WO2013183873A1 - 폴리에스테르 수지 및 이의 제조 방법 - Google Patents

폴리에스테르 수지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2013183873A1
WO2013183873A1 PCT/KR2013/004452 KR2013004452W WO2013183873A1 WO 2013183873 A1 WO2013183873 A1 WO 2013183873A1 KR 2013004452 W KR2013004452 W KR 2013004452W WO 2013183873 A1 WO2013183873 A1 WO 2013183873A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
zinc
reaction
compound
esterification reaction
Prior art date
Application number
PCT/KR2013/004452
Other languages
English (en)
French (fr)
Inventor
김지현
이유진
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to ES13800650T priority Critical patent/ES2703175T3/es
Priority to CN201380027562.9A priority patent/CN104334608B/zh
Priority to US14/405,189 priority patent/US9267000B2/en
Priority to EP13800650.7A priority patent/EP2857433B1/en
Priority to JP2015515934A priority patent/JP6408981B2/ja
Publication of WO2013183873A1 publication Critical patent/WO2013183873A1/ko
Priority to HK15105614.8A priority patent/HK1205164A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/863Germanium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Definitions

  • the present invention relates to a polyester resin and a method for producing the same. More specifically, the present invention relates to a polyester resin exhibiting physical properties such as high heat resistance, chemical resistance and layer resistance, and having excellent appearance characteristics and high airtightness, and a method for producing such a polyester resin.
  • polyester resins obtained by reacting aromatic and aliphatic dicarboxylic acids with a dialyl compound have excellent physical and chemical properties, as well as solubility and flexibility in general solvents, adhesion to a wide range of materials, and coating workability. , It is used for various purposes such as film, adhesive.
  • polyesters lacked chemical resistance against various materials, for example, surfactants, etc., which are exposed to a lot in the real life, and have insufficient color or appearance characteristics to be used for certain purposes, and insufficient layer strength.
  • a method of applying various starting materials, monomers or additives, or the like and mixing with other resins in the synthesis process in order to solve the problem of the polyester, a method of applying various starting materials, monomers or additives, or the like and mixing with other resins in the synthesis process.
  • synthetic fibers or synthetic resin products previously obtained from polyester have a yellow appearance, and methods for using additives such as cobalt-based colorants have generally been used to hide or neutralize these appearance characteristics.
  • the reaction yield is increased by using a secondary alcohol. It was not easy, and there was a problem that the degree of polymerization of the synthesized resin was also hardly improved.
  • the polyester resin synthesized in this manner has a problem that it does not sufficiently secure the physical properties such as heat resistance, chemical resistance and impact resistance more than an appropriate level, or does not have an appropriate appearance characteristics such as color or transparency.
  • the present invention is to provide a polyester resin exhibiting physical properties such as high heat resistance, chemical resistance and layer resistance, and having excellent appearance characteristics and high airtightness.
  • the present invention can provide a method for producing a polyester resin which can provide a polyester resin having improved physical properties and excellent appearance properties while improving the efficiency of polymerization reaction and increasing the residual ratio in the final product of the used raw materials. will be.
  • the present invention provides a residue of a dicarboxylic acid component containing terephthalic acid; And residues of a dial component comprising 5 to 60 mole% of isosorbide, 10 to 80 mole3 ⁇ 4 of cyclonucleic acid dimethanol, and a balance of other diul compound, having an intrinsic viscosity of 0.5 to 1.0 dl / g, ASTM It provides a polyester resin having an oxygen permeability of less than 20 cc * mm / (m 2 * day * atm) according to D 3985.
  • the present invention in the presence of an esterification reaction catalyst containing a zinc-based compound, di-diuretic component and terephthalic acid containing 5 to 60 mol% isosorbide, 10 to 80 mol% cyclohexane dimethanol and the remaining amount of other diol compounds Esterifying the dicarboxylic acid component comprising a; remind Adding a phosphorus stabilizer at the time when the esterification reaction is 80% or more; And it provides a method for producing the polyester resin comprising the step of polycondensation reaction of the esterification reaction product.
  • polyester resin and a method of preparing the polyester resin according to specific embodiments of the present invention will be described in more detail.
  • ASTM Polyester resins having an oxygen permeability of less than 20 ccW (m 2 * day * atm) according to D 3985 can be provided. .
  • isosorbide is a secondary alcohol exhibiting low reactivity
  • polyester resins prepared using the same may improve physical properties such as heat resistance, but if used, participate in esterification reaction.
  • an excess of isosorbide is generated and the synthesis product has a low degree of polymerization, and thus it is not easy to provide a polyester resin having stratified layer strength and airtightness.
  • the present inventors proceed with a study on the synthesis of polyester with improved physical properties, as shown in the production method described later, using an esterification catalyst containing a zinc-based compound, at the end of the esterification reaction ,
  • an esterification catalyst containing a zinc-based compound for example, when the reaction resulted in more than 80% of the reaction, when the resultant of the esterification reaction was polycondensed by adding a phosphorus-based stabilizer to the reaction solution, it exhibited high heat resistance, chemical resistance and layer resistance, and exhibited excellent appearance characteristics and high airtightness. It was confirmed through experiments that a polyester resin having a ( ⁇ ⁇ ) can be provided and completed the invention.
  • the polyester resin provided by the manufacturing method to be described later may include a variety of control of the content of isosorbide, which is a relatively low secondary alcohol, in particular, in a relatively high content Including isosorbide, it is possible to secure physical properties applicable to commercial products. '
  • the reaction materials have a high degree of polymerization within a short reaction time. It is possible to form an intermediate product and a final reaction product, so that the polyester resin can have a high degree of polymerization, excellent pseudo-characteristics and high airtightness.
  • the polyester resin may have high viscosity and excellent impact strength with high heat resistance, and may have low oxygen permeability due to its molecular structural features.
  • the oxygen permeability according to ASTM D 3985 of the polyester resin may be less than 20 cc * mm / (m 2 * day * atm).
  • polyester resins previously known were synthesized or used by adding various additives or dyes in order to improve appearance characteristics or transparency, but the polyester resins may be commercialized without additional additives or dyes. Characteristics and. Transparency can be shown.
  • the polyester resin In the synthesis of the polyester resin, the amount of unreacted raw material that does not participate in the reaction is relatively small and may exhibit high reaction efficiency and degree of polymerization. Accordingly, the polyester resin may have an intrinsic viscosity of 0.5 to 1.0 dl / g.
  • the polyester resin is a residue of a dicarboxylic acid component containing terephthalic acid; And residues of diol components, including isosorbide, cyclonucleic acid dimethanol, and residual diol compounds.
  • each of the 'residue' of the dicarboxylic acid component or the 'residue' of the diol component is derived from a dicarboxylic acid component in a polyester formed of esterification reaction or condensation polymerization reaction. It means a part or a part derived from the diol component.
  • the 'dicarboxylic acid component' is a dicarboxylic acid such as terephthalic acid, alkyl esters thereof monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester such as lower alkyl esters having 1 to 4 carbon atoms) and / or their It is used to include acid anhydride, and may react with a diol component to form a dicarboxylic acid moiety such as a terephthaloyl moiety.
  • the dicarboxylic acid component used for synthesizing the polyester includes terephthalic acid, heat resistance, chemical resistance or weather resistance of the polyester resin produced (for example, prevention of molecular weight decrease or sulfur change due to UV), etc.
  • the physical properties of can be improved.
  • the dicarboxylic acid component may further include an aromatic dicarboxylic acid component, an aliphatic dicarboxylic acid component, or a mixture thereof as other dicarboxylic acid components.
  • 'other dicarboxylic acid component' means a component other than terephthalic acid among the dicarboxylic acid components.
  • the aromatic dicarboxylic acid component may be an aromatic dicarboxylic acid having 8 to 20 carbon atoms, preferably 8 to 14 carbon atoms, or a mixture thereof.
  • the aromatic dicarboxylic acid include isophthalic acid, naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, diphenyl dicarboxylic acid, 4,4 '′ stilbendicarboxylic acid, 2, 5-furanedicarboxylic acid, 2, 5-thiophene dicarboxylic acid, and the like, but specific examples of the aromatic dicarboxylic acid are not limited thereto.
  • the aliphatic dicarboxylic acid component may be an aliphatic dicarboxylic acid component having 4 to 20 carbon atoms, preferably 4 to 12 carbon atoms, or a mixture thereof.
  • Examples of the aliphatic dicarboxylic acid include cyclonucleic acid dicarboxylic acids such as 1,4-cyclonucleic acid dicarboxylic acid, 1,3-cyclonucleic acid dicarboxylic acid, phthalic acid, sebacic acid, succinic acid, isodecyl succinic acid, Although there are linear, branched or cyclic aliphatic dicarboxylic acid components such as maleic acid, fumaric acid, adipic acid, glutaric acid, and azelaic acid, specific examples of the aliphatic dicarboxylic acid are not limited thereto.
  • the dicarboxylic acid component is 50 to 100 mol% of terephthalic acid, preferably 70 to 100 mol 3 ⁇ 4; And 0 to 50 moles 3 ⁇ 4>, preferably 0 to 30 mole%, of at least one dicarboxylic acid selected from the group consisting of aromatic dicarboxylic acids and aliphatic dicarboxylic acids. If the content of terephthalic acid in the dicarboxylic acid component is too small or too large, physical properties such as heat resistance, chemical resistance or weather resistance of the polyester resin may be lowered.
  • the diol component (diol component) used in the synthesis of the polyester may include 5 to 60 mol% isosorbide, 10 to 80 mol% cyclonucleic acid dimethanol, and the remaining amount of other diol compounds.
  • the diol component includes isosorbide (1,4: 3,6-dianhydroglucitol)
  • isosorbide (1,4: 3,6-dianhydroglucitol not only the heat resistance of the polyester resin produced may be improved, but also physical properties such as chemical resistance and chemical resistance may be improved.
  • cyclohexane dimethyl methane for example, 1,2-cyclonucleic acid dimethane, 1,3-cyclonucleic acid dimethane or 1,4-cyclonucleic acid dimethane
  • the interlaminar strength of the polyester resin to be produced may increase significantly.
  • the diol component may further include other diol components in addition to the isosorbide and cyclohexane dimethane.
  • the 'other diol component' refers to a diol component other than the isosorbide and cyclohexane dimethane, and may be, for example, an aliphatic diol, an aromatic diol or a combination thereof.
  • the aromatic diol may include an aromatic diol compound having 8 to 40 carbon atoms, preferably 8 to 33 carbon atoms.
  • aromatic dialkyl compounds include polyoxyethylene- (2.0) -2, 2-bis (4-hydroxyphenyl) propane, polyoxypropylene- (2.0) -2,2-bis (4-hydroxyphenyl) Propane,
  • the aliphatic diol may include an aliphatic diol compound having 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms.
  • Examples of such aliphatic diol compounds include ethylene glycol, diethylene glycol, triethylene glycol, propanediol (1,2-propanediol, 1,3-propanedi, etc.), 1,4-butanedi, pentanedi, and nucleic acid diols.
  • Neopentyl glycol (2,2—dimethyl-1,3-propanediol), 1,2-cyclonucleic acid di, 1,4-cyclonucleic acid di, 1,2-cyclonucleic acid Linear, branched, or cyclic aliphatic diol components such as dimethane, 1,3-cyclonucleic acid dimethane, 1,4-cyclonucleic acid dimethanol, tetramethylcyclobutanediol, and the like, but specific examples of aliphatic diol compounds include It is not limited to this.
  • the diol component of the polyester resin may include 5 to 60 mol%, preferably 8 to 45 mol% isosorbide. If the content of isosorbide in the diol component is less than 5 mol%, the heat resistance or chemical resistance of the polyester resin to be prepared may be insufficient, and the melt viscosity characteristics of the polyester resin may not appear. In addition, when the content of the isosorbide exceeds 60 mol%, the appearance or yellowing of the polyester resin or product may be degraded.
  • the polyester resin is a central metal atom of the total resin It can contain 1 to 100 ppm of zinc-based catalyst and lOppm to 300 ppm of phosphorus stabilizer on the basis.
  • a phosphorus-based stabilizer may be used in the synthesis of the polyester resin, and thus, the polyester resin may contain 100 ppm to 300 ppm, preferably 20 ppm to 200 ppm, in the phosphorus stabilizer.
  • Specific examples of such phosphorus stabilizers include phosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, triethyl phosphono acetate, or a combination of two or more thereof.
  • the polyester resin may include 1 to 100 ppm of zinc-based catalyst on the basis of the center metal atom of all the resins.
  • zinc-based catalysts include zinc acetate, zinc acetate dihydrate, zinc chloride, zinc sulfate, zinc sulfide, zinc carbonate, zinc citrate, zinc gluconate or mixtures thereof.
  • the polyester resin may include a polycondensation catalyst in an amount of 1 to 100 ppm based on the center metal atom of the total resin.
  • titanium compound examples include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate tetrabutyl titanate, polybutyl titanate, 2-ethylnuclear silt titanate, octylene glycol titanate and lactate titanate.
  • nate and triethane include amine titanate, acetylacetonate titanate, ethyl acetoacetic ester titanate, isostearyl titanate, titanium dioxide, titanium dioxide / silicon dioxide copolymer, titanium dioxide / zirconium dioxide copolymer, and the like. can do.
  • germanium compound is germanium dioxide (germanium dioxide, Ge0 2), germanium 1 titanium tetrachloride (germanium tetrachloride, GeCl 4), germanium ethylene cock seed (germanium ethyl eneglycoxi de), germanium acetate (germanium acetate), these Used copolymers, these A mixture, etc. may be mentioned.
  • germanium dioxide may be used, and such germanium dioxide may be either crystalline or amorphous, and glycol solubility may also be used.
  • an esterification catalyst comprising a zinc-based compound, 5 to 60 moles of isosorbide, 10 to 80 mole% of cyclodimethane methane and the remaining amount of other diul compound
  • Esterifying a dicarboxylic acid component comprising a diol component and terephthalic acid Adding a phosphorus stabilizer when the esterification reaction proceeds at least 80%; And a polycondensation reaction of the esterification reaction product may be provided.
  • an esterification reaction catalyst containing a zinc-based compound is used, and at the end of the esterification reaction, for example, a phosphorus stabilizer is added to the reaction mixture at the time when the reaction progresses by 80% or more. And, polycondensation of the result of the esterification reaction, it can be provided a polyester resin exhibiting physical properties such as high heat resistance, chemical resistance and layer toughness having excellent appearance characteristics and high airtightness.
  • an esterification catalyst containing a zinc compound is used, and at the end of the esterification reaction, for example, a phosphorus stabilizer is added to the reaction solution at a time when the reaction proceeds at least 80%. And, polycondensation of the result of the esterification reaction, it can be provided a polyester resin exhibiting physical properties such as high heat resistance, chemical resistance and layer resistance and excellent excellent properties and high airtightness.
  • the polyester resin provided according to the above production method may have high viscosity and excellent layer strength, and may have low oxygen permeability and relatively high intrinsic viscosity due to its molecular structural features.
  • the oxygen permeability according to ASTM D 3985 of the polyester resin may be less than 10 cc * mm / (m 2 * day * atm).
  • the polyester resin provided according to the production method is 0.5 to 1.0 dl / g It may have an intrinsic viscosity of.
  • the esterification reaction is within a relatively short time, specifically within 400 minutes, preferably within 200 minutes to 330 minutes, more preferably. It can be made within 230 minutes to 310 minutes, but can exhibit high reaction efficiency.
  • the contact time at high temperature may be shortened to improve the color of the polyester resin produced, and it is advantageous in terms of energy saving effect according to the reaction time reduction.
  • the unreacted residual amount of the diol component or the dicarboxylic acid component not participating in the esterification reaction may be less than 20%. This high reaction efficiency seems to be due to the use of the zinc-based catalyst and the timing of addition of the phosphorus stabilizer.
  • the amount of unreacted material remaining due to the majority of the diol component or the dicarboxylic acid component, which is a reaction raw material participates in the reaction, and the polyester resin synthesized accordingly Having the above-described excellent physical properties, it can be easily applied to commercial products.
  • dicarboxylic acid component cyclonucleic acid dimethane, isosorbide and other diol compounds containing terephthalic acid are as described above.
  • a constant oligomer may be formed by reacting the dicarboxylic acid component and the diol component.
  • the method for producing the polyester resin by using the zinc-based catalyst and specifying the addition time of the phosphorus stabilizer, an oligomer having appropriate physical properties and molecular weight can be formed with high efficiency.
  • This esterification step can be accomplished by reacting the dicarboxylic acid component and the diol component at a pressure of 0 to 10.0 kg / erf and a temperature of 150 to 300 ° C.
  • the esterification reaction conditions may be appropriately adjusted according to the specific properties of the polyester to be produced, the molar ratio of the dicarboxylic acid component and glycol, or process conditions.
  • Preferred examples include pressures of 0 to 5.0 kg / citf, more preferably 0.1 to 3.0 kg / erf; A temperature of 200 to 270 ° C., more preferably 240 to 260 ° C., may be mentioned.
  • the esterification reaction may be carried out in a batch or continuous manner, each raw material may be added separately, it is preferable to add a dicarboxylic acid component in the form of a slurry to the diol component.
  • the diol component such as isosorbide, which is a solid at room temperature, may be dissolved in water or ethylene glycol, and then mixed with dicarboxylic acid components such as terephthalic acid to form a slurry.
  • a dicarboxylic acid component such as tetephthalic acid and other diol components may be mixed to form a slurry.
  • water may be further added to a slurry in which a copolymerized diol component such as a dicarboxylic acid component, isosorbide, and ethylene glycol is mixed to help increase the fluidity of the slurry.
  • the molar ratio of the dicarboxylic acid component and the diol component participating in the esterification reaction may be 1: 1.05 to 1: 3.0.
  • the molar ratio of the dicarboxylic acid component: diol component is less than 1.05, the unbanung dicarboxylic acid component may remain during the polymerization reaction, thereby reducing transparency of the resin, and when the molar ratio exceeds 3.0, the polymerization reaction rate is low. Or the productivity of the resin may be lowered.
  • the polyester resin it is possible to add a phosphorus-based stabilizer at the end of the first and second esterification, for example, when each of the esterification reaction proceeded 80% or more.
  • the time point at which the esterification reaction is 80% or more means a time when the polycarboxylic acid component is reacted at 80 & or more, and can be measured by analyzing the carboxylic acid content, which is a terminal group of the polycarboxylic acid component.
  • the phosphorus stabilizer may be used in an amount of lOppm to 300ppm, preferably 20ppm to 200ppm, based on the weight of the synthesized resin, and specific examples of the phosphorus stabilizer are as described above.
  • the amount of unbanung raw material can be greatly reduced.
  • the degree of polymerization of the resin can be improved so that the polyester produced can have the above-described properties, such as high viscosity, excellent layer strength and specific melt viscosity properties, with high heat resistance.
  • the esterification reaction may be made in the presence of an esterification catalyst comprising a zinc-based compound.
  • the catalyst may be used in the range of 1 to 100 ppm based on the center metal atom of the polyester resin synthesized.
  • Specific examples of the zinc-based catalyst include zinc acetate, zinc acetate dihydrate, zinc chloride, zinc sulfide, zinc sulfide, and zinc carbonate. Elate, zinc gluconate, or a combination thereof is mentioned. If the content of the zinc-based catalyst is too small, the efficiency of the esterification reaction may be difficult to be greatly improved, the amount of the reaction product does not participate in the reaction may be significantly increased. In addition, when the content of the zinc-based catalyst is too much, the appearance physical properties of the polyester resin produced may be lowered.
  • the step of poly-condensation reaction of the esterification reaction product may include reacting the esterification reaction product of the dicarboxylic acid component and di-component at 150 to 300 ° C. and a reduced pressure of 600 to 0.01 mmHg. And reacting for 24 hours.
  • Such polycondensation reaction is 150 to 300 o C, preferably 200 to
  • the polycondensation reaction occurs outside the temperature range of 150 to 300 ° C, when the condensation polymerization reaction proceeds to 150 ° C or less, the intrinsic viscosity of the final reaction product may not be effectively removed from the system as a glycol by-product of the polycondensation reaction. Low physical properties of the polyester resin may be lowered, If the reaction is carried out at 300 ° C or higher, the appearance of the polyester resin produced becomes more likely to become yellow (yellow). The polycondensation reaction can then proceed for the required time until the intrinsic viscosity of the final reaction product reaches an appropriate level, for example for an average residence time of 1 to 24 hours.
  • the production method of the polyester resin composition may further comprise the step of further adding a polycondensation catalyst.
  • a polycondensation catalyst may be added to the esterification reaction or the product of the transesterification reaction before initiation of the polycondensation reaction, and added to a mixed slurry comprising a diol component and a dicarboxylic acid component before the esterification reaction. It may be added during the esterification reaction step.
  • a titanium compound, a germanium compound, an antimony compound, an aluminum compound, a tin compound, or a mixture thereof can be used as the polycondensation catalyst.
  • examples of the titanium compound and the germanium compound are as described above.
  • a polyester resin exhibiting physical properties such as high heat resistance, chemical resistance and layer resistance, and having excellent appearance characteristics and high airtightness, and a method for producing such a polyester resin.
  • the reaction was carried out for an ES reaction time of Table 1 below at a pressure of 2.0 kg / cm 2 and a condition of 255 0 C (esterification reaction).
  • the amount of unbanung carboxylic acid end groups was measured by a titration method to determine monomer reaction rates used in Examples and Comparative Examples. Specifically, sample O.lg in Examples and Comparative Examples was added to 10 mL of benzyl alcohol and dissolved at about 200 ° C., followed by addition of phenol red indicator and titration with O.lN-NaOH to quantify the amount of C00H terminal group. It was.
  • the compositions of the resins of Examples and Comparative Examples and the results of Experimental Examples are shown in Tables 1 and 2 below. Table 1 Resin Composition and Experimental Example Results
  • the polyester of the embodiment has a relatively high intrinsic viscosity with high heat resistance even when the content of the relatively inactive isosorbide is greatly increased, for example, 0.51 to 60% even when the diol-component isosorbide is 60% by weight. An inherent viscosity of 53 dl / g was obtained.
  • the polyester resin is synthesized according to the specific manufacturing method described above in the embodiment, the amount of unreacted raw material is relatively small, and high reaction efficiency and degree of polymerization can be exhibited.
  • the polyester resins of the examples may exhibit low oxygen permeability (ASTM D 3985), for example oxygen permeability of less than 20 cc * mm / (m 2 * day * atm). It may have an intrinsic viscosity of dl / g.
  • the effect of reducing the reaction time is insignificant when added early in the reaction, it was confirmed that the monomer reaction rate is not so high compared to the reaction time (Comparative Examples 2, 3) .
  • the oxygen permeability (ASTM D 3985) possessed by the polyester resin obtained in the comparative example was found to be 28 cc * ⁇ / (m ! * Day * atm) or more, and thus the molecular structure of the resin was less dense than that of the example. Shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은, 테레프탈산을 포함하는 디카르복실산 성분의 잔기; 및 아이소소바이드, 사이클로헥산디메탄올 및 잔량의 기타 디올 화합물을 포함하는 디올 성분의 잔기를 포함하고, 아연계 촉매 및 인계 안정제를 함유하며, 특정의 고유 점도 용융을 갖고, ASTM D 3985에 따른 산소 투과도가 20 cc*mm/(m2*day*atm) 미만인 폴리에스테르 수지와, 아연계 화합물을 포함하는 에스테르화 반응 촉매의 존재하에, 아이소소바이드, 사이클로핵산디메탄올 및 잔량의 기타 디올 화합물을 포함하는 디올 성분과 테레프탈산을 포함하는 디카르복실산 성분을 에스테르화 반응시키는 단계; 상기 에스테르화 반응이 80% 이상 진행된 시점에 인계 안정제를 첨가하는 단계; 및 상기 에스테르화 반응 생성물을 중축합 반응시키는 단계를 포함하는 상기 폴리에스테르 수지의 제조 방법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
폴리에스테르 수지 및 이의 제조 방법
【기술분야】
본 발명은 폴리에스테르 수지 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 높은 내열성, 내화학성 및 내층격성 등의 물성을 나타내며 우수한 외관 특성 및 높은 기밀성 (氣密性)을 갖는 폴리에스테르 수지 및 이러한 폴리에스테르 수지의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로 방향족 및 지방족 디카르복실산과 디을 화합물을 반응시켜 얻어지는 폴리에스테르 수지는 우수한 물리적, 화학적 성질과 더불어 범용의 용제에 대한 용해성 및 유연성, 폭 넓은 소재에 대한 접착력, 코팅 작업성 등을 두루 갖추어 섬유, 필름, 접착제 등 다양한 용도로 사용되고 있다.
다만, 이전에 알려진 폴리에스테르는 실생활에서 많이 노출되게 되는 다양한 물질, 예를 들어 계면 활성제 등에 대한 내화학성이 부족하였으며, 일정 용도로서 사용하기에는 부적합한 색상 또는 외관 특성을 갖고, 층격 강도도 충분하지 않았다. 이에, 이러한 폴리에스테르의 문제점을 해결하기 위하여, 합성 과정에서 다양한 출발 물질, 단량체 또는 첨가제 등을 적용하거나, 다른 수지와 흔합하는 방법 등이 사용되었다. 특히, 이전에 폴리에스테르로부터 얻어지는 합성 섬유 또는 합성 수지 제품은 황색 외관을 가졌는데, 이러한 외관 특성을 감추거나 중화시키기 위하여 코발트계 착색제 등의 첨가제를 사용하는 방법이 일반적으로 사용되었다. 한편, 폴리에스테르 합성에 있어서, 에스테르화 반웅 또는 에스테르 교환반웅에서의 각 원료의 반웅성 또는 중축합 반응 과정에서의 각 원료의 기화 정도에 따라, 최종 합성되는 폴리에스테르 수지의 중합도나 수지 주쇄 내에 존재하는 각 원료 잔기의 비율이 달라지는 것으로 알려져 있다. 특히, 디올 성분으로 2차 또는 3차 알코올을 사용하여 폴리에스테르 수지를 합성하는 경우, 반웅 시간이 크게 늘어나거나 반웅 수율이 크게 떨어지는 문제가 있다. 최근 1,4-사이클로핵산디메탄올 또는 아이소소바이드 (Isosorbide) 등의 알코을을 반웅 물질로 하여 폴리에스테르 수지를 합성하는 방법이 알려졌지만, 이러한 방법에 따르면 2차 알코올을 사용함에 따라서 반웅 수율을 높이기가 용이하지 않으며, 합성되는 수지의 중합도도 크게 향상시키기 어려운 문제가 있었다. 또한, 이와 같은 방법으로 합성되는 폴리에스테르 수지는 내열성, 내화학성 및 내충격성 등의 물성을 적정 수준 이상으로 층분히 확보하지 못하거나, 색상 또는 투명도 등의 외관 특성을 적절하게 갖지 못하는 문제점이 있었다.
이에 따라, 중합 반응의 효율을 높이고 사용 원료의 최종 제품내 잔존율을 높일 수 있으면서, 향상된 물성 및 우수한 외관 특성을 갖는 폴리에스테르 수지를 제공할 수 있는 방법에 대한 개발이 필요하다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 높은 내열성, 내화학성 및 내층격성 등의 물성을 나타내며 우수한 외관 특성 및 높은 기밀성 (氣密性)을 갖는 폴리에스테르 수지를 제공하기 위한 것이다.
또한, 본 발명은 중합 반웅의 효율을 높이고 사용 원료의 최종 제품내 잔존율을 높일 수 있으면서, 향상된 물성 및 우수한 외관 특성을 갖는 플리에스테르 수지를 제공할 수 있는 폴리에스테르 수지의 제조 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
본 발명은, 테레프탈산을 포함하는 디카르복실산 성분의 잔기; 및 아이소소바이드 5 내지 60 몰%, 사이클로핵산디메탄올 10 내지 80 몰¾, 및 잔량의 기타 디을 화합물을 포함하는 디을 성분의 잔기를 포함하고, 0.5 내지 1.0 dl/g 의 고유점도를 갖고, ASTM D 3985에 따른 산소 투과도가 20 cc*mm/(m2*day*atm) 미만인 폴리에스테르 수지를 제공한다.
또한, 본 발명은 아연계 화합물을 포함하는 에스테르화 반웅 촉매의 존재하에, 아이소소바이드 5 내지 60 몰%, 사이클로핵산디메탄올 10 내지 80 몰% 및 잔량의 기타 디올 화합물을 포함하는 디을 성분과 테레프탈산을 포함하는 디카르복실산 성분을 에스테르화 반웅시키는 단계; 상기 에스테르화 반응이 80% 이상 진행된 시점에 인계 안정제를 첨가하는 단계; 및 상기 에스테르화 반응 생성물을 중축합 반웅시키는 단계를 포함하는, 상기 폴리에스테르 수지의 제조 방법을 제공한다.
이하 발명의 구체적인 구현예에 따른 폴리에스테르 수지 및 폴리에스테르 수지의 제조 방법에 대하여 보다 상세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 테레프탈산을 포함하는 디카르복실산 성분의 잔기; 및 아이소소바이드 5 내지 60 몰%, 사이클로핵산디메탄올 10 내지 80 몰¾, 및 잔량의 기타 디을 화합물을 포함하는 디올 성분의 잔기를 포함하고, 0.5 내지 1.0 dl/g 의 고유점도를 갖고, ASTM D 3985에 따른 산소 투과도가 20 ccW(m2*day*atm) 미만인 폴리에스테르 수지가 제공될 수 있다. .
이전에 알려진 바와 같이, 아이소소바이드 (Isosorbide)는 낮은 반응성을 나타내는 2차 알코올로서, 이를 사용하여 제조되는 폴리에스테르 수지는 내열성 등의 물성이 향상될 수 있으나, 이를 사용하는 경우 에스테르화 반웅에 참여하지 않고 잔류하는 아이소소바이드가 과량으로 발생하며, 합성 결과물이 낮은 중합도를 가져서 층분한 층격 강도 및 기밀성을 갖는 폴리에스테르 수지를 제공하기 용이하지 않은 문제점이 있었다.
이에 본 발명자들은 보다 향상된 물성을 갖는 폴리에스테르의 합성에 관한 연구를 진행하여, 후술하는 제조 방법에 나타난 바와 같이, 아연계 화합물을 포함하는 에스테르화 반응 촉매를 사용하고, 상기 에스테르화 반웅의 말기에, 예를 들어 반웅이 80% 이상 진행된 시점에서 반웅액에 인계 안정제를 첨가하여 상기 에스테르화 반웅의 결과물을 중축합 시키면, 높은 내열성, 내화학성 및 내층격성 등의 물성을 나타내며 우수한 외관 특성 및 높은 기밀성 (氣密性)을 갖는 폴리에스테르 수지가 제공될 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
특히, 후술하는 제조 방법에 의하여 제공되는 폴리에스테르 수지는, 상대적으로 반응성이 낮은 2차 알코올인 아이소소바이드의 함량을 다양하게 조절하여 포함할 수 있으며, 특히, 상대적으로 높은 함량으로 아이소소바이드를 포함하면서도, 상용 제품에 적용할 수 있는 물성을 확보할 수 있다. '
특히, 후술하는 바와 같이, 아연계 화합물을 포함하는 에스테르화 반웅 촉매를 사용하고 상기 에스테르화 반웅의 말기에 인계 안정제를 첨가하여 제조되는 폴리에스테를 합성 과정에서는, 반응 물질들이 짧은 반웅 시간 내에 높은 중합도를 가지고 중간 생성물 및 최종 반응 생성물을 형성할 수 있으며, 이에 따라 상기 폴리에스테르 수지가 높은 중합도, 우수한 의관 특성 및 높은 기밀성을 가질 수 있다.
이에 따라, 상기 폴리에스테르 수지는 높은 내열성와 함께, 높은 점도 및 우수한 충격 강도를 가질 수 있으며, 그 분자 구조적 특징으로 인하여 낮은 산소 투과도를 가질 수 있다. 상술한 바와 같이, 상기 폴리에스테르 수지가 갖는 ASTM D 3985에 따른 산소 투과도는 20 cc*mm/(m2*day*atm) 미만일 수 있다.
또한, 이전에 알려진 다른 폴리에스테르 수지들은 외관 특성 또는 투명도를 향상시키기 위하여 다양한 첨가제 또는 염료 등을 첨가하여 합성하거나 사용되었으나, 상기 폴리에스테르 수지는 추가적인 첨가제 또는 염료의 사용 없이도 상용화 할 수 있을 정도의 외관 특성 및. 투명도를 나타낼 수 있다.
상기 폴리에스테르 수지의 합성 과정에서는 반웅에 참여하지 않은 미반응 원료의 양이 상대적으로 작으며, 높은 반웅 효율 및 중합도를 나타낼 수 있다. 이에 따라, 상기 폴리에스테르 수지는 0.5 내지 1.0 dl/g 의 고유점도를 가질 수 있다.
한편, 상기 폴리에스테르 수지는 테레프탈산을 포함하는 디카르복실산 성분의 잔기; 및 아이소소바이드, 사이클로핵산디메탄올 및 잔량의 기타 디을 화합물을 포함하는 디올 성분의 잔기 ;를 포함한다.
본 명세서에서, '잔기 '는 특정한 화합물이 화학 반웅에 참여하였을 때, 그 화학 반웅의 결과물에 포함되고 상기 특정 화합물로부터 유래한 일정한 부분 또는 단위를 의미한다. 예를 들어, 상기 디카르복실산 성분의 '잔기' 또는 디올 성분의 '잔기' 각각은, 에스테르화 반웅 또는 축중합 반웅으로 형성되는 폴리에스테르에서 디카르복실산 성분으로부터 유래한 부분 또는 디올 성분으로부터 유래한 부분을 의미한다.
상기 '디카르복실산 성분'은 테레프탈산 등의 디카르복실산, 이의 알킬 에스테르 c모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸에스테르 등 탄소수 1 내지 4의 저급 알킬 에스테르) 및 /또는 이들의 산무수물 (acid anhydride)을 포함하는 의미로 사용되며, 디올 성분과 반웅하여, 테레프탈로일 부분 (terephthaloyl moiety) 등의 디카르복실산 부분 (dicarboxylic acidmoiety)을 형성할 수 있다.
상기 폴리에스테르의 합성에 사용되는 디카르복실산 성분이 테레프탈산을 포함함에 따라, 제조되는 폴리에스테르 수지의 내열성, 내화학성 또는 내후성 (예를 들어, UV에 의한 분자량 감소 현상 또는 황변화 현상 방지) 등의 물성이 향상될 수 있다.
상기 디카르복실산 성분은 기타의 디카르복실산 성분으로 방향족 디카르복실산 성분, 지방족 디카르복실산 성분 또는 이들의 흔합물을 더 포함할 수 있다. 이때 '기타의 디카르복실산 성분'은 상기 디카르복실산 성분 중 테레프탈산을 제외한 성분을 의미한다.
상기 방향족 디카르복실산 성분은 탄소수 8 내지 20, 바람직하게는 탄소수 8 내지 14의 방향족 디카르복실산 또는 이들의 흔합물 등일 수 있다. 상기 방향족 디카르복실산의 예로, 이소프탈산, 2 ,6-나프탈렌디카르복실산 등의 나프탈렌디카르복실산, 디페닐 디카르복실산, 4,4'ᅳ 스틸벤디카르복실산, 2,5-퓨란디카르복실산, 2,5-티오펜디카르복실산 등이 있으나, 상기 방향족 디카르복실산의 구체적인 예가 이에 한정되는 것은 아니다.
상기 지방족 디카르복실산 성분은 탄소수 4 내지 20, 바람직하게는 탄소수 4 내지 12의 지방족 디카르복실산 성분 또는 이들의 흔합물 등일 수 있다. 상기 지방족 디카 ^복실산의 예로, 1,4-사이클로핵산디카르복실산, 1,3-사이클로핵산디카르복실산 등의 사이클로핵산디카르복실산, 프탈산, 세바식산, 숙신산, 이소데실숙신산, 말레산, 푸마르산, 아디픽산, 글루타릭산, 아젤라이산 등의 선형, 가지형 또는 고리형 지방족 디카르복실산 성분 등이 있으나, 상기 지방족 디카르복실산의 구체적인 예가 이에 한정되는 것은 아니다. 한편, 상기 디카르복실산 성분은 테레프탈산 50 내지 100몰%, 바람직하게는 70 내지 100몰 ¾; 및 방향족 디카르복실산 및 지방족 디카르복실산으로 이루어진 군에서 선택된 1종 이상의 디카르복실산 0 내지 50몰 ¾>, 바람직하게는 0 내지 30몰%;를 포함할 수 있다. 상기 디카르복실산 성분 중 테레프탈산의 함량이 너무 작거나 너무 크면, 폴리에스테르 수지의 내열성, 내화학성 또는 내후성 등의 물성이 저하될 수 있다.
한편, 상기 폴리에스테르의 합성에 사용되는 디올 성분 (diol component)은 아이소소바이드 5 내지 60 몰%, 사이클로핵산디메탄올 10 내지 80 몰%, 및 잔량의 기타 디올 화합물을 포함할 수 있다.
상기 디올 성분이 아이소소바이드 (isosorbide, 1,4:3,6- dianhydroglucitol)를 포함함에 따라서, 제조되는 폴리에스테르 수지의 내열성이 향상될 뿐만 아니라 내화학성, 내약품성 등의 물성이 향상될 수 있다. 그리고, 상기 디올 성분 (diol component)에서 사이클로핵산디메탄을 (예를 들어, 1,2-사이클로핵산디메탄을, 1,3- 사이클로핵산디메탄을 또는 1,4-사이클로핵산디메탄을)의 함량이 증가할수록, 제조되는 폴리에스테르 수지의 내층격 강도가 크게 증가할 수 있다.
또한, 상기 디올 성분은 상기 아이소소바이드 및 사이클로핵산디메탄을 이외로 기타의 디올 성분을 더 포함할 수 있다. 상기 '기타의 디올 성분'은 상기 아이소소바이드 및 사이클로핵산디메탄을 제외한 디올 성분을 의미하며, 예를 들어 지방족 디올, 방향족 디올 또는 이들의 흔합물일 수 있다.
상기 방향족 디올은 탄소수 8 내지 40, 바람직하게는 탄소수 8 내지 33의 방향족 디올 화합물을 포함할 수 있다. 이러한 방향족 디을 화합물의 예로는, 폴리옥시에틸렌 -(2.0)-2, 2-비스 (4-하이드록시페닐) 프로판, 폴리옥시프로필렌 -(2.0)-2,2-비스 (4-하이드록시페닐)프로판,
폴리옥시프로필렌 -(2.2)-폴리옥시에틸렌 -(2.0)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시에틸렌_(2 3)_2 2_비스 (4_ 하이드록시페닐)프로판, 폴리옥시프로필렌 -(6)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(2.3)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(2.4)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(3.3)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시에틸렌 -(3.0)—2, 2-비스 (4- 하이드록시페닐)프로판, 폴리옥시에틸렌 -(6)-2,2-비스 (4- 하이드록시페닐)프로판 등의 에틸렌 옥사이드 및 /또는 프로필렌 옥사이드가 부가된 비스페놀 A 유도체 (폴리옥시에틸렌 -(n)-2, 2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(n)-2, 2-비스 (4- 하이드록시페닐)프로판 또는 플리옥시프로필렌 -(n)—폴리옥시에틸렌 -(n)- 2,2-비스 (4-하이드록시페닐)프로판 등을 들 수 있으나, 방향족 디올 화합물의 구체적인 예가 이에 한정되는 것은 아니다. 상기 n은 폴리옥시에틸렌 또는 폴리옥시프로필렌 유닛 (unit)의 개수 (number)를 의미한다ᅳ
상기 지방족 디올은 탄소수 2 내지 20, 바람직하게는 탄소수 2 내지 12의 지방족 디올 화합물을 포함할 수 있다. 이러한 지방족 디올 화합물의 예로는, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로판디올 (1,2-프로판디올, 1,3-프로판디을 등), 1,4-부탄디을, 펜탄디을, 핵산디올 (1,6ᅳ핵산디을 등), 네오펜틸 글리콜 (2,2—디메틸 -1,3-프로판디올), 1,2—사이클로핵산디을, 1,4-사이클로핵산디을, 1,2-사이클로핵산디메탄을, 1, 3-사이클로핵산디메탄을, 1 , 4-사이클로핵산디메탄올, 테트라메틸사이클로부탄디올 등의 선형, 가지형 또는 고리형 지방족 디올 성분을 들 수 있으나, 지방족 디올 화합물의 구체적인 예가 이에 한정되는 것은 아니다.
상술한 바와 같이, 상기 폴리에스테르 수지의 디을 성분은 5 내지 60 몰%, 바람직하게는 8 내지 45몰%의 아이소소바이드를 포함할 수 있다. 상기 디올 성분 중 아이소소바이드의 함량이 5몰% 미만이면 제조되는 폴리에스테르 수지의 내열성 또는 내화학성이 불충분할 수 있으며, 상술한 폴리에스테르 수지의 용융 점도 특성이 나타나지 않을 수 있다. 또한, 상기 아이소소바이드의 함량이 60몰%를 초과하면, 폴리에스테르 수지 또는 제품이 외관 특성이 저하되거나 황변 (yellowing) 현상이 발생할 수 있다. 한편, 상기 폴리에스테르 수지는 전체 수지 중, 중심 금속 원자 기준으로 1 내지 100 ppm의 아연계 촉매 및 lOppm 내지 300ppm의 인계 안정제를 함유할 수 있다.
상기 폴리에스테르 수지의 합성 과정에서는 인계 안정계가사용될 수 있으며, 이에 따라 상기 폴리에스테르 수지에는 인계 안정제가 lOppm 내지 300ppm, 바람직하게는 20ppm 내지 200ppm을 함유할 수 있다. 이러한 인계 안정제의 구체적인 예로는 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트, 트리에틸 포스포노 아세테이트 또는 이들의 2이상의 흔합물을 들 수 있다.
상기 폴리에스테르 수지는, 전체 수지 중, 중심 금속 원자 기준으로 1 내지 100 ppm의 아연계 촉매를 포함할 수 있다. 이러한 아연계 촉매의 구체적인 예로는 아연 아세테이트, 아연 아세테이트 디하이드레이트, 염화아연, 황산아연, 황화아연, 탄산아연, 아연 시트레이트, 글루콘산 아연 또는 이들의 흔합물을 들 수 있다.
한편, 상기 폴리에스테르 수지의 합성 과정의 중축합 반응에서는 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물, 주석계 화합물 또는 이들의 흔합물을 포함하는 증축합 촉매를 사용할 수 있다. 이에 따라, 상기 폴리에스테르 수지는 전체 수지 중 중심 금속 원자 기준으로 1 내지 100 ppm의 함량의 중축합 촉매를 포함할 수 있다.
상기 티타늄계 화합물의 예로는, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, - 테트라프로필티타네이트 테트라부틸티타네이트, 폴리부틸티타네이트, 2-에틸핵실 티타네이트, 옥틸렌글리콜티타네이트, 락테이트티타네이트, 트리에탄을아민 티타네이트, 아세틸아세토네이트티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, 티타늄디옥사이드 /실리콘디옥사이드 공중합체, 티타늄디옥사이드 /지르코늄디옥사이드 공중합체 등을 예시할 수 있다.
상기 게르마늄계 화합물의 예로는 게르마늄디옥사이드 (germanium dioxide, Ge02) , 게르1 늄테트라클로라이드 (germanium tetrachloride, GeCl4), 게르마늄에틸렌글리콕시드 (germanium ethyl eneglycoxi de) , 게르마늄아세테이트 (germanium acetate), 이들을 이용한 공중합체, 이들의 흔합물 등을 들 수 있다. 바람직하게는, 게르마늄디옥사이드를 사용할 수 있으며, 이러한 게르마늄 디옥사이드로는 결정성 또는 비결정성 모두를 사용할 수 있고, 글리콜 가용성도 사용할 수 있다. 한편, 발명의 다른 구현예에 따르면, 아연계 화합물을 포함하는 에스테르화 반응 촉매의 존재하에, 아이소소바이드 5 내지 60 몰 , 사이클로핵산디메탄을 10 내지 80 몰% 및 잔량의 기타 디을 화합물을 포함하는 디올 성분과 테레프탈산을 포함하는 디카르복실산 성분을 에스테르화 반웅시키는 단계; 상기 에스테르화 반웅이 80% 이상 진행된 시점에 인계 안정제를 첨가하는 단계; 및 상기 에스테르화 반응 생성물을 중축합 반응시키는 단계를 포함하는, 상기 폴리에스테르 수지의 제조 방법이 제공될 수 있다.
상기 폴리에스테르 수지의 제조 방법에 의하여, 아연계 화합물을 포함하는 에스테르화 반웅 촉매를 사용하고, 상기 에스테르화 반웅의 말기에, 예를 들어 반웅이 80% 이상 진행된 시점에서 반웅액에 인계 안정제를 첨가하고, 상기 에스테르화 반응의 결과물을 중축합 시키면, 높은 내열성, 내화학성 및 내층격성 등의 물성을 나타내며 우수한 외관 특성 및 높은 기밀성 (氣密性)을 갖는 폴리에스테르 수지가 제공될 수 있다.
상기 폴리에스테르 수지의 제조 방법에 따라, 아연계 화합물을 포함하는 에스테르화 반응 촉매를 사용하고, 상기 에스테르화 반응의 말기에, 예를 들어 반응이 80% 이상 진행된 시점에서 반웅액에 인계 안정제를 첨가하고, 상기 에스테르화 반응의 결과물을 중축합 시키면, 높은 내열성, 내화학성 및 내층격성 등의 물성을 나타내며 우수한 외관 특성 및 높은 기밀성 (氣密性)을 갖는 폴리에스테르 수지가 제공될 수 있다.
상기 제조 방법에 따라 제공되는 폴리에스테르 수지는, 높은 내열성와 함께, 높은 점도 및 우수한 층격 강도를 가질 수 있으며, 그 분자 구조적 특징으로 인하여 낮은 산소 투과도 및 상대적으로 높은 고유 점도를 가질 수 있다. 상술한 바와 같이, 상기 폴리에스테르 수지가 갖는 ASTM D 3985에 따른 산소 투과도는 10 cc*mm/(m2*day*atm) 미만일 수 있다. 또한, 상기 제조 방법에 따라 제공되는 폴리에스테르 수지는 0.5 내지 1.0 dl/g 의 고유점도를 가질 수 있다.
한편, 상기 아연계 촉매를 사용하고 인계 안정제를 특정 시점에 첨가함에 따라서, 상기 에스테르화 반웅은 상대적으로 짧은 시간 안에, 구체적으로 400분 이내, 바람직하게는 200분 내지 330분 이내에, 보다 바람직하게는 230분 내지 310분 이내에 이루어질 수 있으면서도, 높은 반웅 효율을 나타낼 수 있다. 이와 같이, 상기 에스테르화 반웅 시간이 짧아짐에 따라서, 고온에서의 접촉 시간이 단축되어 제조되는 폴리에스터 수지 색상이 개선될 수 있으며, 반웅 시간 단축에 따른 에너지 절감 효과 측면에서도 유리하다.
또한, 상기 폴리에스테르 수지의 제조 방법에서는, 상기 디올 성분 또는 디카르복실산 성분 중 상기 에스테르화 반응에 참여하지 않은 미반응 잔량이 20% 미만일 수 있다. 이러한 높은 반응 효율은 상기 아연계 촉매의 사용 및 인계 안정제의 첨가 시점에 따른 것으로 보인다. 이와 같이, 상기 폴리에스테르 수지의 제조 방법에서는, 반응 원료인 디을 성분 또는 디카르복실산 성분이 대부분 반응에 참여하여 잔류하는 미반웅 물질의 양이 상대적으로 작게 나타나며, 이에 따라 합성되는 폴리에스테르 수지가 상술한 우수한 물성올 가져서 상용 제품에 용이하게 적용할 수 있다.
상기 테레프탈산을 포함하는 디카르복실산 성분, 사이클로핵산디메탄을, 아이소소바이드 및 기타 디올 화합물에 관한 구체적인 내용은 상술한 바와 같다.
상기 에스테르화 반웅에서는, 상기 디카르복실산 성분과 디올 성분을 반응 시킴으로서 일정한 을리고머가 형성될 수 있다. 상기 폴리에스테르 수지의 제조 방법에서는, 상기 아연계 촉매를 사용하고 인계 안정제의 첨가 시점을 특정함에 따라서, 적절한 물성 및 분자량을 갖는 올리고머를 높은 효율로 형성할 수 있다.
이러한 에스테르화 반응 단계는 디카르복실산 성분 및 디올 성분을 0 내지 10.0 kg/ erf 의 압력 및 150 내지 300 °C 온도에서 반웅시킴으로서 이루어질 수 있다. 상기 에스테르화 반웅 조건은 제조되는 폴리에스테르의 구체적인 특성, 디카르복실산 성분과 글리콜의 몰비, 또는 공정 조건 등에 따라 적절히 조절될 수 있다. 구체적으로, 상기 에스테르화 반웅 조건의 바람직한 예로, 0 내지 5.0kg/citf, 보다 바람직하게는 0.1 내지 3.0 kg/ erf 의 압력 ; 200 내지 270oC, 보다 바람직하게는 240 내지 260°C의 온도를 들 수 있다.
그리고, 상기 에스테르화 반웅은 배치 (batch)식 또는 연속식으로 수행될 수 있고, 각각의 원료는 별도로 투입될 수 있으나, 디을 성분에 디카르복실산 성분을 흔합한 슬러리 형태로 투입하는 것이 바람직하다. 그리고, 상온에서 고형분인 아이소소바이드 등의 디올 성분은 물 또는 에틸렌글리콜에 용해시킨 후, 테레프탈산 등의 디카르복실산 성분에 흔합하여 슬러리로 만들 수 있다. 혹은 60oC 이상에서 아이소소바이드가 용융된 후, 테테프탈산 등의 디카르복실산 성분과 기타 디올 성분을 흔합하여 슬러리도 만들 수 있다. 또한, 디카르복실산 성분, 아이소소바이드 및 에틸렌글리콜 등의 공중합 디올 성분이 흔합된 슬러리에 물을 추가로 투입하여 슬러리의 유동성 증대에 도움을 줄 수도 있다.
상기 에스테르화 반웅에 참여하는 디카르복실산 성분과 디올 성분의 몰비는 1:1.05 내지 1: 3.0 일 수 있다. 상기 디카르복실산 성분:디올 성분의 몰비가 1.05 미만이면 중합반응 시 미반웅 디카르복실산 성분이 잔류하여 수지의 투명성이 저하될 수 있고, 상기 몰비가 3.0을 초과할 경우 중합반웅속도가 낮아지거나 수지의 생산성이 저하될 수 있다.
한편, 상기 폴리에스테르 수지의 제조 방법에서는, 상기 제 1 및 제 2 에스테르화의 말기, 예를 들어 상기 에스테르화 반응 각각이 80% 이상 진행된 시점에 인계 안정제를 첨가할 수 있다. 상기 에스테르화 반응이 80%이상 진행된 시점은 다카르복실산 성분이 80 &이상 반웅한 시점을 의미하며, 다카르복실산 성분의 말단기인 카리복실산 함량 분석을 통하여 측정할 수 있다.
상기 인계 안정제는 합성되는 수지 중량 대비 lOppm 내지 300ppm, 바람직하게는 20ppm 내지 200ppm 양으로 사용될 수 있으며, 이러한 인계 안정제의 구체적인 예로는 상술한 바와 같다.
이와 같이, 상기 에스테르화 반웅이 80% 이상 진행된 시점에 인계 안정제가 투입됨에 따라서, 미반웅 원료의 양을 크게 줄일 수 있으며, 수지의 중합도를 향상시킬 수 있어서 제조되는 폴리에스테르가 높은 내열성와 함께, 높은 점도, 우수한 층격 강도 및 특정한 용융 점도 특성 등 상술한 특성을 가질 수 있다.
한편, 상기 에스테르화 반웅은 아연계 화합물을 포함하는 에스테르화 반응 촉매의 존재 하에 이루어질 수 있다. 이러한 촉매는 합성되는 폴리에스테르 수지 중 중심 금속 원자 기준으로 1 내지 100 ppm 으로 사용될 수 있으며 이러한 아연계 촉매의 구체적인 예로는 아연 아세테이트, 아연 아세테이트 디하이드레이트, 염화아연 황산아연, 황화아연, 탄산아연 아연 시트레이트, 글루콘산 아연 또는 이들의 흔합물을 들 수 있다. 상기 아연계 촉매의 함량이 너무 작으면, 에스테르화 반웅의 효율이 크게 향상되기 어려을 수 있으며, 반응에 참여하지 않는 반웅물의 양이 크게 늘어날 수 있다. 또한, 상기 아연계 촉매의 함량이 너무 많으면, 제조되는 폴리에스테르 수지의 외관 물성이 저하될 수 있다.
상기 에스테르화 반응 생성물을 중축합 (poly-condensation) 반웅시키는 단계는, 상기 디카르복실산 성분 및 디을 성분의 에스테르화 반웅 생성물을 150 내지 300 °C 온도 및 600 내지 0.01 mmHg의 감압 조건에서 1 내지 24시간 동안 반응시키는 단계를 포함할 수 있다.
이러한 중축합 반웅은, 150 내지 300oC, 바람직하게는 200 내지
290°C, 보다 바람직하게는 260 내지 280°C의 반웅 온도; 및 600 내지 O.OlmmHg, 바람직하게는 200 내지 0.05 mmHg, 보다 바람직하게는 100 내지 0.1 mmHg의 감압 조건;에서 수행될 수 있다. 상기 중축합 반웅의 감압 조건을 적용함에 따라서 중축합 반웅의 부산물인 글리콜을 계외로 제거할 수 있으며, 이에 따라 상기 중축합 반응이 400 내지 O.OlmmHg감압 조건 범위를 벗어나는 경우 부산물의 제거가 불층분할 수 있다.
또한, 상기 중축합 반응이 150 내지 300°C 온도 범위 밖에서 일어나는 경우, 축중합 반웅이 150°C 이하로 진행되면 중축합 반응의 부산물인 글리콜을 효과적으로 계외로 제거하지 못해 최종 반웅 생성물의 고유 점도가 낮아 제조되는 폴리에스테르 수지의 물성이 저하될 수 있으며, 300°C 이상으로 반웅이 진행될 경우, 제조되는 폴리에스테르 수지의 외관이 황변 (yellow)이 될 가능성이 높아진다. 그리고, 상기 중축합 반웅은 최종 반웅 생성물의 고유 점도가 적절한 수준에 이를 때까지 필요한 시간 동안, 예를 들면, 평균 체류 시간 1 내지 24시간 동안 진행될 수 있다.
한편, 상기 폴리에스테르 수지 조성물의 제조 방법은, 중축합 촉매를 추가로 첨가하는 단계를 더 포함할 수 있다. 이러한 중축합 촉매는, 상기 중축합 반응의 개시 전에 에스테르화 반웅 또는 에스테르 교환 반응의 생성물에 첨가될 수 있고, 상기 에스테르화 반응 전에 디올 성분 및 디카르복실산 성분을 포함하는 흔합 슬러리 상에 첨가할 수 있으며, 상기 에스테르화 반웅 단계 도중에 첨가할 수 도 있다.
상기 중축합 촉매로는, 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물, 주석계 화합물 또는 이들의 흔합물을 사용할 수 있다. 상기 티타늄계 화합물 및 게르마늄계 화합물의 예는 상술한 바와 같다.
[발명의 효과】
본 발명에 따르면, 높은 내열성, 내화학성 및 내층격성 등의 물성을 나타내며 우수한 외관 특성 및 높은 기밀성 (氣密性)을 갖는 폴리에스테르 수지 및 이러한 폴리에스테르 수지의 제조 방법이 제공될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 1 내지 6: 폴리에스테르 수지의 제조 >
7L 용적의 반응기에 표 1의 함량으로 반웅물 및 아연 아세테이트 (에스테르화 반웅 촉매)을 첨가하여 흔합하고, 상기 흔합물을
2.0 kg/cm2 의 압력 및 2550C 조건에서 하기 표 1의 ES반웅 시간동안 진행하였다 (에스테르화 반웅).
그리고, 이러한 에스테르화 반응이 80% 이상 진행되는 시점부터 인산염계 안정제 (트리에틸포스페이트) 150 ppm을 투입하였다. 상기 에스테르화 반응이 완료된 후, 부산물인 물이 계외로 80 내지 99% 유출되었을 때, 전체 반웅물의 중량에 대하여 게르마늄계 촉매 200ppm를 투입 (중심원소 기준)하고 0.5 mmHg의 진공 및 275°C 조건에서 반웅을 진행하고 (중축합 반웅), 목표 점도에 도달하였을 때 반웅을 종료하여 폴리에스테르 수지를 얻었다.
<비교예 1내지 5: 폴리에스테르 수지의 제조 >
하기 표 2에 나타난 바와 같이, 반응에 사용하는 다카르복살산 성분 및 디을 성분을 달리하고, 에스테르화 반응 촉매를 사용하지 않았으며, 비교예 1,5 및 6에서는 인계 안정제를 첨가하지 않았으며, 비교예 2 내지 4에서는 반웅물 ('반웅 초기')에 인계 안정제를 첨가한 점을 제외하고, 실시예와 동일하게 상기 에스테르화 반응을 진행하였다.
그리고, 상기 실시예에서와 동일한 방법으로 중축합 반웅을 진행하여 폴리에스테르 수지를 얻었다.
<실험예: 실시예 및 비교예에서 얻어진 폴리에스테르의 물성 측정 > 상기 실시예 및 비교예에서 얻어진 폴리에스테르 수지 물성을 하기 방법으로 측정하였으며, 그 결과를 표 1 및 표 2에 각각 나타내었다.
1. 산소투과도
상기 실시예 및 비교예에서 얻어진 폴리에스테르 수지의 산소 투과도를 ASTM D 3985에 따라 측정하였다. 2. 고유점도 (IV)
150 °C 오르토클로로페놀 (0CP)에 0.12% 농도로 폴리머를 용해시킨 후, 50C의 항온조에서 우벨로드형 점도계를 사용하여 측정하였다.
3. 내열성 (Tg) 폴리에스테르 수지를 300 0C에서 5분간 어닐링 (Annealing)하고, 상온으로 넁각시킨 후, 승온 속도 10 0C/min에서 다시 스캔 (2nd Scan)시의 유리전이온도 (Glass-rubber transition temperature: Tg)를 측정하였다.
4. 모노머 반웅율
미반웅 카르복실산 말단기의 양을 적정법으로 측정하여 실시예 및 비교예에서 사용한 모노머 반웅율을 구하였다. 구체적으로, 실시예 및 비교예에서의 시료 O.lg을 benzyl alcohol 10mL에 첨가하고 약 200oC에서 용해한 후, phenol red 지시약 첨가하고 O.lN-NaOH로 적정하여 - C00H말단기의 양을 정량하였다. 상기 실시예 및 비교예의 수지의 조성과 실험예의 결과를 하기 표 1 및 2에 기재하였다. 【표 1】 실시예의 수지 조성 및 실험예 결과
Figure imgf000016_0001
표 1에 나타난 바와 같이, 실시예의 폴리에스테르 제조 과정에서는 사용된 반웅물 원료 (모노머)가 80% 이상 반응에 참여하였으며, 반응도 259분 내지 310분 내로 완료되었음이 확인되었다.
그리고, 실시예의 폴리에스테르는 상대적으로 반응성이 떨어지는 아이소소바이드의 함량을 크게 늘린 경우에도 높은 내열성과 함께 상대적으로 높은 고유 점도, 예를 들어 디올성분증 아이소소바이드가 60중량 %인 경우에도 0.51 내지 으 53 dl/g의 고유 점도를 확보할 수 있었다. 특히, 실시예에서 상술한 특정의 제조 방법에 따라서 폴리에스테르 수지를 합성함에 따라서, 미반응 원료의 양이 상대적으로 작으며, 높은 반웅 효율 및 중합도를 나타낼 수 있으며, 이에 따라 그 분자 구조적 특징으로 인하여 실시예의 폴리에스테르 수지는 낮은 산소 투과도 (ASTM D 3985) , 예를 들어 20 cc*mm/(m2*day*atm) 미만의 산소 투과도를 나타낼 수 있다ᅳ 또한, 상기 폴리에스테르 수지는 0.53 내지 0.0 dl/g 의 고유점도를 가질 수 있다. 【표 2】 비교예의 수지 조성 및 실험예 결과
Figure imgf000017_0001
상기 표 2에 나타난 바와 같이, 비교예에서는 반응성이 떨어지는 아이소소바이드의 함량을 크게 늘리게 되면, 합성되는 폴리에스테르의 고유 점도가 크게 떨어졌으며, 구체적으로 디올 성분 중 아이소소바이드를 35wt% 및 70wt%로 각각 사용한 비교예 2,3의 경우 폴리에스테르의 고유 점도가 0.45 dl/g 미만으로 떨어지는 점이 확인되었다.
또한, 인계 안정제를 사용하는 경우라고 하여도, 반웅 초기에 첨가하는 경우 반웅 시간을 줄일 수 있는 효과가 미미하며, 반웅 시간 대비하여 모노머 반웅률도 그리 높지 않은 것으로 확인되었다 (비교예 2,3). 특히, 비교예에서 얻어진 폴리에스테르 수지가 갖는 산소 투과도 (ASTM D 3985)는 28 cc*讓 /(m!*day*atm) 이상으로 나타나서, 실시예에 비하여 수지의 분자적 구조가 조밀하지 않은 것으로 보여진다.

Claims

【특허 청구범위】
【청구항 11
테 레프탈산을 포함하는 디카르복실산 성분의 잔기 ; 및
아이소소바이드 5 내지 60 몰%, 사이클로핵산디 메탄올 10 내지 80 몰 %, 및 잔량의 기타 디을 화합물을 포함하는 디을 성분의 잔기를 포함하고, 0.5 내지 1.0 dl /g 의 고유점도를 갖고,
ASTM D 3985에 따른 산소 투과도가 20 cc ( mz*day*atm) 미만인 폴리에스테르 수지 .
【청구항 2】
제 1항에 있어서,
전체 수지 중, 중심 금속 원자 기준으로 1 내지 100 ppm의 아연계 촉매 및 lOppm 내지 300ppm의 인계 안정 제를 함유하는 폴리에스테르 수지 .
【청구항 3】
제 1항에 있어서,
상기 기타 디을 화합물은 지방족 디올 화합물 및 방향족 디올 화합물로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는 플리 에스테르 수지 .
【청구항 4】
제 1항에 있어서,
상기 인계 안정 제는 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트 및 트리에틸 포스포노 아세테이트로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는 폴리에스테르 수지 .
【청구항 5】
제 1항에 있어서,
상기 아연계 촉매는 아연 아세테이트 및 아연 아세테 이트 디하이드레이트, 염화아연, 황산아연 , 황화아연, 탄산아연, 아연 시트레이트 및 글루콘산 아연으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는 폴리 에스테르 수지 .
【청구항 6】
제 1항에 있어서,
티타늄계 화합물 게르마늄계 화합물 안티몬계 화합물, 알루미늄계 화합물 및 주석 계 화합물로 이루어진 군에서 선택된 1종 이상의 중축합 반웅 촉매를 전체 수지 중 1 내지 100 pPm의 함량으로 더 포함하는 폴리에스테르 수지 .
【청구항 7】
아연계 화합물을 포함하는 에스테르화 반웅 촉매의 존재하에, 아이소소바이드 5 내지 60 몰%, 사이클로핵산디 메탄올 10 내지 80 몰% 및 잔량의 기타 디올 화합물을 포함하는 디올 성분과 테 레프탈산을 포함하는 디카르복실산 성분을 에스테르화 반웅시키는 단계 ;
상기 에스테르화 반웅이 80% 이상 진행된 시 점에 인계 안정 제를 첨가하는 단계 ; 및
상기 에스테르화 반응 생성물을 중축합 반웅시 키는 단계를 포함하는, 계 1항의 폴리에스테르 수지의 제조 방법 .
【청구항 8】
제 7항에 있어서,
상기 디을 성분 또는 디카르복실산 성분 중 상기 에스테르화 반웅에 참여하지 않은 미 반웅 잔량이 20%미만인 폴리에스테르 수지의 제조 방법 .
【청구항 9】
제 7항에 있어서,
상기 인계 안정제는 합성되는 수지 중량 대비 lOppm 내지 300ppm 양으로 사용되는 폴리에스테르 수지의 제조 방법 .
【청구항 10】
제 7항에 있어서,
상기 에스테르화 반웅에서 디카르복실산 성분: 디을 성분의 몰비는 1:1.05 내지 1: 3.0인 폴리에스테르 수지의 제조 방법.
【청구항 111
제 7항에 있어서,
상기 에스테르화 반응 각각은 0 내지 10.0 kg/crf 의 압력 및 150 내지 300 °C 온도에서 이루어지는 폴리에스테르 수지의 제조 방법.
【청구항 12]
제 7항에 있어서,
상기 에스테르화 반웅은 200분 내지 330분 동안 이루어지는 폴리에스테르 수지의 제조 방법 .
【청구항 13】
게 7항에 있어서ᅳ
상기 중축합 반웅 단계는, 150 내지 300 °C 온도 및 600 내지 0.01 mmHg의 감압 조건에서 1 내지 24시간 동안 이루어지는 폴리에스테르 수지의 제조 방법 .
【청구항 14】
제 7항에 있어서,
상기 중축합 반웅에 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물 및 주석계 화합물로 이루어진 군에서 선택된 1종 이상의 촉매 화합물을 추가로 첨가하는 단계를 더 포함하는 폴리에스테르 수지의 제조 방법 .
PCT/KR2013/004452 2012-06-05 2013-05-21 폴리에스테르 수지 및 이의 제조 방법 WO2013183873A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13800650T ES2703175T3 (es) 2012-06-05 2013-05-21 Resina de poliéster y procedimiento para fabricar la misma
CN201380027562.9A CN104334608B (zh) 2012-06-05 2013-05-21 聚酯树脂及用于制备该聚酯树脂的方法
US14/405,189 US9267000B2 (en) 2012-06-05 2013-05-21 Polyester resin and method for preparing the same
EP13800650.7A EP2857433B1 (en) 2012-06-05 2013-05-21 Polyester resin and method for manufacturing same
JP2015515934A JP6408981B2 (ja) 2012-06-05 2013-05-21 ポリエステル樹脂およびその製造方法
HK15105614.8A HK1205164A1 (en) 2012-06-05 2015-06-14 Polyester resin and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0060452 2012-06-05
KR1020120060452A KR101969004B1 (ko) 2012-06-05 2012-06-05 폴리에스테르 수지 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2013183873A1 true WO2013183873A1 (ko) 2013-12-12

Family

ID=49712231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004452 WO2013183873A1 (ko) 2012-06-05 2013-05-21 폴리에스테르 수지 및 이의 제조 방법

Country Status (9)

Country Link
US (1) US9267000B2 (ko)
EP (1) EP2857433B1 (ko)
JP (1) JP6408981B2 (ko)
KR (1) KR101969004B1 (ko)
CN (1) CN104334608B (ko)
ES (1) ES2703175T3 (ko)
HK (1) HK1205164A1 (ko)
TW (1) TWI616470B (ko)
WO (1) WO2013183873A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016066956A1 (fr) 2014-10-29 2016-05-06 Roquette Freres Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée
US20170144420A1 (en) * 2014-04-11 2017-05-25 Sk Chemicals Co., Ltd. Multilayer polyester sheet and molded product made of the same
TWI696550B (zh) * 2014-10-31 2020-06-21 南韓商Sk化學公司 多層塑膠卡
WO2021123655A1 (fr) 2019-12-20 2021-06-24 Roquette Freres Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d'incorporation dudit motif améliorés

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9501589B2 (en) * 2008-05-07 2016-11-22 Mentor Graphics Corporation Identification of power sensitive scan cells
KR101952941B1 (ko) * 2012-06-05 2019-02-27 에스케이케미칼 주식회사 폴리에스테르 수지 및 이의 제조 방법
KR102183440B1 (ko) * 2014-06-16 2020-11-26 에스케이케미칼 주식회사 내후성이 우수한 고분자 수지 조성물
FR3036400B1 (fr) 2015-05-22 2019-04-26 Roquette Freres Polyester de haute viscosite aux proprietes choc ameliorees
FR3054551B1 (fr) * 2016-07-29 2019-08-02 Roquette Freres Composition polymere comprenant un polyester thermoplastique
FR3070677B1 (fr) * 2016-08-03 2021-11-12 Roquette Freres Procede d'emballage a partir de polyester thermoplastique semi-cristallin
KR102654779B1 (ko) 2016-11-24 2024-04-03 에스케이케미칼 주식회사 다층 mdo 내열 열수축성 필름
KR102654778B1 (ko) * 2016-11-24 2024-04-03 에스케이케미칼 주식회사 내열성 mdo 열수축 필름
WO2018139919A1 (en) * 2017-01-26 2018-08-02 Synvina C.V. 2, 5-furandicarboxylic acid-based polyesters
EP3878886A1 (en) * 2017-02-24 2021-09-15 DuPont Industrial Biosciences USA, LLC Process for preparing poly(trimethylene furandicarboxylate) using zinc catalyst
EP3632953A4 (en) * 2017-05-31 2021-01-13 SK Chemicals Co., Ltd. POLYESTER RESIN, METHOD FOR MANUFACTURING ITEM AND MOLDED RESIN PRODUCT THEREOF
KR102568693B1 (ko) * 2017-06-02 2023-08-21 에스케이케미칼 주식회사 폴리에스테르 섬유, 이의 제조 방법 및 이로부터 형성된 성형체
JP7240333B2 (ja) 2017-06-22 2023-03-15 エスケー ケミカルズ カンパニー リミテッド ポリエステル容器およびその製造方法
KR20190001551A (ko) 2017-06-26 2019-01-04 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법
CN109721701B (zh) * 2017-10-30 2021-09-03 万华化学集团股份有限公司 一种热塑性聚氨酯弹性体组合物及制备方法和用途
KR102593363B1 (ko) * 2018-10-05 2023-10-23 에스케이케미칼 주식회사 가공성이 우수한 폴리에스테르 공중합체 및 이를 포함하는 물품
KR20200044553A (ko) * 2018-10-19 2020-04-29 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조방법
KR102625869B1 (ko) * 2018-10-26 2024-01-16 에스케이케미칼 주식회사 고생물 기반 폴리카보네이트 에스테르 및 이의 제조방법
KR20200089586A (ko) * 2019-01-17 2020-07-27 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법
WO2020149472A1 (ko) 2019-01-17 2020-07-23 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법
KR102576713B1 (ko) * 2019-02-11 2023-09-07 에스케이케미칼 주식회사 압출 성형이 가능한 폴리에스테르 공중합체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019013A (ko) * 1998-09-08 2000-04-06 김석태 폴리에스테르 수지 조성물 및 그 제조방법
KR20020087424A (ko) * 2001-01-25 2002-11-22 미쓰비시 가가꾸 가부시키가이샤 폴리에스테르 수지, 이의 성형품 및 폴리에스테르 수지의제조방법
KR20070012471A (ko) * 2004-05-05 2007-01-25 사우디 베이식 인더스트리즈 코포레이션 폴리에틸렌 테레프탈레이트 혼성폴리에스테르의 제조공정,이에의해 얻어진 혼성폴리에스테르 및 이의 용도 및 상기공정에 유용한 촉매
KR20110028696A (ko) * 2009-09-14 2011-03-22 에스케이케미칼주식회사 아이소소바이드와 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지 및 그 제조방법
WO2012007958A1 (en) * 2010-07-14 2012-01-19 Pearl Engineering Polymers Ltd. Polyester resin composition and process for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2026300C (en) * 1989-10-23 1996-07-16 Monika Engel-Bader Catalyst system for producing polyethylene terephthalate from a lower dialkyl ester of a dicarboxylic acid and a glycol
EP0864596A1 (en) * 1997-03-14 1998-09-16 Hoechst Diafoil GmbH Process for the production of polyethylene terephthalate
US6063464A (en) * 1998-04-23 2000-05-16 Hna Holdings, Inc. Isosorbide containing polyesters and methods for making same
US6329031B1 (en) * 1999-03-02 2001-12-11 Toyo Boseki Kabushiki Kaisha Polyester resin composition and reduced pressure blood-collecting tube
JP2004043733A (ja) * 2002-07-15 2004-02-12 Toyobo Co Ltd 共重合ポリエステル
US6914120B2 (en) * 2002-11-13 2005-07-05 Eastman Chemical Company Method for making isosorbide containing polyesters
JP4411521B2 (ja) * 2003-01-30 2010-02-10 Dic株式会社 ポリ乳酸組成物
KR101449622B1 (ko) * 2007-12-31 2014-10-14 에스케이케미칼주식회사 이소소르바이드-함유 폴리에스테르의 제조방법
KR101515396B1 (ko) * 2008-12-31 2015-04-27 에스케이케미칼주식회사 폴리에스테르 수지의 제조방법
JP2010235940A (ja) * 2009-03-11 2010-10-21 Toyobo Co Ltd 芳香族ポリエステル成形体
KR101995457B1 (ko) * 2012-05-25 2019-07-02 에스케이케미칼 주식회사 폴리에스테르 수지의 제조 방법
KR101952941B1 (ko) * 2012-06-05 2019-02-27 에스케이케미칼 주식회사 폴리에스테르 수지 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019013A (ko) * 1998-09-08 2000-04-06 김석태 폴리에스테르 수지 조성물 및 그 제조방법
KR20020087424A (ko) * 2001-01-25 2002-11-22 미쓰비시 가가꾸 가부시키가이샤 폴리에스테르 수지, 이의 성형품 및 폴리에스테르 수지의제조방법
KR20070012471A (ko) * 2004-05-05 2007-01-25 사우디 베이식 인더스트리즈 코포레이션 폴리에틸렌 테레프탈레이트 혼성폴리에스테르의 제조공정,이에의해 얻어진 혼성폴리에스테르 및 이의 용도 및 상기공정에 유용한 촉매
KR20110028696A (ko) * 2009-09-14 2011-03-22 에스케이케미칼주식회사 아이소소바이드와 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지 및 그 제조방법
WO2012007958A1 (en) * 2010-07-14 2012-01-19 Pearl Engineering Polymers Ltd. Polyester resin composition and process for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170144420A1 (en) * 2014-04-11 2017-05-25 Sk Chemicals Co., Ltd. Multilayer polyester sheet and molded product made of the same
EP3130463B1 (en) * 2014-04-11 2019-05-15 SK Chemicals Co., Ltd. Multi-layer polyester sheet and molded product thereof
TWI665088B (zh) * 2014-04-11 2019-07-11 Sk化學公司 多層聚酯片及其模壓製品
WO2016066956A1 (fr) 2014-10-29 2016-05-06 Roquette Freres Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée
US10400062B2 (en) 2014-10-29 2019-09-03 Roquette Freres Method for producing a polyester containing at least one 1,4:3,6-dianhydrohexitol unit with improved colouring
TWI696550B (zh) * 2014-10-31 2020-06-21 南韓商Sk化學公司 多層塑膠卡
WO2021123655A1 (fr) 2019-12-20 2021-06-24 Roquette Freres Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d'incorporation dudit motif améliorés
FR3105232A1 (fr) 2019-12-20 2021-06-25 Roquette Freres Procédé de fabrication d’un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d’incorporation dudit motif améliorés

Also Published As

Publication number Publication date
CN104334608B (zh) 2017-03-15
EP2857433B1 (en) 2018-09-26
US9267000B2 (en) 2016-02-23
TW201400523A (zh) 2014-01-01
HK1205164A1 (en) 2015-12-11
CN104334608A (zh) 2015-02-04
JP6408981B2 (ja) 2018-10-17
US20150148515A1 (en) 2015-05-28
EP2857433A1 (en) 2015-04-08
KR101969004B1 (ko) 2019-04-15
ES2703175T3 (es) 2019-03-07
EP2857433A4 (en) 2016-01-06
KR20130136776A (ko) 2013-12-13
JP2015518915A (ja) 2015-07-06
TWI616470B (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2013183873A1 (ko) 폴리에스테르 수지 및 이의 제조 방법
KR101952941B1 (ko) 폴리에스테르 수지 및 이의 제조 방법
US9676903B2 (en) Polyester resin and method for preparing the same
JP6371278B2 (ja) ポリエステル樹脂の製造方法
TWI588176B (zh) 聚酯樹脂組成物及其製備方法
KR20100023856A (ko) 2,2,4,4-테트라메틸-1,3-사이클로뷰탄다이올 및 1,4-사이클로헥산다이메탄올을 기제로 한 코폴리에스터의 제조 방법
KR101514786B1 (ko) 바이오 매스 유래 성분을 포함한 폴리에스테르 수지 및 이의 제조 방법
WO2023063218A1 (ja) 共重合ポリエステル樹脂、成形品、熱収縮性フィルム、及び繊維
JP2004035658A (ja) 共重合ポリエステル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013800650

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015515934

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE