WO2013183758A1 - 欠陥判定装置、放射線撮像システム、及び欠陥判定方法 - Google Patents

欠陥判定装置、放射線撮像システム、及び欠陥判定方法 Download PDF

Info

Publication number
WO2013183758A1
WO2013183758A1 PCT/JP2013/065822 JP2013065822W WO2013183758A1 WO 2013183758 A1 WO2013183758 A1 WO 2013183758A1 JP 2013065822 W JP2013065822 W JP 2013065822W WO 2013183758 A1 WO2013183758 A1 WO 2013183758A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
characteristic
product
image data
characteristic amount
Prior art date
Application number
PCT/JP2013/065822
Other languages
English (en)
French (fr)
Inventor
杉本 喜一
陽介 藤冨
剛 富田
敦詞 木屋
暁巳 ▲高▼野
英哲 竹田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020147031282A priority Critical patent/KR101667471B1/ko
Priority to CN201380023962.2A priority patent/CN104272094B/zh
Priority to US14/402,534 priority patent/US9733200B2/en
Publication of WO2013183758A1 publication Critical patent/WO2013183758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to a defect determination device, a radiation imaging system, and a defect determination method.
  • the radiation imaging apparatus irradiates a subject to be inspected with radiation (for example, X-rays), detects the radiation transmitted through the subject to be inspected, and obtains detected image data.
  • This detection image data is obtained by detecting radiation by, for example, FPD (Flat panel detector).
  • the FPD is composed of a plurality of detection elements, and some detection elements having abnormality in outputting a detection signal corresponding to the irradiated radiation may be generated in a line shape among the detection elements.
  • edge enhancement processing is performed on a captured image, a line-shaped abnormal image element is determined by setting a predetermined threshold value, and the line-shaped abnormal image element is further emphasized to emerge, and edge enhancement processing is performed.
  • a radiation imaging apparatus that can more accurately detect a line-like abnormal image element that has only a minute change by generating subsequent difference detection image data.
  • Patent Document 1 even if a line-like abnormal image element is accurately detected, an initial image that is a reference for the presence or absence of a defect occurring in the inspection target and the actual inspection target are transmitted. When the direction and size of the inspection object are different from the image obtained by detecting the radiation, the defect generated in the inspection object may not be correctly determined. For this reason, the operator needs to perform an operation of fixing the object to be inspected and the radiation imaging apparatus at a predetermined position, and the time required for imaging has been increased.
  • the present invention has been made in view of such circumstances, and without performing an operation of fixing the relative position between the object to be inspected and the radiation imaging apparatus to a predetermined position, and the object to be inspected. It is an object of the present invention to provide a defect determination apparatus, a radiation imaging system, and a defect determination method that can accurately determine a defect that occurs in a defect.
  • the defect determination apparatus, the radiation imaging system, and the defect determination method of the present invention employ the following means.
  • the defect determination apparatus is a defect determination that determines the presence or absence of a defect in the inspection object from detection image data obtained by a radiation imaging apparatus that detects radiation transmitted through the inspection object.
  • a position specifying means for specifying the position of the feature portion in the detected image data based on the shape of the feature portion of the inspection object indicated by the feature data stored in advance in the storage means;
  • a defect candidate is extracted with reference to the feature portion in the detected image data specified by the position specifying means, and a defect characteristic amount and a defect candidate characteristic amount indicated by the defect characteristic data stored in advance in the storage means
  • a defect determination means for determining the presence / absence of a defect in the inspection object.
  • the defect determination device determines a defect of the inspection target object from the detected image data obtained by detecting the radiation transmitted through the inspection target object. Then, the position specifying means specifies the position of the feature part in the detected image data based on the shape of the feature part of the object to be inspected indicated by the feature data stored in advance in the storage means. The position of the feature part is specified by, for example, template matching processing between feature data and detected image data. As a result, the position of the characteristic part in the detected image data is specified regardless of the direction and size of the object to be inspected when radiation is irradiated by the radiation imaging apparatus. In addition, it is preferable that the characteristic site
  • defect candidates are extracted by the defect determination unit, and the characteristic amount of the defect generated in the inspection target indicated by the defect characteristic data stored in the storage unit in advance Based on the characteristic amount of the defect candidate, the presence / absence of a defect in the inspection object is determined. As described above, since the presence / absence of a defect is determined based on the defect characteristic amount and the defect candidate characteristic amount indicated by the defect characteristic data, the defect determination can be performed with high accuracy.
  • this configuration can accurately determine a defect occurring in the inspection object without performing an operation of fixing the relative position between the inspection object and the radiation imaging apparatus at a predetermined position. .
  • the defect determination unit obtains the position of the defect candidate from the characteristic part, and the characteristic amount of the defect and the characteristic amount of the defect candidate indicated by the defect characteristic data according to the position It is preferable to determine the presence or absence of a defect in the inspection object based on the above.
  • the defect characteristic data indicates a characteristic amount for each aggregate, with defects having an Euclidean distance equal to or less than a predetermined threshold as one aggregate.
  • defects having a Euclidean distance equal to or less than a predetermined threshold are set as one aggregate, and the presence / absence of a defect in the inspection target is determined based on the characteristic amount of the aggregate and the characteristic amount of the defect candidate. Therefore, it is possible to more easily determine the presence or absence of defects with high accuracy.
  • each of the aggregates is assigned a priority
  • the defect determination means determines that the defect candidates included in the existence range of the aggregate having a higher priority are more likely to be defects. Is preferred.
  • the defect characteristic data classifies the defect into a plurality of regions based on the position of the characteristic part, and indicates the characteristic amount of the defect corresponding to each region.
  • the defect is classified for each of a plurality of areas based on the characteristic part of the object to be inspected, for example, for each area divided into four quadrants around the center of gravity (centroid) of the characteristic part. And since the presence or absence of the defect of the to-be-inspected object is determined based on the characteristic amount of the defect according to the classified area, it is possible to more easily determine the presence or absence of the defect with high accuracy.
  • the defect characteristic data is updated by newly adding a characteristic amount of the defect candidate determined to be a defect.
  • a radiation imaging system includes a radiation imaging apparatus that irradiates a subject to be inspected and obtains detected image data in which radiation transmitted through the subject to be inspected is detected, and the defect determination device described above And comprising.
  • the defect determination method is a defect determination that determines the presence or absence of a defect in the inspection object from detection image data obtained by a radiation imaging apparatus that detects radiation transmitted through the inspection object.
  • a defect candidate is extracted with reference to the characteristic part in the detected image data specified in the first step, and a defect characteristic amount and a defect candidate characteristic amount indicated by defect characteristic data stored in advance in a storage unit
  • a second step of determining the presence / absence of a defect in the inspection target object.
  • the defect which arises in a to-be-inspected object can be determined with high precision, without performing the operation
  • 1 is a configuration diagram of a radiation imaging system according to a first embodiment of the present invention.
  • 1 is a block diagram illustrating a configuration of an image processing apparatus according to a first embodiment of the present invention. It is a flowchart which shows the flow of the defect characteristic DB production
  • FIG. 1 is a configuration diagram of a radiation imaging system 10.
  • the radiation imaging system 10 includes a radiation imaging device 12, a detected image data storage device 18, an image processing device 20, and a display device 22.
  • the radiation imaging apparatus 12 includes a radiation source 14 that irradiates an object to be inspected (hereinafter referred to as “product”), and an FPD (Flat Panel) that obtains detection image data (digital data) that detects radiation transmitted through the product. detector) 16.
  • a radiation source 14 that irradiates an object to be inspected (hereinafter referred to as “product”)
  • FPD Fluorescence Deformation
  • detection image data digital data
  • the detected image data storage device 18 stores the detected image data obtained by the FPD 16.
  • the image processing device 20 reads the detected image data stored in the detected image data storage device 18 and performs various image processing on the detected image data.
  • This image processing includes defect determination processing for determining the presence or absence of a product defect (hereinafter referred to as “product defect”) from the detected image data.
  • product defect a product defect
  • wing a stationary blade or a moving blade of a gas turbine as an example, it is not restricted to this.
  • the detected image data is two-dimensional image data.
  • the display device 22 displays the result of the image processing performed by the image processing device 20.
  • FIG. 2 is a block diagram showing the configuration of the image processing apparatus 20.
  • the image processing apparatus 20 includes an image defect processing unit 30, an edge processing unit 32, and a product defect determination unit 34.
  • the image defect processing unit 30 processes a defect (hereinafter referred to as “image defect”) generated in the detected image data.
  • image defect a defect generated in the detected image data.
  • the image defect processing unit 30 processes image defects generated in the detected image data so as not to affect the determination of the presence or absence of product defects.
  • the edge processing unit 32 clarifies the contour of the image indicated by the detected image data by performing edge processing on the detected image data.
  • the product defect determination unit 34 includes a DB storage unit 36, a feature position specifying unit 38, and a defect determination unit 40.
  • the DB storage unit 36 has a product feature database (hereinafter referred to as “product feature DB”) that manages product feature data indicating the shape of product feature parts (hereinafter referred to as “product features”), and product defects.
  • product feature DB product feature database
  • defect characteristic DB defect characteristic database
  • a product characteristic is a site
  • the product feature is a cooling groove provided in the blade. This groove has a curvature or the like, and may cause a product defect around the groove.
  • the product defect is, for example, a crack or a point generated around the groove.
  • the feature position specifying unit 38 performs a feature position specifying process for specifying the position of the product feature in the detected image data based on the shape of the product feature indicated by the product feature data.
  • the defect determination unit 40 extracts defect candidates based on the product features in the detected image data specified by the feature position specifying unit 38, and the product defect characteristic amount indicated by the defect characteristic DB (in the first embodiment, a cluster value). Based on the characteristic amount) and the characteristic amount of the defect candidate, the presence / absence of a product defect is determined (hereinafter referred to as “defect determination process”). The determination result by the defect determination unit 40 is displayed on the display device 22.
  • the image processing apparatus 20 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a computer-readable recording medium (DB storage unit 36), and the like.
  • a series of processes for realizing various functions of the image defect processing unit 30, the edge processing unit 32, the feature position specifying unit 38, and the defect determination unit 40 are recorded on a recording medium or the like in the form of a program as an example.
  • Various functions are realized by the CPU reading this program into the RAM and executing information processing / calculation processing.
  • the generation of the defect characteristic DB will be described with reference to FIG.
  • the defect characteristic DB is generated in advance and stored in the DB storage unit 36.
  • FIG. 3 is a flowchart showing a flow of processing related to generation of defect characteristic DB (hereinafter referred to as “defect characteristic DB generation processing”).
  • the defect characteristic DB generation process is executed by the image processing apparatus 20 or another information processing apparatus (such as a personal computer).
  • step 100 a plurality of product defect characteristic quantities (defect characteristic data) that a person has determined to be defective in advance are associated with the position of the product defect (for example, a position (x, y coordinate) from the product center of gravity, etc.).
  • Register input to information processing device).
  • the characteristic amount of the product defect is defined by the size and shape as shown in FIG.
  • the size of the product defect is an area of the product defect, and the area is obtained from, for example, the number of dots of an image that is regarded as a product defect.
  • the shape of the product defect is the circularity of the product defect. When the circularity is K, the product defect area is S, and the product defect perimeter is L, the circularity is calculated from the following equation (1).
  • the Euclidean distance between a plurality of registered product defects is calculated, and the product defects whose Euclidean distance is equal to or smaller than a predetermined threshold are defined as one aggregate (hereinafter referred to as “cluster”).
  • this step 102 calculates the Euclidean distance between product defects, makes the product defects with the closest Euclidean distance one cluster, and the Euclidean between the center of gravity (centroid) of this cluster and other product defects. The distance is calculated, and the nearest product defect is set to the same cluster.
  • This step 102 is repeated until the Euclidean distance between the cluster and the product defect exceeds the threshold value. As a result, product defects are classified for each cluster.
  • the defect determination parameter of each cluster obtained in step 102 is calculated.
  • the defect determination parameter is a parameter used for determining whether or not the defect candidate extracted from the detected image data is a defect, and is, for example, the size or shape of a product defect.
  • the average size Sm, the size standard deviation ⁇ S, the shape average Km, and the shape standard deviation ⁇ K of the product defects constituting each cluster are calculated. Thereby, the size Sm ⁇ ⁇ S and the shape Km ⁇ ⁇ K of the product defect constituting each cluster are obtained as the defect determination parameters.
  • the existence range of each cluster is defined (for example, two points of two-dimensional coordinates).
  • the priority of each cluster is set.
  • a higher priority is set as the number of product defects included in the cluster increases.
  • step 108 the defect determination parameter calculated for each cluster in step 104, the number of product defects included in the cluster, and the cluster characteristic amount that is the cluster existence range are generated as a defect characteristic DB in association with each cluster. This process is terminated.
  • Table 1 below is an example of the configuration of the defect characteristic DB, and cluster characteristic amounts are associated with each cluster Ci (i is a cluster identifier).
  • the characteristic quantity of the product defect contained in a cluster is linked
  • the characteristic amount of the cluster shown in Table 1 the characteristic amount of the product defect included in the cluster, and the priority order are collectively referred to as cluster attribute information.
  • FIG. 5 is a schematic diagram showing a processing flow of the product defect determination unit 34 according to the first embodiment.
  • the feature position specifying unit 38 performs a feature position specifying process.
  • the position of the product feature in the detected image data is specified by template matching between the detected image indicated by the detected image data and the product feature image indicated by the product feature image data.
  • the product feature image is used as a template, and the product feature image is collated with the detected image by moving, rotating, and scaling, and the position of the product feature in the detected image data is specified. . Then, the feature position specifying process obtains position specifying information indicating the position, rotation angle, and size of the product on the FPD 16 included in the radiation imaging apparatus 12 from the collation result of the template matching process.
  • the position of the product feature in the detected image data is specified regardless of the orientation and size of the product when the radiation imaging apparatus 12 emits radiation.
  • the defect determination unit 40 performs a defect determination process.
  • the defect determination process includes a product feature masking process, a defect identification process, and a defect degree determination process.
  • the product feature masking process masks a portion corresponding to the product feature image from the detected image data by using the position specifying information obtained by the feature position specifying process and the product feature image data. Thereby, the “image” portion around the product feature is extracted as a defect candidate from the detected image data after masking.
  • the extraction here means extracting information such as the position and size of the defect candidate from the detected image data.
  • the defect identification process calculates and identifies the characteristic amount of the defect candidate obtained by the product feature masking process.
  • the characteristic amount of the defect candidate is the same as that of the product defect, and is defined by size and shape as an example. Since the method for calculating the characteristic amount of the defect candidate is the same as the method for calculating the characteristic amount of the product defect in the generation of the defect characteristic DB described above, the description thereof is omitted.
  • FIG. 6 is a flowchart showing the flow of the defect degree determination process.
  • step 200 it is determined whether or not the defect candidate is included in the cluster. Specifically, it is determined whether or not the position of the defect candidate extracted by the product feature masking process is included in the existence range of any cluster indicated by the defect characteristic DB. If the determination in step 200 is affirmative, the process proceeds to step 202. If the determination is negative, the process proceeds to step 204.
  • step 202 it is determined whether or not the defect candidate is determined to be included in the cluster existence range as a product defect.
  • the size (defect size) and shape (defect shape) of the defect candidates are the characteristic quantities of the clusters that are assumed to be contained (average defect size Smi, defect size standard deviation ⁇ Si, average Whether or not the defect candidate is a defect is determined based on whether or not the following determination formula based on the defect shape Kmi and the standard deviation ⁇ Ki of the defect shape is satisfied.
  • ⁇ i and ⁇ i are parameters that are empirically obtained in advance to determine whether the defect candidate is a product defect.
  • step 204 it is determined whether or not the processing of steps 200 and 202 has been completed for all defect candidates. If the determination is affirmative, the process proceeds to step 206. If the determination is negative, the process proceeds to step 200. Return.
  • step 206 the result of the defect determination in step 202 and the defect candidate determined not to be included in the cluster in step 200 are displayed on the display device 22.
  • this step 206 it is determined that a defect candidate included in a cluster having higher priority included in the cluster attribute information is more likely to be a defect.
  • the detection image based on the detection image data obtained by the FPD 16 and the highlighted defect candidate are displayed on the screen of the display device 22, and the priority order is displayed for each defect candidate.
  • the defect degree determination process is finished.
  • the defect inspection process is a process for finally determining whether or not the defect candidate is a defect by visual inspection based on the result of the defect determination displayed on the display device 22 by the defect degree determination process.
  • step 300 it is determined whether or not the defect candidate displayed on the display device 22 is a defect by visual inspection by an inspector. At this time, since the defect candidate that is more likely to be a defect is displayed on the display device 22, the inspector can easily determine whether or not the defect candidate is a defect. If the determination in step 300 is affirmative, the process proceeds to step 302. If the determination is negative, the process proceeds to step 304.
  • step 302 the characteristic amount relating to the defect candidate determined to be a product defect is stored as a new product defect characteristic amount in a temporary storage area of the storage device included in the image processing apparatus 20.
  • step 304 the inspector determines whether or not the defect determination by the inspector's visual inspection has been completed for all defect candidates. If the determination is affirmative, the defect inspection process is terminated, and the determination is negative. Returns to step 300.
  • an update process for newly adding a defect candidate determined as a product defect to the defect characteristic DB is performed. Specifically, the characteristic amount of the new product candidate stored in the temporary storage area in step 302 of the defect inspection process is added to the characteristic amount of the product defect included in the cluster containing the new product defect. Then, in consideration of the newly added product defect characteristic amount, the existing cluster characteristic amount is newly calculated, and the defect characteristic DB is updated. As a result, new product defect characteristic amounts are accumulated in the defect characteristic DB each time the number of defect determinations increases, so that the image processing apparatus 20 can further improve the accuracy of defect determination.
  • the image processing apparatus 20 performs the position of the product feature in the detected image data based on the shape of the product feature indicated by the feature data stored in advance in the DB storage unit 36. And defect candidates are extracted on the basis of the product features in the identified detected image data, and the product defect characteristic quantities (clusters in the first embodiment) indicated by the defect characteristic DB stored in the DB storage unit 36 in advance. ) And the defect candidate characteristic amount, the presence / absence of a product defect is determined.
  • the image processing apparatus 20 can accurately determine the product defect without performing an operation of fixing the relative position between the product and the radiation imaging apparatus 12 at a predetermined position.
  • the configuration of the radiation imaging system 10 according to the second embodiment is the same as the configuration of the radiation imaging system 10 according to the first embodiment shown in FIGS.
  • the priority order of clusters in the defect characteristic DB is determined by the number of product defects included in the cluster.
  • a product defect occurs a priori for the cluster priority order.
  • the cluster is included in an area that is known to be easy to perform or is closer to the cluster.
  • the contents of the defect characteristic DB can be artificially changed, and the priority of the cluster can be changed by an inspector.
  • the radiation imaging system 10 can further improve the accuracy of defect determination.
  • the configuration of the radiation imaging system 10 according to the third embodiment is the same as the configuration of the radiation imaging system 10 according to the first embodiment shown in FIGS.
  • the characteristic amount of the existing cluster is newly calculated by adding to the characteristic amount of the product defect included in the cluster including the defect candidate.
  • step 302 of the defect inspection process is performed. After adding the product defect characteristic quantities stored in the temporary storage area to the defect characteristic DB, the existing cluster characteristic quantities are deleted, and all the product defect characteristics that take into account the newly added product defect characteristic quantities are added. Based on the characteristic amount, the cluster is calculated again.
  • the configuration of the radiation imaging system 10 according to the fourth embodiment is the same as the configuration of the radiation imaging apparatus 12 according to the first embodiment shown in FIGS.
  • the configuration of the defect characteristic DB according to the fourth embodiment is different from that of the first embodiment.
  • the defect characteristic DB In the defect characteristic DB according to the fourth embodiment, product defects are classified into a plurality of areas (hereinafter referred to as “determination areas”) based on the positions of product features, and the product defects corresponding to the respective determination areas are classified.
  • the characteristic quantity is shown.
  • Table 2 below is an example of the configuration of the defect characteristic DB according to the fourth embodiment, and a determination region characteristic amount is associated with each determination region An.
  • the characteristic amount of the product defect included in the determination region is associated with each product defect included in the determination region, the number is the same as the defect number Ni.
  • it is determined in which quadrant indicated by which determination area the defect candidate is included.
  • the radiation imaging system 10 specifies the position of the defect candidate based on the position of the product feature, it is clear in which quadrant the defect candidate is located, and therefore corresponds to the corresponding quadrant.
  • the presence / absence of a product defect can be more easily and accurately determined from the determination region characteristic amount and the defect candidate characteristic amount.
  • the imaging device for obtaining the detected image data (digital data) obtained by detecting the X-rays transmitted through the inspection target is the FPD 16, but the present invention is limited to this.
  • X-rays transmitted through the object to be inspected may be imaged with a silver salt film or IP (imaging plate) to obtain an analog image, and the analog image may be converted into digital data.
  • each said embodiment demonstrated the form which used the radiation which permeate
  • transmits to-be-inspected object is (gamma) It is good also as a form made into other radiations, such as a line
  • the present invention is not limited to this, and the shape of the product defect is determined with respect to the point and the product characteristic. It is good also as a form made into the line (diagonal, vertical, horizontal, etc.) to have.
  • each said embodiment demonstrated the form which makes detection image data into two-dimensional image data
  • this invention is not limited to this, A radiation is irradiated with respect to a product from several angles It is good also as a form made into the three-dimensional image data obtained by equalizing.
  • the detected image data may be divided not into four quadrants but into eight quadrants including the z direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Image Processing (AREA)

Abstract

画像処理装置(20)は、被検査対象物である製品を透過した放射線を検出する放射線撮像装置によって得られた検出画像データから、製品欠陥の有無を判定する。画像処理装置(20)は、予めDB記憶部(36)に記憶されている特徴データにより示される製品特徴の形状に基づいて、検出画像データにおける製品特徴の位置を特定し、特定した検出画像データにおける製品特徴を基準として欠陥候補を抽出し、予めDB記憶部(36)に記憶されている欠陥特性DBにより示される製品欠陥の特性量と欠陥候補の特性量とに基づいて、製品欠陥の有無を判定する。

Description

欠陥判定装置、放射線撮像システム、及び欠陥判定方法
 本発明は、欠陥判定装置、放射線撮像システム、及び欠陥判定方法に関するものである。
 放射線撮像装置は、放射線(例えばX線)を被検査対象物へ照射し、被検査対象物を透過した放射線を検出して検出画像データを得る。この検出画像データは、例えばFPD(Flat panel detector)によって放射線が検出されることで得られる。
 FPDは、複数個の検出素子で構成されているが、検出素子の中には照射された放射線に応じた検出信号を出力することに異常のある検出素子がライン状に生じることがある。
 特許文献1には、撮像された画像をエッジ強調処理し、所定の閾値を設定することでライン状異常画像素子を判定し、ライン状異常画像素子をさらに強調して浮かびあがらせ、エッジ強調処理後の差分検出画像データを生成することで、微小な変化しかもたないようなライン状異常画像素子をより精密に検出することを可能にする放射線撮像装置が開示されている。 
特開2009-153942号公報
 しかしながら、特許文献1に記載のように、ライン状異常画像素子を精密に検出したとしても、被検査対象物に生じる欠陥の有無の基準となる初期画像と、実際に被検査対象物を透過した放射線を検出して得られた画像とで、被検査対象物の向きや大きさ等が異なっていた場合、被検査対象物に生じる欠陥が正しく判定されない可能性がある。
 このため、作業者は、被検査対象物や放射線撮像装置を予め定められた位置に固定する作業を行う必要があり、撮像に要する時間が長くなっていた。
 本発明は、このような事情に鑑みてなされたものであって、被検査対象物と放射線撮像装置との相対位置を予め定められた位置に固定する作業を行うことなく、かつ被検査対象物に生じる欠陥の判定を精度高く行うことができる、欠陥判定装置、放射線撮像システム、及び欠陥判定方法を提供することを目的とする。
 上記課題を解決するために、本発明の欠陥判定装置、放射線撮像システム、及び欠陥判定方法は以下の手段を採用する。
 本発明の第一態様に係る欠陥判定装置は、被検査対象物を透過した放射線を検出する放射線撮像装置によって得られた検出画像データから、前記被検査対象物の欠陥の有無を判定する欠陥判定装置であって、予め記憶手段に記憶されている特徴データにより示される前記被検査対象物の特徴部位の形状に基づいて、前記検出画像データにおける前記特徴部位の位置を特定する位置特定手段と、前記位置特定手段によって特定された前記検出画像データにおける前記特徴部位を基準として欠陥候補を抽出し、予め記憶手段に記憶されている欠陥特性データにより示される欠陥の特性量と前記欠陥候補の特性量とに基づいて、前記被検査対象物の欠陥の有無を判定する欠陥判定手段と、を備える。
 本構成によれば、欠陥判定装置は、被検査対象物を透過した放射線を検出して得られた検出画像データから、被検査対象物の欠陥を判定する。
 そして、位置特定手段によって、予め記憶手段に記憶されている特徴データにより示される被検査対象物の特徴部位の形状に基づいて、検出画像データにおける特徴部位の位置が特定される。特徴部位の位置の特定は、例えば特徴データと検出画像データとのテンプレートマッチング処理によって行われる。これにより、放射線撮像装置によって放射線が照射されたときの被検査対象物の向きや大きさにかかわらず、検出画像データにおける特徴部位の位置が特定されることとなる。なお、被検査対象物における特徴部位は、その周辺に欠陥が生じ易い部位であることが好ましい。
 さらに、特定された検出画像データにおける特徴部位を基準として、欠陥判定手段によって欠陥候補が抽出され、予め記憶手段に記憶されている欠陥特性データにより示される被検査対象物に生じる欠陥の特性量と欠陥候補の特性量とに基づいて、被検査対象物の欠陥の有無が判定される。このように、欠陥特性データにより示される欠陥の特性量と欠陥候補の特性量とに基づいて欠陥の有無を判定するので、欠陥の判定を精度高く行える。
 従って、本構成は、被検査対象物と放射線撮像装置との相対位置を予め定められた位置に固定する作業を行うことなく、かつ被検査対象物に生じる欠陥の判定を精度高く行うことができる。
 上記第一態様では、前記欠陥判定手段が、前記特徴部位からの前記欠陥候補の位置を求め、該位置に応じた前記欠陥特性データにより示される前記欠陥の特性量と前記欠陥候補の特性量とに基づいて、前記被検査対象物の欠陥の有無を判定することが好ましい。
 本構成によれば、欠陥候補の特徴部位からの位置に基づいた、より精度の高い欠陥の有無の判定が可能となる。
 上記第一態様では、前記欠陥特性データは、ユークリッド距離が所定の閾値以下の欠陥を一つの集合体とし、該集合体毎の特性量を示すことが好ましい。
 本構成によれば、ユークリッド距離が所定の閾値以下の欠陥が一つの集合体とされ、集合体の特性量と欠陥候補の特性量とに基づいて、被検査対象物の欠陥の有無が判定されるので、より簡易に精度の高い欠陥の有無の判定が可能となる。
 上記第一態様では、前記集合体に、各々優先順位が設定され、前記欠陥判定手段が、優先順位が高い前記集合体の存在範囲に内包される前記欠陥候補ほど、より欠陥らしいと判定することが好ましい。
 本構成によれば、最終的な検査員の目視による欠陥候補の欠陥判定が容易となる。
 上記第一態様では、欠陥特性データは、欠陥を前記特徴部位の位置を基準とした複数の領域毎に分類し、該領域毎に応じた前記欠陥の特性量を示すことが好ましい。
 本構成によれば、欠陥が被検査対象物の特徴部位を基準とした複数の領域毎、例えば特徴部位の重心(図心)を中心として4象限に分けられた領域毎に分類される。そして、分類された領域に応じた欠陥の特性量に基づいて被検査対象物の欠陥の有無が判定されるので、より簡易に精度の高い欠陥の有無の判定が可能となる。
 上記第一態様では、前記欠陥特性データが、欠陥と判定された前記欠陥候補の特性量が新たに追加されることで更新されることが好ましい。
 本構成によれば、欠陥の判定の回数が増加する毎に欠陥の特性量が蓄積されるので、欠陥の判定の精度をより高めることができる。
 本発明の第二態様に係る放射線撮像システムは、放射線を被検査対象物へ照射し、被検査対象物を透過した放射線を検出した検出画像データを得る放射線撮像装置と、上記記載の欠陥判定装置と、を備える。
 本発明の第三態様に係る欠陥判定方法は、被検査対象物を透過した放射線を検出する放射線撮像装置によって得られた検出画像データから、前記被検査対象物の欠陥の有無を判定する欠陥判定方法であって、予め記憶手段に記憶されている特徴データにより示される前記被検査対象物の特徴部位の形状に基づいて、前記検出画像データにおける前記特徴部位の位置を特定する第1工程と、前記第1工程によって特定した前記検出画像データにおける前記特徴部位を基準として欠陥候補を抽出し、予め記憶手段に記憶されている欠陥特性データにより示される欠陥の特性量と前記欠陥候補の特性量とに基づいて、前記被検査対象物の欠陥の有無を判定する第2工程と、を含む。
 本発明によれば、被検査対象物と放射線撮像装置との相対位置を予め定められた位置に固定する作業を行うことなく、かつ被検査対象物に生じる欠陥の判定を精度高く行うことができる、という優れた効果を有する。
本発明の第1実施形態に係る放射線撮像システムの構成図である。 本発明の第1実施形態に係る画像処理装置の構成を示したブロック図である。 本発明の第1実施形態に係る欠陥特性DB生成処理の流れを示すフローチャートである。 本発明の第1実施形態に係る欠陥の特性量を示した模式図である。 本発明の第1実施形態に係る製品欠陥判定部の処理の流れを示す模式図である。 本発明の第1実施形態に係る欠陥度合い判定処理の流れを示すフローチャートである。 本発明の第1実施形態に係る欠陥検査処理の流れを示すフローチャートである。 本発明の第4実施形態に係る欠陥候補の分類の一例を示した模式図である。
 以下に、本発明に係る欠陥判定装置、放射線撮像システム、及び欠陥判定方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本発明の第1実施形態について説明する。
 図1は、放射線撮像システム10の構成図である。
 放射線撮像システム10は、放射線撮像装置12、検出画像データ記憶装置18、画像処理装置20、及び表示装置22を備える。
 放射線撮像装置12は、放射線を被検査対象物(以下、「製品」という。)へ照射する放射線源14、及び製品を透過した放射線を検出した検出画像データ(デジタルデータ)を得るFPD(Flat panel detector)16を備える。なお、本第1実施形態では、放射線を一例としてX線とする。
 検出画像データ記憶装置18は、FPD16で得られた検出画像データを記憶する。
 画像処理装置20は、検出画像データ記憶装置18に記憶されている検出画像データを読み出し、検出画像データに対して各種画像処理を行う。この画像処理には、検出画像データから製品の欠陥(以下、「製品欠陥」という。)の有無を判定する欠陥判定処理が含まれる。なお、製品は、一例としてガスタービンの翼(静翼又は動翼)であるが、これに限られない。なお、検出画像データは、2次元の画像データである。
 表示装置22は、画像処理装置20によって行われた画像処理の結果等が表示される。
 図2は、画像処理装置20の構成を示したブロック図である。
 画像処理装置20は、画像欠陥処理部30、エッジ処理部32、及び製品欠陥判定部34を備える。
 画像欠陥処理部30は、検出画像データに生じた欠陥(以下、「画像欠陥」という。)を処理する。FPD16を構成する複数個の検出素子の中には、照射された放射線に応じた検出信号を出力することに異常のある検出素子が含まれている場合がある。この異常のある検出素子に対応する検出画像データの領域は、正しい検出画像データではない。このような検出画像データに基づいて製品欠陥の有無を判定しても、精度の高い判定とはならない可能性がある。そこで、画像欠陥処理部30は、製品欠陥の有無の判定に影響を与えないように、検出画像データに生じた画像欠陥を処理する。
 エッジ処理部32は、検出画像データに対してエッジ処理を行うことによって、検出画像データにより示される画像の輪郭を明りょうにする。
 製品欠陥判定部34は、DB記憶部36、特徴位置特定部38、及び欠陥判定部40を備える。
 DB記憶部36は、製品の特徴部位(以下、「製品特徴」という。)の形状を示した製品特徴データを管理する製品特徴データベース(以下、「製品特徴DB」という。)、及び製品欠陥の特性量を示した欠陥特性データを管理する欠陥特性データベース(以下、「欠陥特性DB」という。)を予め記憶している。
 なお、製品特徴は、その周辺に製品欠陥が生じ易い部位であることが好ましい。例えば、製品がガスタービンの翼である場合、製品特徴を翼内に設けられている冷却用の溝とする。この溝は、曲率等を有しており、周囲に製品欠陥が生じる可能性がある。
 そして、製品欠陥は、例えば溝の周辺に生じる亀裂や点である。
 特徴位置特定部38は、製品特徴データにより示される製品特徴の形状に基づいて、検出画像データにおける製品特徴の位置を特定する特徴位置特定処理を行う。
 欠陥判定部40は、特徴位置特定部38によって特定された検出画像データにおける製品特徴を基準として欠陥候補を抽出し、欠陥特性DBにより示される製品欠陥の特性量(本第1実施形態ではクラスターの特性量)と欠陥候補の特性量とに基づいて、製品欠陥の有無の判定(以下、「欠陥判定処理」という。)を行う。欠陥判定部40による判定結果は、表示装置22に表示される。
 なお、画像処理装置20は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体(DB記憶部36)等から構成されている。そして、画像欠陥処理部30、エッジ処理部32、特徴位置特定部38、及び欠陥判定部40の各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
 ここで、図3を参照して、欠陥特性DBの生成について説明する。欠陥特性DBは、上述したように予め生成され、DB記憶部36に記憶される。
 図3は、欠陥特性DBの生成に係る処理(以下、「欠陥特性DB生成処理」という。)の流れを示したフローチャートである。なお、欠陥特性DB生成処理は、画像処理装置20又は他の情報処理装置(パーソナルコンピュータ等)によって実行される。
 まず、ステップ100では、人が予め欠陥と判定した製品欠陥の特性量(欠陥特性データ)を、その製品欠陥の位置(例えば、製品重心からの位置(x,y座標)等)と関連付けて複数登録(情報処理装置への入力)する。
 製品欠陥の特性量は、例えば図4に示されるよう大きさ及び形状で規定される。
 製品欠陥の大きさは、製品欠陥の面積であり、面積は、例えば製品欠陥とされる像のドット数から求められる。
 製品欠陥の形状は、製品欠陥の円形度とされる。円形度をKとし、製品欠陥の面積をS、製品欠陥の周囲長をLとすると、円形度は下記(1)式から算出される。
Figure JPOXMLDOC01-appb-M000001
 次のステップ102では、登録した複数の製品欠陥同士のユークリッド距離を算出し、該ユークリッド距離が所定の閾値以下の製品欠陥を一つの集合体(以下、「クラスター」という。)とする。
 具体的には、本ステップ102は、製品欠陥同士のユークリッド距離を計算し、最もユークリッド距離が近い製品欠陥同士を1つのクラスターとし、このクラスターの重心(図心)と他の製品欠陥とのユークリッド距離を計算し、最も近い製品欠陥も同じクラスターとする。そして、本ステップ102は、クラスターと製品欠陥とのユークリッド距離が上記閾値を超えるまで繰り返す。これにより、製品欠陥は、クラスター毎に分類されることとなる。
 次のステップ104では、ステップ102で求めた各クラスターの欠陥判定パラメータを算出する。欠陥判定パラメータは、検出画像データから抽出した欠陥候補が欠陥であるか否かを判定するために用いるパラメータであり、例えば製品欠陥の大きさや形状である。
 具体的には、本ステップ104は、各クラスターを構成する製品欠陥の大きさの平均Sm、大きさの標準偏差δS、形状の平均Km、形状の標準偏差δKを算出する。これにより、各クラスターを構成する製品欠陥の大きさSm±δS及び形状Km±δKが欠陥判定パラメータとして求められることとなる。
 なお、本ステップ104では、各クラスターの存在範囲を規定する(例えば2点の2次元座標)。
 次のステップ106では、各クラスターの優先順位を設定する。
 本ステップでは、一例として、クラスターに含まれる製品欠陥の数が多いほど高い優先順位を設定する。
 次のステップ108では、ステップ104でクラスター毎に算出した欠陥判定パラメータ、クラスターに含まれる製品欠陥数、及びクラスターの存在範囲であるクラスターの特性量を、各クラスターに関連付けて欠陥特性DBとして生成し、本処理を終了する。
 下記表1は、欠陥特性DBの構成の一例であり、クラスターCi(iはクラスターの識別子)毎にクラスターの特性量が関連付けられる。なお、クラスターに含まれる製品欠陥の特性量は、クラスターに含まれる製品欠陥毎に関連付けられるため、その数は欠陥数Niと同数である。
 以下、表1に示されるクラスターの特性量、クラスターに含まれる製品欠陥の特性量、及び優先順位を総称してクラスターの属性情報という。
Figure JPOXMLDOC01-appb-T000002
 
 図5は、第1実施形態に係る製品欠陥判定部34の処理の流れを示す模式図である。
 まず、特徴位置特定部38が特徴位置特定処理を行う。
 特徴位置特定処理は、一例として、検出画像データにより示される検出画像と製品特徴画像データにより示される製品特徴画像とをテンプレートマッチング処理により、検出画像データにおける製品特徴の位置を特定する。
 具体的には、特徴位置特定処理は、製品特徴画像をテンプレートとして用い、製品特徴画像を移動、回転、及び拡大縮小させることで検出画像と照合し、検出画像データにおける製品特徴の位置を特定する。そして、特徴位置特定処理は、テンプレートマッチング処理の照合結果から、放射線撮像装置12が備えるFPD16上における、製品の位置、回転角度、及び大きさを示す位置特定情報を得る。
 これにより、放射線撮像装置12によって放射線が照射されたときの製品の向きや大きさにかかわらず、検出画像データにおける製品特徴の位置が特定されることとなる。
 次に、欠陥判定部40が欠陥判定処理を行う。欠陥判定処理は、製品特徴マスキング処理、欠陥識別処理、及び欠陥度合い判定処理を含む。
 製品特徴マスキング処理は、特徴位置特定処理によって得られた位置特定情報と製品特徴画像データとを用いて、検出画像データから製品特徴画像に相当する部分をマスキングする。これにより、マスキング後の検出画像データから製品特徴の周辺における「像」の部分が、欠陥候補として抽出される。ここでいう抽出とは、欠陥候補の位置及び大きさ等の情報を検出画像データから抽出することである。
 欠陥識別処理は、製品特徴マスキング処理によって求められた欠陥候補に対して、その特性量を算出し、識別する。
 欠陥候補の特性量は、製品欠陥と同様であり、一例として大きさ及び形状で規定される。欠陥候補の特性量の算出方法は、上述した欠陥特性DBの生成における製品欠陥の特性量の算出方法と同様であるので、その説明を省略する。
 欠陥度合い判定処理は、欠陥特性DBにより示される製品欠陥の特性量(本第1実施形態ではクラスターの特性量)と欠陥候補の特性量とに基づいて、製品欠陥の有無を判定する。
 図6は、欠陥度合い判定処理の流れを示すフローチャートである。
 まず、ステップ200では、欠陥候補がクラスターに内包されているか否かの判定を行う。
 具体的には、製品特徴マスキング処理によって抽出された欠陥候補の位置が欠陥特性DBにより示される何れかのクラスターの存在範囲に内包されているか否かの判定を行う。
 ステップ200において肯定判定の場合は、ステップ202へ移行し、否定判定の場合は、ステップ204へ移行する。
 ステップ202では、クラスターの存在範囲に内包されていると判定された欠陥候補に対して、製品欠陥であるか否かの判定を行う。
 具体的には、欠陥候補の大きさ(欠陥大きさ)及び形状(欠陥形状)が、内包されているとされたクラスターの特性量(平均欠陥大きさSmi、欠陥大きさの標準偏差δSi、平均欠陥形状Kmi、欠陥形状の標準偏差δKi)に基づく、下記判定式を満たすか否かによって、欠陥候補が欠陥か否かが判定される。
 Smi-αi・δSi<欠陥大きさ<Smi+αi・δSi
 Kmi-βi・δKi<欠陥大きさ<Kmi+βi・δKi
 なお、上記判定式においてαi及びβiは、欠陥候補が製品欠陥か否かを判定するために経験的に予め求められたパラメータである。
 次のステップ204では、全ての欠陥候補に対してステップ200,202の処理が終了したか否かを判定し、肯定判定の場合は、ステップ206へ移行し、否定判定の場合は、ステップ200へ戻る。
 ステップ206では、ステップ202による欠陥判定の結果や、ステップ200においてクラスターに内包されないと判定された欠陥候補を表示装置22に表示する。
 本ステップ206では、クラスターの属性情報に含まれる優先順位が高いクラスターに内包される欠陥候補ほど、より欠陥らしいと判定する。そして、FPD16で得られた検出画像データに基づいた検出画像及び強調表示された欠陥候補が、表示装置22の画面に表示され、欠陥候補毎に優先順位が表示される。
 本ステップ206が終了すると、欠陥度合い判定処理は終了する。
 欠陥度合い判定処理が終了すると、次に図7に示される欠陥検査処理が行われる。欠陥検査処理は、欠陥度合い判定処理によって表示装置22に表示された欠陥判定の結果に基づいて、検査員が目視により欠陥候補が欠陥か否かを最終的に判定する処理である。
 まず、ステップ300では、表示装置22に表示された欠陥候補に対して、検査員の
目視によって欠陥か否かが判定される。このとき、表示装置22にはより欠陥らしい欠陥候補が上位となるように表示されているので、検査員は欠陥候補が欠陥であるか否かの判定が容易となる。
 ステップ300において肯定判定の場合は、ステップ302へ移行し、否定判定の場合は、ステップ304へ移行する。
 ステップ302では、製品欠陥と判定した欠陥候補に関する特性量を新たな製品欠陥の特性量として、画像処理装置20が備える記憶装置の一時記憶領域に記憶させる。
 ステップ304では、全ての欠陥候補に対して検査員の目視による欠陥の判定が終了したか否かを検査員が判定し、肯定判定の場合は、本欠陥検査処理を終了し、否定判定の場合は、ステップ300へ戻る。
 欠陥検査処理が終了すると、欠陥特性DBに対して、製品欠陥と判定された欠陥候補を新たに追加する更新処理が行われる。
 具体的には、欠陥検査処理のステップ302において一時記憶領域に記憶された新たな製品候補の特性量が、該新たな製品欠陥を内包するクラスターに含まれる製品欠陥の特性量に追加される。そして、新たに追加された製品欠陥の特性量を加味して、既存のクラスターの特性量が新たに算出され、欠陥特性DBが更新される。
 これにより、欠陥判定の回数が増加する毎に欠陥特性DBに新たな製品欠陥の特性量が蓄積されるので、画像処理装置20は、欠陥判定の精度をより高めることができる。
 以上説明したように、本第1実施形態に係る画像処理装置20は、予めDB記憶部36に記憶されている特徴データにより示される製品特徴の形状に基づいて、検出画像データにおける製品特徴の位置を特定し、特定した検出画像データにおける製品特徴を基準として欠陥候補を抽出し、予めDB記憶部36に記憶されている欠陥特性DBにより示される製品欠陥の特性量(本第1実施形態ではクラスターの特性量)と欠陥候補の特性量とに基づいて、製品欠陥の有無を判定する。
 従って、画像処理装置20は、製品と放射線撮像装置12との相対位置を予め定められた位置に固定する作業を行うことなく、かつ製品欠陥の判定を精度高く行うことができる。
〔第2実施形態〕
 以下、本発明の第2実施形態について説明する。
 なお、本第2実施形態に係る放射線撮像システム10の構成は、図1,2に示す第1実施形態に係る放射線撮像システム10の構成と同様であるので説明を省略する。
 第1実施形態では、欠陥特性DBにおけるクラスターの優先順位をクラスターに含まれる製品欠陥の数によって決定されているが、本第2実施形態では、クラスターの優先順位を先験的に製品欠陥が発生し易いと分かっている領域に含まれる、又は近接するクラスターほど優先順位を高くする。
 具体的には、欠陥特性DBの内容が人為的に変更可能とされ、検査員によってクラスターの優先順位を変更可能とする。
 これにより、放射線撮像システム10は、より欠陥判定の精度をより高めることができる。
〔第3実施形態〕
 以下、本発明の第3実施形態について説明する。
 なお、本第3実施形態に係る放射線撮像システム10の構成は、図1,2に示す第1実施形態に係る放射線撮像システム10の構成と同様であるので説明を省略する。
 第1実施形態では、欠陥候補を内包するクラスターに含まれる製品欠陥の特性量に追加し、既存のクラスターの特性量を新たに算出するが、本第3実施形態では、欠陥検査処理のステップ302において一時記憶領域に記憶された製品欠陥の特性量を欠陥特性DBに追加した後、既存のクラスターの特性量を削除し、新たに追加された製品欠陥の特性量を加味した全ての製品欠陥の特性量に基づいて、再びクラスターを算出し直す。
 これにより、製品欠陥の情報が少ない初期の状態では適切なクラスターが形成されていなかったとしても、欠陥判定を繰り返すことにより、製品欠陥の情報の蓄積が進み、より適切なクラスターが算出されるので、より欠陥判定の精度をより高めることができる欠陥特性DBが生成されることとなる。
〔第4実施形態〕
 以下、本発明の第4実施形態について説明する。
 なお、本第4実施形態に係る放射線撮像システム10の構成は、図1,2に示す第1実施形態に係る放射線撮像装置12の構成と同様であるので説明を省略する。
 本第4実施形態に係る欠陥特性DBの構成が、第1実施形態と異なっている。
 本第4実施形態に係る欠陥特性DBは、製品欠陥を製品特徴の位置を基準とした複数の領域(以下、「判定領域」という。)毎に分類し、判定領域毎に応じた製品欠陥の特性量を示している。なお、判定領域は、例えば、図8に示されるように、製品特徴の重心を中心((x,y)=(0,0))として検出画像データを4象限に分けた各象限である。
 下記表2は、本第4実施形態に係る欠陥特性DBの構成の一例であり、判定領域An毎に判定領域特性量が関連付けられる。なお、判定領域に含まれる製品欠陥の特性量は、判定領域に含まれる製品欠陥毎に関連付けられるため、その数は欠陥数Niと同数である。
Figure JPOXMLDOC01-appb-T000003
 そして、本第4実施形態に係る欠陥度合い判定処理では、欠陥候補が何れの判定領域により示される何れの象限に内包されているかの判定を行う。
 本第4実施形態に係る放射線撮像システム10は、製品特徴の位置を基準として欠陥候補の位置を特定するので、欠陥候補がどの象限に位置するかが明確となるため、該当する象限に対応する判定領域特性量と欠陥候補の特性量とから、製品欠陥の有無をより簡易に精度の高く判定できる。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記各実施形態では、被検査対象物を透過したX線を検出した検出画像データ(デジタルデータ)を得る撮像装置をFPD16とする形態について説明したが、本発明は、これに限定されるものではなく、被検査対象物を透過したX線を銀塩フィルム、IP(imaging plate)で撮像しアナログ画像を得、アナログ画像をデジタルデータに変換する形態としてもよい。
 また、上記各実施形態では、被検査対象物を透過させる放射線をX線とする形態について説明したが、本発明は、これに限定されるものではなく、被検査対象物を透過させる放射線をγ線や電子線(β線)等、他の放射線とする形態としてもよい。
 また、上記各実施形態では、製品欠陥の形状を円形度から求める形態について説明したが、本発明は、これに限定されるものではなく、製品欠陥の形状を、点や製品特徴に対する方向性を有する線(斜め、縦、及び横等)とする形態としてもよい。
 また、上記各実施形態では、検出画像データを2次元の画像データとする形態について説明したが、本発明は、これに限定されるものではなく、製品に対して放射線を複数の角度から照射する等して得られた3次元の画像データとする形態としてもよい。
 この形態の場合、上記第4実施形態では、検出画像データを4象限ではなく、z方向も含む8象限に分けてもよい。
 また、上記各実施形態で説明した特徴位置特定処理及び欠陥判定処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要な処理を削除したり、新たな処理を追加したり、処理順序を入れ替えたりしてもよい。
 10  放射線撮像システム
 12  放射線撮像装置
 20  画像処理装置
 34  製品欠陥判定部
 36  DB記憶部
 38  特徴位置特定部
 40  欠陥判定部
 

Claims (8)

  1.  被検査対象物を透過した放射線を検出する放射線撮像装置によって得られた検出画像データから、前記被検査対象物の欠陥の有無を判定する欠陥判定装置であって、
     予め記憶手段に記憶されている特徴データにより示される前記被検査対象物の特徴部位の形状に基づいて、前記検出画像データにおける前記特徴部位の位置を特定する位置特定手段と、
     前記位置特定手段によって特定された前記検出画像データにおける前記特徴部位を基準として欠陥候補を抽出し、予め記憶手段に記憶されている欠陥特性データにより示される欠陥の特性量と前記欠陥候補の特性量とに基づいて、前記被検査対象物の欠陥の有無を判定する欠陥判定手段と、
    を備えた欠陥判定装置。
  2.  前記欠陥判定手段は、前記特徴部位からの前記欠陥候補の位置を求め、該位置に応じた前記欠陥特性データにより示される前記欠陥の特性量と前記欠陥候補の特性量とに基づいて、前記被検査対象物の欠陥の有無を判定する請求項1記載の欠陥判定装置。
  3.  前記欠陥特性データは、ユークリッド距離が所定の閾値以下の欠陥を一つの集合体とし、該集合体毎の特性量を示している請求項2記載の欠陥判定装置。
  4.  前記集合体は、各々優先順位が設定され、
     前記欠陥判定手段は、優先順位が高い前記集合体の存在範囲に内包される前記欠陥候補ほど、より欠陥らしいと判定する請求項3記載の欠陥判定装置。
  5.  前記欠陥特性データは、欠陥を前記特徴部位の位置を基準とした複数の領域毎に分類し、該領域毎に応じた前記欠陥の特性量を示している請求項2記載の欠陥判定装置。
  6.  前記欠陥特性データは、欠陥と判定された前記欠陥候補の特性量が新たに追加されることで更新される請求項1から請求項5の何れか1項記載の欠陥判定装置。
  7.  放射線を被検査対象物へ照射し、被検査対象物を透過した放射線を検出した検出画像データを得る放射線撮像装置と、
     請求項1から請求項6の何れか1項に記載の欠陥判定装置と、
    を備えた放射線撮像システム。
  8.  被検査対象物を透過した放射線を検出する放射線撮像装置によって得られた検出画像データから、前記被検査対象物の欠陥の有無を判定する欠陥判定方法であって、
     予め記憶手段に記憶されている特徴データにより示される前記被検査対象物の特徴部位の形状に基づいて、前記検出画像データにおける前記特徴部位の位置を特定する第1工程と、
     前記第1工程によって特定した前記検出画像データにおける前記特徴部位を基準として欠陥候補を抽出し、予め記憶手段に記憶されている欠陥特性データにより示される欠陥の特性量と前記欠陥候補の特性量とに基づいて、前記被検査対象物の欠陥の有無を判定する第2工程と、
    を含む欠陥判定方法。
     
PCT/JP2013/065822 2012-06-08 2013-06-07 欠陥判定装置、放射線撮像システム、及び欠陥判定方法 WO2013183758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147031282A KR101667471B1 (ko) 2012-06-08 2013-06-07 결함 판정 장치, 방사선 촬상 시스템, 및 결함 판정 방법
CN201380023962.2A CN104272094B (zh) 2012-06-08 2013-06-07 缺陷判定装置、放射线摄像系统及缺陷判定方法
US14/402,534 US9733200B2 (en) 2012-06-08 2013-06-07 Defect judging device, radiography system, and defect judging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-130713 2012-06-08
JP2012130713A JP5943722B2 (ja) 2012-06-08 2012-06-08 欠陥判定装置、放射線撮像システム、及び欠陥判定方法

Publications (1)

Publication Number Publication Date
WO2013183758A1 true WO2013183758A1 (ja) 2013-12-12

Family

ID=49712144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065822 WO2013183758A1 (ja) 2012-06-08 2013-06-07 欠陥判定装置、放射線撮像システム、及び欠陥判定方法

Country Status (5)

Country Link
US (1) US9733200B2 (ja)
JP (1) JP5943722B2 (ja)
KR (1) KR101667471B1 (ja)
CN (1) CN104272094B (ja)
WO (1) WO2013183758A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315951A4 (en) * 2015-06-25 2018-12-26 JFE Steel Corporation Surface defect detection apparatus and surface defect detection method
US10387368B2 (en) * 2015-10-23 2019-08-20 International Business Machines Corporation Ideal age vector based file retention in a software testing system
WO2018179559A1 (ja) * 2017-03-27 2018-10-04 三菱重工業株式会社 航空機用部品の欠陥検出システム及び航空機用部品の欠陥検出方法
JP6508435B1 (ja) * 2017-10-23 2019-05-08 東レ株式会社 樹脂成形品の検査方法および製造方法、樹脂成形品の検査装置および製造装置
CN109146279B (zh) * 2018-08-14 2021-12-07 同济大学 基于工艺规则与大数据的全流程产品质量溯源分析方法
US11010888B2 (en) 2018-10-29 2021-05-18 International Business Machines Corporation Precision defect detection based on image difference with respect to templates
US10957032B2 (en) 2018-11-09 2021-03-23 International Business Machines Corporation Flexible visual inspection model composition and model instance scheduling
JP6630912B1 (ja) * 2019-01-14 2020-01-15 株式会社デンケン 検査装置及び検査方法
CN109975345B (zh) * 2019-04-17 2022-03-25 合刃科技(深圳)有限公司 基于热辐射的性能检测方法及检测系统
JP6784802B2 (ja) * 2019-06-21 2020-11-11 株式会社東芝 き裂検査装置およびき裂検査方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096425A (ja) * 2006-09-15 2008-04-24 Toyota Motor Corp 放射線検査装置、放射線検査方法および放射線検査プログラム
JP2008292405A (ja) * 2007-05-28 2008-12-04 Fujifilm Corp 検査装置および検査プログラム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250236A (ja) * 1984-05-28 1985-12-10 Nagoyashi 放射線透過写真の自動判別方式
JPH07119713B2 (ja) * 1990-01-12 1995-12-20 川崎重工業株式会社 放射線試験での溶接欠陥像の自動抽出処理方法
JPH0716151A (ja) 1993-06-30 1995-01-20 Seven Raisu Kogyo Kk 蒸米装置
JP2968442B2 (ja) * 1994-09-26 1999-10-25 川崎重工業株式会社 溶接欠陥の評価システム
JP4211092B2 (ja) * 1998-08-27 2009-01-21 株式会社Ihi 放射線透過検査における溶接欠陥自動検出法
JP2001077165A (ja) * 1999-09-06 2001-03-23 Hitachi Ltd 欠陥検査方法及びその装置並びに欠陥解析方法及びその装置
EP1148333A1 (de) * 2000-02-05 2001-10-24 YXLON International X-Ray GmbH Verfahren zur automatischen Gussfehlererkennung in einem Prüfling
JP2002236759A (ja) 2001-02-08 2002-08-23 New Industry Research Organization 遠隔看護システム
JP3717801B2 (ja) 2001-05-07 2005-11-16 オリンパス株式会社 制御システム
JP4185841B2 (ja) * 2003-10-10 2008-11-26 日立Geニュークリア・エナジー株式会社 放射線透過試験画像の解像度を求める方法
JP2006098151A (ja) * 2004-09-29 2006-04-13 Dainippon Screen Mfg Co Ltd パターン検査装置およびパターン検査方法
JP4622814B2 (ja) * 2005-11-07 2011-02-02 株式会社島津製作所 X線検査装置
KR20180088924A (ko) 2005-11-18 2018-08-07 케이엘에이-텐코 코포레이션 검사 데이터와 조합하여 설계 데이터를 활용하는 방법 및 시스템
US7676077B2 (en) * 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US20070202476A1 (en) 2006-02-03 2007-08-30 Mark Williamson Techniques for inspecting an electronic device
JP5120254B2 (ja) 2006-07-06 2013-01-16 旭硝子株式会社 クラスタリングシステムおよび欠陥種類判定装置
JP4065893B1 (ja) * 2006-12-04 2008-03-26 東京エレクトロン株式会社 欠陥検出装置、欠陥検出方法、情報処理装置、情報処理方法及びそのプログラム
JP2008203034A (ja) * 2007-02-19 2008-09-04 Olympus Corp 欠陥検出装置および欠陥検出方法
US8135204B1 (en) * 2007-09-21 2012-03-13 Kla-Tencor Technologies Corp. Computer-implemented methods, carrier media, and systems for creating a defect sample for use in selecting one or more parameters of an inspection recipe
US8204291B2 (en) * 2007-10-15 2012-06-19 General Electric Company Method and system for identifying defects in a radiographic image of a scanned object
JP5081590B2 (ja) 2007-11-14 2012-11-28 株式会社日立ハイテクノロジーズ 欠陥観察分類方法及びその装置
KR20090062561A (ko) 2007-12-13 2009-06-17 삼성전자주식회사 특이점을 고려한 에지 향상 방법 및 장치
JP4968057B2 (ja) 2007-12-28 2012-07-04 株式会社島津製作所 放射線検出器のライン状異常画像素子の検出方法と放射線撮像装置
GB2459484B (en) * 2008-04-23 2012-05-16 Statoilhydro Asa Dual nitrogen expansion process
US8723946B2 (en) 2010-09-16 2014-05-13 Honda Motor Co., Ltd. Workpiece inspecting apparatus and workpiece inspecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096425A (ja) * 2006-09-15 2008-04-24 Toyota Motor Corp 放射線検査装置、放射線検査方法および放射線検査プログラム
JP2008292405A (ja) * 2007-05-28 2008-12-04 Fujifilm Corp 検査装置および検査プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORIYUKI SADAOKA ET AL.: "Sangyo-yo X-sen CT ni yoru Digital Engineering to Turbine Kiki eno Katsuyo", GAS TURBINE SEMINAR SHIRYOSHU, vol. 35TH, 19 January 2007 (2007-01-19), pages 97 - 103 *

Also Published As

Publication number Publication date
JP2013253905A (ja) 2013-12-19
CN104272094B (zh) 2018-01-23
CN104272094A (zh) 2015-01-07
JP5943722B2 (ja) 2016-07-05
US9733200B2 (en) 2017-08-15
US20150131779A1 (en) 2015-05-14
KR20140142368A (ko) 2014-12-11
KR101667471B1 (ko) 2016-10-18

Similar Documents

Publication Publication Date Title
JP5943722B2 (ja) 欠陥判定装置、放射線撮像システム、及び欠陥判定方法
JP5948138B2 (ja) 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム
US9990708B2 (en) Pattern-measuring apparatus and semiconductor-measuring system
US9916653B2 (en) Detection of defects embedded in noise for inspection in semiconductor manufacturing
US9846931B2 (en) Pattern sensing device and semiconductor sensing system
KR102021945B1 (ko) 볼륨 이미지 레코드로부터의 국부적 품질 측정들의 결정
WO2014205385A1 (en) Wafer inspection using free-form care areas
TW201237363A (en) Image processing apparatus and computer program
CN116740060B (zh) 基于点云几何特征提取的装配式预制构件尺寸检测方法
TW202139133A (zh) 半導體樣本的檢查
US10643326B2 (en) Semiconductor measurement apparatus and computer program
JP5647999B2 (ja) パターンマッチング装置、検査システム、及びコンピュータプログラム
KR101945167B1 (ko) 패턴 측정 장치 및 컴퓨터 프로그램
JP6525837B2 (ja) 製品の欠陥検出方法
US10317203B2 (en) Dimension measuring apparatus and computer readable medium
JP2006293522A (ja) 直線検出装置、直線検出方法およびそのプログラム
US10578430B2 (en) Evaluation method of road surface property, and evaluation device of road surface property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031282

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800954

Country of ref document: EP

Kind code of ref document: A1