WO2013185700A1 - 一种移动终端及其充电装置 - Google Patents

一种移动终端及其充电装置 Download PDF

Info

Publication number
WO2013185700A1
WO2013185700A1 PCT/CN2013/080214 CN2013080214W WO2013185700A1 WO 2013185700 A1 WO2013185700 A1 WO 2013185700A1 CN 2013080214 W CN2013080214 W CN 2013080214W WO 2013185700 A1 WO2013185700 A1 WO 2013185700A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
circuit
thermoelectric conversion
voltage stabilizing
conversion layer
Prior art date
Application number
PCT/CN2013/080214
Other languages
English (en)
French (fr)
Inventor
刘克
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013185700A1 publication Critical patent/WO2013185700A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to the field of communication terminal equipment, and in particular, to a mobile terminal and a charging device thereof
  • Embodiments of the present invention provide a mobile terminal and a charging device thereof, which are configured to absorb the working heat of the mobile terminal to charge the battery.
  • An embodiment of the present invention provides a charging apparatus for a mobile terminal, including: a voltage stabilizing circuit and a thermoelectric conversion layer circuit disposed on an inner wall of the outer casing of the mobile terminal;
  • thermoelectric conversion layer circuit a positive pole of an output end of the thermoelectric conversion layer circuit is connected to a positive pole of an input end of the voltage stabilizing circuit, and a negative pole of an output end of the thermoelectric conversion layer circuit is connected to a negative pole of an input end of the voltage stabilizing circuit;
  • An anode of an output end of the voltage stabilizing circuit is connected to a positive pole of a battery of the mobile terminal,
  • the charging device further includes: a heat insulation layer disposed between the inner wall of the outer casing of the mobile terminal and the thermoelectric conversion layer circuit.
  • the heat insulating layer is made of a porous material, and the porous material comprises: a foam material and a fiber material.
  • the thermoelectric conversion layer circuit uses a semiconductor thermoelectric conversion element or a thermocouple element.
  • the voltage stabilizing circuit is a direct current-direct current (DC-DC) circuit, and a control end of the DC-DC circuit is modulated by a pulse width in the mobile terminal (Pulse Width Modulation) , PWM ) signal is controlled.
  • the embodiment of the present invention further provides a mobile terminal, including a charging device, where the charging device includes: a voltage stabilizing circuit and a thermoelectric conversion layer circuit disposed on an inner wall of the outer casing of the mobile terminal;
  • thermoelectric conversion layer circuit a positive pole of an output end of the thermoelectric conversion layer circuit is connected to a positive pole of an input end of the voltage stabilizing circuit, and a negative pole of an output end of the thermoelectric conversion layer circuit is connected to a negative pole of an input end of the voltage stabilizing circuit;
  • the positive electrode of the output end of the voltage stabilizing circuit is connected to the positive electrode of the battery of the mobile terminal.
  • the charging device further includes: an inner wall of the outer casing of the mobile terminal and the thermoelectric conversion layer circuit Insulation between the layers.
  • the insulating layer is made of a porous material, and the porous material comprises: a foam material and a fibrous material.
  • thermoelectric conversion layer circuit uses a semiconductor thermoelectric conversion element or a thermocouple element.
  • voltage stabilizing circuit is a direct current to direct current (DC-DC) circuit, and the control end of the DC-DC circuit is controlled by a pulse width modulation (PWM) signal in the mobile terminal.
  • DC-DC direct current to direct current
  • PWM pulse width modulation
  • the amount of conversion into electrical energy and recharging back into the battery of the mobile terminal reduces the waste of battery energy and prolongs the battery life, and also reduces the temperature of the outer casing of the battery product during operation, so that the user is long When using the mobile terminal, the time does not feel too fast or too high temperature rise, which improves the user experience.
  • thermoelectric conversion layer disposed on an inner wall of a casing of a mobile terminal according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic circuit diagram of a charging device of a mobile terminal according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a principle of a thermocouple device circuit according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of connection of a DC-DC circuit according to Embodiment 1 of the present invention.
  • Figure 5 is a schematic view showing a heat insulating layer disposed between an inner wall of a casing of a mobile terminal and a thermoelectric conversion layer circuit in Embodiment 1 of the present invention.
  • a charging device for a mobile terminal includes the following components: a voltage stabilizing circuit 21, and a thermoelectric conversion layer circuit 22 disposed on an inner wall of the casing of the mobile terminal as shown in FIG. ,
  • the anode of the output end of the thermoelectric conversion layer circuit 22 is connected to the anode of the input end of the voltage stabilizing circuit 21, the cathode of the output end of the thermoelectric conversion layer circuit 22 is connected to the cathode of the input end of the voltage stabilizing circuit 21;
  • the anode of the output terminal is connected to the anode of the mobile terminal battery, and the stabilization
  • thermoelectric conversion layer circuit 22 absorbs heat generated by the mobile terminal and converts it into a voltage output, the voltage outputted by the thermoelectric conversion layer circuit 22 is input to the voltage stabilizing circuit 21, and the steady voltage is outputted by the voltage stabilizing circuit 21 to move The terminal battery is charged.
  • the thermoelectric conversion layer circuit 22 can employ a semiconductor thermoelectric conversion element such as a silicon-based thermoelectric conversion element, or a thermocouple element.
  • the working principle of the thermocouple element is as follows: As shown in Fig. 3, when the conductors or semiconductor ends of two different types (N-type thermoelectric conversion material and P-type thermoelectric conversion material) are combined and placed in a high temperature state, the other end When the circuit is opened and given a low temperature, since the thermal excitation at the high temperature end is strong, the hole and electron concentrations are also higher than the low temperature end. Under the carrier concentration gradient, holes and electrons diffuse toward the low temperature end, thereby Low temperature open end forms an electric potential Poor.
  • thermoelectric conversion materials such as tantalum and copper, iron and copper nickel, platinum rhodium, and platinum.
  • the voltage stabilizing circuit 21 can be a DC-DC circuit. As shown in FIG. 4, the control terminal in the DC-DC circuit is controlled by a PWM signal in the mobile terminal, and the weak current input from the thermoelectric conversion layer circuit is converted into a constant current. Output, charging the battery of the mobile terminal in a trickle manner.
  • the charging device further includes: a heat insulating layer disposed between the inner wall of the outer casing of the mobile terminal and the thermoelectric conversion layer circuit as shown in FIG. 5, and the heat generated by the mobile terminal is maintained inside the mobile terminal.
  • the heat insulating layer is made of a porous material including: a foam material, a fiber material, and the like.
  • a mobile terminal includes a charging device, and the charging device includes: a voltage stabilizing circuit and a thermoelectric conversion layer circuit disposed on an inner wall of the outer casing of the mobile terminal, wherein
  • the anode of the output end of the thermoelectric conversion layer circuit is connected to the anode of the input end of the voltage stabilizing circuit
  • the cathode of the output end of the thermoelectric conversion layer circuit is connected to the cathode of the input end of the voltage stabilizing circuit
  • the anode of the voltage regulator circuit and the battery of the mobile terminal The positive pole is connected, and the negative pole of the output end of the voltage stabilizing circuit is connected to the negative pole of the battery of the mobile terminal.
  • the charging device further comprises: a heat insulation layer disposed between the inner wall of the outer casing of the mobile terminal and the thermoelectric conversion layer circuit to maintain heat generated by the mobile terminal inside the mobile terminal.
  • the charging device included in the mobile terminal of the present embodiment is the same as the charging device of the first embodiment, it will not be described herein.
  • a heat insulating layer is attached to the inner side of the mobile terminal casing. This allows the heat to be left as much as possible inside the mobile terminal, and there is no high temperature rise on the mobile terminal casing to enhance the user experience.
  • the embodiment of the present invention further needs to attach a layer of heat absorbing material on the outer side of the heat insulating layer, that is, a thermoelectric conversion layer circuit, and the thermoelectric conversion layer circuit works on the mobile terminal.
  • the heat in it is fully collected and converted into electrical energy. Due to this conversion by thermal energy
  • the voltage coming up is relatively low, and the current is not too large.
  • a simple DC-DC circuit is needed to stabilize the voltage and then charge the terminal battery. Therefore, it not only reduces battery energy waste, but also prolongs battery life.
  • the amount of conversion into electrical energy and recharging back into the battery of the mobile terminal reduces the waste of battery energy and prolongs the battery life, and also reduces the temperature of the outer casing of the battery product during operation, so that the user is long When using the mobile terminal, the time does not feel too fast or too high temperature rise, which improves the user experience.

Abstract

一种移动终端及其充电装置。充电装置包括:稳压电路(21)和设置在移动终端的外壳内壁上的热电转换层电路(22),其中,热电转换层电路(22)的输出端的正极与稳压电路(21)的输入端的正极相连,热电转换层电路(22)的输出端的负极与稳压电路(21)的输入端的负极相连;以及稳压电路(21)的输出端的正极与移动终端的电池的正极相连,稳压电路(21)的输出端的负极与移动终端的电池的负极相连。移动终端包括上述充电装置。采用上述移动终端和充电装置,既减少了电池能量浪费,又延长了电池续航时间,而且提高了用户体验。

Description

一种移动终端及其充电装置
技术领域
本发明涉及通讯终端设备技术领域, 尤其涉及一种移动终端及其充电装
背景技术
目前, 移动终端的发展已经进入了智能移动终端时代, 比如, 智能手机, 展幕越来越大, 功能也越来越多, 电池也越来越大, 功耗也越来越高。 尤其 是在打电话, 上网冲浪的时候, 很多移动终端会局部发热, 即, 造成了用户 体验的下降, 又浪费了电池能量。 相关技术中还没有发现可以对手机自身产 生的热量进行收集和二次利用的方案, 仅仅是将外界的热能转换成电能来对 终端充电, 比如, 太阳能充电等。
发明内容
本发明实施例提供一种移动终端及其充电装置, 实现吸收移动终端工作 热量以给自身电池充电。 本发明实施例提供一种移动终端的充电装置, 包括: 稳压电路和设置在 所述移动终端的外壳内壁上的热电转换层电路; 其中,
所述热电转换层电路的输出端的正极与所述稳压电路的输入端的正极相 连, 所述热电转换层电路的输出端的负极与所述稳压电路的输入端的负极相 连; 以及
所述稳压电路的输出端的正极与所述移动终端的电池的正极相连, 所述
可选地, 所述充电装置还包括: 设置在所述移动终端的外壳内壁与所述 热电转换层电路之间的隔热层。
可选地, 所述隔热层由多孔材料制成, 所述多孔材料包括: 泡沫材料和 纤维材料。 可选地,所述热电转换层电路釆用半导体热电转换元件或者热电偶元件。 可选地, 所述稳压电路为直流转直流 ( Direct Current-Direct Current, DC-DC ) 电路, 所述 DC-DC 电路中的控制端由所述移动终端中的脉冲宽度 调制 (Pulse Width Modulation, PWM )信号进行控制。
本发明实施例还提供一种移动终端, 包括充电装置, 其中, 所述充电装 置包括: 稳压电路和设置在移动终端的外壳内壁上的热电转换层电路;
所述热电转换层电路的输出端的正极与所述稳压电路的输入端的正极相 连, 所述热电转换层电路的输出端的负极与所述稳压电路的输入端的负极相 连; 以及
所述稳压电路的输出端的正极与所述移动终端的电池的正极相连, 所述 可选地, 所述充电装置还包括: 设置在所述移动终端的外壳内壁与所述 热电转换层电路之间的隔热层。
可选地, 所述隔热层由多孔材料制成, 所述多孔材料包括: 泡沫材料和 纤维材料。
可选地,所述热电转换层电路釆用半导体热电转换元件或者热电偶元件。 可选地, 所述稳压电路为直流转直流(DC-DC ) 电路, 所述 DC-DC 电 路中的控制端由移动终端中的脉冲宽度调制 (PWM )信号进行控制。
量尽可能多的转换成电能再充回到移动终端的电池里, 既减少了电池能量浪 费, 又延长了电池续航时间, 而且, 还能降低电池产品在工作时候的外壳温 度, 使用户在长时间使用该移动终端时也不会觉得有过快或者过高的温升, 提高了用户体验。
附图概述 图 1 为本发明实施例 1中设置在移动终端的外壳内壁上的热电转换层电 路示意图;
图 2 为本发明实施例 1中移动终端的充电装置的电路连接示意图; 图 3 为本发明实施例 1中热电偶元件电路的原理示意图;
图 4 为本发明实施例 1中 DC-DC电路的连接示意图;
图 5 为本发明实施例 1中设置在移动终端的外壳内壁与热电转换层电路 之间的隔热层的示意图。
本发明的较佳实施方式
以下结合附图对本发明实施例进行详细说明。 需要说明的是, 在不冲突 的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例 1
本实施例中, 如图 2所示, 一种移动终端的充电装置包括以下组成部分: 稳压电路 21、 以及如图 1所示设置在移动终端的外壳内壁上的热电转换层电 路 22, 其中,
热电转换层电路 22的输出端的正极与稳压电路 21的输入端的正极相连, 所述热电转换层电路 22的输出端的负极与所述稳压电路 21的输入端的负极 相连; 以及稳压电路 21的输出端的正极与移动终端电池的正极相连, 所述稳
热电转换层电路 22吸收移动终端产生的热量并转换为电压输出,所述热 电转换层电路 22输出的所述电压输入到所述稳压电路 21 , 由所述稳压电路 21输出稳定电压给移动终端电池充电。
该热电转换层电路 22可以釆用半导体热电转换元件, 比如, 硅基热电转 换元件, 或者, 还可以釆用热电偶元件。 热电偶元件的工作原理是: 如图 3 所示, 当将两种不同类型 (N型热电转换材料和 P型热电转换材料) 的导体 或者半导体的一端结合并将其置于高温状态, 另一端开路并给以低温时, 由 于高温端的热激发作用较强, 空穴和电子浓度也比低温端高, 在这种载流子 浓度梯度的驱动下, 空穴和电子向低温端扩散, 从而在低温开路端形成电势 差。 两种不同类型的热电转换材料可以有很多种选择, 比如, 锑和铜、 铁和 铜镍、 铂铑和铂等。
该稳压电路 21可以为 DC-DC电路, 如图 4所示, DC-DC电路中的控制 端由移动终端中的 PWM信号进行控制, 将热电转换层电路输入的弱电流转 换成恒定的电流输出, 以涓流的方式为移动终端的电池充电。
可选地, 该充电装置还包括: 如图 5所示, 设置在移动终端的外壳内壁 与热电转换层电路之间的隔热层, 将移动终端产生的热量保持在移动终端内 部。 隔热层由多孔材料制成, 该多孔材料包括: 泡沫材料和纤维材料等。
实施例 2
本实施例中, 一种移动终端包括充电装置, 该充电装置包括: 稳压电路 和设置在移动终端的外壳内壁上的热电转换层电路, 其中,
热电转换层电路输出端的正极与稳压电路输入端的正极相连, 所述热电 转换层电路的输出端的负极与所述稳压电路的输入端的负极相连; 以及稳压 电路输出端的正极与移动终端电池的正极相连, 所述稳压电路的输出端的负 极与所述移动终端的电池的负极相连。
可选地, 该充电装置还包括: 设置在移动终端的外壳内壁与热电转换层 电路之间的隔热层, 将移动终端产生的热量保持在移动终端内部。
由于本实施例的移动终端中所包含的充电装置与实施例 1的充电装置相 同, 故此处不再赘述。
本发明实施例中, 为了确保移动终端在工作时, 由芯片和电池产生的热 量不至于很快通过移动终端外壳散到空气中, 在移动终端外壳的内侧贴上隔 热层。 这样就可以把热量尽可能多的留在移动终端内部, 移动终端外壳上也 不会出现很高的温升, 以提高用户体验。
为了将这些留在手机内部的热量转换成电能, 本发明实施例在隔热层的 外侧还需要再贴上一层吸热材料, 即, 热电转换层电路, 该热电转换层电路 将移动终端工作中的热量充分收集起来, 转换成电能。 由于这种由热能转换 过来的电压比较低, 电流也不会很大, 需用一个简单的 DC-DC电路, 将这种 电压稳定升高后就可以给终端电池充电了。 因此, 既减少了电池能量浪费, 又延长了电池续航时间。
通过具体实施方式的说明, 应当可对本发明实施例为达成预定目的所釆 取的技术手段及功效得以更加深入且具体的了解, 然而所附图示仅是提供参 考与说明之用, 并非用来对本发明加以限制。
工业实用性
量尽可能多的转换成电能再充回到移动终端的电池里, 既减少了电池能量浪 费, 又延长了电池续航时间, 而且, 还能降低电池产品在工作时候的外壳温 度, 使用户在长时间使用该移动终端时也不会觉得有过快或者过高的温升, 提高了用户体验。

Claims

权 利 要 求 书
1、 一种移动终端的充电装置, 包括: 稳压电路和设置在所述移动终端的 外壳内壁上的热电转换层电路; 其中,
所述热电转换层电路的输出端的正极与所述稳压电路的输入端的正极相 连, 所述热电转换层电路的输出端的负极与所述稳压电路的输入端的负极相 连; 以及
所述稳压电路的输出端的正极与所述移动终端的电池的正极相连, 所述
2、 根据权利要求 1所述的移动终端的充电装置, 还包括: 设置在所述移 动终端的外壳内壁与所述热电转换层电路之间的隔热层。
3、 根据权利要求 2所述的移动终端的充电装置, 其中, 所述隔热层由多 孔材料制成, 所述多孔材料包括: 泡沫材料和纤维材料。
4、 根据权利要求 1所述的移动终端的充电装置, 其中, 所述热电转换层 电路釆用半导体热电转换元件或者热电偶元件。
5、 根据权利要求 1~4中任一项所述的移动终端的充电装置, 其中, 所述 稳压电路为直流转直流(DC-DC ) 电路, 所述 DC-DC 电路中的控制端由所 述移动终端中的脉冲宽度调制 (PWM )信号进行控制。
6、 一种移动终端, 包括充电装置, 其中, 所述充电装置包括: 稳压电路 和设置在所述移动终端的外壳内壁上的热电转换层电路;
所述热电转换层电路的输出端的正极与所述稳压电路的输入端的正极相 连, 所述热电转换层电路的输出端的负极与所述稳压电路的输入端的负极相 连; 以及
所述稳压电路的输出端的正极与所述移动终端的电池的正极相连, 所述
7、 根据权利要求 6所述的移动终端, 其中, 所述充电装置还包括: 设置 在所述移动终端的外壳内壁与所述热电转换层电路之间的隔热层。
8、根据权利要求 7所述的移动终端,其中,所述隔热层由多孔材料制成, 所述多孔材料包括: 泡沫材料和纤维材料。
9、 根据权利要求 6所述的移动终端, 其中, 所述热电转换层电路釆用半 导体热电转换元件或者热电偶元件。
10、 根据权利要求 6~9中任一项所述的移动终端, 其中, 所述稳压电路 为直流转直流(DC-DC ) 电路, 所述 DC-DC 电路中的控制端由所述移动终 端中的脉冲宽度调制 (PWM )信号进行控制。
PCT/CN2013/080214 2013-01-04 2013-07-26 一种移动终端及其充电装置 WO2013185700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013200026407U CN203119517U (zh) 2013-01-04 2013-01-04 一种移动终端及其充电装置
CN201320002640.7 2013-01-04

Publications (1)

Publication Number Publication Date
WO2013185700A1 true WO2013185700A1 (zh) 2013-12-19

Family

ID=48899833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080214 WO2013185700A1 (zh) 2013-01-04 2013-07-26 一种移动终端及其充电装置

Country Status (2)

Country Link
CN (1) CN203119517U (zh)
WO (1) WO2013185700A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490615A (zh) 2018-03-30 2018-09-04 京东方科技集团股份有限公司 Vr一体机
CN108770292B (zh) * 2018-06-11 2020-09-04 Oppo广东移动通信有限公司 一种电子设备及散热组件
CN111200310A (zh) * 2020-02-11 2020-05-26 上海创功通讯技术有限公司 移动终端及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310847A (ja) * 2004-04-16 2005-11-04 Tokyo Gas Co Ltd 熱電変換素子付き携帯電話器
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN101794912B (zh) * 2010-02-11 2012-02-01 广州市云通磁电有限公司 一种耐温圆柱形镍氢电池
CN102437614A (zh) * 2011-12-19 2012-05-02 太仓市同维电子有限公司 节能型便携式电子设备及基于该设备实现能量再利用的方法
CN102570558A (zh) * 2012-03-26 2012-07-11 苏州工业职业技术学院 一种镍氢镍镉电池的智能充电器及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310847A (ja) * 2004-04-16 2005-11-04 Tokyo Gas Co Ltd 熱電変換素子付き携帯電話器
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN101794912B (zh) * 2010-02-11 2012-02-01 广州市云通磁电有限公司 一种耐温圆柱形镍氢电池
CN102437614A (zh) * 2011-12-19 2012-05-02 太仓市同维电子有限公司 节能型便携式电子设备及基于该设备实现能量再利用的方法
CN102570558A (zh) * 2012-03-26 2012-07-11 苏州工业职业技术学院 一种镍氢镍镉电池的智能充电器及其控制方法

Also Published As

Publication number Publication date
CN203119517U (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
US9509174B2 (en) Device for improving endurance of terminal and terminal thereof
KR101539693B1 (ko) 멀티 bms 기동 장치
JP5813135B2 (ja) 移動充電器
CN201260290Y (zh) 用于手持移动设备的散热装置
CN104065145B (zh) 无线充电装置及其充电方法
TW201328241A (zh) 無線通信裝置之供電系統
WO2013185700A1 (zh) 一种移动终端及其充电装置
JP2018509870A (ja) 電流制限保護回路および電子デバイス
CN104917272A (zh) 佩戴式电子设备
EP2709236B1 (en) Uninterrupted power supply circuit and control method therefor
WO2014180368A1 (zh) 终端散热系统及方法
CN105827003A (zh) 一种利用自身功耗发热进行充电的移动终端
RU2649312C2 (ru) Устройство дистанционного управления
CN203721848U (zh) 用于动力锂离子电池模块的低温自加热电路
CN107742974B (zh) 一种放电装置及储能器件放电系统
Mouapi et al. Performance evaluation of wireless sensor node powered by RF energy harvesting
CN105306627A (zh) 利用手机自热充电的手机壳
CN105356570A (zh) 一种移动终端自充电方法及移动终端
CN108616147A (zh) 一种无人机及其太阳能供电电路与方法
JP2011176970A (ja) エネルギー回生機構、及び電子機器
JP5816814B2 (ja) 充電器
CN218449576U (zh) 一种储能启动电源系统
CN201294393Y (zh) 应用于充电电路系统的过电压保护电路与具有过电压保护功能的充电电路
KR20050089645A (ko) 이동통신단말기의 냉각 구조와 이를 이용한 충전 장치 및방법
CN203119540U (zh) 一种散热性能好的充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804597

Country of ref document: EP

Kind code of ref document: A1