WO2013186224A1 - Dispositif d'isolation thermique - Google Patents

Dispositif d'isolation thermique Download PDF

Info

Publication number
WO2013186224A1
WO2013186224A1 PCT/EP2013/062053 EP2013062053W WO2013186224A1 WO 2013186224 A1 WO2013186224 A1 WO 2013186224A1 EP 2013062053 W EP2013062053 W EP 2013062053W WO 2013186224 A1 WO2013186224 A1 WO 2013186224A1
Authority
WO
WIPO (PCT)
Prior art keywords
films
flexible films
thermal insulation
flexible
pressure
Prior art date
Application number
PCT/EP2013/062053
Other languages
English (en)
Inventor
Thierry Duforestel
Pierre-Henri Milleville
Original Assignee
Electricite De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France filed Critical Electricite De France
Priority to RU2014151758A priority Critical patent/RU2614841C2/ru
Priority to US14/407,063 priority patent/US9481994B2/en
Priority to EP13727930.3A priority patent/EP2859157B1/fr
Priority to JP2015516592A priority patent/JP6009662B2/ja
Publication of WO2013186224A1 publication Critical patent/WO2013186224A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/806Heat insulating elements slab-shaped with air or gas pockets included in the slab

Definitions

  • the present invention relates to the field of thermal insulation of buildings.
  • Theoretical models predict a minimum of the thermal conductivity of conventional insulating materials (solid matrix containing air) of the order of 29mW / m.K. Forty years of incremental progress since the first fabrications of these materials bring today to this minimum. To go really further, and especially to cross the threshold of the thermal conductivity of the air (25mW / m.K), it is necessary to change thermal concept. Different paths can be put forward which lead to as many insulating concepts with increasing energy stakes and complexity of use.
  • nano-structured materials that make it possible to envisage super insulators operating at atmospheric pressure
  • thermal insulation devices examples include US-A-3968831, US-A-3167159, DE-A-19647567, US-A-5433056, DE-A-1409994, US-A-3920953, SU-A-2671441, US-A-5014481, US-A-34363224, DE-A-4300839.
  • US-A-5014481 discloses a device comprising a box whose internal volume is divided into many layers or air gaps by a series of parallel flexible sheets.
  • the document indicates that the device has a thermal conduction pattern when the sheets are contiguous and instead a thermal insulation configuration when the sheets are separated.
  • Such a device although attractive in theory because it is supposed to allow switching between two states with different thermal insulation properties by fluidic type control, however did not experience any real development. Indeed, it has truly advantageous thermal insulation properties only if there are a large number of flexible sheets defining between them a large number of layers or air gaps. Such a device is however difficult to produce, cumbersome and expensive.
  • the document WO-A-03/054456 attempted to improve the situation by proposing a device comprising a panel defined by two partitions separated by spacers and delimiting a chamber placed at ambient pressure or in depression and which houses a deformable membrane.
  • the membrane is punctually connected to a first partition at a thermally insulating point. It is also pinched between the spacers and the second partition.
  • potentials of opposite polarities are applied to the membrane and the second partition while potentials of the same polarity are applied to the first partition and the membrane, the latter is pressed against the second partition.
  • potential polarity opposing are applied to the membrane and the first partition while potentials of the same polarity are applied to the second wall and the membrane, the latter is pressed against the first wall.
  • the present invention now aims to provide a new thermal insulation device which has superior qualities to the state of the art in terms of cost, industrialization, efficiency and reliability, in particular.
  • a thermal insulation device in particular for building, comprising at least one panel comprising two walls separated by a peripheral main spacer to define a gas-tight chamber, and at least two flexible films arranged in said chamber and adapted to be selectively switched between two states: one of thermal conduction in which said flexible films are at least partially in contact with each other and the other of thermal insulation in which the flexible films are separated, under the influence of pressure variations within said sealed chamber applied by fluidic control means, characterized in that in the thermal insulation state the distance separating the flexible films is less than the free average path of the gas molecules occupying the volume defined between said flexible films.
  • the present invention also relates to a thermal insulation management method by controlling the pressure within a gas-tight inner chamber, a panel comprising two walls separated by a peripheral main spacer defining the aforementioned sealed chamber, and at least two flexible films arranged in said chamber and adapted to be selectively switched between two states: one of thermal conduction in which said flexible films are at least partially in mutual contact and the other of thermal insulation in which the flexible films are separated, under the influence of pressure variations within said sealed chamber applied by fluidic control means, characterized in that it comprises the steps of switching the pressure in said sealed chamber of the panel between a high pressure such as the films are in contact on a substantial part of their surface, in order to place the positive in a state of thermal conduction, and a low pressure such that the pressure p in compartments defined between the films imposes a gap between the films lower than -r ⁇ -, in which relation
  • k represents the Boltzmann constant
  • d represents the diameter of the gas molecules
  • T represents the absolute temperature
  • the present invention makes it possible to have thermal insulation components capable of varying their thermal resistance between a value of almost zero and a very high value, typically close to or greater than 10 m 2 KW for a thickness. very weak, for example at least less than 1cm.
  • FIG. 3 represents a view of an improved device according to the present invention.
  • FIG. 4 shows another variant of the device according to the present invention.
  • FIG. 1 and the following appended figures show a thermal insulation panel 100 according to the present invention comprising two main walls 110, 120 separated by a main peripheral spacer 102 to form a sealed chamber 104.
  • the thickness of the spacer 102 and therefore of the chamber 104, considered perpendicular to the walls 110 and 120, is very much smaller than the two orthogonal dimensions extending parallel to the walls 110 and 120.
  • the chamber 104 is placed in depression, that is to say at a pressure below atmospheric pressure or left at atmospheric pressure.
  • the internal pressure of the chamber 104 is of the order of a few Pascals when said chamber 104 is placed in depression, for example of the order of 10 Pa.
  • the chamber 104 houses at least two films 150, 160.
  • the films 150, 160 are flexible. They extend parallel to the walls 110,
  • the peripheral edge of the films 150, 160 is fixed, for example pinched, in the mass of the peripheral spacer 102, by means which guarantee the gas-tightness at this level.
  • the main walls 110, 120 and / or the films 150, 160 may be optically opaque or optically transparent at least in the visible range (wavelength of 0.4-0.8 ⁇ ).
  • the films 150, 160 are advantageously of low emissivity material in the infrared range.
  • the films 150, 160 have an emission coefficient (defined as being the ratio between the emission of said films and the emission of a black body) of less than 0.1 and preferably less than 0.04, for the lengths wavelengths greater than 0.78pm.
  • the two films 150 and 160 are separated and thus define between them sealed compartments 158.
  • the resting pressure in the compartments 158 defined between the flexible films 150, 160 is preferably lower than the average pressure prevailing in the chamber 104.
  • the distance d1 separating the flexible films 150, 160 is smaller than the average free path of the molecules. of gas occupying the volume defined between the flexible films 150, 160.
  • this feature allows to have a device with very high thermal insulation properties without requiring a significant thickness.
  • the films 150, 160 being placed halfway from the walls 110, 120, they divide the chamber 104 into two sub-chambers 104a and 104b located respectively on either side of the compartments 158.
  • the chamber 104 is connected to pressure control means 170 allowing, by changing the pressure within the chamber 104, to selectively switch the device between two states: a state illustrated in FIG. 1 of thermal insulation in which the flexible films 150 and 160 are separated and a state shown in Figure 2 of thermal conduction in which the flexible films 150 and 160 are at least partially in contact with each other.
  • the switching of the thermal insulation state illustrated in FIG. 1, in the state of thermal conduction illustrated on FIG. FIG. 2 is obtained by increasing the pressure within the chamber 104 under the effect of the means 170.
  • the means 170 communicate with the two sub-chambers 104a, 104b, constituting the chamber 104 and disposed respectively on either side of the films 150, 160.
  • the device according to the present invention has properties remarkably superior to those of devices according to the state of the art through the reduction of thermal conduction obtained in the rarefied gas present between the flexible films 150, 160.
  • the distance between the films 150, 160 being smaller than the average free path of the gas molecules, the intermolecular shocks, responsible for the heat transmission in a conventional conduction, are extremely rare in a device according to the present invention.
  • shocks occur, for the most part, only between the gas molecules and the films 150, 160.
  • the films 150, 160 can be kept apart, in the thermal insulation position, by different means.
  • the films 150, 160 can be kept apart by electrostatic charging of the films, that is to say by applying an identical potential on the different films, with respect to the housing composing the device, in particular with respect to the walls 110, 120 .
  • the bringing together of the films 150, 160 in order to switch them to the close position of thermal conduction can also be aided by electrostatic control by placing the adjacent films at opposite polarities.
  • An electrostatic control variant is not to repel the films by a repulsive electrostatic force by charging the films to the same potential, but by plating the deformable flexible films 150, 160 against additional films or support plates thanks to attractive electrostatic forces by charging deformable flexible films and support films associated with opposite potentials.
  • the flexible films 150, 160 are kept apart by spacers 140.
  • the spacers 140 comprise end sections 142, 144 which rest on the internal surfaces of the walls 110, 120 and a medial intermediate element 146 placed between the flexible films 150, 160.
  • the flexible films 150, 160 are thus clamped between the intermediate element 146 and one of the end sections 142, 144 of the spacers 140.
  • the spacers 140 may be punctual (formed of pads) or linear (formed of strips) defining a lattice parallel to the films.
  • FIGS. 1, 2 and 3 They may be aligned as illustrated in FIGS. 1, 2 and 3 or offset as illustrated in FIG. 4.
  • the mesh of the spacers 140 is preferably fixed.
  • the intermediate member 146 is not aligned with the end portions 142, 144. All the films are mechanically stressed by the pressing forces.
  • Ipm with k the Boltzmann constant (ratio between constant of perfect gases and number (of Avogadro), d the diameter of the gas molecules (m), T the absolute temperature (K) and p the pressure of the gas (Pa) .
  • the Ipm of a gas at ambient temperature and at atmospheric pressure is of the order of 50 nm and that it is greater than 0.6 mm for a pressure of the order of 0, 12Pa.
  • H c P
  • Ti and T 2 representing the temperature of the two films 150 and 160
  • T m representing the average temperature of the two films
  • the spacers 140 must be adapted, both as to their constituent material, their geometry and their contact with the films - a point contact is preferred - to minimize the resulting thermal bridges.
  • the spacers 102 and 140 are preferably made of a thermally insulating material to not constitute a thermal bridge between the walls 110 and 120.
  • the spacers 102, 140 are advantageously formed of thermoplastic material.
  • the device comprises a stack of 4 metal films 150, 160, 170, 172, with low emissivity in steel, with a thickness of 1.4 mm, separated by air knives. 0.6 mm, a total thickness of 7.4 mm.
  • the spacers 140 are spaced 4cm apart and can be either point (1mm x 1mm section) or linear (1mm width).
  • the device according to the present invention constitutes an active insulation component. It can adapt to the dynamic behavior of the building and thus constitutes a pilot for the use of the inertia of a building thanks to its ability to switch between a static behavior that is highly insulating on the thermal plane or, on the contrary, highly conductive and therefore capable of transmitting heat flow.
  • the present invention makes it possible to produce thermal insulation devices having a very high insulating power without require a large thickness.
  • the present invention makes it possible to form a device whose thermal resistance can switch between, for example, 0.024 m 2 K / W and 80 m 2 K / W for a thickness that does not exceed 1 cm.
  • the device When the pressure applied by the means 170 within the chamber 104 plates the two films 150, 160 against each other at half the thickness of the chamber 104 as illustrated in FIG. 2, the device is placed in a state thermal conduction. Indeed, the films 150, 160, then allow a certain heat transfer between them.
  • the device when the films 150 and 160 are kept spaced apart as shown in FIG. 1, by a distance less than the average free path of the gas molecules present in the compartments 158, the device is placed in an isolated state. thermal.
  • the walls 110, 120 constituting the panel 100 may be the subject of numerous variants.
  • the walls 110, 120 may be rigid. Alternatively, they can be flexible. In this case, the panel 100 can be wound, which facilitates its transport and storage.
  • the walls 110, 120 may be made of metal.
  • the flexible films 150, 160 are at least partially electrically conductive to allow the application of the electric field required by the generation of the aforementioned electrostatic forces.
  • the flexible films 150, 160 may be formed of a sheet of flexible metal or of thermoplastic material or equivalent, loaded with electrically conductive particles.
  • the flexible films 150, 160 may thus each be formed of an electrically conductive core coated on each of its faces with a coating of electrically insulating material (for example a thermoplastic material).
  • the device according to the present invention makes it possible, for example, to recover solar contributions from walls exposed in winter or to cool walls in summer when the external freshness allows it by placing the device in its thermally conductive state illustrated in FIG. contrary to placing it in a thermally insulating state by placing it in the state illustrated in Figure 1.
  • walls 110, 120 and films 150, 160 may be optically transparent.
  • the device according to the present invention can thus be applied to transparent walls.
  • Thermal insulation panels according to the present invention can also play a role of decoration.
  • the device according to the present invention is applied to the lossy walls of a building, it is possible to modulate the insulation in order to optimize the recovery of external inputs (solar in winter, cool in summer). This is contrary to the current concept of heating or air conditioning, where the indoor installation catches up with losses or heat gains through the envelope, a system that manages this loss or heat gain to maintain the desired indoor comfort conditions. Such control can of course be operated automatically from appropriate thermal probes.
  • the present invention also contributes to fully control the thermal inertia of the walls of buildings in limits hitherto never reached.
  • the present invention is not limited to the particular application previously mentioned of building insulation.
  • the present invention which leads to excellent electrical insulation independent of the thickness of the device and allows for an extremely small thickness, makes it possible to apply the present invention in a large number of technical fields.
  • the present invention may in particular apply to clothing or any other industrial problem requiring thermal insulation.
  • the aforementioned device may be arranged in the form of a modular arrangement of several panels 100 according to the present invention juxtaposed side by side by their edge. It is then preferably provided, to ensure perfect continuity of insulation, built-in cover elements in the walls 110, 120 of a panel 100 and adapted to overlap the adjacent panel. As a variant, such covering elements could be provided on elements attached at the junction zones between two of such adjacent panels 100.
  • a device comprising two parallel flexible films 150, 160 in the chamber 104 has previously been described.
  • the present invention is however not limited to this number of two films and may comprise a larger number of flexible films stacked in parallel within the chamber 104.
  • the pressure applied within the chamber 104 is switched by the means 170 between two levels: a high pressure by which all the aforementioned films 150, 160, 180, 182, 184 and 186 are contiguous and a lower pressure such as the distance between each pair of adjacent films is less than the average free path of the gas molecules occupying the volume defined between these pairs of flexible films.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention concerne un dispositif d'isolation thermique, qui comprend au moins un panneau (100) définissant une chambre étanche au gaz (104) qui loge au moins deux films souples (150, 160) adaptés pour être commutés sélectivement entre deux états : l'un de conduction thermique dans lequel lesdits films souples (150, 160) sont au moins partiellement en contact mutuel et l'autre d'isolation thermique dans lequel les films souples (150, 160) sont séparés, sous l'influence de variations de pression au sein de ladite chambre étanche (104) appliquées par des moyens de commande fluidique (170), caractérisé en ce que dans l'état d'isolation thermique la distance séparant les films souples (150, 160) est inférieure au libre parcours moyen des molécules de gaz occupant le volume (158) défini entre lesdits films souples (150, 160). L'invention concerne également un procédé.

Description

DISPOSITIF D'ISOLATION THERMIQUE
La présente invention concerne le domaine de l'isolation thermique de bâtiments.
Ce domaine a donné lieu depuis de nombreuses années, mais particulièrement dans les deux dernières décennies, à des recherches très nombreuses compte-tenu des enjeux impliqués.
En construction neuve comme en rénovation, le recours à des composants super-isolants, c'est-à-dire plus isolants que l'air, semble en effet souhaitable.
Les modèles théoriques prédisent un minimum de la conductivité thermique des matériaux isolants classiques (matrice solide contenant de l'air) de l'ordre de 29mW/m.K. Quarante années de progrès incrémentaux depuis les premières fabrications de ces matériaux amènent aujourd'hui à ce minimum. Pour aller vraiment plus loin, et notamment pour franchir le seuil de la conductivité thermique de l'air (25mW/m. K), il faut changer de concept thermique. Différentes pistes peuvent être mises en avant qui aboutissent à autant de concepts d'isolation aux enjeux énergétiques et à la complexité d'utilisation croissants.
L'on peut citer notamment :
- les matériaux nano-structurés qui permettent d'envisager des super isolants fonctionnant à pression atmosphérique, et
- l'exploitation des propriétés très isolantes du vide qui, combinée à l'emploi d'un matériau nano-structuré, définit un concept de panneau isolant sous vide.
On trouvera des exemples de dispositifs connus d'isolation thermique dans les documents US-A-3968831, US-A-3167159, DE-A- 19647567, US-A-5433056, DE-A-1409994, US-A-3920953, SU-A- 2671441, US-A-5014481, US-A-34363224, DE-A-4300839.
Le document US-A-5014481 divulgue un dispositif comprenant un caisson dont le volume interne est divisé en de nombreuses couches ou lames d'air par une série de feuilles flexibles parallèles. Le document indique que le dispositif présente une configuration de conduction thermique lorsque les feuilles sont accolées et au contraire une configuration d'isolation thermique lorsque les feuilles sont séparées. Un tel dispositif, bien que séduisant en théorie car il est censé permettre une commutation entre deux états présentant des propriétés d'isolation thermique différentes par commande de type fluidique, n'a cependant pas connu de réel développement. En effet, il ne présente des propriétés d'isolation thermique réellement intéressantes qu'à la condition de présenter un grand nombre de feuilles souples définissant entre elles un grand nombre de couches ou lames d'air. Un tel dispositif est cependant difficile à réaliser, encombrant et coûteux.
Une autre voie d'investigation pour la réalisation de dispositif d'isolation thermique contrôlée, c'est-à-dire conçue pour modifier sur commande, la conductivité thermique, a été proposée dans les documents US-A-3734172 et WO-A-03/054456.
Le document US-A-3734172, publié en 1973, a proposé un dispositif comprenant un empilement de feuilles souples dont l'écartement est censé être modifié par des forces électrostatiques, lors de l'application de tensions électriques contrôlées entre ces feuilles, à l'aide d'un générateur et d'un commutateur associé.
En pratique, un tel dispositif n'a connu aucun développement industriel conséquent, faute de résultat probant.
Le document WO-A-03/054456 a tenté d'améliorer la situation en proposant un dispositif comprenant un panneau défini par deux cloisons séparées par des entretoises et délimitant une chambre placée à pression ambiante ou en dépression et qui loge une membrane déformable. La membrane est reliée ponctuellement à une première cloison en un point thermiquement isolant. Elle est par ailleurs pincée entre les entretoises et la deuxième cloison. Lorsque des potentiels de polarités opposées sont appliqués sur la membrane et la deuxième cloison alors que des potentiels de même polarité sont appliqués sur la première cloison et sur la membrane, cette dernière est plaquée contre la deuxième cloison. Inversement, lorsque des potentiels de polarités opposées sont appliqués sur la membrane et la première cloison alors que des potentiels de même polarité sont appliqués sur la deuxième cloison et sur la membrane, cette dernière est plaquée contre la première cloison. L'on comprend que la commutation d'état résultante de la membrane permet en théorie de modifier sur commande la conductibilité thermique entre les deux cloisons.
Le document WO-A-03/054456 lui-même a proposé une évolution de ce dispositif, qui comporte un déflecteur en V à la base des entretoises, côté deuxième cloison et des berceaux en U sur la première cloison.
De telles tentatives d'évolution n'ont cependant pas plus permis un réel développement industriel sur ce dispositif.
La désaffection des industriels pour ce produit, malgré la forte demande existante dans le domaine de l'isolation thermique pour bâtiment, provient en grande partie de la complexité du produit, que l'on comprend au simple examen visuel de celui-ci.
Dans ce contexte, la présente invention a maintenant pour objectif de proposer un nouveau dispositif d'isolation thermique qui présente des qualités supérieures à l'état de la technique en termes de coût, industrialisation, efficacité et fiabilité, notamment.
Ce but est atteint dans le cadre de la présente invention grâce à un dispositif d'isolation thermique, notamment pour bâtiment, comprenant au moins un panneau comportant deux parois séparées par une entretoise principale périphérique pour définir une chambre étanche au gaz, et au moins deux films souples disposés dans ladite chambre et adaptés pour être commutés sélectivement entre deux états : l'un de conduction thermique dans lequel lesdits films souples sont au moins partiellement en contact mutuel et l'autre d'isolation thermique dans lequel les films souples sont séparés, sous l'influence de variations de pression au sein de ladite chambre étanche appliquées par des moyens de commande fluidique, caractérisé en ce que dans l'état d'isolation thermique la distance séparant les films souples est inférieure au libre parcours moyen des molécules de gaz occupant le volume défini entre lesdits films souples.
La présente invention concerne également un procédé de gestion d'isolation thermique par contrôle de la pression au sein d'une chambre interne étanche au gaz, d'un panneau comportant deux parois séparées par une entretoise principale périphérique définissant la chambre étanche précitée, et au moins deux films souples disposés dans ladite chambre et adaptés pour être commutés sélectivement entre deux états : l'un de conduction thermique dans lequel lesdits films souples sont au moins partiellement en contact mutuel et l'autre d'isolation thermique dans lequel les films souples sont séparés, sous l'influence de variations de pression au sein de ladite chambre étanche appliquées par des moyens de commande fluidique, caractérisé en ce qu'il comprend les étapes consistant à commuter la pression dans ladite chambre étanche du panneau entre une pression élevée telle que les films sont en contact sur une partie substantielle de leur surface, afin de placer le dispositif dans un état de conduction thermique, et une pression faible telle que la pression p dans des compartiments définis entre les films impose un écart entre les films inférieur à -r^—- , relation dans laquelle
p
k représente la constante de Boltzmann, d représente le diamètre des molécules de gaz et T représente la température absolue, afin de placer le dispositif dans un état d'isolation thermique, la distance séparant les films souples étant inférieure au libre parcours moyen des molécules de gaz occupant le volume défini entre lesdits films souples.
Comme on le verra par la suite, la présente invention permet de disposer de composants d'isolation thermique capables de faire varier leur résistance thermique entre une valeur presque nulle et une valeur très élevée, typiquement près de ou supérieure à 10m2KW pour une épaisseur très faible, par exemple au moins inférieure à 1cm.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
- les figures 1 et 2 annexées représentent, selon des vues schématiques en coupe transversale, deux états d'un dispositif basique d'isolation thermique conforme à la présente invention,
- la figure 3 représente une vue d'un dispositif amélioré conforme à la présente invention, et
- la figure 4 représente une autre variante de dispositif conforme à la présente invention.
On aperçoit sur la figure 1 et les figures suivantes annexées, un panneau d'isolation thermique 100 conforme à la présente invention comprenant deux parois principales 110, 120, séparées par une entretoise principale périphérique 102 pour former une chambre étanche 104.
L'épaisseur de l'entretoise 102 et donc de la chambre 104, considérée perpendiculairement aux parois 110 et 120, est très nettement inférieure aux deux dimensions qui lui sont orthogonales s'étendant parallèlement aux parois 110 et 120.
La chambre 104 est placée en dépression, c'est-à-dire à une pression inférieure à la pression atmosphérique ou laissée à pression atmosphérique. Typiquement, la pression interne de la chambre 104 est de l'ordre de quelques Pascals lorsque ladite chambre 104 est placée en dépression, par exemple de l'ordre de 10 Pa.
La chambre 104 loge au moins deux films 150, 160. Les films 150, 160, sont souples. Ils s'étendent parallèlement aux parois 110,
120, de préférence sensiblement à mi-épaisseur de la chambre 104.
La bordure périphérique des films 150, 160 est fixée, par exemple pincée, dans la masse de l'entretoise périphérique 102, par des moyens qui garantissent l'étanchéité au gaz, à ce niveau.
Les parois principales 110, 120 et/ou les films 150, 160 peuvent être optiquement opaque ou optiquement transparent au moins dans le domaine visible (longueur d'onde de 0,4-0,8μηη). Les films 150, 160 sont avantageusement en matériau peu émissif dans le domaine infrarouge. Ainsi les films 150, 160 ont un coefficient d'émission (défini comme étant le rapport entre l'émission desdits films et l'émission d'un corps noir) inférieur à 0,1 et préférentiellement inférieur à 0,04, pour les longueurs d'onde supérieures à 0,78pm.
Comme on le précisera par la suite, au repos, les deux films 150 et 160 sont séparés et définissent ainsi entre eux des compartiments étanches 158.
La pression au repos dans les compartiments 158 définis entre les films souples 150, 160 est de préférence inférieure à la pression moyenne régnant dans la chambre 104.
Plus précisément, et cette caractéristique de l'invention sera précisée par la suite, dans un état d'isolation thermique tel que schématisé sur la figure 1, la distance dl séparant les films souples 150, 160, est inférieure au libre parcours moyen des molécules de gaz occupant le volume défini entre les films souples 150, 160.
Comme on le précisera par la suite, cette caractéristique permet de disposer d'un dispositif présentant des propriétés d'isolation thermique très élevées sans exiger une épaisseur importante.
Les films 150, 160 étant placés à mi-distance des parois 110, 120, ils divisent la chambre 104 en deux sous chambres 104a et 104b situées respectivement de part et d'autre des compartiments 158.
Par ailleurs, selon l'invention, la chambre 104 est reliée à des moyens de contrôle de pression 170 permettant, par modification de la pression au sein de la chambre 104, de commuter sélectivement le dispositif entre deux états : un état illustré sur la figure 1 d'isolation thermique dans lequel les films souples 150 et 160 sont séparés et un état illustré sur la figure 2 de conduction thermique dans lequel les films souples 150 et 160 sont au moins partiellement en contact mutuel.
Concrètement, la commutation de l'état d'isolation thermique illustré sur la figure 1, à l'état de conduction thermique illustré sur la figure 2, est obtenue par augmentation de la pression au sein de la chambre 104, sous l'effet des moyens 170.
A cette fin, comme on le voit sur la figure 2, de préférence les moyens 170 communiquent avec les deux sous chambres 104a, 104b, composant la chambre 104 et disposées respectivement de part et d'autre des films 150, 160.
Le dispositif conforme à la présente invention présente des propriétés remarquablement supérieures à celles des dispositifs conformes à l'état de la technique grâce à la réduction de conduction thermique obtenue au sein du gaz raréfié présent entre les films souples 150, 160.
En effet, la distance entre les films 150, 160 étant inférieure au libre parcours moyen des molécules de gaz, les chocs intermoléculaires, responsables de la transmission de chaleur dans une conduction classique, sont extrêmement rares dans un dispositif selon la présente invention.
Les chocs n'ont lieu, pour l'essentiel, qu'entre les molécules de gaz et les films 150, 160.
Les films 150, 160 peuvent être maintenus écartés, en position d'isolation thermique, par différents moyens.
Ainsi les films 150, 160 peuvent être maintenus écartés par un chargement électrostatique des films, c'est-à-dire en appliquant un potentiel identique sur les différents films, par rapport au boîtier composant le dispositif, notamment par rapport aux parois 110, 120.
Dans ce cas, le rapprochement des films 150, 160 afin de les commuter en position rapprochée de conduction thermique, peut également être aidé par une commande électrostatique en plaçant les films adjacents à des polarités opposées.
Une variante de commande électrostatique consiste non pas à repousser les films grâce à une force électrostatique répulsive en chargeant les films à un même potentiel, mais en plaquant les films souples déformables 150, 160 contre des films ou plaques supports additionnels grâce à des forces électrostatiques attractives en chargeant les films souples déformables et les films supports associés à des potentiels opposés.
Cependant, de préférence, comme on le voit sur les figures 1 et suivantes annexées, les films souples 150, 160 sont maintenus écartés grâce à des écarteurs 140.
Plus précisément de préférence les écarteurs 140 comprennent des tronçons d'extrémité 142, 144 qui s'appuient sur les surfaces internes des parois 110, 120 et un élément intercalaire 146 médian placé entre les films souples 150, 160. Les films souples 150, 160 sont ainsi pincés entre l'élément intercalaire 146 et l'un des tronçons d'extrémité 142, 144 des écarteurs 140.
Les écarteurs 140 peuvent être ponctuels (formés de plots) ou linéaires (formés de bandes) définissant un treillis parallèles aux films.
Ils peuvent être alignés comme illustré sur les figures 1, 2 et 3 ou décalés comme illustré sur la figure 4.
Le maillage des écarteurs 140 est de préférence fixe.
Dans un assemblage à écarteurs 140 décalés tel qu'illustré figure 4, l'élément intermédiaire 146 n'est pas aligné avec les tronçons d'extrémité 142, 144. Tous les films sont mécaniquement sollicités par les forces de pression.
Dans un assemblage à écarteurs superposés tel qu'illustré sur les figures 1 à 3, seuls les films externes sont sollicités par ces forces. Dans ce dernier cas, les films intermédiaires, sans fonction mécanique, peuvent être beaucoup plus fins et beaucoup plus rapprochés.
Au niveau de la théorie qui est à la base de l'invention, on rappelle que le libre parcours moyen Ipm d'un gaz est inversement proportionnel à la pression et proportionnel à la température (absolue). La théorie cinétique des gaz parfaits conduit à la formule suivante :
Ipm = avec k la constante de Boltzmann (rapport entre constante des gaz parfaits et nombre (d'Avogadro), d le diamètre des molécules de gaz (m), T la température absolue (K) et p la pression du gaz (Pa). A l'aide de cette formule, on peut constater que le Ipm d'un gaz à température ambiante et à pression atmosphérique est de l'ordre de 50nm et qu'il est supérieur à 0,6mm pour une pression de l'ordre de 0, 12Pa .
En négligeant l'impact des écarteurs 140 sur le flux radiatif, le flux de chaleur (W/m2) s'écrit :
φ = (hr + hc) ΔΤ.
Dans les conditions conformes à la présente invention selon lesquelles la distance entre les films souples 150 et 160 est supérieure au libre parcours moyen Ipm, le coefficient d'échange de chaleur caractérisant le transfert entre les deux faces de la lame d'air placée entre les films 150 et 160 s'écrit :
Hc = P |— Fa avec p, la pression du gaz, R la constante des gaz parfaits, M la masse molaire du gaz, γ le rapport entre chaleurs massiques à pression et à volume constant (7/5 en pratique) et Fa le coefficient d'atténuation du transfert thermique aux interfaces (qui traduit en pratique l'efficacité de l'échange entre le gaz et les films et vaut couramment 0,67 pour les cas qui nous intéressent) .
Si l'on s'en tient à un niveau de pression permettant le respect de la condition Ipm très supérieur à l'épaisseur de la lame d'air (soit p=0, 12
Pa pour une lame d'air de 0,6mm), on obtient un coefficient d'échange hc de l'ordre de 0,09 W/m2K.
En reprenant les équations classiques de l'échange radiatif entre deux plans semi infinis en regard l'un de l'autre, pour une différence de température suffisamment faible entre les deux films (en pratique inférieure à 40°C) on peut obtenir une bonne approximation du flux radiatif par l'expression linéaire suivante :
Figure imgf000011_0001
Avec
Ti et T2 représentant la température des deux films 150 et 160,
Tm représentant la température moyenne des deux films,
σ représentant la constante de STEFAN égale à 5,67.10"8W. m"2. K"4 Eeq représentant l'émissivité équivalente des deux films qui s'exprime par
£eq = i£2/( i + £2- i£2) .
Si l'on opte pour des films faiblement émissifs, par exemple avec une émissivité de l'ordre de 4%, on obtient un coefficient d'échange par rayonnement linéarisé hr = φΓ/ΔΤ = 0,12W/m2K.
Ainsi pour un vide de l'ordre de 0,12Pa dans une lame d'air de 0,6mm, on obtient un coefficient d'échange de chaleur total hr + hc de l'ordre de 0,09 W/m2K +0,12W/m2K = 0,21W/m2K.
Sous un vide encore plus poussé, par exemple de l'ordre de 10"3 Pa, la composante conductive hc devient négligeable devant la composante radiative hr. on obtient alors un coefficient d'échange égal au seul coefficient radiatif d'une valeur de 0,12W/m2K avec une épaisseur de composant très faible.
Bien entendu, les écarteurs 140 doivent être adaptés, tant quant à leur matériau constitutif, leur géométrie et leur contact avec les films - un contact ponctuel est préféré -, pour minimiser les ponts thermiques résultants.
Ainsi les entretoises 102 et 140 sont réalisées de préférence en un matériau thermiquement isolant pour ne pas constituer de pont thermique entre les parois 110 et 120. Les entretoises 102, 140, sont formées avantageusement en matériau thermoplastique.
Selon un mode de réalisation particulier conforme à la présente invention, le dispositif comprend un empilement de 4 films métalliques 150, 160, 170, 172, peu émissifs en acier, d'une épaisseur de 1,4mm, séparés par des lames d'air de 0,6 mm, soit une épaisseur totale de 7,4mm.
Les écarteurs 140 sont espacés de 4cm et peuvent être soit ponctuels (section de 1mm x 1mm) soit linéaires (largeur de 1mm).
Le dispositif conforme à la présente invention constitue un composant d'isolation actif. Il peut s'adapter au comportement dynamique du bâtiment et constitue ainsi un pilote pour l'utilisation de l'inertie d'un bâtiment grâce à sa faculté de commuter entre un comportement statique très isolant sur le plan thermique ou au contraire très conducteur et donc capable de transmettre le flux de chaleur.
L'homme de l'art comprendra par ailleurs que grâce à ses propriétés d'isolation thermique dont la performance est indépendante de l'épaisseur, la présente invention permet de réaliser des dispositifs d'isolation thermique ayant un très haut pouvoir d'isolation sans nécessiter une forte épaisseur.
Typiquement la présente invention permet de former un dispositif dont la résistance thermique peut commuter entre par exemple 0,024m2K/W et 80m2K/W pour une épaisseur qui ne dépasse pas 1cm.
Le fonctionnement du dispositif conforme à la présente invention schématisé sur les figures annexées est essentiellement le suivant.
Lorsque la pression appliquée par le moyen 170 au sein de la chambre 104 plaque les deux films 150, 160 l'un contre l'autre à mi- épaisseur de la chambre 104 comme illustré sur la figure 2, le dispositif est placé dans un état de conduction thermique. En effet les films 150, 160, autorisent alors un certain transfert thermique entre eux.
Au contraire, lorsque les films 150 et 160 sont maintenus écartés entre eux comme illustré sur la figure 1, d'une distance inférieure au libre parcours moyen des molécules de gaz présentes dans les compartiments 158, le dispositif est placé dans un état d'isolation thermique.
Les parois 110, 120, composant le panneau 100 peuvent faire l'objet de nombreuses variantes de réalisation.
Les parois 110, 120, peuvent être rigides. En variante, elles peuvent être souples. Dans ce cas, le panneau 100 peut être enroulé, ce qui facilite son transport et son stockage.
Les parois 110, 120 peuvent être réalisées en métal .
Elles peuvent également être réalisées en un matériau composite, par exemple sous forme d'une couche électriquement isolante associée à une couche électriquement conductrice (métal ou matériau chargé de particules électriquement conductrices). De même, lorsqu'une commande électrostatique est utilisée pour contrôler la commutation d'état des films, les films souples 150, 160 sont au moins partiellement électriquement conducteurs pour permettre l'application du champ électrique requis par la génération des forces électrostatiques précitées.
Typiquement, les films souples 150, 160 peuvent être formés d'une feuille de métal souple ou à base de matériau thermoplastique ou équivalent, chargé de particules électriquement conductrices.
Les films souples 150, 160, peuvent ainsi être formés chacun d'une âme électriquement conductrice revêtue sur chacune de ses faces d'un revêtement en matériau électriquement isolant (par exemple un matériau thermoplastique).
Le dispositif conforme à la présente invention permet par exemple de récupérer les apports solaires de parois exposées en hiver ou de refroidir des murs en été quand la fraîcheur extérieure le permet en plaçant le dispositif dans son état thermiquement conducteur illustré sur la figure 2, ou au contraire de le placer dans un état thermiquement isolant en le plaçant dans l'état illustré sur la figure 1.
Comme indiqué précédemment, l'ensemble des composants du dispositif conforme à la présente invention, c'est-à-dire, parois 110, 120 et films 150, 160 peuvent être optiquement transparents. Le dispositif conforme à la présente invention peut ainsi être appliqué sur des parois transparentes.
On notera en particulier que tous les dispositifs conformes à l'état de la technique utilisant des matériaux de cœur, n'autorisent pas une telle propriété de transparence optique.
Les panneaux d'isolation thermique conformes à la présente invention peuvent également jouer un rôle de décoration .
Si l'on applique le dispositif conforme à la présente invention aux parois déperditives d'un bâtiment, on peut moduler l'isolation afin d'optimiser la récupération des apports externes (solaire en hiver, fraîcheur en été). On a alors contrairement au concept actuel de chauffage ou de climatisation, où l'installation intérieure rattrape les pertes ou les gains de chaleur au travers de l'enveloppe, un système qui gère cette perte ou gain de chaleur pour conserver les conditions de confort intérieur souhaitées. Un tel pilotage peut bien entendu être opéré automatiquement à partir de sondes thermiques appropriées.
La présente invention contribue également à maîtriser totalement l'inertie thermique des parois des bâtiments dans des limites jusque-là jamais atteintes.
Bien entendu, la présente invention n'est pas limitée à l'application particulière précédemment évoquée d'isolation des bâtiments. La présente invention qui conduit à une excellente isolation électrique indépendante de l'épaisseur du dispositif et autorisant une épaisseur extrêmement petite permet d'appliquer la présente invention dans un grand nombre de domaines techniques.
La présente invention peut en particulier s'appliquer à des vêtements ou toute autre problématique industrielle demandant une isolation thermique.
Dans le cadre de la présente invention, le dispositif précité peut être disposé sous forme d'un agencement modulaire de plusieurs panneaux 100 conforme à la présente invention juxtaposés côte à côte par leur chant. Il est alors prévu de préférence, pour assurer une parfaite continuité d'isolation, des éléments de recouvrement intégrés dans les parois 110, 120 d'un panneau 100 et adaptés pour chevaucher le panneau adjacent. En variante de tels éléments de recouvrement pourraient être prévus sur des éléments rapportés au niveau des zones de jonction entre deux de tels panneaux 100 adjacents.
On peut également dans le cadre de la présente invention, prévoir une combinaison de plusieurs panneaux conformes à la présente invention empilés pour renforcer l'isolation thermique.
Bien entendu la présente invention n'est pas limitée aux modes de réalisation particuliers qui viennent d'être décrits mais s'étend à toute variante conforme à son esprit.
On a décrit précédemment un dispositif comprenant deux films souples parallèles 150, 160 au sein de la chambre 104. La présente invention n'est cependant pas limitée à ce nombre de deux films et peut comprendre un nombre plus important de films souples empilés parallèlement au sein de la chambre 104. On a par exemple représenté sur la figure 3 annexée une variante de réalisation selon laquelle il est prévu 6 films souples 150, 160, 180, 182, 184 et 186 au sein de la chambre 104.
Le fonctionnement de ce dispositif reste essentiellement identique au fonctionnement précité.
La pression appliquée au sein de la chambre 104 est commutée par les moyens 170 entre deux niveaux : une pression élevée grâce à laquelle tous les films précités 150, 160, 180, 182, 184 et 186 sont accolés et une pression plus faible telle que la distance entre chaque paire de films adjacents est inférieure au libre parcours moyen des molécules de gaz occupant le volume défini entre ces paires de films souples.

Claims

REVENDICATIONS
1. Dispositif d'isolation thermique, notamment pour bâtiments, comprenant au moins un panneau (100) comportant deux parois (110,
120) séparées par une entretoise principale périphérique (102) pour définir une chambre étanche au gaz (104), et au moins deux films souples (150, 160) disposés dans ladite chambre (104) et adaptés pour être commutés sélectivement entre deux états : l'un de conduction thermique dans lequel lesdits films souples (150, 160) sont au moins partiellement en contact mutuel et l'autre d'isolation thermique dans lequel les films souples (150, 160) sont séparés, sous l'influence de variations de pression au sein de ladite chambre étanche (104) appliquées par des moyens de commande fluidique (170), caractérisé en ce que dans l'état d'isolation thermique la distance séparant les films souples (150, 160) est inférieure au libre parcours moyen des molécules de gaz occupant le volume (158) défini entre lesdits films souples (150, 160).
2. Dispositif selon la revendication 1, caractérisé en ce que les films souples (150, 160) sont maintenus écartés par des écarteurs
(140).
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que les écarteurs (140) comprennent des tronçons d'extrémité (142, 144) qui s'appuient sur les surfaces internes des parois (110, 120) et un élément intercalaire (146) médian placé entre les films souples (150, 160).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que l'écartement entre les films souples (150, 160) est contrôlé par des forces électrostatiques.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les parois principales (110, 120) et les films (150, 160) sont optiquement transparents au moins dans le domaine visible.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que les films (150, 160) ont un coefficient d'émission inférieur à 0,1 et préférentiellement inférieur à 0,04, pour les longueurs d'onde supérieures à 0,78pm.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que chaque paire de deux films adjacents (150, 160) définit entre eux des compartiments étanches (158).
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que à l'état séparé des films (150, 160), la pression régnant dans les compartiments définis entre les films (150, 160) est de l'ordre de 0,12 Pa et la distance séparant les films est de l'ordre de 0,6mm.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que les parois (110, 120) sont souples.
10. Procédé de gestion d'isolation thermique par contrôle de la pression au sein d'une chambre interne étanche au gaz (104), d'un panneau (100) comportant deux parois (110, 120) séparées par une entretoise principale périphérique (102) définissant la chambre étanche précitée, et au moins deux films souples (150, 160) disposés dans ladite chambre (104) et adaptés pour être commutés sélectivement entre deux états : l'un de conduction thermique dans lequel lesdits films souples (150, 160) sont au moins partiellement en contact mutuel et l'autre d'isolation thermique dans lequel les films souples (150, 160) sont séparés, sous l'influence de variations de pression au sein de ladite chambre étanche (104) appliquées par des moyens de commande fluidique (170) , caractérisé en ce qu'il comprend les étapes consistant à commuter la pression dans ladite chambre étanche (104) du panneau (100) entre une pression élevée telle que les films (150, 160) sont en contact sur une partie substantielle de leur surface, afin de placer le dispositif dans un état de conduction thermique, et une pression faible telle que la pression p dans des compartiments (158) définis entre les films (150, 160) impose un écart entre les films (150, 160) inférieur à , relation dans laquelle k représente la constante de Boltzmann, d
V2jrds p représente le diamètre des molécules de gaz et T représente la température absolue, afin de placer le dispositif dans un état d'isolation thermique, la distance séparant les films souples (150, 160) étant inférieure au libre parcours moyen des molécules de gaz occupant le volume défini entre lesdits films souples.
PCT/EP2013/062053 2012-06-12 2013-06-11 Dispositif d'isolation thermique WO2013186224A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2014151758A RU2614841C2 (ru) 2012-06-12 2013-06-11 Теплоизоляционное устройство
US14/407,063 US9481994B2 (en) 2012-06-12 2013-06-11 Thermal insulation device
EP13727930.3A EP2859157B1 (fr) 2012-06-12 2013-06-11 Dispositif d'isolation thermique
JP2015516592A JP6009662B2 (ja) 2012-06-12 2013-06-11 断熱装置及び断熱装置を管理する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255495 2012-06-12
FR1255495A FR2991697B1 (fr) 2012-06-12 2012-06-12 Dispositif d'isolation thermique

Publications (1)

Publication Number Publication Date
WO2013186224A1 true WO2013186224A1 (fr) 2013-12-19

Family

ID=46826716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/062053 WO2013186224A1 (fr) 2012-06-12 2013-06-11 Dispositif d'isolation thermique

Country Status (6)

Country Link
US (1) US9481994B2 (fr)
EP (1) EP2859157B1 (fr)
JP (1) JP6009662B2 (fr)
FR (1) FR2991697B1 (fr)
RU (1) RU2614841C2 (fr)
WO (1) WO2013186224A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795994B (zh) * 2014-09-30 2019-07-26 松下知识产权经营株式会社 面板单元
US11110682B2 (en) * 2016-05-13 2021-09-07 The Regents Of The University Of California Solid-gap multilayers for thermal insulation and management
WO2018050517A2 (fr) * 2016-09-13 2018-03-22 Basf Se Dispositif d'isolation enroulable
WO2018118079A1 (fr) * 2016-12-23 2018-06-28 Whirlpool Corporation Structures isolées sous vide ayant des structures de chambre interne
GB2566313A (en) 2017-09-08 2019-03-13 Blue Planet Buildings Uk Ltd Inflatable insulated vacuum panel
KR101944709B1 (ko) * 2018-05-08 2019-02-07 조청환 공동주택 단열 및 방수구조를 위한 환기 제어시스템
KR101954621B1 (ko) * 2018-05-08 2019-05-30 조청환 공동주택 지하주차장 방수구조
KR101944710B1 (ko) * 2018-05-08 2019-04-17 조청환 공동주택 단열 및 방수구조를 위한 환기시스템
KR101954622B1 (ko) * 2018-05-08 2019-03-06 조청환 공동주택 지하주차장 이중 단열 및 방수구조
KR101944712B1 (ko) * 2018-05-08 2019-02-07 조청환 공동주택 지하주차장 방수구조를 위한 저압 단열층 구조
US10941565B1 (en) 2019-08-23 2021-03-09 Climate Shelter LLC Affordable energy efficient and disaster proof residential structures

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671441A (en) 1948-09-10 1954-03-09 Clyde W Harris Variable heat insulating apparatus and solar heating system comprising same
US3156975A (en) * 1959-02-16 1964-11-17 Evacuated Insulation Res Ltd Method of making heat insulating panels
US3167159A (en) 1959-07-30 1965-01-26 Gen Electric Insulating structures with variable thermal conductivity and method of evacuation
DE1409994A1 (de) 1961-08-18 1968-12-05 Nikolaus Laing Wandung mit Einrichtungen zur veraenderlichen Reflexion und/oder Absorption elektromagnetischer Strahlung
US3463224A (en) 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3734172A (en) 1972-01-03 1973-05-22 Trw Inc Electrostatic control method and apparatus
US3920953A (en) 1969-01-08 1975-11-18 Nikolaus Laing Building plates with controllable heat insulation
US3968831A (en) 1970-05-29 1976-07-13 Theodore Xenophou System of using vacuum for controlling heat transfer in building structures, motor vehicles and the like
WO1989009860A1 (fr) * 1988-04-15 1989-10-19 Midwest Research Institute Isolation compacte a vide
US5014481A (en) 1989-03-13 1991-05-14 Moe Michael K Panel configurable for selective insulation or heat transmission
DE4300839A1 (de) 1993-01-14 1994-08-04 Michael Klier Schaltbare Wärmebrücke zur Energiegewinnung bzw. -einsparung
US5433056A (en) 1988-04-15 1995-07-18 Midwest Research Institute Radiation-controlled dynamic vacuum insulation
DE19647567A1 (de) 1996-11-18 1998-05-28 Zae Bayern Schaltbare Vakuumdämmung, insbesondere zum Einsatz für solare Energienutzung
WO2003054456A1 (fr) 2001-12-11 2003-07-03 Sager Ag Isolation thermique commutable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU594274A1 (ru) * 1972-09-14 1978-02-25 Херсонский Филиал Одесского Технологического Института Им.М.В.Ломоносова Светопрозрачное ограждение
US5284692A (en) * 1991-10-24 1994-02-08 Bell Dennis J Electrostatic evacuated insulating sheet
JP3620922B2 (ja) * 1996-06-10 2005-02-16 松下電器産業株式会社 熱伝導率可変の断熱材およびその使用方法
RU2160812C2 (ru) * 1998-09-21 2000-12-20 Севрюгин Сергей Анатольевич Многослойная панель
US7641954B2 (en) * 2003-10-03 2010-01-05 Cabot Corporation Insulated panel and glazing system comprising the same
US20130101789A1 (en) * 2011-10-25 2013-04-25 Neil D. Lubart Thermal resistor material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671441A (en) 1948-09-10 1954-03-09 Clyde W Harris Variable heat insulating apparatus and solar heating system comprising same
US3156975A (en) * 1959-02-16 1964-11-17 Evacuated Insulation Res Ltd Method of making heat insulating panels
US3167159A (en) 1959-07-30 1965-01-26 Gen Electric Insulating structures with variable thermal conductivity and method of evacuation
DE1409994A1 (de) 1961-08-18 1968-12-05 Nikolaus Laing Wandung mit Einrichtungen zur veraenderlichen Reflexion und/oder Absorption elektromagnetischer Strahlung
US3463224A (en) 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3920953A (en) 1969-01-08 1975-11-18 Nikolaus Laing Building plates with controllable heat insulation
US3968831A (en) 1970-05-29 1976-07-13 Theodore Xenophou System of using vacuum for controlling heat transfer in building structures, motor vehicles and the like
US3734172A (en) 1972-01-03 1973-05-22 Trw Inc Electrostatic control method and apparatus
WO1989009860A1 (fr) * 1988-04-15 1989-10-19 Midwest Research Institute Isolation compacte a vide
US5433056A (en) 1988-04-15 1995-07-18 Midwest Research Institute Radiation-controlled dynamic vacuum insulation
US5014481A (en) 1989-03-13 1991-05-14 Moe Michael K Panel configurable for selective insulation or heat transmission
DE4300839A1 (de) 1993-01-14 1994-08-04 Michael Klier Schaltbare Wärmebrücke zur Energiegewinnung bzw. -einsparung
DE19647567A1 (de) 1996-11-18 1998-05-28 Zae Bayern Schaltbare Vakuumdämmung, insbesondere zum Einsatz für solare Energienutzung
WO2003054456A1 (fr) 2001-12-11 2003-07-03 Sager Ag Isolation thermique commutable

Also Published As

Publication number Publication date
RU2014151758A (ru) 2016-08-10
RU2614841C2 (ru) 2017-03-29
EP2859157B1 (fr) 2018-03-07
JP2015526611A (ja) 2015-09-10
JP6009662B2 (ja) 2016-10-19
EP2859157A1 (fr) 2015-04-15
FR2991697B1 (fr) 2014-07-04
US20150176266A1 (en) 2015-06-25
FR2991697A1 (fr) 2013-12-13
US9481994B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
EP2859157B1 (fr) Dispositif d'isolation thermique
EP2859158B1 (fr) Panneau isolant thermique
EP2743679B1 (fr) Dispositif de detection infrarouge
EP1035017B1 (fr) Procédé de simulation des flux thermiques externes absorbés en vol par les éléments radiatifs extérieurs d'un engin spatial et engin spatial pour la mise en oeuvre de ce procédé
FR2977937A1 (fr) Detecteur bolometrique a performances ameliorees
Wang et al. Hybrid solar absorber–emitter by coherence‐enhanced absorption for improved solar thermophotovoltaic conversion
EP3477280B1 (fr) Source de rayonnement infrarouge modulable
CA2637645A1 (fr) Moyen thermoelectrique et structure de type tissu integrant un tel moyen
WO2013079855A1 (fr) Detecteur infrarouge a base de micro-planches bolometriques suspendues
WO1996027271A1 (fr) Element de chauffage electrique du type par convection ou par convection et radiation
WO2012131267A1 (fr) Pile à combustible comportant un empilement de cellules et de plaques conductrices bipolaires
WO2011120981A1 (fr) Dispositif de controle thermique d'un tube a collecteur rayonnant
EP2366845A1 (fr) Procédé d'isolation thermique active et dispositif pour la mise en oeuvre du procédé
FR3108130A1 (fr) Mur trombe presentant une paroi de stockage thermique et une couverture transparente
EP3334032A1 (fr) Structure de conversion thermophotovoltaïque
FR2945857A1 (fr) Dispositif permettant de concentrer les rayons solaires pour chauffer un fluide
Latreche et al. Optimisation énergétique d’un bâtiment résidentiel autoproduite à Biskra à travers ses caractéristiques matérielles
EP1496320A1 (fr) Capteur thermique solaire plan de faible épaisseur
WO2017032821A1 (fr) Convertisseur thermoelectrique thermiquement transparent
EP2992271A1 (fr) Dispositif de chauffage et/ou de rafraichissement a paroi ayant un capteur thermique solaire et un element de stockage d'energie thermique
FR3047550B1 (fr) Panneau solaire
WO2022053464A1 (fr) Convertisseur d'énergie à partir d'au moins une source d'émission radiative, comprenant un plateau ajouré à faces horizontales, en rotation à l'horizontal dans une enveloppe cylindrique de confinement
EP3644698A1 (fr) Systeme de gestion de temperature et de generation d'un flux d'air dans une enveloppe electrique
FR3083301A1 (fr) Bloc de chauffage assemble par brasage
FR3083300A1 (fr) Bloc de chauffage electrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13727930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14407063

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015516592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014151758

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013727930

Country of ref document: EP