WO2013187041A1 - 断熱・緩衝材およびその製造方法 - Google Patents

断熱・緩衝材およびその製造方法 Download PDF

Info

Publication number
WO2013187041A1
WO2013187041A1 PCT/JP2013/003633 JP2013003633W WO2013187041A1 WO 2013187041 A1 WO2013187041 A1 WO 2013187041A1 JP 2013003633 W JP2013003633 W JP 2013003633W WO 2013187041 A1 WO2013187041 A1 WO 2013187041A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
skin layer
bead
heat
layer
Prior art date
Application number
PCT/JP2013/003633
Other languages
English (en)
French (fr)
Inventor
仁史 乾
康哲 中西
剛史 永田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013187041A1 publication Critical patent/WO2013187041A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5627After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
    • B29C44/5636After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching with the addition of heat
    • B29C44/5645Differential deformation by differential heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness

Definitions

  • the present invention relates to a heat insulating / buffer material for heat insulation and / or cushioning having a hard layer on the surface thereof by heat-processing the surface of the foamed plastic molding and a method for producing the same.
  • Patent Document 1 proposes a foamed plastic molded body in which a resin layer having an appropriate gloss and appropriate hardness is provided on the surface of the foamed plastic molded body.
  • FIG. 7 is a perspective view schematically showing an overall configuration of a conventional hard layer manufacturing apparatus disclosed in Patent Document 1. As shown in FIG.
  • a conventional hard layer manufacturing apparatus 100 includes a mounting table 102 on which a foamed plastic molded body 101 is mounted, four mold plates 103a each having a desired shape of engraving surface A, 103b, 103c, 103d and heaters 104a, 104b, 104c, 104d, which are attached to the back of the templates 103a, 103b, 103c, 103d and for heating the templates 103a, 103b, 103c, 103d to a predetermined temperature; Mold plate mounting plates 105a, 105b, 105c, and 105d to which the template plates 103a, 103b, 103c, and 103d and heaters 104a, 104b, 104c, and 104d are mounted, and the central portion of the back of the template mounting plates 105a, 105b, 105c, and 105d Hydraulic cylinders 106a, 106b, 106c, 106d attached to It is provided.
  • the hard layer manufacturing apparatus 100 includes a temperature controller (not shown) for controlling the heating temperature of the heaters 104a, 104b, 104c, and 104d and a hydraulic control for adjusting the hydraulic pressure of the hydraulic cylinders 106a, 106b, 106c, and 106d.
  • a device (not shown) is provided.
  • Each of the heaters 104a, 104b, 104c, and 104d is controlled to a desired temperature, and each of the presses that press the mold plates 103a, 103b, 103c, and 103d against the surface of the foamed plastic molded body 101 is controlled to a desired pressure.
  • the stroke amount of each of the template plates 103a, 103b, 103c, and 103d can be adjusted to a desired stroke amount.
  • a soft metal material such as aluminum is used as the material of the mold plates 103a, 103b, 103c, and 103d.
  • the work fixing jig 107 fixes the foamed plastic molded body 101 at a predetermined position on the mounting table 102.
  • the workpiece fixing jig 107 has a protruding portion 107a having a shape that fits into the recess of the hollow 101a of the foamed plastic molded body 101.
  • the workpiece fixing jig 107 is provided below the workpiece fixing jig 107 and below it by a hydraulic cylinder 108.
  • the protruding portion 107a can move up and down.
  • the surface of the foamed plastic molded body 101 having a predetermined shape slightly larger than the target product is thermally processed by the mold plates 103a, 103b, 103c, and 103d, and the surface resin layer of the foamed plastic molded body 101 is defoamed.
  • an engraved surface was formed on the surface of the hard layer, and an engraved surface was provided on the outer surface as an object of the foamed plastic molded body 101 having a predetermined shape.
  • a planter for flower seedlings can be obtained.
  • the surface of the foamed plastic molding 101 can be heat-processed to obtain a planter for flower seedlings having a glossy hard surface having excellent weather resistance and an engraved surface.
  • the surface of the foamed plastic molded body 101 is pressed and heat-processed to defoam the resin layer on the surface of the foamed plastic molded body 101 and form a hard layer on the surface. ing.
  • the molding temperature is 200 degrees Celsius to 250 degrees Celsius and the surface pressing force is a thermoforming condition with a unit area load of less than 0.3 kg / cm 2 , as a result of the experiments by the present inventors, the surface resin of the foamed plastic molded body Although the foam is compressed while the foam is confined and the foam is reduced, it is not defoamed. Therefore, the foamed plastic molding material is different from the experimental material of the present inventors, and the conventional hard layer is used.
  • thermoforming conditions such as the surface pressing force are further increased due to different thermoforming conditions of the manufacturing apparatus 100.
  • thermoforming conditions such as the surface pressing force are further increased, it is difficult to manufacture a hard layer on the surface of the foamed plastic molded body, and a hard layer manufacturing apparatus is required to be more complicated and strong.
  • the present invention solves the above-mentioned conventional problems, and the thermoforming conditions are such that the molding temperature is 200 degrees Celsius to 250 degrees Celsius, and the surface pressing force is low pressure with a unit area load of less than 0.3 kg / cm 2.
  • An object of the present invention is to provide a heat insulating and cushioning material and a method for producing the same that can form a hard layer easily and with high quality on the surface of a foamed plastic molding.
  • the heat insulation / buffer material of the present invention has a thermoplastic bead foam and a foam skin layer thermoformed on at least one surface of the bead foam, and the foam skin layer is not defoamed.
  • the foam structure is small and remains, whereby the above object is achieved.
  • the bead foam in the heat insulation / buffer material of the present invention is made of polypropylene as a main raw material or polyethylene as a main raw material, and the expansion ratio is at least twice.
  • the foam skin layer in the heat insulating and cushioning material of the present invention remains with the foam structure being reduced without defoaming at an expansion ratio lower than the expansion ratio of the bead foam.
  • the foam skin layer in the heat insulating and cushioning material of the present invention has a surface hardness that is so hard that no scratch marks are left on the toe.
  • the surface of the foam skin layer in the heat insulating / buffer material of the present invention is flat, or has recesses or irregularities.
  • the molding temperature of the bead foam is from 200 degrees Celsius to At a temperature of 250 degrees Celsius, the surface pressing force of the bead foam is less than a unit area load of 0.3 kg / cm 2 , and the surface is pressed against the surface while applying heat to the surface of the bead foam.
  • the foam skin layer is thermoformed to produce the heat insulating and cushioning material of the present invention, whereby the above object is achieved.
  • thermoplastic bead foam made of polypropylene as a main raw material or polyethylene as a main raw material, and a foam skin layer thermoformed on at least one surface of the bead foam.
  • the body skin layer is not defoamed and remains with a reduced foam structure.
  • the foam skin layer is thermoformed on at least one surface of a thermoplastic bead foam made of polypropylene as a main raw material or polyethylene as a main raw material, so that the molding temperature is 200 degrees Celsius to 250 degrees Celsius.
  • the surface pressing force is a low pressure thermoforming condition with a unit area load of less than 0.3 kg / cm 2 , the press die is simplified, and a hard layer is easily formed on the surface of the foamed plastic molding, It is possible to form the hard layer with high quality, such as excellent surface hardness and uneven shape transferability.
  • the foam skin layer thermoformed on at least one surface of the thermoplastic bead foam remains with a reduced foam structure without defoaming as in the conventional example. Therefore, the foaming plastic is molded at a molding temperature of 200 degrees Celsius to 250 degrees Celsius, and under a significantly low pressure thermoforming condition where the surface pressing force is less than 0.3 kg / cm 2 per unit area compared to the conventional technology. A hard layer can be formed easily and with high quality on the surface of the molded body.
  • Embodiment 1 of this invention It is a partial longitudinal cross-sectional view which shows the principal part structural example of the heat insulation / buffer material in Embodiment 1 of this invention. It is a partial longitudinal cross-sectional view which shows the principal part structural example at the time of forming a recessed part shape in the hot-melt resin layer which is a surface layer of FIG. It is a partial longitudinal cross-sectional view which shows the principal part structural example at the time of forming an uneven
  • FIG. 1 It is a figure for demonstrating the case where the surface of a bead foam is thermoformed flat by the press part of a hot press mechanism. It is a figure for demonstrating the case where the surface of a bead foam is thermoformed by tapering the surface by the press part of a hot press mechanism. It is a perspective view which shows roughly the whole structure of the conventional hard layer manufacturing apparatus currently disclosed by patent document 1.
  • FIG. 1 is a partial longitudinal sectional view showing an example of the configuration of the main part of a heat insulating / buffer material according to Embodiment 1 of the present invention.
  • a heat insulation / buffer material 1 includes a foam 2 made of thermoplastic bead foam resin and a glossy hard foam skin layer on at least one surface portion of the foam. It has a thermoformed hot-melt resin layer 3.
  • the foam 2 is a bead foam mainly made of polypropylene or a bead foam mainly made of polyethylene.
  • the bead foam one having an expansion ratio of 2 times or more can be used.
  • the bead foam is obtained by expanding and expanding a ball-shaped material (bead material).
  • the shape of the foam 2 may be a plate shape, a block shape, or a predetermined shape such as a square, a rectangle, and a circle in plan view.
  • the hot-melt resin layer 3 forms a hard resin layer having a glossy surface and a hard surface that is hard to be damaged.
  • the foam skin layer of the hot melt resin layer 3 has a surface hardness that is so hard that it does not get scratched on the toe because it does not get scratched by hitting the surface of the foam skin layer when an article is put in and out. Yes.
  • a bead foam mainly made of polypropylene or a bead foam mainly made of polyethylene it is necessary to use a bead foam mainly made of polypropylene or a bead foam mainly made of polyethylene.
  • the foam skin layer is formed by thermoforming with a foam material other than the bead foam
  • a high surface pressing force exceeding a unit area load of 0.5 kg / cm 2 is required.
  • the object of the present invention to form the film cannot be achieved.
  • the molding temperature is 200 degrees Celsius to 250 degrees Celsius, and the surface pressing force is less than 0.3 kg / cm 2 unit area load.
  • the hot-melt resin layer 3 is in a state where the foam is compressed while the foam is confined and the foam is reduced, but the foam is not defoamed.
  • the hot-melt resin layer 3 that is a foam skin layer remains with a reduced foam structure without defoaming at a foaming ratio lower than that of the foam 2 made of bead foam.
  • Foamed polypropylene and foamed polyethylene have heat insulation properties, although they are inferior to foamed urethane. For this reason, the part melt
  • thermoplastic resin is molded under a thermoforming condition in which a molding temperature is 200 degrees Celsius to 250 degrees Celsius, and the surface pressing force of the bead foam is less than a unit area load of 0.3 kg / cm 2 .
  • the heat insulating resin layer 3 is manufactured by pressing the surface of the bead foam while applying heat and thermoforming the hot melt resin layer 3 as a foam skin layer on the surface.
  • the heat insulating and cushioning material 1 is thermoformed by pressing a flat surface of a mold whose temperature is controlled so as to produce a smooth surface.
  • the material of the heat insulating and cushioning material 1 is a bead foam material of a thermoplastic material having a thickness capable of thermoforming the surface flat.
  • the foam skin layer having an expansion ratio lower than the expansion ratio of the bead foam material of the thermoplastic material is formed on the flat surface of the heat insulating / buffer material 1 as described above.
  • FIG. 2 is a partial vertical cross-sectional view showing an example of the configuration of the main part when a concave shape is formed in the hot-melt resin layer 3 which is the surface layer of FIG.
  • the heat insulating / buffer material 1A includes a foam 2A made of thermoplastic bead foam resin, and a heat in which a concave shape is formed on a hard foam skin layer on at least one surface of the foam 2A. And a molten resin layer 3A.
  • the concave shape can be further thermoformed to obtain the hot-melt resin layer 3A of the heat insulating / buffer material 1A.
  • the hot-pressing mechanism is moved to a predetermined position, and the hot-melt resin layer 3 that is the foam skin layer is re-dissolved by the convex pressing portion of the hot-pressing mechanism that is heated to a predetermined temperature.
  • the thermoplastic material is thermally deformed to form a concave shape (here, a recess having a predetermined width and a predetermined length) on the surface.
  • a recess having a predetermined width and a predetermined length is formed on both opposing side surfaces, and both ends of the shelf are inserted into the recess having a predetermined width and a predetermined length.
  • a recess having a predetermined width can be used as a shelf holder.
  • a plurality of concave shapes on the surface can be thermoformed.
  • the surface portion is re-dissolved in the hot-melt resin layer 3 having a flat surface, and the concave-shaped hot-melt resin layer 3A is thermoformed.
  • FIG. 3 is a partial vertical cross-sectional view showing an example of the configuration of the main part when the irregular shape is formed on the hot-melt resin layer 3 which is the surface layer of FIG.
  • the heat insulating / buffer material 1 ⁇ / b> B includes a foam 2 ⁇ / b> B made of a bead foam of thermoplastic resin, and a heat in which an uneven shape is formed on a hard foam skin layer on at least one surface portion of the foam 2 ⁇ / b> B. And a molten resin layer 3B.
  • the uneven shape can be further thermoformed to obtain the hot-melt resin layer 3B of the heat insulating / buffer material 1B.
  • the hot-pressing mechanism is moved to a predetermined position, and the hot-melt resin layer 3 as the foam skin layer is re-dissolved by the uneven pressing portion having a flat periphery around the hot-pressing mechanism heated to a predetermined temperature.
  • the thermoplastic resin layer can be thermally deformed so that a concavo-convex shape (in this case, a concavo-convex portion having a predetermined width and a predetermined length) can be thermoformed on the surface.
  • a plurality of uneven shapes on the surface can be thermoformed, or can be formed in combination with the above-described recessed shape. Further, here, the surface portion was re-dissolved in the hot-melt resin layer 3 having a flat surface, and the uneven-shaped hot-melt resin layer 3B was thermoformed. 3B can be simultaneously formed by simultaneously compressing the foam 2 made of a bead foam of a thermoplastic resin, so that the flat portion and the concavo-convex shape portion can be formed.
  • the hot-melt resin layers 3, 3 A and 3 B have a thermoforming temperature of 200 degrees Celsius to 250 degrees Celsius and a surface pressing force of thermoforming conditions with a unit area load of less than 0.3 kg / cm 2 .
  • the surface of the foam 2 is pressed and thermally processed to obtain a glossy hard foam skin layer.
  • FIG. 4 is a diagram showing the quality of the hard surface state and the uneven shape transferability of each foam material for bead foam molded products and other foam molded products.
  • beads made of polypropylene as a main raw material under thermoforming conditions of a thermoforming temperature of 200 ° C. to 250 ° C. and a surface pressing force of low pressing force with a unit area load of less than 0.3 kg / cm 2.
  • the hot-melt resin layer 3B thermoformed with respect to the foam there was no problem with respect to the hardness of the hard surface and the transferability of the uneven shape. That is, the hot melt resin layer 3B thermoformed with a bead foam made mainly of polypropylene has a hard surface hardness to such an extent that no scratch marks are left on the toe.
  • the concavo-convex shape in the heat-melting resin layer 3B thermoformed with respect to the bead foam made mainly of polypropylene, the concavo-convex shape is not deformed or damaged at the time of mold release, etc. Is formed.
  • the hot melt resin layer 3B thermoformed with respect to the bead foam made mainly of polyethylene there was no problem with the uneven shape. That is, the hardness of the hard surface is softer than that of polypropylene, although it is not a hard surface hardness that does not cause scratch marks at the toe.
  • the hot-melt resin layer 3B has a soft surface that is more easily damaged than in the case of polypropylene.
  • the hardness of the hard surface and the uneven shape were defective. That is, the hardness of the hard surface was a soft surface with scratch marks on the toes. In addition, with regard to the transferability of the uneven shape, the uneven shape is not accurately formed.
  • the thermoforming temperature is 200 degrees Celsius for foams made mainly of polypropylene, polyethylene, polystyrene, polyurethane, ethylene vinyl acetate polymer, and ethylene-propylene-diene rubber.
  • the heat-melt resin layer 3B which is thermoformed under the thermoforming conditions with a low pressing force with a surface pressing force of less than 0.3 kg / cm 2 and a surface pressing force of less than 250 degrees Celsius, is a defective product with both hard surface hardness and uneven shape. Met. That is, the hardness of the hard surface was a soft surface with scratch marks on the toe, and the uneven shape could not be formed accurately with respect to the transfer property of the uneven shape.
  • the heat forming temperature is 200 ° C. to 250 ° C.
  • the surface pressing force is thermoformed under the low pressing force thermoforming conditions with a unit area load of less than 0.3 kg / cm 2.
  • the foam 2 had no problem with respect to the hardness of the hard surface and the transferability of the concavo-convex shape with respect to the bead foam made mainly of polypropylene or the bead foam made mainly of polyethylene. .
  • the bead foam can be thermoformed even with a low pressing force with a unit area load of 0.1 kg / cm 2 or less.
  • the hard surface is easily scratched, which is a problem, and the transferability of the uneven shape is not a clean uneven shape. If the molding temperature is maintained at 200 degrees Celsius to 250 degrees Celsius and the pressing force is set to a high pressure exceeding the unit area load of 0.5 kg / cm 2 , even if the molded article is a foam other than a bead foam, Good products can be obtained with respect to hard characteristics and uneven transfer characteristics.
  • FIG. 5 is a view for explaining a case where the surface of the bead foam is thermoformed flat by the pressing portion of the hot press mechanism.
  • the manufacturing method of the plate-like heat insulating and cushioning material 15 having the hot melt resin layer 14 on the surface as a foam skin layer starts with a thermoforming temperature of 200 degrees Celsius to 250 degrees Celsius.
  • a thermoplastic resin polypropylene bead foam plate 11 is made of a metal that is heated as a pressing portion (press die 12) of a hot press mechanism.
  • the press die 12 is pressed against the surface of the bead foam plate 11 and the surface of the bead foam plate 11 is compressed by the press die 12.
  • the cooling flow path 13 passes through the press mold 12, and cooling water is allowed to flow through the cooling flow path 13 to cool the press mold 12.
  • the hot melt resin layer 14 as a hard glossy foam skin layer is formed on the surface resin layer on the side in contact with the press die 12.
  • the press die 12 can be easily released from the hot melt resin layer 14 which is a foam skin layer.
  • the plate-shaped heat insulation and buffer material 15 which has the hot-melt resin layer 14 which is a foam skin layer in a surface layer can be manufactured.
  • the bead foam plate 11 made of thermoplastic resin is formed into a plate shape from a closed cell (ball-shaped) bead foam formed by the bead foam method.
  • a bead foam having an expansion ratio of 2 times or more is used.
  • the pressing force for compressing the surface of the bead foam plate 11 is a bead foam material such as polypropylene, and varies depending on the temperature of the press die 12 and the foaming ratio, but the unit area load is less than 0.3 kg / cm 2 .
  • the hot-melt resin layer 14 that is a hard glossy foam skin layer can be formed even with a low pressing force of a unit area load of 0.1 kg / cm 2 or less.
  • the bead foam requires a much lower pressing pressure (pressing force) than that of the bead foam.
  • pressing force pressing force
  • the molding temperature is 200 degrees Celsius to 250 degrees Celsius, and the surface pressing force is less than unit load 0.3 kg / cm 2.
  • the press mechanism is simplified because of low pressure
  • high quality hard surface hardness and uneven shape transferability are good. I can do it.
  • FIG. 6 is a diagram for explaining a case where the surface of the bead foam is thermoformed by tapering the surface with a pressing portion of a hot press mechanism.
  • the manufacturing method of the plate-like heat insulating and cushioning material 15 ⁇ / b> A having the tapered hot-melt resin layer 14 ⁇ / b> A on the surface resin layer is as follows.
  • the hot-melt resin layer 14A which is a foam skin layer with a taper on the surface, is formed by inclining the taper by a predetermined taper angle ⁇ and pressing the surface of the polypropylene foam foam plate 11 made of thermoplastic resin.
  • a plate-like heat insulating / buffer material 15A can be obtained.
  • a plate-like heat insulating / buffer material 15A having a taper-shaped hot-melt resin layer 14A as a foam skin layer on the surface resin layer can be produced.
  • the bead foam plate 11 is formed by compressing and thermoforming the hot melt resin layer 14A as the foam skin layer by giving the press die 12 a small taper angle ⁇ with respect to the flat surface of the bead foam plate 11.
  • the taper surface is used as both side plates with the taper surface facing the inside, the inner surface of the frontage can be widened by the taper surface to improve usability.
  • the surface of the bead foam plate 11, which is the pressing surface of the press die 12, is flat for general purposes, but it has a complicated concave shape as shown in FIG. 2 and uneven shape as shown in FIG.
  • it may be a press die capable of hot press forming various shapes such as the concave shape as shown in FIG. 2 and the concave and convex shape as shown in FIG.
  • the upper and lower surfaces of the bead foam plate 11 may be thermoformed to form the hot-melt resin layer 14 or 14A as the foam skin layer on both the upper and lower surfaces.
  • the materials of the heat insulation / buffer materials 1, 1A, 1B and the plate-like heat insulation / buffer materials 15, 15A of the first embodiment will be further described.
  • a material having a larger foaming ratio of a foamed resin material containing many gas components than a thermoplastic material can lower the temperature at the time of thermoforming and reduce the pressing force.
  • the heat-melting resin layer (foam skin layer) on the surface produced by thermoforming becomes thin, and scratches are generated even with a slight force at the toe, resulting in hardness characteristics.
  • strength characteristics such as a problem in the shape of the recesses and in the concave and convex shapes, and the finished shape is soft and cushioning, and there is a problem in transferability of the concave and convex shapes.
  • the heat-melting resin layer (foam skin layer) on the surface produced by thermoforming becomes thick, and it does not get scratched with a slight force at the toe.
  • the required pressing pressure (pressing force) of the bead foam is higher than that of a foam molded product other than the bead foam.
  • a significantly low pressing pressure (pressing force) is sufficient.
  • the surface of the foamed plastic molded body is a low pressure thermoforming condition where the molding temperature is 200 degrees Celsius to 250 degrees Celsius and the surface pressing force is less than 0.3 kg / cm 2 per unit area.
  • a hard layer can be formed easily (because of low pressure, the press mechanism is simplified) and high quality (hard surface hardness and good transferability of uneven shape).
  • the pressing force can be reduced. That is, in the case of a foamed resin material such as polyethylene or polypropylene, when the expansion ratio is 20 to 40 times, it is easy to balance thermoformability and the finished surface. In the case of a foamed polyethylene having a thickness of 50 mm and a foaming ratio of 20 times, a pressing force of 0.5 kg / cm 2 (500 kgf load) is applied when molding is performed at a speed of 5 mm per second when the heating temperature is 150 degrees Celsius. ) Power was necessary. When the heating temperature is raised to 200 degrees Celsius, the processing can be performed with a pressing force of 0.2 kg / cm 2 (200 kgf load).
  • the heating temperature When the heating temperature is further increased to 250 degrees Celsius, the shape changes as soon as the mold touches the surface of the foamed resin material. Therefore, processing can be performed with a load of 0 kg as the pressing force, but the dissolution is too early and some unevenness remains. Only the surface could be made. Further, when the heating temperature exceeds 250 degrees Celsius, the material surface begins to burn and turns yellow. This result is an example, and the workability greatly varies depending on the type of material forming the foam material, the size of the bubbles in the foam material, the structure of the bubbles, and the like.
  • thermoplastic bead foam 2 made of polypropylene as a main raw material or polyethylene as a main raw material, and a foam formed on at least one surface of the bead foam 2
  • the foam skin layer is not defoamed and the foam structure is reduced and remains.
  • the molding temperature Is a thermoforming condition with a low pressing force at a temperature of 200 degrees Celsius to 250 degrees Celsius and a surface pressing force of less than 0.3 kg / cm 2 per unit area load.
  • a hard layer (hot melt resin layer 3) is easily formed on the surface of the plastic molded body, and the hard layer (thermo melt resin layer 3) is formed with high quality such as excellent surface hardness and uneven shape transferability. Can do.
  • the molding temperature is 200 degrees Celsius to 250 degrees Celsius. It is possible to form a hard layer easily and with high quality on the surface of the foamed plastic molded body under the low pressure thermoforming conditions where the surface pressing force is less than 0.3 kg / cm 2 per unit area load at the temperature of the temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

【課題】成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易かつ高品質に形成する。 【解決手段】ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とする熱可塑性のビーズ発泡体2と、ビーズ発泡体2の少なくとも一表面に熱成形された発泡体スキン層である熱溶融樹脂層3とを有し、この発泡体スキン層は消泡せずに発泡構造が小さくなって残留している。このように、ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とする熱可塑性のビーズ発泡体の少なくとも一表面に発泡体スキン層を熱成形する。

Description

断熱・緩衝材およびその製造方法
 本発明は、発泡プラスチック成形体の表面を熱加工して表面に硬質層を有した断熱および/または緩衝用の断熱・緩衝材およびその製造方法に関する。
 この種の従来の断熱・緩衝材として、発泡プラスチック成形体の表面上に適当な光沢と適度な硬度を有する樹脂層を設けた発泡プラスチック成形体が特許文献1に提案されている。
 図7は、特許文献1に開示されている従来の硬質層製造装置の全体構成を概略的に示す斜視図である。
 図7において、従来の硬質層製造装置100は、発泡プラスチック成形体101を載置する載置台102と、各々の表面に所望の形状の彫刻面Aが形成された、4枚の型板103a、103b、103c、103dと、型板103a、103b、103c、103dの背面に取り付けられ、型板103a、103b、103c、103dを所定の温度に加熱するためのヒータ104a、104b、104c、104dと、型板103a、103b、103c、103dおよびヒータ104a、104b、104c、104dを取り付けた型板取付板105a、105b、105c、105dと、型板取付板105a、105b、105c、105dの背面の中央部に取り付けられた油圧シリンダ106a、106b、106c、106dとを備えている。
 また、この硬質層製造装置100には、ヒータ104a、104b、104c、104dの加熱温度を制御する温度コントローラ(図示せず)や、油圧シリンダ106a、106b、106c、106dの油圧を調整する油圧制御装置(図示せず)が設けられている。ヒータ104a、104b、104c、104dの各々を所望の温度に制御し、かつ、発泡プラスチック成形体101の表面に型板103a、103b、103c、103dを押し付ける押圧の各々を所望の圧力に制御し、型板103a、103b、103c、103dの各々のストローク量を所望のストローク量に調整できるようになっている。
 型板103a、103b、103c、103dの材質としては、アルミニウムのような柔らかな金属材料が用いられる。
 ワーク固定治具107は、発泡プラスチック成形体101を載置台102の所定の位置に固定する。ワーク固定治具107は、発泡プラスチック成形体101の中空101aの凹部内に丁度嵌り合う形状の凸設部107aを有しており、油圧シリンダ108により、ワーク固定治具107およびその下に設けられた凸設部107aが上下に移動できるようになっている。
 上記構成により、目的物よりやや大きめの所定の形状を有する発泡プラスチック成形体101の表面を型板103a、103b、103c、103dにより熱加工し、発泡プラスチック成形体101の表面樹脂層を消泡し、発泡プラスチック成形体101の表面に硬質層を形成すると共に、その硬質層の表面に彫刻面を形成し、所定の形状の発泡プラスチック成形体101の目的物として、外表面に彫刻面を有した花苗用のプランタを得ることができる。
 このように、発泡プラスチック成形体101の表面を熱加工して、耐候性に優れかつ彫刻面を持った光沢のある硬質表面を有する花苗用のプランタを得ることができる。
特開平9-174695号公報
 特許文献1に開示されている上記従来の硬質層製造装置100の油圧シリンダ106a、106b、106c、106dを用いて発泡プラスチック成形体101の側表面を押圧して熱加工する場合に、押圧力が単位面積荷重0.5kg/cmを超える高圧で発泡プラスチック成形体101の表面を押圧する必要があるため、硬質層製造装置100の構造が複雑で強固である必要がある。
 上記従来の硬質層製造装置100では、発泡プラスチック成形体101の表面を押圧して熱加工することにより、発泡プラスチック成形体101の表面の樹脂層を消泡してその表面に硬質層を形成している。成形温度が摂氏200度~摂氏250度で、表面押圧力が単位面積荷重0.3kg/cm未満の熱成形条件の場合に、本発明者らの実験の結果、発泡プラスチック成形体の表面樹脂層は泡が閉じ込められたまま圧縮されて泡が縮小しているものの消泡していないことから、本発明者らの実験材料とは発泡プラスチック成形体材料が異なり、しかも、上記従来の硬質層製造装置100の熱成形条件が異なって表面押圧力などが更に高くなっているものと考えられる。このように、表面押圧力などの熱成形条件が更に高くなると、発泡プラスチック成形体表面に硬質層が製造しにくく、硬質層製造装置もより複雑で強固なものが必要となる。
 本発明は、上記従来の問題を解決するもので、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易かつ高品質に形成することがきる断熱・緩衝材およびその製造方法を提供することを目的とする。
 本発明の 断熱・緩衝材は、熱可塑性のビーズ発泡体と、該ビーズ発泡体の少なくとも
一表面に熱成形された発泡体スキン層とを有し、該発泡体スキン層は消泡せずに発泡構造が小さくなって残留しているものであり、そのことにより上記目的が達成される。
 また、好ましくは、本発明の 断熱・緩衝材におけるビーズ発泡体は、ポリプロピレン
を主原料とするかまたは、ポリエチレンを主原料とし、発泡倍率が少なくとも2倍である。
 さらに、好ましくは、本発明の 断熱・緩衝材における発泡体スキン層は、前記ビーズ
発泡体の発泡倍率よりも低い発泡倍率で消泡せずに発泡構造が小さくなって残留している。
 さらに、好ましくは、本発明の 断熱・緩衝材における発泡体スキン層は、爪先でスク
ラッチ跡が付かない程度に硬い表面硬度を有している。
 さらに、好ましくは、本発明の 断熱・緩衝材における発泡体スキン層の表面は、平ら
であるかまたは凹部、凹凸部が形成されている。
 本発明の 断熱・緩衝材の製造方法は、前記ビーズ発泡体の成形温度が摂氏200度~
摂氏250度で、該ビーズ発泡体の表面押圧力が単位面積荷重0.3kg/cm未満の熱成形条件で、該ビーズ発泡体の表面に熱を加えながら該表面を押圧して該表面に前記発泡体スキン層を熱成形して本発明の上記断熱・緩衝材を製造するものであり、そのことにより上記目的が達成される。
 上記構成により、以下、本発明の作用を説明する。
 本発明においては、ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とする熱可塑性のビーズ発泡体と、ビーズ発泡体の少なくとも一表面に熱成形された発泡体スキン層とを有し、発泡体スキン層は消泡せずに発泡構造が小さくなって残留している。
 これによって、ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とする熱可塑性のビーズ発泡体の少なくとも一表面に発泡体スキン層を熱成形するので、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、プレス金型が簡略化されて、発泡プラスチック成形体表面に硬質層を容易に形成すると共に、表面硬さや凹凸形状の転写性などが良好で高品質にその硬質層を形成することが可能となる。
 以上により、本発明によれば、熱可塑性のビーズ発泡体の少なくとも一表面に熱成形された発泡体スキン層は、従来例のように消泡せずに発泡構造が小さくなって残留しているため、成形温度が摂氏200度~摂氏250度の温度で、従来技術の場合に比べて表面押圧力が単位面積荷重0.3kg/cm未満の大幅に低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易かつ高品質に形成することがきる。
本発明の実施形態1における断熱・緩衝材の要部構成例を示す一部縦断面図である。 図1の表面層である熱溶融樹脂層に凹部形状を形成した場合の要部構成例を示す一部縦断面図である。 図1の表面層である熱溶融樹脂層に凹凸部形状を形成した場合の要部構成例を示す一部縦断面図である。 ビーズ発泡体成形品とそれ以外の発泡体成形品に対して、発泡体材料毎の硬質表面および凹凸形状の良否を示す図である。 ビーズ発泡体の表面を熱プレス機構の押圧部により平らに熱成形する場合を説明するための図である。 ビーズ発泡体の表面を熱プレス機構の押圧部により表面にテーパを付けて熱成形する場合を説明するための図である。 特許文献1に開示されている従来の硬質層製造装置の全体構成を概略的に示す斜視図である。
 1、1A、1B 断熱・緩衝材
 2、2A、2B 発泡体
 3、3A,3B 熱溶融樹脂層(発泡体スキン層)
 11 ビーズ発泡板
 12 プレス型
 13 冷却用流路
 14、14A 熱溶融樹脂層(発泡体スキン層)
 15、15A 板状の断熱・緩衝材
 以下に、本発明の断熱・緩衝材およびその製造方法の実施形態1について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。
 (実施形態1)
 図1は、本発明の実施形態1における断熱・緩衝材の要部構成例を示す一部縦断面図である。
 図1において、本実施形態1の断熱・緩衝材1は、熱可塑性のビーズ発泡体樹脂からなる発泡体2と、該発泡体の少なくとも一表面部に光沢のある硬い発泡体スキン層が平らに熱成形された熱溶融樹脂層3とを有している。
 発泡体2は、ポリプロピレンを主原料とするビーズ発泡体または、ポリエチレンを主原料とするビーズ発泡体である。ビーズ発泡体は、発泡倍率が2倍以上のものを用いることができる。ビーズ発泡体とは、玉状材料(ビーズ材料)を発泡させて膨らませたものである。また、発泡体2の形状は、板状であっても、ブロック状であっても、平面視で正方形、長方形および円形などの所定形状であってもよい。
 熱溶融樹脂層3は、表面に光沢があって表面が硬くて傷の付きにくい硬質樹脂層を形成している。要するに、熱溶融樹脂層3の発泡体スキン層は、物品の出し入れの際に発泡体スキン層の表面に当たって傷が付かないために、爪先でスクラッチ跡が付かない程度に硬い表面硬度を有している。逆に、この表面硬度を得るためには、ポリプロピレンを主原料とするビーズ発泡体または、ポリエチレンを主原料とするビーズ発泡体である必要がある。後述するが、ビーズ発泡体以外の発泡体材料で熱成形して発泡体スキン層を形成する場合は、単位面積荷重0.5kg/cmを超える高い表面押圧力が必要であり、これでは、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易かつ高品質に形成するという本発明の目的を達成できない。
 発泡体2の表面を押圧して熱加工して熱溶融樹脂層3を得る場合に、成形温度が摂氏200度~摂氏250度で、表面押圧力が単位面積荷重0.3kg/cm未満の熱成形条件下で、熱溶融樹脂層3は、本発明者らの実験の結果から、泡が閉じ込められたまま圧縮されて泡が縮小しているものの消泡していない状態である。要するに、発泡体スキン層である熱溶融樹脂層3は、ビーズ発泡体からなる発泡体2の発泡倍率よりも低い発泡倍率で消泡せずに発泡構造が小さくなって残留している。
 発泡ポリプロピレンや発泡ポリエチレンは、発泡ウレタンよりも断熱性は劣るものの、断熱性を有している。このため、熱成型時に加えられる熱で溶解される箇所が表面部に限定される。その表面部には、母材が持つ発泡倍率よりも低い、硬度のある発泡体スキン層となり、その内部には発泡構造が小さくなって残留している。
 断熱・緩衝材1の製造方法としては、成形温度が摂氏200度~摂氏250度で、ビーズ発泡体の表面押圧力が単位面積荷重0.3kg/cm未満の熱成形条件で、熱可塑性のビーズ発泡体の表面を、熱を加えながら押圧して表面に発泡体スキン層である熱溶融樹脂層3を熱成形して断熱・緩衝材1を製造する。要するに、表面部の滑らかな表面を作製するように温度制御された金型の平面を表面に押しつけて断熱・緩衝材1を熱成形する。この断熱・緩衝材1の材料は、表面を平らに熱成形できる厚みのある熱可塑性材料のビーズ発泡材である。この断熱・緩衝材1は、断熱・緩衝材1の平らな表面に、前述したように熱可塑性材料のビーズ発泡材の発泡倍率よりも低い発泡倍率の発泡体スキン層が形成されている。
 図2は、図1の表面層である熱溶融樹脂層3に凹部形状を形成した場合の要部構成例を示す一部縦断面図である。
 図2に示すように、断熱・緩衝材1Aは、熱可塑性のビーズ発泡体樹脂からなる発泡体2Aと、発泡体2Aの少なくとも一表面部の硬い発泡体スキン層に凹部形状が形成された熱溶融樹脂層3Aとを有している。
 ヒータにより温度制御された熱プレス機構の、周囲が平らな凸状の押圧部(金型)を用いて、断熱・緩衝材1の熱溶融樹脂層3の平らな表面を押圧することにより必要な凹形状を更に熱成形して断熱・緩衝材1Aの熱溶融樹脂層3Aを得ることができる。決められた位置に熱プレス機構を移動させ、所定温度に加熱された熱プレス機構の、周囲が平らな凸状の押圧部により、発泡体スキン層である熱溶融樹脂層3を再溶解して熱可塑性材料を熱変形させて表面に凹形状(ここでは所定幅で所定長さの凹み)を熱成形する。
 所定幅で所定長さの凹みは、例えば、断熱・緩衝材1Aを板状とした場合に、対向する両側面に形成されて、所定幅で所定長さの凹みに棚の両端部を挿入して、所定幅の凹みを棚受台として用いることができる。
 なお、表面の凹部形状を複数熱成形することもできる。また、ここでは、表面が平らな熱溶融樹脂層3に対して表面部を再溶解して凹部形状の熱溶融樹脂層3Aを熱成形したが、これに限らず、凹部形状の熱溶融樹脂層3Aを、熱可塑性樹脂のビーズ発泡体からなる発泡体2の表面を同時に熱圧縮することにより平面部と凹部形状部を同時に形成することもできる。
 図3は、図1の表面層である熱溶融樹脂層3に凹凸部形状を形成した場合の要部構成例を示す一部縦断面図である。
 図3に示すように、断熱・緩衝材1Bは、熱可塑性樹脂のビーズ発泡体からなる発泡体2Bと、発泡体2Bの少なくとも一表面部の硬い発泡体スキン層に凹凸形状が形成された熱溶融樹脂層3Bとを有している。
 ヒータにより温度制御された熱プレス機構の、周囲が平らな凹凸状の押圧部(金型)を用いて、断熱・緩衝材1の熱溶融樹脂層3の平らな表面を押圧することにより必要な凹凸形状を更に熱成形して断熱・緩衝材1Bの熱溶融樹脂層3Bを得ることができる。決められた位置に熱プレス機構を移動させ、所定温度に加熱された熱プレス機構の、周囲が平らな凹凸状の押圧部により、発泡体スキン層である熱溶融樹脂層3を再溶解して熱可塑性樹脂層を熱変形させて表面に凹凸形状(ここでは所定幅で所定長さの凹凸部)を熱成形することができる。
 なお、表面の凹凸形状を複数熱成形することもできし、前述した凹部形状と組み合わせて形成することもできる。また、ここでは、表面が平らな熱溶融樹脂層3に対して表面部を再溶解して凹凸形状の熱溶融樹脂層3Bを熱成形したが、これに限らず、凹凸形状の熱溶融樹脂層3Bを、熱可塑性樹脂のビーズ発泡体からなる発泡体2を同時に熱圧縮することにより平面部と凹凸形状部を同時に形成することもできる。
 ここで、熱溶融樹脂層3、3Aおよび3Bは、熱成形温度を摂氏200度~摂氏250度、表面押圧力を単位面積荷重0.3kg/cm未満の熱成形条件で、ビーズ発泡体の発泡体2の表面を押圧して熱加工して、光沢のある硬い発泡体スキン層を得ている。次に、この熱成形条件と発泡体材料との関係について更に詳細に説明する。
 図4は、ビーズ発泡体成形品とそれ以外の発泡体成形品に対して、発泡体材料毎の硬質表面状態および凹凸形状の転写性の良否を示す図である。
 図4に示すように、熱成形温度を摂氏200度~摂氏250度、表面押圧力を単位面積荷重0.3kg/cm未満の低押圧力の熱成形条件で、ポリプロピレンを主原料とするビーズ発泡体に対して熱成形した熱溶融樹脂層3Bでは、硬質表面の硬さおよび凹凸形状の転写性について全く問題はなかった。即ち、ポリプロピレンを主原料とするビーズ発泡体に対して熱成形した熱溶融樹脂層3Bでは、爪先でスクラッチ跡が付かない程度に硬い表面硬度を有している。また、凹凸形状の転写性について、ポリプロピレンを主原料とするビーズ発泡体に対して熱成形した熱溶融樹脂層3Bでは、離型時などに凹凸形状に変形や破損がなく、凹凸形状が精度よく形成されている。
 また、ポリエチレンを主原料とするビーズ発泡体に対して熱成形した熱溶融樹脂層3Bでは、凹凸形状については全く問題はなかった。即ち、硬質表面の硬さについては、爪先でスクラッチ跡が全く付かないという硬い表面硬度ではないものの、ポリプロピレンの場合に比べて軟らかい表面である。断熱・緩衝材1Bの材料自体が物を出し入れする場合に当たって傷が付きにくいものでなければならない。したがって、ポリエチレンの場合には熱溶融樹脂層3Bが、ポリプロピレンの場合に比べて傷が付きやすい軟らかい表面であるため、使用目的に応じて使い分ける必要がある。
 さらに、ポリスチレンを主原料とするビーズ発泡体に対して熱成形した熱溶融樹脂層3Bでは、硬質表面の硬さおよび凹凸形状について不良品であった。即ち、硬質表面の硬さについては、爪先でスクラッチ跡が付き、軟らかい表面であった。また、凹凸形状の転写性について、凹凸形状が精度よく形成されていない。
 さらに、ポリウレタン、エチレン酢酸ビニルポリマ、エチレンープロピレンージエンゴムについてはビーズ発泡体を入手できなかった。また、ビーズ発泡体以外の液体材料など発泡成形品について、ポリプロピレン、ポリエチレン、ポリスチレン、ポリウレタン、エチレン酢酸ビニルポリマ、エチレン-プロピレン-ジエンゴムをそれぞれ主原料とする発泡体に対して、熱成形温度を摂氏200度~摂氏250度、表面押圧力を単位面積荷重0.3kg/cm未満の低押圧力の熱成形条件で熱成形した熱溶融樹脂層3Bでは、硬質表面の硬さおよび凹凸形状共に不良品であった。即ち、硬質表面の硬さについては、爪先でスクラッチ跡が付き、軟らかい表面であり、また、凹凸形状の転写性について、凹凸形状が精度よく形成できなかった。
 したがって、本発明者らの試験結果から、熱成形温度を摂氏200度~摂氏250度、表面押圧力を単位面積荷重0.3kg/cm未満の低押圧力の熱成形条件で熱成形した熱溶融樹脂層3Bに対して、発泡体2が、ポリプロピレンを主原料とするビーズ発泡体または、ポリエチレンを主原料とするビーズ発泡体について、硬質表面の硬さおよび凹凸形状の転写性について問題なかった。なお、ビーズ発泡体では、単位面積荷重0.1kg/cm以下の低押圧力であっても熱成形することができる。
 ビーズ発泡体以外の発泡体の場合には、硬質表面は容易に傷が付きやすく問題であり、凹凸形状の転写性についても綺麗な凹凸形状とはならず問題であった。なお、成形温度が摂氏200度~摂氏250度のままで、押圧力が単位面積荷重0.5kg/cmを超える高圧にすると、ビーズ発泡体以外の発泡体成形品であっても、表面の硬質特性や凹凸形状の転写特性について良品を得ることができる。
 次に、本実施形態1の断熱・緩衝材1の製造方法について説明する。
 図5は、ビーズ発泡体の表面を熱プレス機構の押圧部により平らに熱成形する場合を説明するための図である。
 図5に示すように、発泡体スキン層として熱溶融樹脂層14を表面に持つ板状の断熱・緩衝材15の製造方法は、まず、熱成形温度を摂氏200度~摂氏250度、表面押圧力を単位面積荷重0.3kg/cm未満の熱成形条件で、熱可塑性樹脂のポリプロピレンのビーズ発泡板11に、熱プレス機構の押圧部(プレス型12)として、熱を与えた金属からなるプレス型12をビーズ発泡板11の表面に押し当ててビーズ発泡板11の表面をプレス型12で圧縮する。
 次に、プレス型12内に冷却用流路13が通っており、冷却用流路13に冷却水を流してプレス型12を冷却する。これにより、プレス型12に接する側の表面樹脂層に硬質の光沢のある発泡体スキン層としての熱溶融樹脂層14を形成する。
 続いて、プレス型12を発泡体スキン層である熱溶融樹脂層14から容易に離形することができる。これによって、発泡体スキン層である熱溶融樹脂層14を表面層に有する板状の断熱・緩衝材15を製造することができる。
 このとき、熱可塑性樹脂のビーズ発泡板11は、ビーズ発泡法で成形された独立気泡(玉状)のビーズ発泡体から板状に形成されている。本実施形態1の場合、ビーズ発泡体は発泡倍率が2倍以上のものを使用する。また、ビーズ発泡板11の表面を圧縮する押圧力は、ポリプロピレンなどビーズ発泡体材料で、プレス型12の温度、発泡倍率により異なるが、単位面積荷重0.3kg/cm未満とする。ビーズ発泡体では単位面積荷重0.1kg/cm以下の低押圧力であっても硬質の光沢のある発泡体スキン層である熱溶融樹脂層14を形成することができる。
 一方、ビーズ発泡体以外の発泡成形品の場合、発泡倍率が20倍の発泡ポリエチレンの場合でプレス型12の温度が摂氏150度のとき、2kg/cmのプレス圧力(押圧力)が必要で、発泡倍率が8倍の発泡ポリエチレンでプレス型12の温度が摂氏250度のとき、5kg/cmの高いプレス圧力が必要であった。なお、この結果は一例であり、発泡体の材料や発泡体内の気泡形状や大きさなどによっても加工条件は変化する。
 いずれにしても、ビーズ発泡体と、それ以外の発泡成形品とでは、必要とするプレス圧力(押圧力)がビーズ発泡体の方が大幅に低いプレス圧力(押圧力)で済む。このことから、ビーズ発泡体、特に、ポリプロピレンを主原料とする発泡体を用いれば、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易(低圧力なのでプレス機構が簡略化)かつ高品質(硬質表面の硬さおよび凹凸形状の転写性が良好)に形成することがきる。
 図6は、ビーズ発泡体の表面を熱プレス機構の押圧部により表面にテーパを付けて熱成形する場合を説明するための図である。
 図6に示すように、テーパ状の熱溶融樹脂層14Aを表面樹脂層に持つ板状の断熱・緩衝材15Aの製造方法は、まず、プレス型12をビーズ発泡板11の平らな表面に対して所定のテーパ角θだけ傾けて、熱可塑性樹脂のポリプロピレンのビーズ発泡板11の表面を押圧する熱プレス加工をして、表面にテーパが付いた発泡体スキン層である熱溶融樹脂層14Aを持つ板状の断熱・緩衝材15Aを得ることができる。これによって、発泡体スキン層としてテーパ状の熱溶融樹脂層14Aを表面樹脂層に有する板状の断熱・緩衝材15Aを製造することができる。
 このように、ビーズ発泡板11の平らな表面に対してプレス型12に小さなテーパ角θを与えて、発泡体スキン層としての熱溶融樹脂層14Aを圧縮熱成形することにより、ビーズ発泡板11は例えばテーパ面を内側に対向させて両側板として用いた場合に、そのテーパ面によって間口内面を広く開口させて使い勝手をよくすることができる。
 プレス型12の押し当て面であるビーズ発泡板11の表面は、汎用的にするために平らな形状にしているが、複雑な図2のような凹部形状や図3のような凹凸形状を施してもよく、これらの複雑な図2のような凹部形状や図3のような凹凸形状などの各種形状を熱プレス成形できるようなプレス型であってもよい。
 なお、上下の仕切り用の板材として、ビーズ発泡板11の上下面共、熱成形して、上下面とも発泡体スキン層としての熱溶融樹脂層14または14Aを形成するようにしてもよい。
 ここで、本実施形態1の断熱・緩衝材1、1A,1Bや板状の断熱・緩衝材15、15Aの材質について更に説明する。
 熱成型できる発泡樹脂材料の事例を挙げると、ポリプロピレン、ポリエチレン、スチレン、ウレタン、エチレン酢酸ビニルポリマ、エチレン-プロピレン-ジエンゴムの他、スチロールなどの熱可塑性プラスチックの発泡材料がある。
 熱可塑性プラスチック材料に対して、多くのガス成分を含む発泡樹脂材料の発泡倍率が大きい材料ほど、熱成型時の温度を低くすることができることと、押圧力を小さくすることができる。
 ところが、多くのガス成分を含む発泡樹脂材料では、熱成型で作製された表面の熱溶融樹脂層(発泡体スキン層)が薄くなって、爪先でひっかく程度の弱い力でも傷が入って硬度特性に問題があったり、凹部形状や凹凸形状において、でき上がりの形状が柔らかくクッション性を持ってしまうなど強度特性に問題があったり、凹部形状や凹凸形状の転写性に問題があったりする。
 一方、発泡樹脂材料の発泡倍率が低い場合には、熱成形で作製された表面の熱溶融樹脂層(発泡体スキン層)が厚くなって、爪先でひっかく程度の弱い力では傷も入らず、出来上がりが十分な堅さを持つものが作れるが、熱成型時の温度を高くすることと、押圧力を大きくすることが必要になる。
 これに対して、ビーズ発泡体、特に、ポリプロピレンを主原料とする発泡体を用いれば、ビーズ発泡体以外の発泡成形品に比べて、必要とするプレス圧力(押圧力)がビーズ発泡体の方が大幅に低いプレス圧力(押圧力)で済む。このことから、ビーズ発泡体、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層(発泡体スキン層)を容易(低圧力なのでプレス機構が簡略化)かつ高品質(硬質表面の硬さおよび凹凸形状の転写性が良好)に形成することがきる。
 熱成型時の温度を高くすると、押圧力は小さくすることができる。即ち、ポリエチレンやポリプロピレンの発泡樹脂材料の場合で、20倍~40倍の発泡倍率の場合に、熱成型性と出来上がりの表面のバランスが取り易い。厚み50mmで発泡倍率20倍の発泡ポリエチレンの場合には、加熱温度が摂氏150度のときに、1sec間に5mmの速度で成型加工する場合に、押圧力として0.5kg/cm(500kgf荷重)の力が必要であった。加熱温度を摂氏200度に上げると、押圧力として0.2kg/cm(200kgf荷重)の荷重で加工ができる。加熱温度を摂氏250度に更に上げると、発泡樹脂材料表面に型が触れた瞬間に形状が変化して行くため、押圧力として荷重0kgで加工ができるが、溶解が早過ぎ、やや凹凸の残る面しか作製できなかった。さらに、加熱温度が摂氏250度を超えると、材料表面が焦げ初め、黄変してしまう。この結果は一例であり、発泡材料を形成する材料の種類や発泡材料中の気泡の大きさや気泡の構造などでも、加工性は大きく変動する。
 以上により、本実施形態1によれば、ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とする熱可塑性のビーズ発泡体2と、ビーズ発泡体2の少なくとも一表面に熱成形された発泡体スキン層である熱溶融樹脂層3とを有し、この発泡体スキン層は消泡せずに発泡構造が小さくなって残留している。
 このように、ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とする熱可塑性のビーズ発泡体11の少なくとも一表面に発泡体スキン層である熱溶融樹脂層3を熱成形するので、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低押圧力の熱成形条件で、低押圧力によりプレス金型が簡略化されて、発泡プラスチック成形体表面に硬質層(熱溶融樹脂層3)を容易に形成すると共に、表面硬さや凹凸形状の転写性などが良好で高品質にその硬質層(熱溶融樹脂層3)を形成することができる。
 これによって、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易かつ高品質に形成することができる。
 なお、以上のように、本発明の好ましい実施形態1を用いて本発明を例示してきたが、本発明は、この実施形態1に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明は、発泡プラスチック成形体の表面を熱加工して表面に硬質層を有した断熱および/または緩衝用の断熱・緩衝材およびその製造方法の分野において、成形温度が摂氏200度~摂氏250度の温度で、表面押圧力が単位面積荷重0.3kg/cm未満の低圧力の熱成形条件で、発泡プラスチック成形体表面に硬質層を容易かつ高品質に形成することがきる。

Claims (6)

  1.  熱可塑性のビーズ発泡体と、該ビーズ発泡体の少なくとも一表面に熱成形された発泡体スキン層とを有し、該発泡体スキン層は消泡せずに発泡構造が小さくなって残留している断熱・緩衝材。
  2.  前記ビーズ発泡体は、ポリプロピレンを主原料とするかまたは、ポリエチレンを主原料とし、発泡倍率が少なくとも2倍である請求項1に記載の断熱・緩衝材。
  3.  前記発泡体スキン層は、前記ビーズ発泡体の発泡倍率よりも低い発泡倍率で消泡せずに発泡構造が小さくなって残留している請求項1に記載の断熱・緩衝材。
  4.  前記発泡体スキン層は、爪先でスクラッチ跡が付かない程度に硬い表面硬度を有している請求項1に記載の断熱・緩衝材。
  5.  前記発泡体スキン層の表面は、平らであるかまたは凹部、凹凸部が形成されている請求項1に記載の断熱・緩衝材。
  6.  前記ビーズ発泡体の成形温度が摂氏200度~摂氏250度で、該ビーズ発泡体の表面押圧力が単位面積荷重0.3kg/cm未満の熱成形条件で、該ビーズ発泡体の表面に熱を加えながら該表面を押圧して該表面に前記発泡体スキン層を熱成形して請求項1~5のいずれかに記載の断熱・緩衝材を製造する断熱・緩衝材の製造方法。
PCT/JP2013/003633 2012-06-12 2013-06-10 断熱・緩衝材およびその製造方法 WO2013187041A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-133197 2012-06-12
JP2012133197A JP2013256059A (ja) 2012-06-12 2012-06-12 断熱・緩衝材およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013187041A1 true WO2013187041A1 (ja) 2013-12-19

Family

ID=49757887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003633 WO2013187041A1 (ja) 2012-06-12 2013-06-10 断熱・緩衝材およびその製造方法

Country Status (2)

Country Link
JP (1) JP2013256059A (ja)
WO (1) WO2013187041A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587172A (zh) * 2018-04-09 2020-08-25 旭化成株式会社 发泡成型体及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267485A (ja) * 1995-03-30 1996-10-15 Takashimaya Nippatsu Kogyo Kk 内装材とその製造方法及び製造装置
JP2000102998A (ja) * 1998-09-29 2000-04-11 Showa Denko Plastic Products Kk 表面強化発泡体およびその製造方法
JP2000210968A (ja) * 1999-01-28 2000-08-02 Kanegafuchi Chem Ind Co Ltd 表皮付き型内発泡成形体及びその製造方法
JP2000218646A (ja) * 1999-01-29 2000-08-08 Sumika Plastech Co Ltd 樹脂製発泡板およびそれを使用した矢板および樹脂製発泡板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267485A (ja) * 1995-03-30 1996-10-15 Takashimaya Nippatsu Kogyo Kk 内装材とその製造方法及び製造装置
JP2000102998A (ja) * 1998-09-29 2000-04-11 Showa Denko Plastic Products Kk 表面強化発泡体およびその製造方法
JP2000210968A (ja) * 1999-01-28 2000-08-02 Kanegafuchi Chem Ind Co Ltd 表皮付き型内発泡成形体及びその製造方法
JP2000218646A (ja) * 1999-01-29 2000-08-08 Sumika Plastech Co Ltd 樹脂製発泡板およびそれを使用した矢板および樹脂製発泡板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587172A (zh) * 2018-04-09 2020-08-25 旭化成株式会社 发泡成型体及其制造方法
US11235553B2 (en) 2018-04-09 2022-02-01 Asahi Kasei Kabushiki Kaisha Foam molded product and method of producing same

Also Published As

Publication number Publication date
JP2013256059A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
US20110101556A1 (en) Method and heating device for thermoforming
KR101725102B1 (ko) 엠보싱 무늬 단열재의 제조 장치 및 제조 방법
WO2013187041A1 (ja) 断熱・緩衝材およびその製造方法
TWI697395B (zh) 發泡高分子物之模製加工系統
CN101417506B (zh) 气压成型滑板的制作方法
JP6688964B2 (ja) 熱プレス成形方法および熱プレス成形装置
CN113134936A (zh) 可伸缩模具结构以及其发泡制备方法
US7097805B2 (en) Method for manufacturing slippery-proof foam materials having protruded threads
US20170100876A1 (en) Method for manufacturing a shower tray trough from a composite panel
JPH0694161B2 (ja) 熱可塑性樹脂シートの熱成形方法及び装置
KR101860152B1 (ko) 균일한 금형 온도를 통한 우수한 품질의 복합성형체의 제조방법
JP4884090B2 (ja) 熱可塑性樹脂発泡板の熱成形方法
JPH06190912A (ja) 発泡ポリエチレンテレフタレートシートの成形方法
JP5549799B2 (ja) 床暖房パネルユニットの製造方法
KR102486420B1 (ko) 글레이징 성형기
JP2006347074A (ja) 樹脂成形機および樹脂成形方法
JPH0222031A (ja) 積層シートの両面真空成形方法
WO2014002869A1 (ja) 発泡樹脂の成型方法、発泡樹脂成型体、発泡樹脂箱体、冷蔵庫、及び発泡樹脂の成型装置
CN207465680U (zh) 一种迅速降温金属模具
JP2002225122A (ja) 発泡積層体の製造方法
JPH10249861A (ja) 加熱機構を備えた成形装置
CN207494385U (zh) 一种金属模具
JP2001205696A (ja) 熱可塑性樹脂シートの熱成形方法
JP2008120019A (ja) 樹脂成形品の加飾方法
JPH04249138A (ja) 表面にソリッド層を有する発泡体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803475

Country of ref document: EP

Kind code of ref document: A1