WO2013187037A1 - ミキサ、ミキサ装置、およびこれらを備えた無線受信機 - Google Patents

ミキサ、ミキサ装置、およびこれらを備えた無線受信機 Download PDF

Info

Publication number
WO2013187037A1
WO2013187037A1 PCT/JP2013/003615 JP2013003615W WO2013187037A1 WO 2013187037 A1 WO2013187037 A1 WO 2013187037A1 JP 2013003615 W JP2013003615 W JP 2013003615W WO 2013187037 A1 WO2013187037 A1 WO 2013187037A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
signal
input
output terminal
output
Prior art date
Application number
PCT/JP2013/003615
Other languages
English (en)
French (fr)
Inventor
真 大歯
秀彦 栗本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014520919A priority Critical patent/JPWO2013187037A1/ja
Publication of WO2013187037A1 publication Critical patent/WO2013187037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1466Passive mixer arrangements

Definitions

  • the present invention relates to a mixer used for an RF (Radio Frequency) front end of a radio receiver, for example.
  • RF Radio Frequency
  • distortion performance is expressed using IP3 (Third order intercept point).
  • IP3 Different order intercept point
  • frequency components of “2fud1-fud2” and “2fud2-fud1” are generated by intermodulation. Appears in the vicinity of the desired signal. In such a case, the third-order intermodulation distortion component adversely affects the reception performance of the wireless receiver.
  • a gate bias voltage Vg that is a voltage between the gate terminal and the source terminal of the switch transistor included in the mixer, the threshold voltage Vth of the switch transistor, and the output terminal of the switch transistor It is known that the following relationship (Equation 1) needs to be satisfied with the common voltage Vcm.
  • Patent Document 1 discloses a technique for changing the gate bias voltage Vg in a mixer. Further, in Non-Patent Document 1, in an IQ (In-Phase / Quadrature-Phase) mixer, the duty cycle of the LO (Local Oscillator) signal is reduced from 50% to 25% to avoid simultaneous ON of the mixer switches. A technique for realizing a distortion mixer is disclosed.
  • FIG. 9 is a diagram showing an example of a conventional mixer (for example, Non-Patent Document 1).
  • switch transistors M91, M92, M95, and M96 that receive the input signal VINP at the drain terminal via the capacitor C91, and switch transistors M93, M94, and M96 that receive the input signal VINN at the drain terminal via the capacitor C92. M97, M98.
  • the signals output from the source terminals of the switch transistors M91 and M93 are added to output the output signal VOUTPI, and the signals output from the source terminals of the switch transistors M92 and M94 are added to output the output signal VOUTNI. Is output.
  • an output signal VOUTPQ is output from the switch transistors M95 and M97, and an output signal VOUTNQ is output from the switch transistors M96 and M98.
  • the LO signal VLPI is applied to the gate terminals of the switch transistors M91 and M94, and the LO signal VLNI is applied to the gate terminals of the switch transistors M92 and M93.
  • the LO signal VLPQ is given to the gate terminals of the switch transistors M95 and M98
  • the LO signal VLNQ is given to the gate terminals of the switch transistors M96 and M97.
  • M91 and M95, M92 and M96, M93 and M97, and M94 and M98 are switch transistors of the same size.
  • FIG. 10 shows an example of the waveform of each LO signal.
  • VLPI, VLNI, VLPQ, and VLNQ As shown in FIG. 10, by setting the duty cycle of the LO signals VLPI, VLNI, VLPQ, and VLNQ to 25%, the switch transistors M91 and M93 and the switch transistors M92 and M94, and the switch transistors M95 and M98 and the switch transistor M96, Simultaneous on of M97 can be avoided.
  • Non-Patent Document 1 the technique of setting the LO signal duty cycle to 25% as in Non-Patent Document 1 has a problem that the conversion gain of the mixer is reduced as compared with the case where the duty cycle is 50%. Such a decrease in the conversion gain of the mixer causes a decrease in the gain of the RF front end portion on which the mixer is mounted, which causes a deterioration in sensitivity of the radio receiver.
  • the technique for changing the gate bias voltage in the mixer as in Patent Document 1 requires a gate bias voltage adjustment circuit, and further has a problem that the control of the adjustment circuit is complicated.
  • an object of the present invention is to provide a low distortion mixer that avoids simultaneous turning-on of switch transistors without reducing the conversion gain of the mixer.
  • the first RF signal input to the first input terminal and the second RF signal which is an inverted signal of the first RF signal input to the second input terminal, and LO (Local Oscillator)
  • LO Local Oscillator
  • the mixer that multiplies the LO signal input to the input terminal to generate an IF (Intermediate ⁇ ⁇ Frequency) signal and outputs it differentially to the first and second output terminals, the first input terminal and the first input
  • the first conductivity type first switch transistor connected between the output terminal and the first conductivity type connected between the first input terminal and the second output terminal is a switch.
  • a second switch transistor of the second conductivity type whose polarity is inverted, and a third switch transistor of the second conductivity type connected between the second input terminal and the first output terminal; The second input terminal and the second input terminal. And a fourth switch transistor of the first conductivity type connected to the output terminal.
  • the common LO signal is given to the gates of the first to fourth switch transistors.
  • the switch polarity of the first switch transistor and the second switch transistor that receive the signal from the first input terminal is inverted, and the gates of the first and second switch transistors Since a common LO signal is applied to the terminals, it is possible to prevent the first and second switch transistors from being turned on simultaneously. Similarly, simultaneous turning-on of the third and fourth switch transistors can be avoided. At this time, it is not necessary to reduce the duty cycle. As a result, a low distortion mixer that avoids simultaneous turning-on of the switch transistors can be realized without reducing the conversion gain of the mixer.
  • the first RF signal input to the first input terminal, the second RF signal that is the inverted signal of the first RF signal input to the second input terminal, and the first LO input A first LO signal input to the terminal and a second LO signal that is an inverted signal of the first LO signal input to the second LO input terminal are multiplied to generate an IF signal, and the first and second output terminals
  • the first mixer unit having the same configuration as the mixer described in the first aspect, wherein the first LO input terminal is connected to the LO input terminal of the mixer, A second mixer section having the same configuration as the mixer described in the embodiment, wherein the second LO input terminal is connected to the LO input terminal of the mixer; and a signal at the first output terminal of the first mixer section; , A second output of the second mixer section.
  • a first adder circuit that adds the signal of the terminal and outputs the sum signal to the first output terminal, the signal of the second output terminal of the first mixer unit, and the first of the second mixer unit And a second adder circuit that adds the signal of the output terminal and outputs the result to the second output terminal.
  • the first and second mixer sections 1 and Simultaneous ON of the second switch transistor and the third and fourth switch transistors can be avoided.
  • a low distortion mixer device that avoids simultaneous switching-on of the switch transistors can be realized without reducing the conversion gain of the mixer.
  • the wireless receiver receives an LNA (Low Noise Amplifier) for amplifying an input RF signal from an antenna, and an output signal of the LNA at the first and second input terminals.
  • LNA Low Noise Amplifier
  • the mixer according to the first aspect or the mixer having the same configuration as the mixer apparatus according to the second aspect, a variable gain amplifying circuit that amplifies the IF signal output from the mixer, and an analog of the variable gain amplifying circuit
  • An A / D (Analog to Digital) converter that digitally converts an output signal and a DSP (Digital Signal Processor) that processes a digital signal output from the A / D converter are provided.
  • the reception performance of the wireless receiver can be improved by using the mixer described in the first or second aspect in the wireless receiver.
  • the present invention it is possible to avoid simultaneous ON of the switch transistors included in the mixer, and it is possible to realize a low distortion mixer without reducing the conversion gain of the mixer.
  • FIG. 1 is a diagram illustrating a configuration example of a mixer according to the first embodiment.
  • MIXINP and MIXINN are first and second input terminals
  • C1 has one end connected to the first input terminal MIXINP
  • C2 has one end connected to the second input terminal MIXINN.
  • First and second switch transistors M1 and M2 are connected between the other end of the first capacitor C1 and the first and second output terminals MIXOUTP and MIXOUTN, respectively.
  • Third and fourth switch transistors M3 and M4 are connected between the other end of the second capacitor C2 and the first and second output terminals MIXOUTP and MIXOUTN, respectively.
  • the first and fourth switch transistors M1 and M4 will be described as NMOS transistors, and the second and third switch transistors M2 and M3 will be described as PMOS transistors.
  • the LO input terminal LO is connected to the gate terminals of the first to fourth switch transistors M1 to M4, and a common LO signal LO is given. Further, a common voltage Vcm is applied to the first and second output terminals MIXOUTP and MIXOUTN, respectively.
  • the first and second RF signals input from the first and second input terminals MIXINP and MIXINN are multiplied by the LO signal LO input from the LO input terminal LO, whereby a differential signal is obtained.
  • An IF signal is generated and output from the first and second output terminals MIXOUTP and MIXOUTN.
  • FIG. 2 is a diagram showing an example of the relationship between the LO signal waveform input from the LO input terminal and the common voltage Vcm.
  • the sizes of the first and fourth switch transistors M1 and M4 are the same, the sizes of the second and third switch transistors M2 and M3 are the same, and the first to fourth switch transistors M1 to M4 are the same.
  • the on-resistance can be made the same by making the size of the second and third switch transistors M2 and M3 about 2 to 3 times the size of the first and fourth switch transistors M1 and M4.
  • the output terminals of the first to fourth switch transistors M1 to M4 are given a voltage that is 1 ⁇ 2 of the power supply voltage VDD as the common voltage Vcm.
  • Vthn is the threshold voltage of the first and fourth switch transistors M1 and M4
  • Vthp is the threshold voltage of the second and third switch transistors M2 and M3.
  • the first switch transistor M1 and the second switch transistor M2, and the third switch transistor M3 and the fourth switch transistor M4 are simultaneously turned on. There is no period. Further, in the period of t1 and t3, the first to fourth switch transistors M1 to M4 are all turned off. As a result, it is possible to provide a low distortion mixer that avoids simultaneous turning-on of the switch transistors without reducing the conversion gain of the mixer.
  • the common voltage Vcm is VDD / 2, but is not limited to this. However, when the on-resistances of the first to fourth switch transistors M1 to M4 are all the same as in the above example, the common voltage Vcm is preferably set to VDD / 2.
  • the on-resistances of the first to fourth switch transistors M1 to M4 are all equal, but the present invention is not limited to this. However, it is preferable that the first to fourth switch transistors M1 to M4 have the same on-resistance.
  • the sizes of the first and fourth switch transistors M1 and M4 and the sizes of the second and third switch transistors M2 and M3 may not be the same.
  • FIG. 3 is a diagram illustrating a configuration example of a mixer according to the second embodiment. In FIG. 3, repeated description of components common to FIG. 1 may be omitted.
  • a differential single conversion unit that differentially converts the differential LO signals LOP and LON that are differentially input to the first and second LO input terminals LOP and LON and outputs the LO signal LO.
  • OPAMP operation amplifier
  • a common voltage generation circuit 12 that applies a common voltage Vcm to first and second output terminals MIXOUTP and MIXOUTN via a resistor Ra as a first and second resistor, respectively. It is different in point.
  • the LO signals LOP and LON are differentially single-converted by OPAMP11.
  • the differential signal is not limited to OPAMP as long as differential single conversion is performed.
  • FIG. 4 is a diagram illustrating an example of the common voltage generation circuit 12.
  • the source terminal of the NMOS transistor M11 is connected to the ground, and the gate terminal and the drain terminal are connected to the node N1.
  • a PMOS transistor M12 on the secondary side of the current mirror is connected between the node N1 and the power supply.
  • the source terminal of the PMOS transistor M13 is connected to the power supply, and the gate terminal and the drain terminal are connected to the node N2. Further, the secondary side NMOS transistor M14 of the current mirror is connected between the node N2 and the ground. As a result, a predetermined current flows through the PMOS transistor M13.
  • the power supply voltage is VDD and the threshold voltage of the PMOS transistor M13 is Vthp
  • Resistors R3 and R4 are connected in series between the node N1 and the node N2, and the intermediate node and the output terminal VCMOUT are connected.
  • the common voltage Vcm of the output terminal VCMOUT is expressed by the following (formula 4).
  • the common voltage Vcm is half the difference between the threshold voltage Vthn of the NMOS transistor M11 and the absolute value
  • of the threshold voltage of the PMOS transistor M13 that is, the voltage of the NMOS transistor M11.
  • the common voltage generation circuit 12 outputs the common voltage Vcm corresponding to the threshold voltages of the NMOS transistor and the PMOS transistor. That is, the common voltage Vcm linked to the threshold voltages of the first to fourth switch transistors M1 to M4 is output.
  • the predetermined current flowing through the NMOS transistor M11 and the PMOS transistor M13 is generated by the current mirror circuit, the current may be supplied by another circuit.
  • FIG. 5 is a diagram illustrating a configuration example of a mixer according to the third embodiment. In FIG. 5, repeated description of components common to FIG. 3 may be omitted.
  • fifth and sixth switch transistors M5 and M6 are respectively provided between the output terminals of the first and second switch transistors M1 and M2 and the first and second output terminals MIXOUTP and MIXOUTN.
  • Seventh and eighth switch transistors M7 and M8 are provided between the output terminals of the third and fourth switch transistors M3 and M4 and the first and second output terminals MIXOUTP and MIXOUTN, respectively. Is different.
  • the fifth and eighth switch transistors M5 and M8 are PMOS transistors
  • the sixth and seventh switch transistors M6 and M7 are NMOS transistors.
  • the second, third, fifth, and eighth switch transistors M2, M3, M5, and M8 have the same size, and the first, fourth, sixth, and seventh switch transistors M1, M4, M6, The size of M7 is the same.
  • the gate terminals of the fifth and eighth switch transistors M5 and M8 are connected to the ground VSS, and the gate terminals of the sixth and seventh switch transistors M6 and M7 are connected to the power supply VDD. Therefore, the fifth to eighth switch transistors M5 to M8 are in a conductive state.
  • an NMOS transistor and a PMOS transistor are arranged in series in each signal path from the first and second input terminals MIXINP and MIXINN to the first and second output terminals MIXOUTP and MIXOUTN. The Thereby, the symmetry of the output signals MIXOUTP and MIXOUTN of the mixer 1 can be maintained.
  • the fourth embodiment shows a configuration example of a mixer device in the case where a differentially input differential LO signal is handled as a differential signal without performing differential single conversion.
  • FIG. 6 is a diagram illustrating a configuration example of the mixer device according to the fourth embodiment.
  • the repeated description with respect to the same component as FIG. 3 may be abbreviate
  • the first and second mixer sections 20 and 30 have the same configuration as that of the mixer 1 in FIG. 1 except that the first and second capacitors C1 and C2 are shared.
  • the first LO input terminal LOP to which one of the differential LO signals is input is connected to the gate terminals of the switch transistors M21 to M24 of the first mixer unit 20. Further, the second LO input terminal LON to which the other differential LO signal is input is connected to the gate terminals of the switch transistors M31 to M34 of the second mixer section 30.
  • the common voltage is applied to the output node OUTP2 connected to the output terminals of the switch transistors M21 and M23 of the first mixer unit 20 and the output node OUTN2 connected to the output terminals of the switch transistors M22 and M24 via the resistor Ra.
  • a common voltage Vcm is applied from the generation circuit 12.
  • the output node OUTP3 connected to the output terminals of the switch transistors M31 and M33 of the second mixer unit 30 and the output node OUTN3 connected to the output terminals of the switch transistors M32 and M34 are respectively connected via the resistor Ra.
  • the common voltage Vcm is applied from the common voltage generation circuit 12.
  • the first adder circuit 13 adds the signal of the output node OUTP2 of the first mixer unit 20 and the signal of the output node OUTN3 of the second mixer unit 30 to form one signal constituting a differential IF signal. To the first output terminal MIXOUTP.
  • the second adder circuit 14 adds the signal of the output node OUTN2 of the first mixer section 20 and the signal of the output node OUTP3 of the second mixer section 30, and the other signal constituting the differential IF signal To the second output terminal MIXOUTN.
  • the OPAMP 11 is used for differential single conversion of the differential LO signals LOP and LON, but differential single conversion may be performed by other methods.
  • the polarities of the first to fourth switch transistors M1 to M4 may be reversed.
  • the polarities of the first to eighth switch transistors M1 to M8 may be reversed. Even in such a case, voltages for making them conductive are applied to the gate terminals of the fifth to eighth switch transistors.
  • the first and second output terminals MIXOUTP and MIXOUTN have the same common voltage Vcm.
  • another common voltage generation circuit 12 shown in FIG. It is also possible to improve the secondary distortion by providing different voltages by switching the resistors R3 and R4 by connecting to the output terminals MIXOUTP and MIXOUTN.
  • FIG. 7 shows a mixer described in any one of the first to third embodiments or a mixer having the same configuration as the mixer device described in the fourth embodiment (hereinafter referred to as the fourth embodiment). It is a figure which shows the structural example of the radio
  • the wireless receiver includes an LNA (Low Noise Amplifier) 72 that amplifies an input RF signal from the antenna 71 and an output signal from the LNA 72 as the first or second RF signal in the first to fourth embodiments.
  • LNA Low Noise Amplifier
  • An A / D converter 75 that performs processing, and a DSP 76 that processes a digital signal output from the A / D converter 75.
  • the radio receiver further includes a VCO 79 that generates an LO signal, an N frequency dividing circuit 78, and an LO buffer 77 that drives the mixer 73.
  • VCO 79 that generates an LO signal
  • N frequency dividing circuit 78 that drives the mixer 73.
  • the first and second capacitors C1 and C2 have been described as being provided inside the mixer.
  • the present invention is not limited to this.
  • it may be provided outside the mixer.
  • it may be provided between the LNA 72 and the mixer 73 or inside the LNA 72.
  • the first and second capacitors C1 and C2 may be deleted, and the LNA 72 and the mixer 73 may be directly connected.
  • the mixer 73 is an IQ orthogonal method.
  • a 90 ° phase shifter 80 is required to generate the IQ signal as shown in FIG.
  • an output signal from the LNA 72 is input to the two mixers 73a and 73b, and a signal output from the 90 ° phase shifter 80 is input to the mixers 73a and 73b via the LO buffer 77.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 ミキサ(1)は、第1および第2の入力端子(MIXINP,MIXINN)と第1および第2の出力端子(MIXOUTP,MIXOUTN)との間に接続された第1導電型の第1および第4のスイッチトランジスタ(M1,M4)と、第1導電型とはスイッチ極性が反転している第2導電型の第2および第3のスイッチトランジスタ(M2,M3)とを備えている。そして、第1から第4のスイッチトランジスタ(M1~M4)のゲート端子には、共通のLO信号(LO)が与えられている。

Description

ミキサ、ミキサ装置、およびこれらを備えた無線受信機
 本発明は、例えば無線受信機のRF(Radio Frequency)フロントエンドに用いられるミキサに関するものである。
 無線受信機の受信性能向上には、無線受信機のRFフロントエンド部の歪み性能の向上が必要であり、特にミキサの低歪み化が重要である。
 一般的に歪み性能は、IP3(Third order intercept point)を用いて表される。例えば、妨害信号となる周波数の異なる2つの信号fud1,fud2が非線形回路に入力されると、相互変調作用により“2fud1-fud2”および“2fud2-fud1”の周波数成分(3次相互変調歪み成分)の信号が希望信号の近傍に現れる。このような場合、3次相互変調歪み成分は無線受信機の受信性能に悪影響を与える。
 この3次相互変調歪みを低減するためには、ミキサに含まれるスイッチトランジスタのゲート端子とソース端子との間の電圧であるゲートバイアス電圧Vgと、スイッチトランジスタの閾値電圧Vthおよびスイッチトランジスタの出力端子のコモン電圧Vcmとの間において、下記の(式1)の関係を満たす必要があることが知られている。
Figure JPOXMLDOC01-appb-M000001
 特許文献1では、ミキサにおいて上記のゲートバイアス電圧Vgを変化させる技術が開示されている。また、非特許文献1では、IQ(In-Phase/Quadrature-Phase)ミキサにおいて、LO(Local Oscillator)信号のデューティーサイクルを50%から25%にすることによりミキサスイッチの同時オンを回避し、低歪みのミキサを実現する技術が開示されている。
 図9は、従来のミキサの一例を示した図である(例えば、非特許文献1)。
 図9のミキサ9は、入力信号VINPを容量C91を介してドレイン端子に受けるスイッチトランジスタM91,M92,M95,M96と、入力信号VINNを容量C92を介してドレイン端子に受けるスイッチトランジスタM93,M94,M97,M98とを備えている。
 そして、スイッチトランジスタM91,M93のそれぞれのソース端子から出力された信号が加算されて出力信号VOUTPIが出力され、スイッチトランジスタM92,M94のそれぞれのソース端子から出力された信号が加算されて出力信号VOUTNIが出力されている。同様に、スイッチトランジスタM95,M97から出力信号VOUTPQが出力され、スイッチトランジスタM96,M98から出力信号VOUTNQが出力されている。また、スイッチトランジスタM91,M94のゲート端子にはLO信号VLPIが与えられており、スイッチトランジスタM92,M93のゲート端子にはLO信号VLNIが与えられている。同様に、スイッチトランジスタM95,M98のゲート端子にはLO信号VLPQが与えられており、スイッチトランジスタM96,M97のゲート端子にはLO信号VLNQが与えられている。ここで、M91とM95、M92とM96、M93とM97、およびM94とM98はそれぞれ同じサイズのスイッチトランジスタである。
 図10は、各LO信号の波形の一例を示している。図10に示すように、LO信号VLPI,VLNI,VLPQ,VLNQのデューティーサイクルを25%とすることにより、スイッチトランジスタM91,M93とスイッチトランジスタM92,M94、およびスイッチトランジスタM95,M98とスイッチトランジスタM96,M97の同時オンを回避できる。
特表2010-539810号公報
Himanshu Khatri, 他4名, "A SAW-less CDMA Receiver Front-End with Single-Ended LNA and Single-Balanced Mixer with 25% Duty-Cycle LO in 65nm CMOS", Radio Frequency Integrated Circuits Symposium, 2009.IEEE, p.13-16
 しかしながら、非特許文献1のようなLO信号のデューティーサイクルを25%にする技術では、デューティーサイクルが50%の場合と比較してミキサの変換利得が減少する課題がある。このようなミキサの変換利得の減少は、ミキサを搭載するRFフロントエンド部の利得減少を招き、無線受信機の感度劣化の要因となる。
 また、特許文献1のようなミキサにおけるゲートバイアス電圧を変化させる技術には、ゲートバイアス電圧の調整回路が必要であり、さらに調整回路の制御が複雑であるという課題がある。
 上記の点に鑑み、本発明は、ミキサの変換利得を減少させることなく、スイッチトランジスタの同時オンを回避した低歪みのミキサを提供することを目的とする。
 本発明の第1の態様では、第1の入力端子に入力された第1RF信号および第2の入力端子に入力された当該第1RF信号の反転信号である第2RF信号と、LO(Local Oscillator)入力端子に入力されたLO信号とを乗算してIF(Intermediate Frequency)信号を生成し、第1および第2の出力端子に差動出力するミキサにおいて、前記第1の入力端子と前記第1の出力端子との間に接続された第1導電型の第1のスイッチトランジスタと、前記第1の入力端子と前記第2の出力端子との間に接続された、前記第1導電型とはスイッチ極性が反転している第2導電型の第2のスイッチトランジスタと、前記第2の入力端子と前記第1の出力端子との間に接続された前記第2導電型の第3のスイッチトランジスタと、前記第2の入力端子と前記第2の出力端子との間に接続された前記第1導電型の第4のスイッチトランジスタとを備えている。そして、第1から第4のスイッチトランジスタのゲートには、共通の前記LO信号が与えられている。
 この第1の態様によると、第1の入力端子からの信号を受ける第1のスイッチトランジスタと第2のスイッチトランジスタとはスイッチ極性が反転しており、かつ第1および第2のスイッチトランジスタのゲート端子には共通のLO信号が与えられているため、第1および第2のスイッチトランジスタの同時オンを回避することができる。同様に、第3および第4のスイッチトランジスタの同時オンを回避することができる。このとき、デューティーサイクルを低下させる必要はない。これにより、ミキサの変換利得を減少させることなく、スイッチトランジスタの同時オンを回避した低歪みのミキサが実現できる。
 本発明の第2の態様では、第1の入力端子に入力された第1RF信号および第2の入力端子に入力された当該第1RF信号の反転信号である第2RF信号と、第1のLO入力端子に入力された第1LO信号および第2のLO入力端子に入力された当該第1LO信号の反転信号である第2LO信号とを乗算してIF信号を生成し、第1および第2の出力端子に差動出力するミキサ装置において、第1の態様記載のミキサと同一構成からなり、当該ミキサのLO入力端子に前記第1のLO入力端子が接続された第1のミキサ部と、第1の態様記載のミキサと同一構成からなり、当該ミキサのLO入力端子に前記第2のLO入力端子が接続された第2のミキサ部と、前記第1のミキサ部の第1の出力端子の信号と、前記第2のミキサ部の第2の出力端子の信号とを加算して前記第1の出力端子に出力する第1の加算回路と、前記第1のミキサ部の第2の出力端子の信号と、前記第2のミキサ部の第1の出力端子の信号とを加算して前記第2の出力端子に出力する第2の加算回路とを備えている。
 この第2の態様によると、LO信号を差動信号として扱う場合、すなわちLO信号が第1および第2LO信号として差動入力された場合においても、第1および第2のミキサ部の第1および第2のスイッチトランジスタ並びに第3および第4のスイッチトランジスタの同時オンを回避することができる。これにより、ミキサの変換利得を減少させることなく、スイッチトランジスタの同時オンを回避した低歪みのミキサ装置が実現できる。
 本発明の第3の態様では、無線受信機は、アンテナからの入力RF信号を増幅するLNA(Low Noise Amplifier)と、前記LNAの出力信号を前記第1および第2の入力端子に受ける、第1の態様に記載のミキサ、あるいは第2の態様に記載のミキサ装置と同一構成のミキサと、前記ミキサから出力された前記IF信号を増幅する可変利得増幅回路と、前記可変利得増幅回路のアナログ出力信号をデジタル変換するA/D(Analog to Digital)コンバータと、前記A/Dコンバータから出力されたデジタル信号を処理するDSP(Digital Signal Processor)とを備えている。
 この第3の態様のように、無線受信機に第1または第2の態様に記載のミキサを用いることにより、無線受信機の受信性能を向上させることができる。
 本発明によると、ミキサが有するスイッチトランジスタの同時オンを回避でき、ミキサの変換利得を減少させることなく、低歪みのミキサを実現することができる。
第1の実施形態に係るミキサの構成例を示す図である。 LO信号波形の一例を示す図である。 第2の実施形態に係るミキサの構成例を示す図である。 コモン電圧生成回路の構成例を示す図である。 第3の実施形態に係るミキサの構成例を示す図である。 第4の実施形態に係るミキサの構成例を示す図である。 各実施形態に係るミキサを備えた無線受信機の構成例を示す図である。 各実施形態に係るミキサを備えた無線受信機の他の構成例を示す図である。 従来のミキサの構成例を示す図である。 従来のミキサのLO信号波形の一例を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の各実施形態において各端子と当該端子の信号とに同一の符号を付して説明する。
 (第1の実施形態)
 図1は第1の実施形態に係るミキサの構成例を示す図である。図1のミキサ1において、MIXINP,MIXINNは第1および第2の入力端子、C1は一端が第1の入力端子MIXINPに接続された第1の容量、C2は一端が第2の入力端子MIXINNに接続された第2の容量である。第1の容量C1の他端と第1および第2の出力端子MIXOUTP,MIXOUTNとの間には第1および第2のスイッチトランジスタM1,M2がそれぞれ接続されている。第2の容量C2の他端と第1および第2の出力端子MIXOUTP,MIXOUTNとの間には第3および第4のスイッチトランジスタM3,M4がそれぞれ接続されている。以下の各実施形態では、第1および第4のスイッチトランジスタM1,M4はNMOSトランジスタであり、第2および第3のスイッチトランジスタM2,M3はPMOSトランジスタであるものとして説明する。そして、第1から第4のスイッチトランジスタM1~M4のゲート端子には、LO入力端子LOが接続され、共通のLO信号LOが与えられている。また、第1および第2の出力端子MIXOUTP,MIXOUTNには、それぞれコモン電圧Vcmが与えられている。
 上記の構成により、第1および第2の入力端子MIXINP,MIXINNから入力された第1および第2RF信号と、LO入力端子LOから入力されたLO信号LOとが乗算されることにより、差動のIF信号が生成され第1および第2の出力端子MIXOUTP,MIXOUTNから出力される。
 図2はLO入力端子から入力されるLO信号波形とコモン電圧Vcmとの関係の一例を示した図である。ここでは、第1および第4のスイッチトランジスタM1,M4のサイズが同じであり、第2および第3のスイッチトランジスタM2,M3のサイズが同じであり、第1から第4のスイッチトランジスタM1~M4のオン抵抗がすべて同じであるものとする。例えば、第2および第3のスイッチトランジスタM2,M3のサイズを、第1および第4のスイッチトランジスタM1,M4のサイズの2~3倍程度にすることによりオン抵抗を同じにすることができる。
 また、第1から第4のスイッチトランジスタM1~M4の出力端子にはコモン電圧Vcmとして電源電圧VDDの1/2の電圧が与えられているものとする。また、Vthnは第1および第4のスイッチトランジスタM1,M4の閾値電圧であり、Vthpは第2および第3のスイッチトランジスタM2,M3の閾値電圧である。
 図2において、LO信号LOが下記の(式2)の関係を満たす場合、第1および第4のスイッチトランジスタM1,M4はオンする(図2の期間t2)。
Figure JPOXMLDOC01-appb-M000002
 同様に、LO信号LOが下記の(式3)の関係を満たす場合、第2および第3のスイッチトランジスタM2,M3はオンする(図2の期間t4)。
Figure JPOXMLDOC01-appb-M000003
 LO信号LOには、立上り時間、立下り時間が存在するため、第1のスイッチトランジスタM1と第2のスイッチトランジスタM2、および第3のスイッチトランジスタM3と第4のスイッチトランジスタM4とが同時オンする期間は発生しない。また、t1,t3の期間では、第1から第4のスイッチトランジスタM1~M4がすべてオフしている。これにより、ミキサの変換利得を減少させることなく、スイッチトランジスタの同時オンを回避した低歪みのミキサを提供することができる。
 なお、本実施形態ではコモン電圧VcmはVDD/2としたが、これに限定されない。ただし、上記の例のように、第1から第4のスイッチトランジスタM1~M4のオン抵抗がすべて同じである場合には、コモン電圧VcmはVDD/2とするのが好ましい。
 また、本実施形態では第1から第4のスイッチトランジスタM1~M4のオン抵抗がすべて等しいものとしたが、これに限定されない。ただし、第1から第4のスイッチトランジスタM1~M4のオン抵抗が等しい方が好ましい。また、第1および第4のスイッチトランジスタM1,M4のサイズ、並びに第2および第3のスイッチトランジスタM2,M3のサイズは同じでなくてもかまわない。
 (第2の実施形態)
 第1の実施形態では、コモン電圧VcmをVDD/2とする場合について説明した。しかしながら、NMOSトランジスタの閾値電圧とPMOSトランジスタの閾値電圧とが製造ばらつき等によりばらついた場合、コモン電圧VcmをVDD/2にすると第1および第4のスイッチトランジスタM1,M4と第2および第3のスイッチトランジスタM2,M3とのオン/オフ期間の対称性が崩れてしまう。そのため、トランジスタの閾値電圧に連動したコモン電圧生成回路が必要となる。
 図3は第2の実施形態に係るミキサの構成例を示す図である。図3において、図1と共通の構成要素に対する重複説明を省略する場合がある。
 図1と対比すると、第1および第2のLO入力端子LOP,LONに差動入力された差動LO信号LOP,LONを差動シングル変換してLO信号LOを出力する差動シングル変換部としてのOPAMP(オペアンプ)11と、第1および第2の出力端子MIXOUTP,MIXOUTNにそれぞれ第1および第2の抵抗としての抵抗Raを介してコモン電圧Vcmを与えるコモン電圧生成回路12とを備えている点で異なる。なお、LO信号LOP,LONをOPAMP11で差動シングル変換するとしたが、差動シングル変換する構成であればOPAMPに限定しない。
 図4はコモン電圧生成回路12の一例を示す図である。
 NMOSトランジスタM11のソース端子はグランドに接続されており、ゲート端子およびドレイン端子はノードN1に接続されている。また、ノードN1と電源との間には、カレントミラーの2次側のPMOSトランジスタM12が接続されている。これにより、NMOSトランジスタM11に所定の電流が流れ、NMOSトランジスタM11の閾値電圧をVthnとすると、ノードN1の電圧はVthnとなる。
 PMOSトランジスタM13のソース端子は電源に接続されており、ゲート端子およびドレイン端子はノードN2に接続されている。また、ノードN2とグランドとの間には、カレントミラーの2次側のNMOSトランジスタM14が接続されている。これにより、PMOSトランジスタM13に所定の電流が流れ、電源電圧をVDDとしてPMOSトランジスタM13の閾値電圧をVthpとするとノードN2の電圧はVDD-|Vthp|となる。
 ノードN1とノードN2との間には、抵抗R3,R4が直列に接続されており、その中間ノードと出力端子VCMOUTとが接続されている。
 例えば、抵抗R3の抵抗値と抵抗R4の抵抗値とが等しい場合、出力端子VCMOUTのコモン電圧Vcmは下記の(式4)で表される。
Figure JPOXMLDOC01-appb-M000004
 (式4)からもわかるように、コモン電圧Vcmは、NMOSトランジスタM11の閾値電圧VthnとPMOSトランジスタM13の閾値電圧の絶対値|Vthp|との差の1/2の電圧、すなわちNMOSトランジスタM11の閾値電圧とPMOSトランジスタの閾値電圧との中点の電圧と、所定のバイアスとしてのVDD/2とが加えられた電圧となる。
 これにより、コモン電圧生成回路12からはNMOSトランジスタとPMOSトランジスタの閾値電圧に応じたコモン電圧Vcmが出力される。すなわち、第1から第4のスイッチトランジスタM1~M4の閾値電圧に連動したコモン電圧Vcmが出力される。
 これにより、製造ばらつき等によりトランジスタの閾値電圧がばらついた場合でも、第1および第4のスイッチトランジスタM1,M4と第2および第3のスイッチトランジスタM2,M3とのオン/オフ期間の対称性を保つことができる。したがって、ばらつきに強いミキサを実現することができる。
 なお、NMOSトランジスタM11およびPMOSトランジスタM13に流れる所定の電流はカレントミラー回路によって生成されるものとしたが、別の回路で電流を供給してもよい。
 (第3の実施形態)
 第2の実施形態において説明したように、製造ばらつき等によりトランジスタの閾値電圧がばらついた場合、第1および第4のスイッチトランジスタM1,M4と第2および第3のスイッチトランジスタM2,M3とのオン/オフ期間の対称性が崩れるという課題がある。第3の実施形態では、この課題についての他の対策例を示す。
 図5は第3の実施形態に係るミキサの構成例を示す図である。図5において、図3と共通の構成要素に対する重複説明を省略する場合がある。
 図3と対比すると、第1および第2のスイッチトランジスタM1,M2の出力端子と第1および第2の出力端子MIXOUTP,MIXOUTNとの間に、それぞれ第5および第6のスイッチトランジスタM5,M6を備えており、第3および第4のスイッチトランジスタM3,M4の出力端子と第1および第2の出力端子MIXOUTP,MIXOUTNとの間に、それぞれ第7および第8のスイッチトランジスタM7,M8を備えている点で異なる。第5および第8のスイッチトランジスタM5,M8はPMOSトランジスタであり、第6および第7のスイッチトランジスタM6,M7はNMOSトランジスタである。また、第2、第3、第5および第8のスイッチトランジスタM2,M3,M5,M8のサイズは同じであり、第1、第4、第6および第7のスイッチトランジスタM1,M4,M6,M7のサイズは同じである。また、第5および第8のスイッチトランジスタM5,M8のゲート端子はグランドVSSと接続されており、第6および第7のスイッチトランジスタM6,M7のゲート端子は電源VDDと接続されている。したがって、第5から第8のスイッチトランジスタM5~M8は導通状態となっている。
 上記のような構成とすることにより、第1および第2の入力端子MIXINP,MIXINNから第1および第2の出力端子MIXOUTP,MIXOUTNへの各信号経路にNMOSトランジスタとPMOSトランジスタとが直列に配置される。これにより、ミキサ1の出力信号MIXOUTP,MIXOUTNの対称性を保つことができる。
 (第4の実施形態)
 第4の実施形態では、差動入力された差動LO信号を差動シングル変換せずに、差動信号として扱う場合におけるミキサ装置の構成例を示す。
 図6は第4の実施形態に係るミキサ装置の構成例を示す図である。図6のミキサ装置10において、図3と共通の構成要素に対する重複説明を省略する場合がある。なお、第1および第2のミキサ部20,30は第1および第2の容量C1,C2を共有化している以外は、それぞれ図1のミキサ1と同一の構成となっている。
 第1のミキサ部20のスイッチトランジスタM21~M24のゲート端子には、差動LO信号の一方が入力される第1のLO入力端子LOPが接続されている。また、第2のミキサ部30のスイッチトランジスタM31~M34のゲート端子には、差動LO信号の他方が入力される第2のLO入力端子LONが接続されている。
 第1のミキサ部20のスイッチトランジスタM21,M23の出力端子と接続された出力ノードOUTP2、およびスイッチトランジスタM22,M24の出力端子と接続された出力ノードOUTN2には、それぞれ抵抗Raを介してコモン電圧生成回路12からコモン電圧Vcmが与えられる。同様に、第2のミキサ部30のスイッチトランジスタM31,M33の出力端子と接続された出力ノードOUTP3、およびスイッチトランジスタM32,M34の出力端子と接続された出力ノードOUTN3には、それぞれ抵抗Raを介してコモン電圧生成回路12からコモン電圧Vcmが与えられる。
 第1の加算回路13は、第1のミキサ部20の出力ノードOUTP2の信号と、第2のミキサ部30の出力ノードOUTN3の信号とを加算し、差動のIF信号を構成する一方の信号として第1の出力端子MIXOUTPに出力する。
 第2の加算回路14は、第1のミキサ部20の出力ノードOUTN2の信号と、第2のミキサ部30の出力ノードOUTP3の信号とを加算し、差動のIF信号を構成する他方の信号として第2の出力端子MIXOUTNに出力する。
 以上のような構成とすることにより、LO信号を差動信号として扱う場合においても、第1~第3の実施形態と同様の効果を得ることができる。
 なお、第2および第3の実施形態において、差動LO信号LOP,LONの差動シングル変換にOPAMP11を使用したが、これ以外の方法で差動シングル変換してもよい。
 また、上記の第1および第2の実施形態において、第1から第4のスイッチトランジスタM1~M4について、極性をそれぞれ反転させてもかまわない。また、上記の第3の実施形態において、第1から第8のスイッチトランジスタM1~M8について、極性をそれぞれ反転させてもかまわない。その場合においても、第5~第8のスイッチトランジスタのゲート端子にはこれらを導通状態にする電圧が印加される。
 また、上記の第1から第3の実施形態において、第1および第2の出力端子MIXOUTP,MIXOUTNのコモン電圧Vcmは等しいものとしたが、例えば、図5のコモン電圧生成回路12をもう1つ設け、出力端子MIXOUTP,MIXOUTNにそれぞれ接続し、抵抗R3、R4を切替えることで異なる電圧を印加することで2次歪みを改善することもできる。
 (適用例)
 図7は第1~第3の実施形態のうちのいずれか1つに記載されたミキサ、または第4の実施形態に記載されたミキサ装置と同一構成のミキサ(以下、第4の実施形態に記載されたミキサと称する)を備えた無線受信機の構成例を示す図である。
 図7において、無線受信機は、アンテナ71からの入力RF信号を増幅するLNA(Low Noise Amplifier)72と、LNA72からの出力信号を第1または第2RF信号として受ける第1~第4実施形態のうちのいずれか1つに記載されたミキサ73と、ミキサ73から出力されたIF信号を増幅する可変利得増幅回路74と、可変利得増幅回路74の出力信号をアナログデジタル変換し、デジタル信号として出力するA/Dコンバータ75と、A/Dコンバータ75から出力されたデジタル信号を処理するDSP76とを備えている。また、無線受信機は、さらにLO信号を生成するVCO79と、N分周回路78と、ミキサ73を駆動するLOバッファ77とを備えている。このように、無線受信機に第1~第4実施形態のうちのいずれか1つに記載されたミキサを用いることにより、無線受信機の受信性能を向上させることができる。
 なお、上記の第1~第4の実施形態において、第1および第2の容量C1,C2はミキサ内部に設けられているものとして説明したが、これに限定されない。例えば、ミキサの外部に設けられていてもよい。具体的には、例えば図7において、LNA72とミキサ73との間、またはLNA72の内部に設けられていてもかまわない。また、第1および第2の容量C1、C2を削除し、LNA72とミキサ73とを直接接続してもよい。
 また、ミキサ73はIQ直交方式であっても同様の効果が得られる。その場合は図8に示すようにIQ信号を生成するために90°位相器80が必要になる。この場合、LNA72からの出力信号が2つのミキサ73a,73bに入力され、それぞれのミキサ73a,73bには90°位相器80から出力された信号がLOバッファ77を介して入力される。
 本発明の多くの特徴および優位性は、記載された説明から明らかであり、よって添付の特許請求の範囲によって、本発明のそのような特徴および優位性の全てをカバーすることが意図される。さらに、多くの変更および改変が当業者には容易に可能であるので、本発明は図示され記載されたものと全く同じ構成および動作に限定されるべきではない。したがって、全ての適切な改変物および等価物は本発明の範囲に入るものとされる。
 本発明では、ばらつきに強い低歪みのミキサが実現されるため、例えばミキサ回路を用いる車載ラジオチューナー等の無線通信機器などに有用である。
1,73,73a,73b ミキサ
10 ミキサ装置
11 OPAMP(差動シングル変換部)
13 第1の加算回路
14 第2の加算回路
20 第1のミキサ部
30 第2のミキサ部
72 LNA
74 可変利得増幅回路
75 A/Dコンバータ
76 DSP
M1,M2,M3,M4,M5,M6,M7,M8 第1、第2、第3、第4、第5、第6、第7および第8のスイッチトランジスタ
C1,C2 第1および第2の容量
Ra 抵抗(第1および第2の抵抗)
MIXINP,MIXINN 第1および第2の入力端子
MIXOUTP,MIXOUTN 第1および第2の出力端子
LO LO入力端子
LOP,LON 第1および第2のLO入力端子
Vcm コモン電圧
Vthn,Vthp 閾値電圧

Claims (13)

  1.  第1の入力端子に入力された第1RF(Radio Frequency)信号および第2の入力端子に入力された当該第1RF信号の反転信号である第2RF信号と、LO(Local Oscillator)入力端子に入力されたLO信号とを乗算してIF(Intermediate Frequency)信号を生成し、第1および第2の出力端子に差動出力するミキサであって、
     前記第1の入力端子と前記第1の出力端子との間に接続された第1導電型の第1のスイッチトランジスタと、
     前記第1の入力端子と前記第2の出力端子との間に接続された、前記第1導電型とはスイッチ極性が反転している第2導電型の第2のスイッチトランジスタと、
     前記第2の入力端子と前記第1の出力端子との間に接続された前記第2導電型の第3のスイッチトランジスタと、
     前記第2の入力端子と前記第2の出力端子との間に接続された前記第1導電型の第4のスイッチトランジスタとを備えており、
     前記第1から第4のスイッチトランジスタのゲート端子には、共通の前記LO信号が与えられている
    ことを特徴とするミキサ。
  2.  請求項1記載のミキサにおいて、
     前記第1および第4のスイッチトランジスタのサイズが同じであり、かつ前記第2および第3のスイッチトランジスタのサイズが同じである
    ことを特徴とするミキサ。
  3.  請求項2記載のミキサにおいて、
     前記第1から第4のスイッチトランジスタのオン抵抗が同じになるように当該第1から第4のスイッチトランジスタのサイズが設定されている
    ことを特徴とするミキサ。
  4.  請求項1記載のミキサにおいて、
     前記第1のスイッチトランジスタの出力端子と前記第1の出力端子との間に接続された前記第2導電型の第5のスイッチトランジスタと、
     前記第2のスイッチトランジスタの出力端子と前記第2の出力端子との間に接続された前記第1導電型の第6のスイッチトランジスタと、
     前記第3のスイッチトランジスタの出力端子と前記第1の出力端子との間に接続された前記第1導電型の第7のスイッチトランジスタと、
     前記第4のスイッチトランジスタの出力端子と前記第2の出力端子との間に接続された前記第2導電型の第8のスイッチトランジスタとを備えており、
     前記第5から第8のスイッチトランジスタのそれぞれのゲート端子には、当該第5から第8のスイッチトランジスタを導通状態にする電圧が与えられている
    ことを特徴とするミキサ。
  5.  請求項4記載のミキサにおいて、
     前記第5および第8のスイッチトランジスタと前記第2および第3のスイッチトランジスタとは同じサイズであり、かつ前記第6および第7のスイッチトランジスタと前記第1および第4のスイッチトランジスタとは同じサイズである
    ことを特徴とするミキサ。
  6.  請求項1または4記載のミキサにおいて、
     一端が前記第1の出力端子に接続された第1の抵抗と、
     一端が前記第2の出力端子に接続された第2の抵抗とを備えており、
     前記第1の抵抗の他端と前記第2の抵抗の他端とが接続されている
    ことを特徴とするミキサ。
  7.  請求項6記載のミキサにおいて、
     前記第1の抵抗の他端には前記第1のスイッチトランジスタの閾値電圧と前記第2のスイッチトランジスタの閾値電圧との中点の電圧と、所定のバイアス電圧とを加えたコモン電圧が与えられる
    ことを特徴とするミキサ。
  8.  請求項1記載のミキサにおいて、
     一端に前記第1RF信号を受け、他端に前記第1の入力端子が接続された第1の容量と、
     一端に前記第2RF信号を受け、他端に前記第2の入力端子が接続された第2の容量とを備えており、
     前記第1および第2の入力端子には、それぞれ前記第1および第2の容量を介して前記第1および第2RF信号が与えられる
    ことを特徴とするミキサ。
  9.  請求項1または4記載のミキサにおいて、
     第1LO信号および当該第1LO信号の反転信号である第2LO信号を受け、差動シングル変換して前記LO信号を出力する差動シングル変換部をさらに備える
    ことを特徴とするミキサ。
  10.  請求項9記載のミキサにおいて、
     IQ(In-Phase/Quadrature-Phase)直交方式である
    ことを特徴とするミキサ。
  11.  第1の入力端子に入力された第1RF信号および第2の入力端子に入力された当該第1RF信号の反転信号である第2RF信号と、第1のLO入力端子に入力された第1LO信号および第2のLO入力端子に入力された当該第1LO信号の反転信号である第2LO信号とを乗算してIF信号を生成し、第1および第2の出力端子に差動出力するミキサ装置であって、
     請求項1記載のミキサと同一構成からなり、当該ミキサのLO入力端子に前記第1のLO入力端子が接続された第1のミキサ部と、
     請求項1記載のミキサと同一構成からなり、当該ミキサのLO入力端子に前記第2のLO入力端子が接続された第2のミキサ部と、
     前記第1のミキサ部の第1の出力端子の信号と、前記第2のミキサ部の第2の出力端子の信号とを加算して前記第1の出力端子に出力する第1の加算回路と、
     前記第1のミキサ部の第2の出力端子の信号と、前記第2のミキサ部の第1の出力端子の信号とを加算して前記第2の出力端子に出力する第2の加算回路とを備えている
    ことを特徴とするミキサ装置。
  12.  請求項11記載のミキサ装置において、
     IQ(In-Phase/Quadrature-Phase)直交方式である
    ことを特徴とするミキサ装置。
  13.  アンテナからの入力RF信号を増幅するLNA(Low Noise Amplifier)と、
     前記LNAの出力信号を前記第1および第2の入力端子に受ける、請求項1から10のうちのいずれか1項に記載のミキサ、または請求項11若しくは12記載のミキサ装置と同一構成のミキサと、
     前記ミキサから出力された前記IF信号を増幅する可変利得増幅回路と、
     前記可変利得増幅回路のアナログ出力信号をデジタル変換するA/D(Analog to Digital)コンバータと、
     前記A/Dコンバータから出力されたデジタル信号を処理するDSP(Digital Signal Processor)とを備えている
    ことを特徴とする無線受信機。
PCT/JP2013/003615 2012-06-14 2013-06-07 ミキサ、ミキサ装置、およびこれらを備えた無線受信機 WO2013187037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520919A JPWO2013187037A1 (ja) 2012-06-14 2013-06-07 ミキサ、ミキサ装置、およびこれらを備えた無線受信機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-135193 2012-06-14
JP2012135193 2012-06-14

Publications (1)

Publication Number Publication Date
WO2013187037A1 true WO2013187037A1 (ja) 2013-12-19

Family

ID=49757883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003615 WO2013187037A1 (ja) 2012-06-14 2013-06-07 ミキサ、ミキサ装置、およびこれらを備えた無線受信機

Country Status (2)

Country Link
JP (1) JPWO2013187037A1 (ja)
WO (1) WO2013187037A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537780A (en) * 2014-03-11 2016-10-26 Mitsubishi Electric Corp Person detecting device and person detecting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033840A (ja) * 2004-07-14 2006-02-02 Sst Communications Corp 適応バイアス型ミクサ
JP2007522728A (ja) * 2004-01-28 2007-08-09 アクシオム マイクロデバイシズ,インコーポレイテッド オフチップフィルタを除去した高ダイナミックレンジの時間変化集積型受信器
JP2009077420A (ja) * 2005-01-14 2009-04-09 Nec Corp 通信装置、マルチバンド受信装置及び受信装置
JP2009518984A (ja) * 2005-12-12 2009-05-07 シリフィック ワイヤレス コーポレーション 差動回路からの2次相互変調積を低減するシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522728A (ja) * 2004-01-28 2007-08-09 アクシオム マイクロデバイシズ,インコーポレイテッド オフチップフィルタを除去した高ダイナミックレンジの時間変化集積型受信器
JP2006033840A (ja) * 2004-07-14 2006-02-02 Sst Communications Corp 適応バイアス型ミクサ
JP2009077420A (ja) * 2005-01-14 2009-04-09 Nec Corp 通信装置、マルチバンド受信装置及び受信装置
JP2009518984A (ja) * 2005-12-12 2009-05-07 シリフィック ワイヤレス コーポレーション 差動回路からの2次相互変調積を低減するシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537780A (en) * 2014-03-11 2016-10-26 Mitsubishi Electric Corp Person detecting device and person detecting method
GB2537780B (en) * 2014-03-11 2019-04-17 Mitsubishi Electric Corp Person detecting device and person detecting method

Also Published As

Publication number Publication date
JPWO2013187037A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
Thijssen et al. 2.4-GHz highly selective IoT receiver front end with power optimized LNTA, frequency divider, and baseband analog FIR filter
EP1636901B1 (en) Mixer circuit, receiver comprising a mixer circuit, wireless communication comprising a receiver, method for generating an output signal by mixing an input signal with an oscillator signal
JP4079953B2 (ja) 高周波回路
JP2011119915A (ja) 差動増幅回路および無線受信機
JP2011507459A (ja) 低ノイズ及び低入力容量の差動mdslna
US20140226759A1 (en) Second-order input intercept point (iip2) calibration method of a mixer in a wireless communication system and the mixer using the same
KR20020062056A (ko) 상보 소자를 이용한 싱글엔드형 차동 회로
US9762218B2 (en) Amplifying circuit, AD converter, integrated circuit, and wireless communication apparatus
US20090278588A1 (en) Low voltage mixer with improved gain and linearity
US9531335B2 (en) Method and circuitry for CMOS transconductor linearization
US9673764B2 (en) Amplifier circuit, radio frequency receiver and mobile telecommunications device
CN114830527A (zh) 具有pvt跟踪的宽带可调谐频率单边带转换器
Das et al. A four-phase passive mixer-first receiver with a low-power complementary common-gate TIA
JP6416020B2 (ja) 能動負荷回路及び半導体集積回路
WO2013187037A1 (ja) ミキサ、ミキサ装置、およびこれらを備えた無線受信機
JP4393544B2 (ja) ミキサ回路及びこれを用いた無線通信装置
JP5433614B2 (ja) 半導体集積回路および受信装置
TWI392222B (zh) 可提高信號品質之混頻器
JP6349242B2 (ja) 受信装置及びその歪み抑圧方法、半導体装置並びに電子機器
JPWO2013175681A1 (ja) ダイレクトコンバージョン方式の受信機
US20080224795A1 (en) Active balun
Pallela et al. Characterization of Gilbert cell mixer for ultrawide band applications and noise parameters
Gladson et al. A fully CMOS inductor-less folded cascode double-balanced mixer with high conversion gain for 2.4 GHz WPAN applications
Wolf et al. Low noise design of a CMOS gilbert mixer cell in 700 MHz
JP2013223118A (ja) ミキサ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804932

Country of ref document: EP

Kind code of ref document: A1