
  • the unit cell 21 is a nickel metal hydride battery.
  • any secondary battery having better charge / discharge characteristics than the lead battery 1 can be used, such as a non-aqueous electrolyte battery or a nickel cadmium battery such as a lithium ion battery or a lithium polymer battery. Since the rated voltage of the nickel metal hydride battery and the nickel cadmium battery is 1.2 V, ten unit cells 21 are connected in series and accommodated in the outer case 20. Since the non-aqueous electrolyte battery has a high rated voltage, for example, the rated voltage of the lead battery 1 can be obtained by connecting three to four unit cells in series.
  • the unit cell 21 is a cylindrical battery.
  • ten unit cells 21 connected in series with each other are arranged in the same plane in a vertical posture to form a unit battery 22.
  • five rows of unit cells 21 are arranged in the upper row and five rows in the lower row.
  • both ends of the upper and lower unit cells 21 are connected and connected in series, and adjacent unit cells 21 are connected in series, and ten unit cells 21 are connected in series.
  • two units of the assembled battery 22 are stacked in the horizontal direction, and the stacked assembled batteries 22 are connected in parallel to each other and stored in the outer case 20. As shown in FIG.
  • the sub-battery 2 that is arranged so that a plurality of assembled batteries 22 are stacked and connected in parallel with each other increases the number of assembled batteries 22 that are stacked and connected in parallel to increase the current capacity. it can.
  • two sets of battery packs 22 having a current capacity of one unit of 5 Ah can be stacked to double the current capacity of the sub-battery 2 to 10 Ah.
  • the outer case 20 having this shape can increase the adhesion with the cylindrical battery accommodated therein, and can increase the surface area of the case as compared with the rectangular parallelepiped case, thereby improving the cooling performance of the outer case 20. be able to.
  • the battery for electrical equipment is often disposed in the engine room of the vehicle. The engine room tends to become hot due to the heat generated by the engine.
  • the exterior case 20 is cooled and stored in the exterior case 20 through the outside air flowing into the engine room.
  • the cylindrical battery can be effectively cooled.
  • the cylindrical battery can be brought into close contact with the inner surface of the outer case 20 and held at a fixed position, stability against vibrations and the like during traveling can also be achieved.
  • FIGS. 7 Circuit diagrams of the battery for electrical equipment are shown in FIGS.
  • the electric battery in FIG. 7 always connects the lead battery 1 and the sub battery 2 in parallel via the bus bar 5.
  • the 8 has a first output switch SW1 connected to the output side of the sub-battery 2, a second output switch SW2 connected to the output side of the lead battery 1, and the sub-battery 2 and lead.
  • a parallel switch SW3 that connects the battery 1 in parallel is provided, and SW1, SW2, and SW3 are controlled to be turned on and off by the control circuit 15.
  • the switches SW1, SW2, and SW3 are turned on and off by the control circuit 15 as follows. (1) State where electric vehicle 31 is discharged at low rate in this state In this state, SW1 and SW3 are turned off and SW2 is turned on to supply electric power from lead battery 1 to electrical load 31.
  • SW1, SW2, and SW3 are turned on, and power can be supplied from both the lead battery 1 and the sub battery 2 to the electrical load 31.
  • electrical load 31 is discharged at a high rate
  • SW1, SW2, and SW3 are turned on, and power is supplied from lead battery 1 and sub-battery 2 to electrical load 31.
  • the starter motor 32 discharges at a high rate instantaneously when the engine is started In this state, power is supplied from the sub-battery 2 to the starter motor 32 with SW2 and SW3 turned off and SW1 turned on. In this state, all of SW1, SW2, and SW3 are turned on, and power can be supplied from both the lead battery 1 and the sub battery 2 to the starter motor 32.
  • SW1 is turned off, and SW2 and SW3 are turned on. It is also possible to supply power to the starter motor 32 from only the lead battery 1.
  • SW3 is turned off, SW1 and SW2 are turned on, starter motor 32 is supplied from sub battery 2 to electric load 31. Supplies power from the lead battery 1.
  • SW1, SW2, and SW3 are turned on, and power can be supplied from both the lead battery 1 and the sub battery 2 to the starter motor 32 and the electrical load 31.
  • regenerative braking is performed and electricity is stored with regenerative energy
  • SW2 is turned off, SW1 and SW3 are turned on, and sub battery 2 is charged with regenerative energy.
  • the switch of the electrical load 31 Since electric power is supplied to the electrical load 31, the switch of the electrical load 31 is turned on. In this state, SW1, SW2, and SW3 are turned on, and both the lead battery 1 and the sub battery 2 can be charged with regenerative energy. In particular, when the remaining capacity of the sub battery 2 increases to near the maximum remaining capacity, both the sub battery 2 and the lead battery 1 are charged with regenerative energy to prevent the sub battery 2 from being overcharged. Further, when the remaining capacity of the sub-battery 2 reaches the maximum remaining capacity, only the lead battery 1 is charged with regenerative energy by turning off SW1.
  • Lead battery 1 has a reduced capacity or sub-battery 2 has a reduced capacity and is charged at a low rate
  • SW3 is turned off
  • SW2 is turned on to charge lead battery 1
  • SW2 is turned off.
  • SW1 and SW3 are turned on to charge the sub-battery 2
  • SW1, SW2, and SW3 are turned on to charge the lead battery 1 and the sub-battery 2.
  • the control circuit 15 detects this and switches SW1 off. Thus, overcharge and overdischarge of the sub-battery 2 are prevented.
  • the electrical battery in FIG. 9 has a first output switch SW1 connected to the output side of the sub-battery 2, a second output switch SW2 connected to the output side of the lead battery 1, and SW1 and SW2 are connected to the control circuit. 15 is controlled to turn on and off as follows. (1) State where electric vehicle 31 is discharged at low rate in this state In this state, SW1 is turned off and SW2 is turned on to supply electric power from lead battery 1 to electric load 31. In this state, SW1 and SW2 are turned on, and the electric load 31 can be supplied from both the lead battery 1 and the sub-battery 2. (2) State in which electrical load 31 is discharged at a high rate In this state, SW1 and SW2 are turned on, and power is supplied from lead battery 1 and sub battery 2 to electrical load 31.
  • SW1 is turned on and sub battery 2 is charged with regenerative energy.
  • SW1 and SW2 are turned on, and both the lead battery 1 and the sub battery 2 can be charged with regenerative energy.
  • both the sub battery 2 and the lead battery 1 are charged with regenerative energy to prevent the sub battery 2 from being overcharged.
  • the remaining capacity of the sub-battery 2 reaches the maximum remaining capacity, only the lead battery 1 is charged with regenerative energy by turning off SW1.
  • Lead battery 1 has a reduced capacity or sub-battery 2 has a reduced capacity and is charged at a low rate
  • SW1 is turned off
  • SW2 is turned on to charge lead battery 1
  • SW2 is turned off.
  • SW1 is turned on to charge the sub-battery 2
  • SW1 and SW2 are turned on to charge the lead battery 1 and the sub-battery 2.
  • the control circuit 15 detects this and switches SW1 off. Thus, overcharge and overdischarge of the sub-battery 2 are prevented.
  • the electrical battery shown in FIG. 10 has an output switch SW 1 connected only to the output side of the sub-battery 2, and this output switch SW 1 is controlled by the control circuit 15.
  • This state in which electric load 31 of vehicle is discharged at low rate In this state, power is supplied to electric load 31 only from lead battery 1 with SW1 turned off. In this state, SW1 is turned on, and power can be supplied from both the lead battery 1 and the sub battery 2 to the electrical load 31.
  • Lead battery 1 has a reduced capacity or sub-battery 2 has a reduced capacity and is charged at a low rate
  • SW1 is turned off to charge lead battery 1
  • SW1 is turned on to lead battery 1 and the sub-battery 2 are charged.
  • the control circuit 15 detects this and switches SW1 off. Thus, overcharge and overdischarge of the sub-battery 2 are prevented.
  • the battery for electrical equipment shown in the circuit diagrams of FIGS. 8 to 10 is charged by the generator 33 on the vehicle side.
  • the generator 33 on the vehicle side controls the output voltage so that the charging voltage does not rise above the maximum voltage (for example, 14V to 15V) in a state where the electric battery is charged, thereby preventing overcharging of the electric battery. ing.
  • the control circuit 15 switches the first output switch SW1 to OFF. Thus, overcharging of the sub-battery 2 is prevented.
  • the 8 to 10 is supplied with electric power to the electric load 31 and the starter motor 32 and discharged.
  • the vehicle side charges the electrical equipment battery by controlling the generator 33 so that the voltage of the electrical equipment battery does not drop below the optimum voltage.
  • the remaining capacity of the sub-battery 2 is detected by the control circuit 15 in a state where the electric battery is discharged, and when the remaining capacity is lower than the minimum voltage and is discharged, the control circuit 15 causes the first output switch SW1 is switched off to prevent overdischarge of the sub-battery 2.
  • the output switches SW1, SW2, and SW3 included in the electrical equipment battery shown in FIGS. 8 to 10 are relays or semiconductor switching elements.
  • the semiconductor switching element an element such as a transistor, an FET, or an IGBT can be used.
  • These output switches are arranged in a storage portion provided in the outer case of the sub battery, and are connected between the sub terminal and the assembled battery.
  • the outer case is provided with a storage portion at the upper portion, and an output switch can be arranged here. However, the output switch can be connected between the sub terminal and the main terminal.
  • the vehicle-mounted electrical battery of the present invention is mounted as a battery for electrical equipment on a vehicle that is driven by an engine or driven by a motor for traveling to effectively use regenerative energy generated by traveling regenerative braking. It can be suitably used as a battery for electrical equipment that can store electricity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

車載用の電装用バッテリは、全体を直方体とする鉛バッテリ1と、鉛バッテリ1と並列に接続してなるサブバッテリ2とを備える。鉛バッテリ1は、横幅より長さが長い直方体で、正負の電極端子である第1 のメイン端子3Aと第2のメイン端子3Bを、直方体の片側の長辺側に偏在して上面の両端部に配置し、第1のメイン端子3Aを、車両のリード線8が接続される出力端子9とし、第2のメイン端子3Bを、サブバッテリ2に接続している。サブバッテリ2は、外装ケース20に複数の素電池21を収納している。電装用バッテリは、鉛バッテリ1の長手方向の端部外側であって、鉛バッテリ1の第2のメイン端子3B側に接近する端部外側に外装ケース20を配置して、鉛バッテリ1とサブバッテリ2とを連結している。

Description

車載用の電装用バッテリ
 本発明は、回生制動で発生する回生エネルギーを有効に蓄電に利用できる車載用の電装用バッテリに関し、とくに、従来の鉛バッテリに代わって車載できる車載用の電装用バッテリに関する。
 従来の車両は、車載用の電装用バッテリとして鉛バッテリを搭載している。鉛バッテリは発電機で充電されて、車両の電装機器やスターターモータに電力を供給する。鉛バッテリは、頻繁な充放電に対する耐久性が低く寿命が短い欠点がある。このため、アイドルストップ機能のある車両や、制動時に回生制動して回生エネルギーでバッテリを急速充電する車両に電源として使用されると、頻繁に大電流で充放電されて寿命が著しく短くなる。この弊害を防止するために、鉛バッテリと並列にリチウムイオン電池等のサブバッテリを接続する車載用の電装用バッテリが開発されている。(特許文献1参照)
特開2011-15516号公報
 特許文献1の車載用の電装用バッテリは、車両のオルタネータに電気接続された鉛バッテリと並列にリチウム電池を接続している。また、この車載用の電装用バッテリは、鉛バッテリやリチウム電池の内部抵抗や開放電圧を所定の条件を満たすように設定することで、鉛バッテリとリチウム電池とをDC/DCコンバータを介することなく並列に接続して、コストダウンをはかっている。
 ところで、車両は、鉛バッテリを所定の位置にセットするために、鉛バッテリを配置する載せ台を固定して、この載せ台に鉛バッテリを載せ、鉛バッテリの上面に押さえ金具を配置し、この押さえ金具を載せ台に連結して、鉛バッテリを固定している。載せ台は、規定寸法の鉛バッテリを載せて設置できる形状としている。鉛バッテリと並列に接続されるリチウム電池を備える従来の車載用の電装用バッテリは、載せ台に鉛バッテリを配置し、さらに、この鉛バッテリと並列接続されるリチウム電池を鉛バッテリとは別に配置する必要がある。鉛バッテリはエンジンルームに配置されるが、エンジンルームにはエンジンや種々の機器が配置されることから、鉛バッテリとは別にリチウム電池を配置して、これを鉛バッテリと並列に接続するのに極めて手間がかかる欠点がある。とくに、リチウム電池をエンジンルームに配置する車両は、リチウム電池を熱による障害の少ない位置に配置する必要があるので、リチウム電池の設置がさらに難しくなる。リチウム電池は、トランクルームや車内に配置されて、熱の障害を防止できる。しかしながら、リチウム電池が車内に配置されると、エンジンルームの鉛バッテリに接続する配線に著しく手間がかかる欠点がある。エンジンルームと車内とを区画している区画壁を貫通する長い配線を必要とするからである。さらに、この配線は、極めて大きな電流が流れるので、太くて電気抵抗の小さいリード線を使用することからも配線作業に極めて手間がかかる欠点がある。さらにまた、リチウム電池と鉛バッテリとを接続する配線は、大電流による電圧降下が大きくて、電力損失も大きくなる欠点がある。
 本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、鉛バッテリと並列にサブバッテリを接続しながら、単体の鉛バッテリと同様に、簡単かつ容易に、しかも鉛バッテリとサブバッテリとを接続する配線の電力損失をも少なくしながら、サブバッテリを最適な位置に設置できる車載用の電装用バッテリを提供することにある。
課題を解決するための手段及び発明の効果
 本発明の車載用の電装用バッテリは、全体の形状を直方体とする鉛バッテリ1と、この鉛バッテリ1と並列に接続してなるサブバッテリ2とを備えている。鉛バッテリ1は、横幅(W)より長さ(L)が長い直方体で、正負の電極端子である第1のメイン端子3Aと第2のメイン端子3Bとを、直方体の片側の長辺側に偏在して上面の両端部に配置している。鉛バッテリ1は、第1のメイン端子3Aを、車両のリード線が接続される出力端子9としており、第2のメイン端子3Bを、サブバッテリ2に接続している。サブバッテリ2は、外装ケース20に複数の素電池21を収納する構造としている。車載用の電装用バッテリは、鉛バッテリ1の長手方向の端部外側であって、鉛バッテリ1の第2のメイン端子3B側に接近する端部外側に外装ケース20を配置して、鉛バッテリ1とサブバッテリ2とを連結している。
 以上の電装用バッテリは、鉛バッテリと並列にサブバッテリを接続しながら、単体の鉛バッテリと同様に、簡単かつ容易に、しかも鉛バッテリとサブバッテリとを接続する配線の電力損失をも少なくしながら、鉛バッテリとサブバッテリとを最適な位置に設置できる特徴がある。それは、以上の車載用の電装用バッテリが、サブバッテリの外装ケースを、鉛バッテリの長手方向の端部外側であって、鉛バッテリの第2の接続端子側に接近する端部外側に配置して、鉛バッテリとサブバッテリとを一体構造に連結しているからである。以上の車載用の電装用バッテリは、サブバッテリを一体構造としながら、その外形を大容量の鉛バッテリと同じ形状にできるので、鉛バッテリに代わって、鉛バッテリの載せ台にそのまま設置できる特徴がある。また、鉛バッテリの端部外側にサブバッテリを配置するので、サブバッテリと鉛バッテリを並列に接続するバスバーを短くでき、バスバーの電気抵抗を小さくして電力損失を小さくできる。
 本発明の車載用の電装用バッテリは、サブバッテリ2が、鉛バッテリ1の第2のメイン端子3Bに接続される第2のサブ端子4Bを外装ケース20の上面であって、鉛バッテリ1の第2のメイン端子3B側の端部に配置することができる。
 この車載用の電装用バッテリは、サブバッテリの第2のサブ端子と鉛バッテリの第2のメイン端子とを接近して、電気抵抗の小さいバスバーで接続でき、バスバーの電気抵抗をより小さく、バスバーによる電力損失をより小さくできる。
 本発明の車載用の電装用バッテリは、サブバッテリ2が、外装ケース20の上面であって、幅方向の両端部に第1のサブ端子4Aと第2のサブ端子4Bを配置して、第2のサブ端子4Bを鉛バッテリ1の第2のメイン端子3Bに接続することができる。
 この車載用の電装用バッテリは、サブバッテリの第1のサブ端子と第2のサブ端子とを離して配置するので、正負のサブ端子のショートなどの弊害を防止しながら、サブバッテリの第2のサブ端子を鉛バッテリの第2のメイン端子に短いバスバーで接続して、バスバーの電力損失を小さくできる。
 本発明の車載用の電装用バッテリは、鉛バッテリ1の第1のメイン端子3Aと、サブバッテリ2の第1のサブ端子4Aとを、鉛バッテリ1の上面に配置してなる第1のバスバー5Aで接続して、この第1のバスバー5Aの上面を絶縁することができる。
 以上の車載用の電装用バッテリは、鉛バッテリの第1のメイン端子とサブバッテリの第1のサブ端子を接続するバスバーを絶縁するので、上面にバッテリに接続される電圧バスバーが露出せず、従来の鉛バッテリと同じように載せ台に設置して安全に使用できる。
 本発明の車載用の電装用バッテリは、サブバッテリ2の外装ケース20の横幅(w)を、鉛バッテリ1の幅方向に突出しない寸法とすることができる。
 この車載用の電装用バッテリは、サブバッテリが鉛バッテリの幅方向に突出しないので、鉛バッテリを設置している載せ台に、サブバッテリのない鉛バッテリに代わって設置できる。
 本発明の車載用の電装用バッテリは、サブバッテリ2の外装ケース20の高さ(h)を、鉛バッテリ1の上下方向に突出しない寸法とすることができる。
 この車載用の電装用バッテリは、サブバッテリを鉛バッテリに接続しながら、サブバッテリが鉛バッテリから上に突出せず、鉛バッテリに代わって高さ制限のあるエンジンルームなどに便利に配置できる。
 本発明の車載用の電装用バッテリは、サブバッテリ2の外装ケース20の横幅(w)を、鉛バッテリ1の横幅(W)にほぼ等しくすることができる。
 この車載用の電装用バッテリは、サブバッテリを鉛バッテリに並列に接続しながら、容量の大きい鉛バッテリ単体の外形と同じ横幅にできる。ここで、表1は欧州向け鉛バッテリの外形規格を示し、表2は日本向け鉛バッテリの外形規格を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの表に示すように、鉛バッテリは、容量によって長さのみが異なり、横幅と高さを同じ寸法としている。したがって、サブバッテリと鉛バッテリとを並列に接続して、サブバッテリの横幅(w)を鉛バッテリの横幅(W)と同じとする車載用の電装用バッテリは、容量の大きい鉛バッテリと同じ寸法となり、鉛バッテリの載せ台にそのまま載せ替えできる。車両に設けている鉛バッテリの載せ台は、容量が異なる大小の鉛バッテリを設置できる大きさとしているので、鉛バッテリと同じ外形とする車載用の電装用バッテリは、従来の鉛バッテリに代わって、そのまま載せ台に設置できる特徴がある。
 本発明の車載用の電装用バッテリは、サブバッテリ2の外装ケース20の高さ(h)を、鉛バッテリ1の高さ(H)にほぼ等しくすることができる。
 この車載用の電装用バッテリは、サブバッテリの高さ(h)も鉛バッテリにほぼ等しくするので、鉛バッテリに代わって載せ台に設置して、高さ制限のある狭隘なエンジンルームなどに便利に使用できる。
 本発明の車載用の電装用バッテリは、サブバッテリ2を、ニッケル水素電池、ニッケルカドミウム電池、非水系電解液電池のいずれかとすることができる。
 サブバッテリをニッケル水素電池とする車載用の電装用バッテリは、鉛バッテリのみの電装用バッテリに比較して、回生制動で発生する回生エネルギーで極めて効率よく充電されて、車両の燃費を著しく改善できる特徴がある。図1は、回生エネルギーで充電されるニッケル水素電池と鉛バッテリとの充電電流を示している。この図から明らかなように、回生制動してバッテリの電圧が上昇すると、ニッケル水素電池の充電電流はラインAで示すように、鉛バッテリの充電電流を示すラインBに比べて極めて大きくなる。たとえば、バッテリが回生制動で駆動される発電機で充電されて、充電電圧が約15Vまで上昇すると、鉛バッテリの充電電流はわずかに25Aとなり、ニッケル水素電池の充電電流は約170Aと極めて大きくなる。すなわち、ニッケル水素電池の充電電流は、鉛バッテリの約7倍となる。このことから、回生エネルギーで鉛バッテリを充電すると、充電電流が小さくなって回生エネルギーを効率よく回収できず、ニッケル水素電池で回生エネルギーを回収すると効果的に回収できることが明らかとなる。
 ところで、回生エネルギーは、車両を制動するときに、車両の運動のエネルギーで発電機を駆動して発電するが、回生制動は短時間に大きな運動のエネルギーを発生するので、発電時間は短いが、発電電流が極めて大きくなる。たとえば、走行している車両が停止する1回の回生制動で、発生する電力が20Wh~50Whとなることがある。1回の回生エネルギーを20Wh、回生制動で車両が停止するのでの時間を36秒とすれば、回生制動しているときの発電電力は2000W、12Vのバッテリの充電電流は約170Aと極めて大きくなる。実際には回生制動で停止する時間は36秒よりも更に短いので、回生制動の充電電流はさらに大きくなる。このように大きな回生エネルギーを回収する車載用の電装用バッテリは、充電電流が大きくなるニッケル水素電池を鉛バッテリに並列に接続することで、回生エネルギーを効率よくニッケル水素電池に蓄えることができる。回生制動で効率よく蓄電できる車載用の電装用バッテリは、バッテリを充電するために消費する燃料が少なく、車両の燃費を著しく改善できる。逆に、放電電流が大きい場合、例えば、エンジン始動時や高負荷電装品を多用している時などについても、鉛バッテリの負荷を軽減することができ、鉛電池の寿命を保つのに役立つ。
 また、通常、鉛バッテリは、最適な使用電圧が決まっており、12~15Vの範囲で使用されることが好ましい。サブバッテリをニッケル水素電池で構成する場合、ニッケル水素の電圧は、SOC50%での開放電圧が1.35Vとなり、ニッケル水素電池を直列に10個接続することで、13.5Vとなる。そのため、サブバッテリをニッケル水素電池とする車載用の電装用バッテリは、充放電時に(例えば、SOC20~80%の範囲で)、鉛バッテリの最適な使用電圧である12~15Vの範囲に収まりやすいという特徴がある。そのため、ニッケル水素電池を使用した場合は、DC/DCコンバータや、前述の特許文献1のような構成が不要となり、簡単な構成で電装用バッテリを構成することができる。
 また、ニッケルカドミウム電池もニッケル水素電池に近似する充放電特性を示すことから、鉛バッテリと並列に、サブバッテリとしてニッケルカドミウム電池を接続する車載用の電装用バッテリも回生エネルギーを効率よく回収できる。さらに、サブバッテリを非水系電解液電池とする車載用の電装用バッテリは、非水系電解液電池が鉛バッテリに比較して体積と重量に対する容量が極めて大きく、小型化しながら充放電容量を大きくできる特徴がある。
 本発明の車載用の電装用バッテリは、サブバッテリ2と直列に接続してなる出力スイッチSW1、SW2、SW3と、この出力スイッチSW1、SW2、SW3をオンオフに制御する制御回路15とを備えて、制御回路15が、サブバッテリ2の残容量と電圧の何れかを検出して、出力スイッチSW1、SW2、SW3を制御することができる。
 以上の車載用の電装用バッテリは、サブバッテリを有効に充放電しながら、劣化を少なくして寿命を長くできる特徴がある。それは、出力スイッチを制御して、サブバッテリの過充電や過放電を防止できるからである。
 本発明の車載用の電装用バッテリは、鉛バッテリ1とサブバッテリ2を一体構造に連結する連結具6を有して、鉛バッテリ1とサブバッテリ2のサブ端子4を金属板のバスバー5で接続して、この金属板のバスバー5を連結具6に併用することができる。
 以上の電装用バッテリは、バスバーでもってサブバッテリを鉛バッテリに接続すると共に、サブバッテリを鉛バッテリに一体構造に連結する連結具に併用するので、連結具を簡単にできる特徴がある。
 本発明の車載用の電装用バッテリは、鉛バッテリ1の第2のメイン端子3Bとサブバッテリ2の第2のサブ端子4Bとを接続してなるバスバー5を、連結具6に併用することができる。
 本発明の車載用の電装用バッテリは、鉛バッテリ1の第1のメイン端子3Aとサブバッテリ2の第1のサブ端子4Aとを接続してなるバスバー5を、連結具6に併用することができる。
回生エネルギーで充電されるニッケル水素電池と鉛バッテリの充電電流と電圧の特性を示すグラフである。 本発明の一実施の形態にかかる車載用の電装用バッテリの斜視図である。 図2に示す車載用の電装用バッテリの概略平面図である。 他の構造の鉛バッテリを備える車載用の電装用バッテリの概略平面図である。 他の構造の鉛バッテリを備える車載用の電装用バッテリの概略平面図である。 連結具の一例を示す概略平面図である。 本発明の一実施の形態にかかる車載用の電装用バッテリの回路図である。 本発明の他の実施の形態にかかる車載用の電装用バッテリの回路図である。 本発明の他の実施の形態にかかる車載用の電装用バッテリの回路図である。 本発明の他の実施の形態にかかる車載用の電装用バッテリの回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための車載用の電装用バッテリを例示するものであって、本発明は車載用の電装用バッテリを以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。
 図2の斜視図に示す車載用の電装用バッテリは、全体の形状を直方体とする鉛バッテリ1と、この鉛バッテリ1と並列に接続しているサブバッテリ2とを備え、鉛バッテリ1とサブバッテリ2とを一体構造に連結している。
[鉛バッテリ1]
 鉛バッテリ1は、横幅(W)より長さ(L)を長くする直方体で、正負のメイン端子3を、直方体の片側の長辺側に偏在して上面の両端部に配置している。図2において、鉛バッテリ1は、左下側に位置する長辺側に偏在して、上面の両端部に正負のメイン端子3を配置している。メイン端子3は円柱状で、わずかに上方を細くするテーパー状としている。図2において、鉛バッテリ1上面の、左側に配置している第1のメイン端子3Aを、車両のリード線が接続される電装用バッテリの出力端子9とし、右側に配置している第2のメイン端子3Bを、サブバッテリ2のサブ端子4に接続している。
[サブバッテリ2]
 サブバッテリ2は、外装ケース20に複数の素電池21を収納している。外装ケース20は、プラスチックなどの絶縁材で箱形に成形している。外装ケース20は、正負のサブ端子4を上面から突出して設けている。正負のサブ端子4は、幅方向の両端部に配設される。サブ端子4は、鉛バッテリ1のメイン端子3と同じ形状としている。すなわち、サブバッテリ2のサブ端子4は、円柱状であって、上方に向かってわずかに細くなるテーパー状としている。サブバッテリ2の正極側のサブ端子は、鉛バッテリ1の正極側のメイン端子3と同じ形状、サブバッテリ2の負極側のサブ端子4は、鉛バッテリ1の負極側のメイン端子3と同じ形状としている。この構造のサブバッテリ2は、サブバッテリ2のサブ端子4を電装用バッテリの出力端子9、すなわち車両のリード線が接続される端子に使用できる。
 サブバッテリ2は、鉛バッテリ1の長手方向の端部外側であって、鉛バッテリ1の第2のメイン端子3B側に接近する端部外側、図2において、鉛バッテリ1の右下の外側に外装ケース20を配置して、鉛バッテリ1と一体構造に連結される。鉛バッテリ1とサブバッテリ2とは、バスバー5を介して一体構造に連結され、あるいは、周囲をバインドバー等(図示せず)で結束して、一体構造に連結される。サブバッテリ2は鉛バッテリ1に一体構造に連結されるが、脱着できる一体構造で連結される。この車載用の電装用バッテリは、サブバッテリ2より寿命の短い鉛バッテリ1が劣化すると、一体構造を解除して、鉛バッテリ1を交換できるので、サブバッテリ2を有効に使用できる。
[サブバッテリ2の外装ケース20]
 図2の電装用バッテリは、サブバッテリ2の外装ケース20の横幅(w)を鉛バッテリ1の横幅(W)にほぼ等しく、サブバッテリ2の高さ(h)をバッテリの高さ(H)とほぼ等しくしている。サブバッテリ2の横幅(w)と、高さ(h)とが鉛バッテリ1にほぼ等しいとは、サブバッテリ2を鉛バッテリ1に一体構造に連結する状態で、容量の大きい鉛バッテリ1と同じように載せ台に載せて固定できる大きさ、たとえば、鉛バッテリ1の寸法の±10%以内とする。
 このサブバッテリ2を鉛バッテリ1に一体構造に連結する車載用の電装用バッテリは、鉛バッテリ1と同じ外形として、容量の大きい、すなわち長さのみが長い鉛バッテリに代わって車両に実装できる。ただ、サブバッテリ2の外装ケース20は、横幅(w)を鉛バッテリ1の幅方向に突出させない寸法、すなわち鉛バッテリ1の横幅(W)よりも狭く、また高さ(h)を鉛バッテリ1の上下方向に突出しない寸法、すなわち鉛バッテリ1の高さ(H)よりも低くすることもできる。この車載用の電装用バッテリも、容量の大きい長い鉛バッテリ1に代わって、車両にセットできる。
[バスバー5]
 サブバッテリ2は、鉛バッテリ1の第2のメイン端子3Bに接続される第2のサブ端子4Bを、外装ケース20の上面であって、鉛バッテリ1の第2のメイン端子3B側の端部(図2において外装ケース20の左下側)に配置している。サブバッテリ2の第2のサブ端子4Bは、鉛バッテリ1の第2のメイン端子3Bの近傍にあって、第2のバスバー5Bで互いに接続される。
 車両に搭載される鉛バッテリ1は、図3ないし図5に示すように、正負のメイン端子3を互いに反対位置に配置する2種(型式の最後がR又はL)のタイプがある。サブバッテリ2は、図3ないし図5に示すように、鉛バッテリ1A、1Bに一体構造に連結されて、2種の鉛バッテリ1A、1Bと同じように車両に搭載して使用できる。ここで、図3と図4に示す電装用バッテリは、鉛バッテリ1の長手方向の端部外側であって、図において右側に位置する側面にサブバッテリ2を連結している。したがって、図3と図4に示す電装用バッテリは、鉛バッテリ1の上面の両端部であって、図において左側に配置しているメイン端子3を第1のメイン端子3Aとし、右側に配置しているメイン端子3を第2のメイン端子3Bとしている。また、図5に示す電装用バッテリは、鉛バッテリ1の長手方向の端部外側であって、図において左側に位置する側面にサブバッテリ2を連結している。したがって、図5に示す電装用バッテリは、鉛バッテリ1の上面の両端部であって、図において右側に配置しているメイン端子3を第1のメイン端子3Aとし、左側に配置しているメイン端子3を第2のメイン端子3Bとしている。
 図3ないし図5の電装用バッテリは、一方の出力端子9を鉛バッテリ1の第1のメイン端子3Aとし、他方の出力端子9をサブバッテリ2の第2のサブ端子4Bとしている。電装用バッテリの出力端子9は、車両のリード線8を接続する端子である。この電装用バッテリは、鉛バッテリ1のメイン端子3と同じように、リード線8を接続する正負の出力端子9を上面の両端部に配置する。したがって、鉛バッテリ1に代わってリード線8を同じように接続できる。
 図3と図5の電装用バッテリは、鉛バッテリ1Aの第1のメイン端子3Aをプラス側の出力端子9Aとし、サブバッテリ2の第2のサブ端子4Bをマイナス側の出力端子9Bとしている。図4の電装用バッテリは、鉛バッテリ1Bの第1のメイン端子3Aをマイナス側の出力端子9Bとして、サブバッテリ2の第2のサブ端子4Bをプラス側の出力端子9Aとしている。
 電装用バッテリは、図3ないし図5の鎖線で示すように、正負の出力端子9を鉛バッテリ1の正負のメイン端子3とすることもできる。図3と図5の電装用バッテリは、鉛バッテリ1の第1のメイン端子3Aをプラス側の出力端子9Aとし、図の鎖線で示すように、鉛バッテリ1の第2のメイン端子3Bをマイナス側の出力端子9Bとしている。図4の電装用バッテリは、鉛バッテリ1の第1のメイン端子3Aをマイナス側の出力端子9Bとし、図の鎖線で示すように、鉛バッテリ1の第2のメイン端子3Bをプラス側の出力端子9Aとしている。
 図3ないし図5の実線と鎖線で示すように、一方の出力端子9を、サブバッテリ2の第2のサブ端子4B又は鉛バッテリ1の第2のメイン端子3Bとする電装用バッテリは、車両のリード線8をより好ましい状態で接続できる。電装用バッテリの一方の出力端子9の位置を、サブバッテリ2の第2のサブ端子4Bと鉛バッテリ1の第2のメイン端子3Bの位置に切り換えて接続できるからである。
 電装用バッテリの出力端子9に接続される車両のリード線は電力損失を少なくするために、できる限り短くしているので、接続する電装用バッテリの出力端子9の位置がずれると接続できなくなることがある。鉛バッテリ1と同じ位置に出力端子9を設けている電装用バッテリは、鉛バッテリ1に代えて使用して、リード線を接続でき、また、リード線を接続する出力端子9を2箇所とする電装用バッテリは、好ましい出力端子9にリード線を接続することができる。
 外装ケース20の上面であって、幅方向の両端部に正負のサブ端子4を配置するサブバッテリ2は、図3と図4に示すように、鉛バッテリ1に接続する姿勢を水平面内で180度反転して、正負のメイン端子3が互いに反対側にある2種の鉛バッテリ1A、1Bに一体構造に連結して使用できる。あるいは、図3と図5に示すように、サブバッテリ2を連結する位置を、鉛バッテリ1の長手方向の端部外側で入れ替えることによって、すなわち、サブバッテリ2の連結位置を、図において左右逆転することで、2種の鉛バッテリ1A、1Bに一体構造に連結して使用できる。
 図2ないし図5に示す電装用バッテリは、第1のサブ端子4Aと第1のメイン端子3Aを第1のバスバー5Aで接続して、第2のサブ端子4Bと第2のメイン端子3Bとを第2のバスバー5Bで接続している。第1のサブ端子4Aと第1のメイン端子3Aは、電装用バッテリ上面の対角位置に配置され、第2のサブ端子4Bと第2のメイン端子3Bとは接近する位置に配置される。
 図2に示す第1のバスバー5Aは、全体の形状をL字状とする金属板で、両端部を下方に階段状に折曲加工して接続部5aを設けて、接続部5aを第1のサブ端子4Aと第1のメイン端子3Aとに接続している。さらに、第1のバスバー5Aは、鉛バッテリ1とサブバッテリ2の上面に配置されて、両端の接続部5aを除く上面を絶縁している。第1のバスバー5Aは、上面のみでなく全周を絶縁することもできる。第1のバスバー5A、は表面に絶縁材を塗布し、あるいは表面に絶縁膜を接着し、あるいは又絶縁シートや絶縁プレートを積層して絶縁できる。
 図2に示す第2のバスバー5Bは、第1のバスバー5Aよりも短い細長い金属板で、両端を下方に階段状に折曲加工して接続部5aを設けて、接続部5aを第2のメイン端子3Bと第2のサブ端子4Bとに接続している。
 なお、上記実施形態において、第1のバスバー5Aや、第2のバスバー5Bは、比較的強固な金属板で形成しているが、フレキシブル性を有したフレキシブルバスバーとしても良い。フレキシブルバスバーとしては、0.1~0.2mm程度の薄い金属板を数枚重ねたものや、金属線材、例えば針金やワイヤーを網目状に編み込んだものなどがある。このようなフレキシブルバスバーを使用すると、端子位置が公差分、多少ずれても接続を容易とすることができる。また、走行する車両の振動等により、鉛バッテリとサブバッテリの端子位置を位置ずれさせる負荷が作用しても、フレキシブルバスバーでこの負荷を吸収して、端子接続部分における損傷や接触不良の発生を有効に防止できる。
[連結具6]
 図2の電装用バッテリは、第1のバスバー5Aと第2のバスバー5Bの接続部5aに貫通孔5bを設け、この貫通孔5bにメイン端子3とサブ端子4とを挿通して、メイン端子3とサブ端子4とに固定している。第1のバスバー5Aと第2のバスバー5Bは、その両端の接続部5aがメイン端子3とサブ端子4とに固定されて、鉛バッテリ1とサブバッテリ2とを連結する連結具6に兼用される。とくに、金属板からなるバスバー5両端の接続部5aを、鉛バッテリ1のメイン端子3とサブバッテリ2のサブ端子4とに固定する電装用バッテリは、バスバー5を連結具6に兼用して、鉛バッテリ1とサブバッテリ2を上部で強固に連結できる。バスバー5を連結具6に兼用して上部を連結している電装用バッテリは、図6の概略平面図で示すように、鉛バッテリ1とサブバッテリ2の周囲を囲む連結具6のバインドバー11で結束して、鉛バッテリ1とサブバッテリ2とを強固に一体構造に連結できる。図6のバインドバー11は、両端部を外側に折曲加工して互いに平行な対向片11Aを設け、対向片11Aの貫通孔に止ネジ12を挿入して、止ネジ12にナット13をねじ込んで結束している。この連結具6は、バインドバー11のナット13を緩め、第1のバスバー5Aと第2のバスバー5Bの接続部5aをメイン端子3とサブ端子4から外して、鉛バッテリ1とサブバッテリ2とを脱着できる。すなわち、鉛バッテリ1とサブバッテリ2とを脱着できるように一体構造に連結できる。
[素電池21の収納構造]
 図2のサブバッテリ2は、外装ケース20内に複数の素電池21を収納している。素電池21はニッケル水素電池である。ただし、素電池はリチウムイオン電池やリチウムポリマー電池とする非水系電解液電池やニッケルカドミウム電池等、鉛バッテリ1よりも充放電特性に優れる全ての二次電池を使用できる。ニッケル水素電池とニッケルカドミウム電池は定格電圧を1.2Vとするので、10個の素電池21を直列に接続して外装ケース20に収納している。非水系電解液電池は定格電圧が高いので、たとえば、3個ないし4個の素電池を直列に接続して、鉛バッテリ1の定格電圧にできる。
 図2のサブバッテリ2は、素電池21を円筒形電池としている。このサブバッテリ2は、互いに直列に接続している10個の素電池21を垂直姿勢で同一平面に配置して、1ユニットの組電池22としている。1ユニットの組電池22は、上段に5列、下段に5列の素電池21を並べている。1ユニットの組電池22は、上下の素電池21の両端を接続して直列に接続し、さらに隣接する素電池21を直列に接続して、10個の素電池21を直列に接続している。図2のサブバッテリ2は、2ユニットの組電池22を水平方向に積層し、積層している組電池22を互いに並列に接続して、外装ケース20に収納している。図2に示すように、複数の組電池22を積層するように配置して、互いに並列に接続するサブバッテリ2は、積層して並列に接続する組電池22を多くして、電流容量を大きくできる。たとえば、1ユニットの電流容量を5Ahとする組電池22を2組積層して、サブバッテリ2の電流容量を10Ahと2倍にできる。
 図2の外装ケース20は、内部に収納される円筒形電池の外形に沿うように、外周面を波形形状としている。この形状の外装ケース20は、収納される円筒形電池との密着性を高めることができると共に、直方体形状のケースと比較してケースの表面積を増やすことができ、外装ケース20の冷却性能を高めることができる。電装用バッテリは、車両のエンジンルーム内に配設されることが多い。エンジンルーム内は、エンジンの発熱により、高温になりやすい傾向があるが、上記構成とすることで、エンジンルーム内に流入する外気を介して、外装ケース20が冷却され、外装ケース20内に収納される円筒形電池を効果的に冷却することができる。また、外装ケース20の内面に円筒形電池を密着させて定位置に保持できるので、走行時の振動等に対する安定性も図ることができる。
 電装用バッテリの回路図を図7ないし図10に示す。
 図7の電装用バッテリは、バスバー5を介して鉛バッテリ1とサブバッテリ2とを常に並列に接続している。
 図8の電装用バッテリは、サブバッテリ2の出力側に第1の出力スイッチSW1を接続して、鉛バッテリ1の出力側に第2の出力スイッチSW2を接続し、さらに、サブバッテリ2と鉛バッテリ1とを並列に接続する並列スイッチSW3とを備え、SW1、SW2、SW3を制御回路15でオンオフに制御する。この電装用バッテリは、以下のようにしてスイッチSW1、SW2、SW3を制御回路15でオンオフに切り換える。
(1)車両の電装負荷31に低レートで放電する状態
 この状態では、SW1とSW3をオフ、SW2をオンとして鉛バッテリ1から電装負荷31に電力を供給する。
 この状態は、SW1、SW2、SW3をオンとして、鉛バッテリ1とサブバッテリ2の両方から電装負荷31に電力を供給することもできる。
(2)電装負荷31を高レートで放電する状態
 この状態ではSW1、SW2、SW3をオンとして、鉛バッテリ1とサブバッテリ2から電装負荷31に電力を供給する。
(3)スターターモータ32でエンジン始動時、瞬間的に高レートで放電する状態
 この状態では、SW2とSW3をオフ、SW1をオンとして、サブバッテリ2からスターターモータ32に電力を供給する。
 この状態は、SW1、SW2、SW3の全てをオン状態として、鉛バッテリ1とサブバッテリ2の両方からスターターモータ32に電力を供給することができ、また、SW1をオフ、SW2、SW3をオンとして鉛バッテリ1のみからスターターモータ32に電力を供給することもできる。
(4)電装負荷31に電力を供給しながら、スターターモータ32を始動する状態
 この状態では、SW3をオフとして、SW1とSW2をオンとして、スターターモータ32にはサブバッテリ2から、電装負荷31には鉛バッテリ1から電力を供給する。
 この状態も、SW1、SW2、SW3をオンとして、鉛バッテリ1とサブバッテリ2の両方からスターターモータ32と電装負荷31に電力を供給することができる。
(5)回生制動して回生エネルギーで蓄電する状態
 この状態では、SW2をオフ、SW1、SW3をオンとして、回生エネルギーでサブバッテリ2を充電する。電装負荷31には電力を供給するので、電装負荷31のスイッチはオン状態とする。
 この状態は、SW1、SW2、SW3をオンとして、回生エネルギーで鉛バッテリ1とサブバッテリ2の両方を充電することができる。とくに、サブバッテリ2の残容量が最大残容量近くまで増加すると、回生エネルギーでサブバッテリ2と鉛バッテリ1の両方を充電して、サブバッテリ2の過充電を防止する。さらに、サブバッテリ2の残容量が最大残容量になると、SW1をオフとして回生エネルギーで鉛バッテリ1のみを充電する。
(6)鉛バッテリ1が容量低下、又はサブバッテリ2が容量低下して、低レートで充電する状態
 この状態では、SW3をオフ、SW2をオンとして鉛バッテリ1を充電し、また、SW2をオフ、SW1とSW3をオンにしてサブバッテリ2を充電し、さらに、SW1、SW2、SW3をオンとして鉛バッテリ1とサブバッテリ2とを充電する。
(7)鉛バッテリ1とサブバッテリ2の電圧差が発生する状態
 この状態ではSW1、SW2、SW3をオンとして鉛バッテリ1とサブバッテリ2の電圧を均等化する。
(8)サブバッテリ2が充電される状態で最大残容量まで充電され、あるいは放電される状態で最低残容量まで放電されると、制御回路15がこのことを検出して、SW1をオフに切り換えて、サブバッテリ2の過充電と過放電を防止する。
 図9の電装用バッテリは、サブバッテリ2の出力側に第1の出力スイッチSW1を接続して、鉛バッテリ1の出力側に第2の出力スイッチSW2を接続して、SW1、SW2を制御回路15で以下のようにオンオフに制御する。
(1)車両の電装負荷31に低レートで放電する状態
 この状態では、SW1をオフ、SW2をオンとして鉛バッテリ1から電装負荷31に電力を供給する。
 この状態は、SW1、SW2をオンとして、鉛バッテリ1とサブバッテリ2の両方から電装負荷31に電力を供給することもできる。
(2)電装負荷31を高レートで放電する状態
 この状態ではSW1、SW2をオンとして、鉛バッテリ1とサブバッテリ2から電装負荷31に電力を供給する。
(3)スターターモータ32でエンジン始動時、瞬間的に高レートで放電する状態
 この状態ではSW2をオフ、SW1をオンとして、サブバッテリ2からスターターモータ32に電力を供給する。
 この状態は、SW1とSW2をオン状態として、鉛バッテリ1とサブバッテリ2の両方からスターターモータ32に電力を供給することができ、また、SW1をオフ、SW2をオンとして鉛バッテリ1のみからスターターモータ32に電力を供給することもできる。
(4)電装負荷31に電力を供給しながら、スターターモータ32を始動する状態
 この状態では、SW1とSW2をオンとして、スターターモータ32と電装負荷31に、鉛バッテリ1とサブバッテリ2から電力を供給する。
(5)回生制動して回生エネルギーで蓄電する状態
 この状態では、SW1をオンとして、回生エネルギーでサブバッテリ2を充電する。
 この状態は、SW1とSW2をオンとして、回生エネルギーで鉛バッテリ1とサブバッテリ2の両方を充電することができる。とくに、サブバッテリ2の残容量が最大残容量近くまで増加すると、回生エネルギーでサブバッテリ2と鉛バッテリ1の両方を充電して、サブバッテリ2の過充電を防止する。さらに、サブバッテリ2の残容量が最大残容量になると、SW1をオフとして回生エネルギーで鉛バッテリ1のみを充電する。
(6)鉛バッテリ1が容量低下、又はサブバッテリ2が容量低下して、低レートで充電する状態
 この状態では、SW1をオフ、SW2をオンとして鉛バッテリ1を充電し、また、SW2をオフ、SW1をオンにしてサブバッテリ2を充電し、さらに、SW1とSW2をオンとして鉛バッテリ1とサブバッテリ2とを充電する。
(7)鉛バッテリ1とサブバッテリ2の電圧差が発生する状態
 この状態ではSW1とSW2をオンとして鉛バッテリ1とサブバッテリ2の電圧を均等化する。
(8)サブバッテリ2が充電される状態で最大残容量まで充電され、あるいは放電される状態で最低残容量まで放電されると、制御回路15がこのことを検出して、SW1をオフに切り換えて、サブバッテリ2の過充電と過放電を防止する。
 図10の電装用バッテリは、サブバッテリ2の出力側にのみ出力スイッチSW1を接続して、この出力スイッチSW1を制御回路15で制御している。
(1)車両の電装負荷31を低レートで放電する状態
 この状態では、SW1をオフとして鉛バッテリ1のみから電装負荷31に電力を供給する。
 この状態は、SW1をオンとして、鉛バッテリ1とサブバッテリ2の両方から電装負荷31に電力を供給することもできる。
(2)電装負荷31を高レートで放電する状態
 この状態ではSW1をオンとして、鉛バッテリ1とサブバッテリ2から電装負荷31に電力を供給する。
(3)スターターモータ32でエンジン始動時、瞬間的に高レートで放電する状態
 この状態ではSW1をオンとして、サブバッテリ2と鉛バッテリ1からスターターモータ32に電力を供給する。
(4)電装負荷31に電力を供給しながら、スターターモータ32を始動する状態
 この状態では、SW1をオンとして、スターターモータ32と電装負荷31に、鉛バッテリ1とサブバッテリ2から電力を供給する。
(5)回生制動して回生エネルギーで蓄電する状態
 この状態では、SW1をオンとして、回生エネルギーでサブバッテリ2と鉛バッテリ1を充電する。
 サブバッテリ2の残容量が最大残容量になると、SW1をオフとして回生エネルギーで鉛バッテリ1のみを充電する。
(6)鉛バッテリ1が容量低下、又はサブバッテリ2が容量低下して、低レートで充電する状態
 この状態では、SW1をオフとして鉛バッテリ1を充電し、また、SW1をオンにして鉛バッテリ1とサブバッテリ2を充電する。
(7)鉛バッテリ1とサブバッテリ2の電圧差が発生する状態
 この状態ではSW1をオンとして鉛バッテリ1とサブバッテリ2の電圧を均等化する。
(8)サブバッテリ2が充電される状態で最大残容量まで充電され、あるいは放電される状態で最低残容量まで放電されると、制御回路15がこのことを検出して、SW1をオフに切り換えて、サブバッテリ2の過充電と過放電を防止する。
 図8ないし図10の回路図に示す電装用バッテリは、車両側の発電機33で充電される。車両側の発電機33は、電装用バッテリを充電する状態で、充電電圧が最高電圧(例えば14V~15V)以上に上昇しないように出力電圧を制御して、電装用バッテリの過充電を防止している。ただ、この状態においても、サブバッテリ2の残容量は制御回路15で検出され、残容量が最大残容量を越えて充電状態にあると、制御回路15は第1の出力スイッチSW1をオフに切り換えてサブバッテリ2の過充電を防止する。
 さらに、図8ないし図10の電装用バッテリは、電装負荷31やスターターモータ32に電力を供給して放電される。車両側は、電装用バッテリの電圧が最適電圧以下に低下しないように発電機33を制御して、電装用バッテリを充電する。電装用バッテリが放電される状態で、サブバッテリ2の残容量は制御回路15で検出され、残容量が最低電圧以下になって放電される状態にあると、制御回路15は第1の出力スイッチSW1をオフに切り換えてサブバッテリ2の過放電を防止する。
 図8ないし図10に示す電装用バッテリが備える出力スイッチSW1、SW2、SW3は、リレーや半導体スイッチング素子である。半導体スイッチング素子は、トランジスタ、FET、IGBT等の素子が使用できる。これらの出力スイッチは、サブバッテリの外装ケース内に設けた収納部に配置されて、サブ端子と組電池との間に接続される。外装ケースは、上部に収納部を設けて、ここに出力スイッチを配置できる。ただ、出力スイッチは、サブ端子とメイン端子との間に接続することもできる。
 本発明の車載用の電装用バッテリは、エンジンで駆動されて、あるいは走行用のモータで駆動されて走行する車両に電装用のバッテリとして搭載されて、走行する回生制動で発生する回生エネルギーを有効に蓄電できる電装用のバッテリとして好適に使用できる。
  1…鉛バッテリ          1A…鉛バッテリ
                   1B…鉛バッテリ
  2…サブバッテリ
  3…メイン端子          3A…第1のメイン端子
                   3B…第2のメイン端子
  4…サブ端子           4A…第1のサブ端子
                   4B…第2のサブ端子
  5…バスバー           5A…第1のバスバー
                   5B…第2のバスバー
                   5a…接続部
                   5b…貫通孔
  6…連結具
  8…リード線
  9…出力端子           9A…プラス側の出力端子
                   9B…マイナス側の出力端子
 11…バインドバー        11A…対向片
 12…止ネジ
 13…ナット
 15…制御回路
 20…外装ケース
 21…素電池
 22…組電池
 31…電装負荷
 32…スタータモータ
 33…発電機
 SW1…出力スイッチ
 SW2…出力スイッチ
 SW3…出力スイッチ

Claims (13)

  1.  全体の形状を直方体とする鉛バッテリと、この鉛バッテリと並列に接続してなるサブバッテリとを備え、
     前記鉛バッテリが、横幅(W)より長さ(L)が長い直方体で、
     正負の電極端子である第1のメイン端子と第2のメイン端子とを、直方体の片側の長辺側に偏在して上面の両端部に配置しており、
     前記第1のメイン端子を、車両のリード線が接続される出力端子として、
     前記第2のメイン端子を、前記サブバッテリに接続しており、
     前記サブバッテリは、外装ケースに複数の素電池を収納する構造であって、前記鉛バッテリの長手方向の端部外側であって、前記鉛バッテリの第2の接続端子側に接近する端部外側に前記外装ケースを配置して、
     前記鉛バッテリと前記サブバッテリとを連結してなる車載用の電装用バッテリ。
  2.  前記サブバッテリは、前記鉛バッテリの第2のメイン端子に接続される第2のサブ端子を前記外装ケースの上面であって、前記鉛バッテリの第2のメイン端子側の端部に配置してなる請求項1に記載される車載用の電装用バッテリ。
  3.  前記サブバッテリが、前記外装ケースの上面であって、幅方向の両端部に第1のサブ端子と第2のサブ端子を配置して、前記第2のサブ端子を前記鉛バッテリの第2のメイン端子に接続してなる請求項2に記載される車載用の電装用バッテリ。
  4.  前記鉛バッテリの第1のメイン端子と、前記サブバッテリの第1のサブ端子とを、前記鉛バッテリの上面に配置してなる第1のバスバーで接続しており、この第1のバスバーの上面を絶縁してなる請求項3に記載される車載用の電装用バッテリ。
  5.  前記サブバッテリの外装ケースの横幅(w)が、前記鉛バッテリの幅方向に突出しない寸法である請求項1ないし4のいずれかに記載される車載用の電装用バッテリ。
  6.  前記サブバッテリの外装ケースの高さ(h)が、前記鉛バッテリの上下方向に突出しない寸法である請求項1ないし5のいずれかに記載される車載用の電装用バッテリ。
  7.  前記サブバッテリの外装ケースの横幅(w)が、前記鉛バッテリの横幅(W)にほぼ等しい請求項1ないし6のいずれかに記載される車載用の電装用バッテリ。
  8.  前記サブバッテリの外装ケースの高さ(h)が、前記鉛バッテリの高さ(H)にほぼ等しい請求項1ないし7のいずれかに記載される車載用の電装用バッテリ。
  9.  前記サブバッテリが、ニッケル水素電池、ニッケルカドミウム電池、非水系電解液電池のいずれかである請求項1ないし8のいずれかに記載される車載用の電装用バッテリ。
  10.  前記サブバッテリと直列に接続してなる出力スイッチと、この出力スイッチをオンオフに制御する制御回路とを備え、
     制御回路が、前記サブバッテリの残容量と電圧の何れかを検出して、前記出力スイッチを制御する請求項1ないし9のいずれかに記載される車載用の電装用バッテリ。
  11.  前記鉛バッテリと前記サブバッテリを一体構造に連結する連結具を有し、
     前記鉛バッテリのメイン端子と前記サブバッテリのサブ端子を金属板のバスバーで接続しており、この金属板のバスバーが連結具に併用されてなる請求項2ないし4のいずれかに記載される車載用の電装用バッテリ。
  12.  前記鉛バッテリの第2のメイン端子と前記サブバッテリの第2のサブ端子とを接続してなるバスバーが、前記連結具に併用されてなる請求項11に記載される車載用の電装用バッテリ。
  13.  前記鉛バッテリの第1のメイン端子と前記サブバッテリの第1のサブ端子とを接続してなるバスバーが、前記連結具に併用されてなる請求項11に記載される車載用の電装用バッテリ。
PCT/JP2013/065420 2012-06-11 2013-06-04 車載用の電装用バッテリ WO2013187280A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/399,844 US20150104676A1 (en) 2012-06-11 2013-06-04 Battery for automotive electrical system
JP2014521276A JPWO2013187280A1 (ja) 2012-06-11 2013-06-04 車載用の電装用バッテリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-132112 2012-06-11
JP2012132112 2012-06-11

Publications (1)

Publication Number Publication Date
WO2013187280A1 true WO2013187280A1 (ja) 2013-12-19

Family

ID=49758106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065420 WO2013187280A1 (ja) 2012-06-11 2013-06-04 車載用の電装用バッテリ

Country Status (3)

Country Link
US (1) US20150104676A1 (ja)
JP (1) JPWO2013187280A1 (ja)
WO (1) WO2013187280A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217859A (ja) * 2014-05-20 2015-12-07 トヨタ自動車株式会社 電源制御装置
US20160211499A1 (en) * 2015-01-19 2016-07-21 Samsung Sdi Co., Ltd. Battery module
JP2017208983A (ja) * 2016-05-20 2017-11-24 Connexx Systems株式会社 複合電池システム
KR20180029689A (ko) * 2016-09-13 2018-03-21 주식회사 엘지화학 통합형 카트리지 및 이를 포함하는 배터리 팩

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291007B2 (en) * 2012-10-30 2019-05-14 Snaprays Llc Active cover plates
US9994117B2 (en) 2016-04-20 2018-06-12 Artisan Vehicle Systems Inc. System and method for providing power to a mining operation
CN111555378A (zh) * 2017-05-31 2020-08-18 广州市凯捷电源实业有限公司 一种组合启动电源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487164U (ja) * 1990-11-30 1992-07-29
JPH0673860U (ja) * 1993-03-31 1994-10-18 安藤 敏行 電源装置
JPH0922688A (ja) * 1995-03-15 1997-01-21 Glorywin Internatl Group Ltd バッテリ
JP2003157827A (ja) * 2001-11-26 2003-05-30 Auto Network Gijutsu Kenkyusho:Kk バッテリー接続方法及び構造
WO2011024477A1 (ja) * 2009-08-31 2011-03-03 三洋電機株式会社 バッテリモジュール、バッテリシステムおよび電動車両
JP2011234479A (ja) * 2010-04-27 2011-11-17 Denso Corp 電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684580A (en) * 1986-01-21 1987-08-04 Cramer Scott L Electric storage battery assembly
US4957830A (en) * 1989-04-07 1990-09-18 Globe-Union Inc. Rechargeable metal oxide-hydrogen battery
US5993983C1 (en) * 1997-03-14 2001-09-18 Century Mfg Co Portable power supply using hybrid battery technology
US6734651B2 (en) * 2001-06-06 2004-05-11 Simtech Systems, Llc Battery backup system with remote switch for actuating backup battery
JP3671007B2 (ja) * 2002-01-31 2005-07-13 三洋電機株式会社 電源装置
US7339347B2 (en) * 2003-08-11 2008-03-04 Reserve Power Cell, Llc Apparatus and method for reliably supplying electrical energy to an electrical system
JP2006281805A (ja) * 2005-03-31 2006-10-19 Mazda Motor Corp 車両用エンジン補機の配設構造
US20080254343A1 (en) * 2007-04-16 2008-10-16 Eveready Battery Company, Inc. Electrochemical cell with thermal current interrupting switch
EP2272722B1 (en) * 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487164U (ja) * 1990-11-30 1992-07-29
JPH0673860U (ja) * 1993-03-31 1994-10-18 安藤 敏行 電源装置
JPH0922688A (ja) * 1995-03-15 1997-01-21 Glorywin Internatl Group Ltd バッテリ
JP2003157827A (ja) * 2001-11-26 2003-05-30 Auto Network Gijutsu Kenkyusho:Kk バッテリー接続方法及び構造
WO2011024477A1 (ja) * 2009-08-31 2011-03-03 三洋電機株式会社 バッテリモジュール、バッテリシステムおよび電動車両
JP2011234479A (ja) * 2010-04-27 2011-11-17 Denso Corp 電源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217859A (ja) * 2014-05-20 2015-12-07 トヨタ自動車株式会社 電源制御装置
US20160211499A1 (en) * 2015-01-19 2016-07-21 Samsung Sdi Co., Ltd. Battery module
JP2017208983A (ja) * 2016-05-20 2017-11-24 Connexx Systems株式会社 複合電池システム
KR20180029689A (ko) * 2016-09-13 2018-03-21 주식회사 엘지화학 통합형 카트리지 및 이를 포함하는 배터리 팩
KR102012403B1 (ko) 2016-09-13 2019-08-20 주식회사 엘지화학 통합형 카트리지 및 이를 포함하는 배터리 팩

Also Published As

Publication number Publication date
US20150104676A1 (en) 2015-04-16
JPWO2013187280A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
US11394072B2 (en) Cell assembly for a battery module
WO2013187280A1 (ja) 車載用の電装用バッテリ
US9937801B2 (en) Electric motor vehicle and battery pack
CN107431145B (zh) 用于蓄电池模块的汇流条桥的卡扣式延伸部和引导壁
JP5122573B2 (ja) バッテリーモジュール、及びそれを含む中または大型バッテリーパック
JP5259599B2 (ja) バッテリーモジュールインタフェース
US11575174B2 (en) Fixation of electrochemical cells in a housing of a battery module
WO2014068897A1 (ja) 電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステム
EP3201039A1 (en) Integrated connector having sense and switching conductors for a relay used in a battery module
EP3195385B1 (en) Recessed terminal in module body
WO2019071184A1 (en) LITHIUM ION BATTERY
JP2014088068A (ja) 車載用の電装予備蓄電部とこの電装予備蓄電部を搭載する車両
WO2014068899A1 (ja) 電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステム
KR101821377B1 (ko) 케이스 프레임 타입의 2 셀 배터리 모듈을 포함하는 배터리 모듈 어레이
EP3857625A1 (en) Mounting clip for printed circuit board
JP2014089840A (ja) 車載用のバッテリシステム及びこれを備える車両並びに車載用の電源装置
US20240186642A1 (en) Battery and method of allowing for volumetric expansion of battery cells within a battery
US20230124560A1 (en) Cell swelling restraint with heat staked fixation
CN111656571B (zh) 用于锂离子电池单元过度充电保护的翻转装置
WO2022232541A1 (en) Battery and method of allowing for volumetric expansion of battery cells within a battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399844

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014521276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803501

Country of ref document: EP

Kind code of ref document: A1