WO2013182074A1 - 酚醛树脂组合物、由其制备的发泡材料及其制备方法和由其制备的成型材料 - Google Patents

酚醛树脂组合物、由其制备的发泡材料及其制备方法和由其制备的成型材料 Download PDF

Info

Publication number
WO2013182074A1
WO2013182074A1 PCT/CN2013/076898 CN2013076898W WO2013182074A1 WO 2013182074 A1 WO2013182074 A1 WO 2013182074A1 CN 2013076898 W CN2013076898 W CN 2013076898W WO 2013182074 A1 WO2013182074 A1 WO 2013182074A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
foamed
phenolic resin
beads
resin composition
Prior art date
Application number
PCT/CN2013/076898
Other languages
English (en)
French (fr)
Inventor
张晓红
王亚
乔金樑
张师军
吕明福
戚桂村
蔡传伦
宋志海
吕立新
赖金梅
高建明
李秉海
张红彬
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210189777.8A external-priority patent/CN102746611B/zh
Priority claimed from CN201210189851.6A external-priority patent/CN102690494B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2013182074A1 publication Critical patent/WO2013182074A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/236Forming foamed products using binding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • Phenolic resin composition foamed material prepared therefrom, and preparation method thereof and molding material prepared therefrom
  • the present invention relates to a phenol resin composition, and more particularly to a foamed material prepared from the phenol resin composition, a process for producing the same, and a molding material prepared therefrom.
  • the phenolic cream insulation material has good flame retardant effect. Under the open flame condition, it does not drip, burns, and emits no toxic or harmful gas. However, it is brittle and easy to be powdered, which makes transportation and construction difficult, and limits its application.
  • the currently used method is to form a composite foam material from phenol case foam and polystyrene foam to prepare an insulation material having both the flame retardancy of phenolic cheese and the heat insulating property of expanded polystyrene. Since the heat-resistant temperature of the expanded polystyrene beads is lower than 90 ° C, the phenolic resin used in the preparation process is a liquid phenol resin, that is, the expanded polystyrene beads and the liquid phenol are used. A composite foam composed of phenolic cream and polystyrene foam and corresponding plates are prepared by a resin mixing method. However, the application of this method is limited due to the structure of the final sheet obtained and the difficulty in controlling the preparation process.
  • the resin sheet obtained by this method has a non-uniform structure, and the density of the expanded polystyrene beads is much smaller than that.
  • Liquid phenol resin when the phenol resin is not fully cured, especially in the foaming stage of phenol resin, the expanded polystyrene beads will float, and the high density phenol resin will sink.
  • the prepared resin sheet was cut open, it was found that the expanded polystyrene beads on the upper portion of the sheet were more than the lower portion, causing the upper portion of the sheet to be brittle.
  • the foaming of the phenol resin is not uniform, and the expansion of the top of the sheet is more free than the bottom, resulting in poor mechanical properties of the upper part of the sheet.
  • CN101709136 A discloses a foamed phenol resin composition, wherein the composition comprises a phenol resin mixture as a continuous phase and a foamed plastic particle as a dispersed phase, the weight ratio of which is: phenol resin mixture 30 -50kg/m 3 , foamed plastic pellets 4-10 kg/m 3 .
  • the foamed plastic particles may be selected from EPS (expandable polystyrene), EVA (low foamed polyethylene), PVC (polyvinyl chloride) foamed granules or other similar foamed plastic granules.
  • CN 101724171 A discloses a preparation method of a foamed phenol resin composition, wherein the specific steps of the method are as follows: A. mixing and stirring a phenol resin, a foaming agent, a curing agent and a surfactant; The stirred phenol resin mixture in step A is mixed with the foamed plastic particles; C. The stirred mixture in step B is fed into a mold, and subjected to heating, pressurization, foaming, and solidification molding.
  • the foamed plastic particles may be selected from EPS (expandable polystyrene), EVA (low foamed polyethylene), PVC (polymerizable polyvinyl chloride) foamed granules or other similar foamed plastic granules.
  • CN 1491254 A discloses a polymer composite foam material, wherein the foam material comprises a continuous phase of a phenolic or furan polymer and a dispersed phase of a foamed polystyrene polymer, wherein the composite foam material is catalyzed by
  • the catalyzed foamable composition prepared from a liquid foamable composition containing 5-50% w/w of expandable polystyrene beads and 50-95% phenolic/furan resin A temperature sufficient to polymerize the phenolic/furan polymer and expand the polystyrene polymer can be achieved without the use of an external heat source or energy source.
  • Patent GB2013209 in order to overcome the shortcomings of the final resin sheet structure, the liquid phenol resin and its curing agent and foaming agent are strictly regulated, so that the foaming or expansion process of the phenol resin is separated from the curing step.
  • the temperature control of each step is very strict during the whole preparation process, so the whole preparation process is added.
  • the heat process is complicated, and the temperature is strictly limited, but the shortcomings of the expanded polystyrene beads and the liquid phenolic resin composition are not solved, and the corresponding resin sheets cannot be produced in large quantities.
  • the inventors have systematically studied and found that solid phenolic resin must be used in the preparation of the phenolic resin/foamed resin bead composite, and must also be ensured in the solid state.
  • the expanded beads of the resin material do not soften and collapse.
  • the solid phenol resin and the resin foam beads having a heat distortion temperature of 90 ° C or higher are mixed, and the phenol resin is cured to prepare a foam material having uniform structure, excellent flame retardancy and excellent heat preservation performance.
  • the phenol resin/foam resin composition of the present invention has no problem of short shelf life and is not affected by curing conditions, and the preparation process is simple. Easy to industrialize, easy to promote and apply, the cost of the product is not high, the performance is excellent, it can be used as a sound-proof material, shock-absorbing material, wood-like material, etc., which can not be burned by open fire, especially as a kind of high-efficiency and safe heat insulation that does not burn.
  • the use of materials, for example, can be used as a non-combustible, safe insulation board for the construction industry.
  • a first object of the present invention is to provide a phenol resin composition which has no problem of short shelf life.
  • a second object of the present invention is to provide a foamed material having a low thermal conductivity and excellent flame retardancy and a process for producing the same.
  • a third object of the present invention is to provide a molding material which can be used as an insulating material, a sound insulating material, a shock absorbing material, a wood-like material, or the like which does not burn in an open flame.
  • the phenol resin composition of the present invention comprises a solid phenol resin and a foamed resin bead, and the foam base resin used in the foamed resin bead has a heat distortion temperature of 90 under a load of 0.45 MPa.
  • Above C preferably above 100.
  • C more preferably higher than 110.
  • C Resin.
  • the heat distortion temperature of the polymer material used as the foaming base resin was tested in accordance with GB/T 1634-2004, and the load used for the test was 0.45 MPa, and the heating rate was (120 ⁇ 10). C/h.
  • the volume ratio of the solid phenolic resin to the foamed resin beads is 5: 95 to 95: 5, preferably 5: 95 to 80: 20, more preferably 5: 95 to 40: 60.
  • the above phenolic resin is prepared by polycondensing phenol and mixing.
  • the present invention is not limited to the type of phenol resin, and may be a thermosetting phenol resin or a thermoplastic phenol resin.
  • the face for preparing the phenol resin is not particularly limited and may include, for example, any of the following: phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, P-ethylphenol, o-propylphenol, m-propylphenol, p-propylphenol, p-sec-butylphenol, p-tert-butylphenol, p-cyclohexylphenol, p-chlorophenol, o-bromobenzene face, m-bromobenzene face , p-bromobenzene face, ⁇ -naphthol, ⁇ -naphthol, resorcinol, catechol, hydroquinone, 2,2-bis(4,-hydroxyphenyl)propane, bis(hydroxybenzene) Base) methane, bis(hydroxynaphthyl)methane, tetramethylb
  • the solid phenol resin used in the present invention may be in the form of powder or granules, and may be a commercially available powdered phenol resin, or a commercially available solid phenol resin may be pulverized by any pulverizing equipment commonly used in the industry.
  • the above foaming base resin includes at least one of the following various resins: (1) an olefin homopolymer and/or an olefin copolymer, such as poly 4-methyl-1-pentene; (2) a polyamide a resin and/or a modified product thereof; (3) a polycarbonate resin and/or a modified product thereof; (4) a homopolymerized and/or copolymerized methyl ketone; (5) a polycondensation of different saturated dibasic acids and diols a linear polyester obtained by the reaction; (6) an aromatic ring polymer, that is, a polymer composed of only an aromatic ring and a linking group, such as polyphenylene, polyphenylene ether, polyphenylene sulfide, polyarylsulfone, polyaryl a ketone, a polyaryl ester, an aromatic polyamide; (7) a heterocyclic polymer, that is, a polymer material having a heterocyclic ring in addition to an aromatic
  • the foaming base resin preferably comprises at least one of an olefin homopolymer and/or an olefin copolymer, such as: (1) a propylene homopolymer and/or a propylene copolymer; (2) an ethylene homopolymer and/or an ethylene copolymer Things.
  • an olefin homopolymer and/or an olefin copolymer such as: (1) a propylene homopolymer and/or a propylene copolymer; (2) an ethylene homopolymer and/or an ethylene copolymer Things.
  • the foaming base resin used in the present invention more preferably includes at least one of a propylene homopolymer and/or a propylene copolymer, may be composed only of a propylene homopolymer, or may include or only have 50% by weight or more.
  • the copolymer composition of the propylene monomer content may further include a homopolymer or a copolymer other than the propylene homopolymer or copolymer.
  • a particularly useful propylene copolymer is a copolymer of propylene and one or more non-propylene monomers.
  • the propylene copolymer comprises random, block and graft copolymers of propylene and an olefin comonomer, which may be selected from the group consisting of ethylene, C 3 -C 8 a-olefins and C 4 -C 1 () Alkene.
  • the propylene copolymer may also include a terpolymer of propylene and an ⁇ -olefin selected from the group consisting of C 3 -C 8 a-olefins, wherein the terpolymer preferably has an ⁇ -olefin content of less than 45% by weight.
  • Examples of the C 3 -C 8 a-olefin include 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene. , 1-heptene, 3-methyl-1-hexene, and the like.
  • Examples of the C 4 -C 1 () diene include 1,3-butadiene, 1,4-pentadiene, isoprene, 1,5-hexadiene, and 2,3-dimethylhexan Alkene and the like.
  • the foaming resin beads have an expansion ratio of 0.5 to 100 times, preferably 1 to 70 times, more preferably 1 to 50 times.
  • the apparent density p 2 of the foamed resin beads was determined as follows: About 5 g of the foamed resin beads were in the atmosphere at 23 ° C After standing for 48 hours, a measuring cylinder was taken, and the foamed resin beads were immersed in water in the measuring cylinder at 23 e C. The apparent volume (V) of the foamed resin beads was determined from the increment of the volume. Apparent density can be obtained by dividing the mass (m) of the bead by its apparent volume.
  • the method for producing the foamed resin beads of the present invention is not limited as long as the expansion ratio is satisfied, and for example, it can be produced by an extrusion foaming or a kettle foaming process.
  • the method of preparing the foamed resin beads by the extrusion foaming process can be carried out by the method described in the patents CN1188264C, CN1861368A, and CN101352923B.
  • the specific method comprises mixing one or more base resins (for example, one or more kinds of polypropylene) and a foaming agent, and then extruding through an extrusion system to ensure temperature and pressure conditions of the extrusion system during extrusion. Sufficient to maintain the resin and foaming agent in a homogeneous molten state or molten dispersion during the extrusion process, and then mix the uniform resin and foaming agent through the extruder die extrusion foaming and pelletizing, and finally obtain foaming Resin.
  • base resins for example, one or more kinds of polypropylene
  • the blowing agent used may be a physical blowing agent or a chemical blowing agent.
  • the physical blowing agent can be injected into the base resin in the form of a gas, a supercritical fluid or a liquid.
  • non-flammable, non-toxic, ozone-depleting blowing agents such as carbon dioxide, nitrogen, water, SF 6 , and oxidized oxide are preferred.
  • Nitrogen, argon, helium, inert gases such as helium, air (nitrogen and oxygen admixtures), and blends of these materials may also be selected from flammable blowing agents such as pentane, butane and other organic materials.
  • suitable physical blowing agents include, for example, hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), and perfluorinated or partially fluorinated ethers.
  • the chemical blowing agent is added to the polymer at a temperature below the decomposition temperature of the blowing agent and is typically added to the base resin prior to entering the extruder.
  • the chemical blowing agent is activated, and the blowing agent decomposes dry gas such as N 2 , C0 2 And / or H 2 0.
  • the blowing agent may be, but not limited to, the following: azo, carbonate and hydrazide based molecules, including azodicarbonamide, azobisisobutyronitrile, benzenesulfonyl hydrazide, 4,4-hydroxybenzenesulfonate Acyl urea, p-toluenesulfonylurea, hydrazine azodicarboxylate, hydrazine, hydrazine, -dimethyl-hydrazine, hydrazine, -dinitroso-terephthalamide and trimethyltriazine.
  • azo, carbonate and hydrazide based molecules including azodicarbonamide, azobisisobutyronitrile, benzenesulfonyl hydrazide, 4,4-hydroxybenzenesulfonate Acyl urea, p-toluenesulfonylurea, hydrazine
  • the amount of the blowing agent is adjusted in accordance with the expansion ratio of the foaming resin required.
  • a cell nucleating agent may be added as needed, and the cell nucleating agent may be the following substances but not limited to the following materials: silica, carbonate hook, talc Powder, zinc oxide, borax, zinc borate, aluminum hydroxide, magnesium oxide, carbon black, benzoic acid, phthalic acid, terephthalic acid, sodium benzenesulfonate, sodium benzoate, dibenzylidene behenyl alcohol, etc.
  • the amount is usually from 0.01% to 5% by weight based on the base resin.
  • conventional general-purpose plastic processing aids such as antioxidants, antioxidants, lubricants, color masterbatch, etc. may be added as needed, and the amount is a conventional amount.
  • the extruder used for preparing the foamed resin beads by the extrusion foaming process may be a single-screw extruder, two tandem single-screw extruders, a co-rotating twin-screw extruder, and a co-rotating twin-screw extruder.
  • the method of preparing the foamed resin beads by the kettle type foaming process can be carried out by the method described in Patent CN1474849.
  • the base resin may be prepared into resin fine particles by any suitable known method, and then the resin fine particles may be foamed with a foaming agent to obtain finally foamed resin beads.
  • the step of foaming the resin fine particles with a foaming agent can be carried out by a usual foaming method, for example, in a closed container, in the presence of a foaming agent, the resin fine particles are dispersed in a dispersion medium, and then heated.
  • the foaming agent is impregnated into the resin fine particles. Maintaining the pressure and temperature of the closed container under pressure conditions and temperature conditions sufficient to foam the resin particles, and then discharging the components in the closed container to a sealed container In a low pressure atmosphere, foamed resin beads are obtained.
  • the above dispersion medium may be any dispersion medium as long as it can disperse the resin particles therein but does not dissolve the resin particles.
  • the dispersion shield include water, ethylene glycol, methanol, glycerin, ethanol or a mixture thereof.
  • a water-based dispersion medium is preferred.
  • an organic or inorganic fine solid agent to the shield.
  • Inorganic powder materials such as natural or synthetic clay minerals (e.g., kaolin, mica, clay), alumina, titanium dioxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, and magnesium oxide are generally used.
  • the dispersant is usually used in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the resin fine particles.
  • the foaming agent used for preparing the foamed resin beads by the kettle foaming process may be any organic physical foaming agent or any inorganic physical foaming agent or a mixture thereof.
  • the organic physical blowing agent may be, but not limited to, the following: propane, butane, pentane, hexane and heptane, alicyclic hydrocarbons such as cyclobutane and cyclohexane, and halogenated hydrocarbons such as chlorine. Fluoromethane, trifluoromethane, 1,2-difluoroethane, 1,2,2,2-tetrafluoroethane, methyl chloride, ethyl chloride and dichloromethane.
  • the inorganic physical blowing agent may be, but not limited to, the following: air, nitrogen, carbon dioxide, oxygen, argon and water. These organic and inorganic foaming agents may be used singly or as a mixture of two or more. Air or nitrogen is the best blowing agent in view of the low cost and environmental problems of the foamed resin.
  • the water as the foaming agent may be water as a medium for the resin particles.
  • the amount of the foaming agent can be appropriately adjusted in accordance with the kind of the foaming agent, the foaming temperature, and the expansion ratio of the foamed resin to be produced.
  • the foamed material of the present invention comprises a crosslinked phenol resin base and a foamed resin bead dispersed therein, and is prepared from the above phenol resin composition.
  • the preparation method of the foamed material of the present invention comprises: the above phenol resin composition
  • the components are uniformly mixed and the phenolic resin is cured.
  • the mixing equipment used in the above mixing step is a mixing device commonly used in the plastics processing industry, such as a high speed mixer, a planetary mixer, a conical mixer, a V-type mixer, a gravity-free mixer, a double cone mixer, a coulter mixer, Ribbon mixer, double ribbon mixer, vacuum mixer, high speed disperser, continuous shaft mixer, kneader, etc.
  • a mixing device commonly used in the plastics processing industry, such as a high speed mixer, a planetary mixer, a conical mixer, a V-type mixer, a gravity-free mixer, a double cone mixer, a coulter mixer, Ribbon mixer, double ribbon mixer, vacuum mixer, high speed disperser, continuous shaft mixer, kneader, etc.
  • the above mixing step may also incorporate fillers commonly used in the field of phenol resin processing, such as fillers, curing accelerators, lubricants, colorants, plasticizers, processing aids, and the like.
  • the amount of the filler is a conventional amount, or is adjusted according to actual conditions.
  • the addition of the various fillers described above may be carried out when the solid phenol resin or the foamed resin beads are mixed, or may be added together with the curing agent before the phenol resin is cured.
  • the foamed material of the present invention is not affected by the curing system of the phenol resin, as long as the heat resistant temperature of the foamed resin beads is higher than the curing temperature of the phenol resin.
  • the heat resistance temperature here is a critical temperature at which foamed resin beads are collapsed.
  • the curing agent may be various substituted derivatives, hexamethylenetetramine, oligomethyl pentoxide, hexamethoxytriamine, trimellitic anhydride, epoxy resin, resol phenolic resin, trimerization.
  • the amount of the curing agent used is a conventional amount.
  • the apparatus for mixing the phenol resin composition and the curing agent of the phenol resin may employ a mixing apparatus commonly used in the aforementioned plastic processing industry.
  • the foamed material of the present invention is not affected by the curing process of the phenol resin, as long as the heat resistant temperature of the foamed resin beads is higher than the curing temperature of the phenol resin.
  • the heat resistant temperature here is a critical temperature at which foamed resin beads are collapsed.
  • Any curing process of phenolic resin such as heat curing or microwave curing, preferably microwave curing; may be used for flat vulcanizing machine, tablet press, multi-layer hot press, oven, high pressure reactor, injection molding machine, microwave curing device, etc. Curing equipment.
  • the phenol resin is a polymer with a large dielectric loss
  • the dielectric loss is large under microwave irradiation, and it can be heated by microwave to cure it
  • the polypropylene has a very low dielectric loss value.
  • the polymer has little dielectric loss under microwave irradiation and is not heated. Therefore, during the microwave curing process, the polypropylene foam beads are not affected, but the curing reaction of the phenol resin causes the foam material to be prepared more easily.
  • the control and preparation speed is faster, the prepared foam material has more uniform structure and lower thermal conductivity; the microwave curing process also has the advantages of energy saving and less equipment investment.
  • the foamed material obtained above contains the crosslinked phenol resin base and the foamed resin beads dispersed therein, thereby maintaining the flame retardant property of the phenol case resin and also having the characteristics of expanded beads.
  • the molding material of the present invention is made of the above phenol resin composition, or is made of the above foamed material, or the method for producing the same includes the steps in the method for producing the above foamed material.
  • the molding material of the invention can be used as a soundproof material, a shock absorbing material, a wood-like material, etc. which are not burned by an open flame, and can be used as a heat-insulating material which is inefficiently and safely fired, for example, can be used as an exhibition fire in the construction industry. Non-combustible, safe insulation panels are used.
  • Figure 1 is a cross-sectional photograph of a foamed material obtained in Example 3.
  • Figure 2 is a cross-sectional photograph of the foamed material obtained in Comparative Example 1.
  • the powdered phenol resin (Xinxiang Boma Fengfan Industrial Co., Ltd., 2123) and the foamed polypropylene beads were thoroughly mixed in a high-speed mixer, wherein the volume ratio of the phenol resin to the foamed polypropylene beads was 10/90. Then, hexamethylenetetramine (industrial grade, produced by Beijing Yili Fine Chemical Co., Ltd.) was added thereto, and the mixture was uniformly mixed, and the weight ratio of hexamethylenetetramine to phenol resin was 12/100.
  • the thermal conductivity is tested in accordance with GB/T 10297-98.
  • the flammability was observed by placing the swatch on an alcohol burner and subjecting it to flame spraying for 10 minutes.
  • Example 1 The results were the same as in Example 1 except that the volume ratio of the powdery phenol resin to the expanded polypropylene beads was 20/80, and the results were shown in Table 1.
  • Example 1 The results were the same as in Example 1 except that the volume ratio of the powdery phenol resin to the expanded polypropylene beads was 30/70, and the results were shown in Table 1.
  • a carbon black (c666, Tianjin Jindadi Chemical Co., Ltd.) was added to the system at a mass ratio of 2/100 to the phenolic resin.
  • the rest were the same as in Example 3, and a photograph of the cross section of the obtained foamed material (taken with a digital camera Finepix F505EXR (Fuji Co., Ltd.)) is shown in Fig. 1. It can be seen from Fig. 1 that the white expanded polypropylene is homogeneous in the crosslinked phenol resin matrix.
  • Comparative example 1 Except that the powdery phenol resin was changed to liquid phenol resin (Xinxiang Boma Fengfan Industrial Co., Ltd., 2124), the rest were the same as in Example 3.
  • a cross-sectional photograph of the obtained cured phenol resin/foamed polypropylene bead foam material is shown in Fig. 2.
  • Example 1 The same results as in Example 1 except that the volume ratio of the powdery phenol resin to the expanded polypropylene beads was 40/60, and the results were shown in Table 1.
  • Example 1 The results were the same as in Example 1 except that the volume ratio of the powdery phenol resin to the expanded polypropylene beads was 80/20, and the results are shown in Table 1.
  • Example 10 In addition to powdered phenol resin resin changed to granular phenol resin (Shandong Shengquan Chemical Co., Ltd., PF-1350, used after crushing), polypropylene resin changed to polypropylene resin (Yanshan Petrochemical, K 7003, 0.45MPa load heat The deformation temperature was 90 ° C), the molding temperature was changed to 100 ° C, and the rest were the same as in Example 2. The measured results are shown in Table 1.
  • the mold containing the material was placed in a microwave curing apparatus with a microwave power of 400 W and a microwave irradiation time of 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及一种酚搭树脂组合物及其制备的发泡材料。本发明的酚搭树脂组合物包含固态酚搭树脂和发泡树脂珠粒,其中发泡树脂珠粒所采用的发泡基础树脂为在0.45MPa负荷下热变形温度为90℃以上的树脂。该组合物没有保存期短的问题。本发明的发泡材料包括交联酚酪树脂基体以及分散在其中的发泡树脂珠粒,并由所述酚搭树脂组合物制备而成。该发泡材料具有低的导热系数和优异的阻燃性能。由本发明的发泡材料制成的成型材料可以作为遇明火不燃烧的保温材料、隔音材料、减震材料、仿木材料等使用。

Description

酚醛树脂组合物、 由其制备的发泡材料及其制备方法 和由其制备的成型材料 技术领域
本发明涉及一种酚搭树脂组合物, 进一步讲, 涉及一种由该 酚搭树脂组合物制备的发泡材料及其制备方法, 以及由其制备的 成型材料。
背景技术
因为建筑物能耗较高, 在现在能源日趋紧张的情况下, 对建 筑物进行节能保温是一项必要的措施。
酚酪泡沫保温材料阻燃效果好, 在明火条件下不滴落、 不燃 烧、 没有有毒有害气体放出, 但是其脆性大、 易粉化, 使得运输 和施工都有一定的难度, 限制其应用。
目前使用的方法是将酚酪泡沫和聚苯乙烯泡沫组成复合泡沫 材料, 制备出同时具有酚酪的阻燃性和发泡聚苯乙烯的保温性能 的保温材料。 由于发泡聚苯乙烯珠粒的耐热温度低于 90°C, 所以 目前在制备过程中, 采用的酚搭树脂都是液态酚搭树脂, 即采用 将发泡聚苯乙烯珠粒和液态酚搭树脂混合的方法制备酚酪泡沫和 聚苯乙烯泡沫组成的复合泡沫材料以及相应的板材。 但是由于所 得到的最终板材的结构以及制备过程的不易控制, 使这一方法的 应用受到限制, 例如, 这一方法得到的树脂板材结构不均匀, 发 泡聚苯乙烯珠粒的密度远远小于液体酚搭树脂, 当酚搭树脂没有 完全固化时, 尤其是在酚搭树脂发泡阶段, 发泡聚苯乙烯珠粒会 上浮, 高密度的酚搭树脂会下沉。 将所制备的树脂板材剖开就会 发现, 板材上部的发泡聚苯乙烯珠粒多于下部, 造成板材上部易 碎。 同时酚搭树脂的发泡并不均匀, 板材顶部的膨胀相对于底部 更加自由, 造成板材上部的机械性能更差。 而且由于发泡聚苯乙 烯珠粒和液态酚搭树脂组合物的保存期短, 限制了发泡聚苯乙烯 珠粒和液态酚搭树脂组合物的产量, 无法大批量的生产相应的树 脂板材, 造成树脂板材难以工业化生产。
例如, CN101709136 A公开了一种发泡酚搭树脂组合物, 其 中该组合物包含作为连续相的酚搭树脂混合物和作为分散相的发 泡塑料颗粒, 其重量配比为: 酚搭树脂混合物 30-50kg/m3、 发泡 塑料颗粒 4-10 kg/m3。 所述发泡塑料颗粒可选用 EPS (可发性聚 苯乙烯) 、 EVA (低发泡聚乙烯) 、 PVC (可发聚氯乙烯)发泡 颗粒或其它类似发泡塑料颗粒。
CN 101724171 A公开了一种发泡酚搭树脂组合物的制备方 法, 其中该方法的具体步骤如下: A.将酚搭树脂、 发泡剂、 固化 剂、 表面活性剂进行混合搅拌; B.将步骤 A中搅拌后的酚搭树脂 混合物与发泡塑料颗粒进行混合搅拌; C.将步骤 B中搅拌后的混 合物输入模具内, 进行加温、 加压、 发泡、 固化成形。 所述发泡 塑料颗粒可选用 EPS(可发性聚苯乙烯)、 EVA(低发泡聚乙烯)、 PVC (可发聚氯乙烯)发泡颗粒或其它类似发泡塑料颗粒。
CN 1491254 A公开了一种高分子复合泡沫材料,其中所述泡 沫材料含有酚酪或呋喃聚合物的连续相和发泡的聚苯乙烯聚合物 的分散相, 其中所述复合泡沫材料是通过催化含有 5-50%w/w的 可发泡的聚苯乙烯珠和 50-95 %的酚搭 /呋喃树脂的液态的可发泡 的组合物制备的, 所述被催化的可发泡组合物能够达到足以使酚 搭 /呋喃聚合物聚合并使聚苯乙烯聚合物膨胀的温度, 而无需使用 外部热源或能源。
专利 GB2013209为了克服最终树脂板材结构不均匀的缺点, 对液态酚搭树脂及其固化剂和发泡剂等组分进行了严格的规定, 使酚搭树脂的发泡或膨胀过程与其固化步骤分开, 同时整个制备 过程中对各个步骤的温度的控制十分严格, 所以整个制备过程加 热过程复杂, 对于温度的限定很严格, 但并没有解决发泡聚苯乙 烯珠粒和液态酚搭树脂组合物的保存期短, 无法大批量地生产相 应树脂板材的缺点。
发明内容
为了全面地解决现有技术中存在的问题, 本发明人通过系统 地研究发现, 在制备酚搭树脂 /发泡树脂珠粒复合材料的过程中必 须采用固态酚搭树脂, 而且还必须保证在固态酚搭树脂的熔融过 程中, 树脂材料的发泡珠粒不软化塌泡。 即将固态酚搭树脂和热 变形温度在 90 °C以上的树脂发泡珠粒混合,并将酚搭树脂固化后, 就可以制备出结构均匀、 阻燃性能和保温性能优异的发泡材料。 由于采用固态酚搭树脂而且发泡树脂珠粒的热变形温度高, 所以 本发明的酚搭树脂 /发泡树脂 组合物没有保存期短的问题, 也 不受固化条件的影响, 制备工艺简单, 易于工业化, 便于推广应 用, 产品的成本不高, 性能优异, 可以作为遇明火不燃烧的隔音 材料、 减震材料、 仿木材料等, 尤其是可以作为各种高效安全的 遇明火不燃烧的保温材料使用, 例如可以作为建筑行业的遇明火 不燃烧的、 安全的保温板材使用。
因此, 本发明的第一个目的是提供一种酚搭树脂组合物, 该 组合物没有保存期短的问题。
本发明的第二个目的是提供一种发泡材料及其制备方法, 该 发泡材料具有低的导热系数和优异的阻燃性能。
本发明的第三个目的是提供一种成型材料, 该成型材料可以 作为遇明火不燃烧的保温材料、 隔音材料、 减震材料、 仿木材料 等使用。
本发明的酚搭树脂组合物, 包含固态酚搭树脂和发泡树脂珠 粒, 所述发泡树脂珠粒所采用的发泡基础树脂为在 0.45MPa负荷 下热变形温度为 90。C以上、 优选高于 100。C、 更优选高于 110。C 的树脂。
用作发泡基础树脂的高分子材料的热变形温度按照 GB/T 1634-2004 进行测试, 测试所用负荷为 0.45MPa, 升温速率 ( 120±10 ) 。C/h。
固态酚搭树脂和发泡树脂珠粒的体积比为 5: 95 ~ 95: 5, 优 选 5: 95 ~ 80: 20, 更优选 5: 95 ~ 40: 60。
上述酚搭树脂是通过缩聚酚和搭来制备的。 本发明对酚搭树 脂的种类没有限制, 可以为热固性酚搭树脂, 也可以为热塑性酚 搭树脂。
用于制备所述酚搭树脂的臉类没有特别的限定, 例如可以包 括下列中的任何一种: 苯酚、 邻甲酚、 间甲酚、 对甲酚、 邻乙基 苯酚、 间乙基苯酚、 对乙基苯酚、 邻丙基苯酚、 间丙基苯酚、 对 丙基苯酚、 对仲丁基苯酚、 对叔丁基苯酚、 对环己基苯酚、 对氯 苯酚、 邻溴苯臉、 间溴苯臉、 对溴苯臉、 α-萘酚、 β-萘酚、 间苯 二酚、邻苯二酚、对苯二酚、 2, 2-双(4,-羟基苯基)丙烷、双(羟 基苯基) 甲烷、 双(羟基萘基) 甲烷、 四甲基联苯酚、 联苯酚、 三 (羟基苯基) 甲烷等。 其中, 优选苯酚。 这些酚可以单独使用 或者以其两种或更多种的任意组合形式使用。
用于制备所述酚搭树脂的酪的种类也没有任何的限制, 例如 可以包括下列中的任何一种: 甲醛、 多聚甲酪、 三聚甲酪、 乙酪、 三聚乙醛、 糠酪、 苯甲酪等。 这些酪可以单独使用或者以其两种 或更多种的任意组合形式使用。
本发明使用的固态酚搭树脂可以为粉状或颗粒状, 可以为市 售的粉状酚搭树脂, 也可以将市售的固态酚酪树脂用工业上常用 的任何粉碎设备粉碎后使用。
上述发泡基础树脂包括下列各种树脂中的至少一种: ( 1 )烯 烃均聚物和 /或烯烃共聚物, 例如聚 4-甲基 -1-戊烯; (2 )聚酰胺 树脂和 /或其改性产物; (3 )聚碳酸酯树脂和 /或其改性产物; (4 ) 均聚和 /或共聚甲酪; ( 5 ) 不同饱和二元酸和二元醇通过缩聚反 应制得的线性聚酯; (6 )芳环高分子, 即分子仅由芳环和连接基 团构成的聚合物, 如聚苯、 聚苯醚、 聚苯硫醚、 聚芳砜、 聚芳酮、 聚芳香酯、 芳香聚酰胺; (7 )杂环高分子, 即分子主链上除芳环 外还有杂环的高分子材料, 如聚苯并咪唑; (8 )含氟聚合物等。
发泡基础树脂优选包括烯烃均聚物和 /或烯烃共聚物中的至 少一种, 如: (1 ) 丙烯均聚物和 /或丙烯共聚物; ( 2 ) 乙烯均聚 物和 /或乙烯共聚物。
本发明所采用的发泡基础树脂更优选包括丙烯均聚物和 /或 丙烯共聚物中的至少一种, 可只由丙烯均聚物构成, 也可包括或 只由具有 50重量%或更高丙烯单体含量的共聚物构成,还可包括 除丙烯均聚物或共聚物之外的均聚物或共聚物。
特别可用的丙烯共聚物是丙烯和一种或多种非丙烯单体形成 的共聚物。 丙烯共聚物包括丙烯和烯烃共聚单体的无规、 嵌段和 接枝共聚物, 所述烯烃共聚单体可选自乙烯、 C3-C8a-烯烃和 C4-C1()二烯。 丙烯共聚物也可包括丙烯和选自 C3-C8a-烯烃的 α- 烯烃的三元共聚物, 其中所述三元共聚物的 α-烯烃含量优选小于 45重量%。 C3-C8a-烯烃的例子包括 1-丁烯、 异丁烯、 1-戊烯、 3- 甲基 -1-丁烯、 1-己烯、 3,4-二甲基 -1-丁烯、 1-庚烯、 3-甲基 -1-己 烯等。 C4-C1()二烯的例子包括 1,3-丁二烯、 1,4-戊二烯、异戊二烯、 1,5-己二烯和 2,3-二甲基己二烯等。
上述发泡树脂珠粒的发泡倍率为 0.5 ~ 100倍,优选 1 ~ 70倍, 更优选为 1 ~ 50倍。
发泡树脂珠粒的发泡倍率 b是通过将基础树脂的密度 Pl除以 发泡树脂珠粒的表观密度 p2 ( b=Pl/p2 )得到的。 发泡树脂珠粒的 表观密度 p2测定如下: 将大约 5g发泡树脂珠粒在大气中在 23°C 静置 48小时, 取一个量筒, 将发泡树脂珠粒在 23 eC浸没于该量 筒中的水中。从该体积的增量确定发泡树脂珠粒的表观体积( V )。 将珠粒的质量 ( m ) 除以其表观体积就可以得到表观密度
( p2=m/v ) 。
本发明的发泡树脂珠粒的制备方法没有任何限制, 只要满足 发泡倍率的要求就可以, 例如可以采用挤出发泡或者釜式发泡工 艺进行制备。
其中采用挤出发泡工艺制备发泡树脂珠粒的方法可以采用如 专利 CN1188264C , CN1861368A, CN101352923B所述方法进行。 具体方法包括将一种或多种基础树脂 (例如一种或多种聚丙烯) 和发泡剂混合均匀后, 通过挤出系统熔融挤出, 挤出过程中保证 挤出系统的温度和压力条件足以维持树脂和发泡剂在挤出过程中 为均相熔融状态或熔融分散体, 然后混合均匀的树脂和发泡剂经 挤出机口模挤出发泡并切粒, 最终制得发泡树脂 。
所使用的发泡剂可以是物理发泡剂或者化学发泡剂。
物理发泡剂可以以气体、 超临界流体或者液体的形式注入到 基础树脂中。 考虑到发泡剂的毒性、 蒸气压分布、 处理难易以及 所用基础树脂的溶解性, 优选不可燃、 无毒、 不消耗臭氧的发泡 剂如二氧化碳、 氮气、 水、 SF6、 一氧化二氮、 氩气、 氦气、 惰性 气体如氙气、 空气(氮气和氧气掺和物) , 以及这些材料的掺合 物, 也可以选择可燃发泡剂如戊烷、 丁烷和其他有机材料。 其他 合适的物理发泡剂包括,例如氟代烃( hydrofluorocarbons,HFC )、 氯氟代烃( hydrochlorofluorocarbons,HCFC )以及全氟化或部分 氟化的醚。
化学发泡剂在低于发泡剂分解温度的温度下加入聚合物中, 一般在进入挤出机之前加入基础树脂中。 当树脂被加热到高于发 泡剂分解温度时化学发泡剂活化,发泡剂分解幹放气体如 N2、 C02 和 /或 H20。发泡剂可以为以下物质但不仅仅限于以下物质:偶氮、 碳酸酯和酰肼基分子, 包括偶氮二酰胺、 偶氮二异丁腈、 苯磺酰 肼、 4,4-羟苯磺酰基 脲、 对甲苯磺酰基 脲、 偶氮二甲酸 钡、 Ν,Ν,-二甲基 -Ν,Ν,-二亚硝基对苯二酰胺和三肼基三嗪等。
发泡剂用量根据所需要的发泡树脂的发泡倍率进行调节。 采用挤出发泡工艺制备发泡树脂珠粒的过程中还可以根据需 要加入泡孔成核剂, 泡孔成核剂可以为以下物质但不仅仅限于以 下物质: 二氧化硅、 碳酸钩、 滑石粉、 氧化锌、 硼砂、 硼酸锌、 氢氧化铝、 氧化镁、 碳黑、 苯甲酸、 邻苯二甲酸、 对苯二甲酸、 苯磺酸钠、 苯甲酸钠、 二苄叉基山椠醇等, 其用量通常为基础树 脂重量的 0.01%~5%。
采用挤出发泡工艺制备发泡树脂珠粒的过程中还可以根据需 要加入常规通用的塑料加工助剂, 如抗氧剂、 助抗氧剂、 润滑剂、 色母等, 用量为常规用量。
采用挤出发泡工艺制备发泡树脂珠粒所用的挤出机可以是单 螺杆挤出机、 两台串联式单螺杆挤出机、 同向双螺杆挤出机、 同 向双螺杆挤出机串联单螺杆挤出机、 异向双螺杆挤出机、 锥形双 螺杆挤出机、 三螺杆挤出机中的一种。
采用釜式发泡工艺制备发泡树脂珠粒的方法可以采用如专利 CN1474849所述的方法进行。 例如可以采用将基础树脂通过任何 适用的已知的方法制备成树脂微粒, 然后, 用发泡剂使该树脂微 粒发泡, 得到最终发泡的树脂珠粒。 其中用发泡剂使该树脂微粒 发泡的步骤可以采用通常的发泡方法进行, 例如在一个密闭容器 中, 在发泡剂存在的情况下, 将该树脂微粒分散于分散介质中, 然后加热以使发泡剂浸渍进树脂微粒中。 将该密闭容器的压力和 温度保持在足以使该树脂微粒发泡的压力条件和温度条件下, 然 后在此条件下将密闭容器中的组分排放到一种比该密闭容器中的 压力低的压力的氛围中, 从而得到发泡的树脂珠粒。
上述分散介质可以是任何分散介盾, 只要它能够使该树脂微 粒分散于其中但并不溶解该树脂微粒即可。 该分散介盾的例子包 括水、 乙二醇、 甲醇、 甘油、 乙醇或其混合物。 优选一种水基分 散介质。
为了防止发泡过程中树脂微粒彼此之间的熔融粘合, 一般还 可以向^:介盾中添加一种有机或无机的微细固体的^:剂。 一 般采用无机粉末材料, 例如天然的或合成的粘土矿物 (例如高岭 土、 云母、 粘土)、 矾土、 二氧化钛、 碱式碳酸镁、 碱式碳酸锌、 碳酸钙和氧化镁等。 相对于每 100重量份的树脂微粒而言, 分散 剂的用量一般为 0.001~5重量份。
采用釜式发泡工艺制备发泡树脂珠粒所用发泡剂可以是任何 一种有机的物理发泡剂或任何一种无机的物理发泡剂或其混合 物。 其中有机物理发泡剂可以为以下但不仅仅限于以下物质: 丙 烷、 丁烷、 戊烷、 己烷和庚烷, 脂环族烃类例如环丁烷和环己烷, 以及卤代烃类例如氯氟甲烷、 三氟甲烷、 1,2-二氟乙烷、 1,2,2,2- 四氟乙烷、 甲基氯、 乙基氯和二氯甲烷。 无机物理发泡剂可以为 以下但不仅仅限于以下物质: 空气、 氮气、 二氧化碳、 氧气、 氩 气和水。 这些有机和无机发泡剂可以单独使用, 也可以作为两种 或更多种的混合物使用。 考虑到发泡树脂的低成本和环境问题, 空气或氮气为最佳的发泡剂。 作为发泡剂的水可以是作为使该树 脂微粒^:的 介质的水。
该发泡剂的数量可以按照该发泡剂的种类、 发泡温度、 要生 产的发泡树脂的发泡倍率适当地调节。
本发明的发泡材料, 包括交联酚搭树脂基体以及分散在其中 的发泡树脂珠粒, 并由上述酚搭树脂组合物制备而成。
本发明发泡材料的制备方法包括: 将上述酚搭树脂组合物的 各组分混合均匀, 并使酚搭树脂固化。
上述混合步骤所使用的混合设备是塑料加工工业常用的混合 设备, 例如高速搅拌机、 行星混合机、 锥形混合机、 V型混合机、 无重力混合机、 双锥混合机、 犁刀混合机、 螺带混合机、 双螺带 混合机、 真空搅拌机、 高速分散机、 欢轴桨叶连续混合机、 捏合 机等。
上述混合步骤还可加入酚搭树脂加工领域中常用的填充剂, 例如填料、 固化促进剂、 润滑剂、 着色剂、 增塑剂、 加工助剂等。 所述填充剂用量均为常规用量,或根据实际情况的要求进行调整。 以上所述的各种填充剂的加入可以在固态酚搭树脂、 发泡树 脂珠粒混合时就加入, 也可以在酚搭树脂固化前和固化剂一起加 入。
本发明的发泡材料不受酚搭树脂固化体系的影响, 只要使发 泡树脂珠粒的耐热温度高于酚搭树脂的固化温度即可。 此处的耐 热温度为发泡树脂珠粒发生塌泡的临界温度。
如果使用固化剂, 固化剂可以为各种甲搭衍生物、 六亚甲基 四胺、 低聚甲酪、 六甲氧基三聚氣胺、 偏苯三酸酐、 环氧树脂、 甲阶酚搭树脂、三聚氣胺树脂、预反应的环氧 -聚酯树脂和 /或其他 已知固化剂等。 固化剂的用量为常规用量。 将酚搭树脂组合物和 酚搭树脂的固化剂混合的设备可以采用前述塑料加工工业常用的 混合设备。
本发明的发泡材料不受酚搭树脂固化工艺的影响, 只要使发 泡树脂珠粒的耐热温度高于酚搭树脂的固化温度即可。 此处的耐 热温度为发泡树脂珠粒发生塌泡的临界温度。 可以采用酚搭树脂 的任何固化工艺, 如热固化或微波固化, 优选微波固化; 可以采 用平板硫化机、 压片机、 多层热压机、 烘箱、 高压反应釜、 注塑 机、 微波固化装置等固化设备。 当采用微波固化方式时, 由于酚搭树脂为介电损耗大的聚合 物, 在微波辐射下介电损耗大, 可以用微波进行加热从而使之固 化, 而聚丙烯为介电损耗值非常低的聚合物, 在微波辐射下介电 损耗小, 不被加热, 所以在微波固化过程中, 聚丙烯发泡珠粒不 受影响, 只是酚搭树脂发生固化反应, 使发泡材料的制备过程更 加容易控制、 制备速度更快, 所制备的发泡材料结构更均匀、 导 热系数更低; 微波固化工艺还具有节省能源、设备投资少等优点。
以上所制得的发泡材料由于包含有交联酚搭树脂基体以及分 散在其中的发泡树脂珠粒, 所以既保持了酚酪树脂阻燃的优点, 还同时具有发泡珠粒的特点。
本发明的成型材料, 由上述酚搭树脂组合物制成, 或者由上 述发泡材料制成, 或者其制造方法中包括上述发泡材料的制备方 法中的步骤。 本发明的成型材料可以作为遇明火不燃烧的隔音材 料、 减震材料、 仿木材料等, 尤其是可以作为各种高效安全的遇 明火不燃烧的保温材料使用, 例如可以作为建筑行业的遇明火不 燃烧的、 安全的保温板材使用。
附图说明
图 1是实施例 3制得的发泡材料的断面照片。
图 2是对比例 1制得的发泡材料的断面照片。
具体实施方式
下面用实施例进一步描述本发明, 但是本发明的范围不受这 些实施例的限制。 本发明的范围由权利要求书确定。
实施例 1
将聚丙烯树脂 (镇海炼化, HMS20Z, 0.45MPa 负荷下热变 形温度 110。C ) 100重量份, 滑石粉 2重量份放入高速搅拌机中充 分混合, 所得混合物经加料口加入单螺杆挤出机中, 控制口模温 度 135。C, 压力为 12MPa。 通过安装在挤出机机筒上的发泡剂注 入口以 10 MPa压力向聚丙烯树脂组合物熔体中注入发泡剂二氧 化碳。 然后将熔体经直径 2mm 的圆孔口模挤出、 发泡, 切粒、 冷却、 干燥后得到发泡聚丙烯珠粒, 发泡倍率为 45倍。
将粉状酚搭树脂 (新乡伯马风帆实业有限公司, 2123 ) , 发 泡聚丙烯珠粒加入高速搅拌机中充分混合, 其中酚搭树脂与发泡 聚丙烯珠粒的体积比为 10/90。 然后在其中加入六亚甲基四胺(工 业级, 北京益利精细化学品有限公司生产) , 混合均匀后出料, 六亚甲基四胺与酚搭树脂重量比为 12/100。
将压片机升温至 120。C, 将以上物料放入模具中在压片机上 进行模压。 所得的样片进行各项性能测试, 测得的结果列于表 1 中。
导热系数按照 GB/T 10297-98标准进行测试。 燃烧性能则是 将样片置于酒精喷灯上经受火焰喷射 10 分钟后, 观察样片的状 态。
实施例 2
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 20/80外, 其 余均与实施例 1相同, 测得的结果列于表 1中。
实施例 3
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 30/70外, 其 余均与实施例 1相同, 测得的结果列于表 1中。
为了更加清楚地观察发泡聚丙烯珠粒在交联酚搭树脂基体中 的分散情况, 在体系中加入与酚酪树脂质量比为 2/100 的炭黑 ( c666, 天津金大地化工有限公司) , 其余均与实施例 3相同, 所得发泡材料的断面的照片 (采用数码相机 Finepix F505EXR (富士公司)拍摄)见图 1。 从图 1 可以看出白色的发泡聚丙烯 在交联酚搭树脂基体中均匀 。
对比例 1 除将粉状酚搭树脂改为液态酚搭树脂 (新乡伯马风帆实业有 限公司, 2124 )外, 其余均与实施例 3相同。 所得固化酚搭树脂 / 发泡聚丙烯珠粒混合物发泡材料的断面照片 (采用数码相机 Finepix F505EXR (富士公司)拍摄)见图 2。
从图 2可以看出由于发泡聚丙烯珠粒的密度远小于液态酚酪 树脂,所以在酚搭树脂的固化过程中漂浮到液态酚搭树脂的上部, 最终发泡聚丙烯珠粒集中在固化后的混合物上部, 下部几乎没有 发泡聚丙烯珠粒, 无法得到发泡聚丙烯珠粒均匀分布的样品。
实施例 4
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 40/60外, 其 余均与实施例 1相同, 测得的结果列于表 1中。
实施例 5
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 50/50外, 其 余均与实施例 1相同, 测得的结果列于表 1中。
实施例 6
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 80/20外, 其 余均与实施例 1相同, 测得的结果列于表 1中。
实施例 7
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 90/10外, 其 余均与实施例 1相同, 测得的结果列于表 1中。
实施例 8
除粉状酚搭树脂与发泡聚丙烯珠粒的体积比为 95/5外, 其余 均与实施例 1相同, 测得的结果列于表 1中。
实施例 9
除发泡聚丙烯珠粒的发泡倍率为 10倍外, 其余均与实施例 3 相同, 测得的结果列于表 1中。
实施例 10 除粉状酚搭树脂改为粒状酚搭树脂 (山东圣泉化工股份有限 公司, PF-1350, 粉碎后使用), 聚丙烯树脂改为聚丙烯树脂(燕 山石化, K 7003, 0.45MPa负荷下热变形温度 90。C ) , 模压温度 改为 100°C外, 其余均与实施例 2相同, 测得的结果列于表 1中。
实施例 11
除固化工艺为微波固化外, 其余均与实施例 3相同, 测得的 结果列于表 1中。 将装有物料的模具放入微波固化装置中, 微波 功率为 400W, 微波辐射时间共 10分钟。
表 1
Figure imgf000014_0001

Claims

1、 一种酚搭树脂组合物,包含固态酚搭树脂和发泡树脂珠粒, 所述发泡树脂珠粒所采用的发泡基础树脂为按照 GB/T 1634-2004 测试的在 0.45MPa 负荷下热变形温度为 90。C以上、 优选高于 100。C、 更优选高于 110。C的树脂。
2、 根据权利要求 1所述的酚搭树脂组合物,其特征在于所述 固态酚搭树脂为粉状或颗粒状。
3、 根据权利要求 1所述的酚搭树脂组合物,其特征在于所述 固态酚搭树脂与发泡树脂珠粒的体积比为 5: 95 ~ 95: 5, 优选 5
: 95 ~ 80: 20, 更优选 5: 95 ~ 40: 60。
4、 根据权利要求 1-3之任一项所述的酚搭树脂组合物, 其特 征在于所述发泡树脂珠粒所采用的发泡基础树脂包括下列各种树 脂中的至少一种: (1 )烯烃均聚物和 /或烯烃共聚物, 例如聚 4- 甲基 -1-戊烯; ( 1 )聚酰胺树脂和 /或其改性产物; ( 3 )聚碳酸酯 树脂和 /或其改性产物; (4 )均聚和 /或共聚甲酪; (5 )不同饱和 二元酸和二元醇通过缩聚反应制得的线性聚酯; (6 )芳环高分子;
( 7 )杂环高分子; (8 )含氟聚合物。
5、 根据权利要求 1 ~ 4之任一项所述的酚搭树脂组合物, 其 特征在于所述发泡树脂珠粒所采用的发泡基础树脂包括烯烃均聚 物和 /或烯烃共聚物中的至少一种。
6、 根据权利要求 1 ~ 5之任一项所述的酚搭树脂组合物, 其 特征在于所述发泡树脂珠粒所采用的发泡基础树脂包括丙烯均聚 物和 /或丙烯共聚物中的至少一种。
7、 根据权利要求 4所述的酚搭树脂组合物,其特征在于所述 芳环高分子包括聚苯、 聚苯醚、 聚苯硫醚、 聚芳巩、 聚芳酮、 聚 芳香酯和芳香聚酰胺中的至少一种; 所述杂环高分子包括聚苯并 咪峻。
8、 根据权利要求 1 ~ 7之任一项所述的酚搭树脂组合物, 其 特征在于所述发泡树脂珠粒的发泡倍率为 0.5 ~ 100倍, 优选 1 ~ 70倍, 更优选 1 ~ 50倍。
9、 一种发泡材料, 包括交联酚搭树脂基体以及^:在其中的 发泡树脂珠粒,该发泡材料由权利要求 1 ~ 8之任一项所述的酚酪 树脂组合物制备而成。
10、 根据权利要求 9所述的发泡材料,其特征在于所述发泡材 料的制备方法包括: 将所述酚搭树脂组合物的各组分混合均匀, 并使酚搭树脂固化。
11、 根据权利要求 10所述的发泡材料, 其特征在于所述发泡 树脂珠粒的耐热温度高于所述酚搭树脂的固化温度。
12、 根据权利要求 9-11之任一项所述的发泡材料, 其特征在 于所述固化是采用微波固化。
13、 一种制备发泡材料的方法, 包括: 将权利要求 1 ~ 8之任 一项所述的酚搭树脂组合物的各组分混合均勾, 并使酚酪树脂固 化。
14、 根据权利要求 13所述的方法, 其特征在于所述发泡树脂 珠粒的耐热温度高于所述酚搭树脂的固化温度。
15、 根据权利要求 13或 14所述的方法,其特征在于所述固化 是采用微波固化。
16、 根据权利要求 13-15之任一项所述的方法, 其特征在于制 得的发泡材料包括交联酚搭树脂基体以及分散在其中的发泡树脂 棘。
17、 一种成型材料, 其特征在于其由权利要求 1 ~ 8之任一项 所述的酚搭树脂组合物制成, 或者由权利要求 9 ~ 12之任一项所 述的发泡材料制成,或者其制造方法中包括由权利要求 13 ~ 16之 任一项所述的方法制备发泡材料的步骤。
18、 根据权利要求 17所述的成型材料, 其特征在于所述成型 材料为保温材料、 隔音材料、 减震材料或仿木材料。
19、 根据权利要求 18所述的成型材料, 其特征在于所述保温 材料为保温板材。
PCT/CN2013/076898 2012-06-08 2013-06-07 酚醛树脂组合物、由其制备的发泡材料及其制备方法和由其制备的成型材料 WO2013182074A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210189851.6 2012-06-08
CN201210189777.8 2012-06-08
CN201210189777.8A CN102746611B (zh) 2012-06-08 2012-06-08 一种酚醛树脂组合物及其制备的发泡材料
CN201210189851.6A CN102690494B (zh) 2012-06-08 2012-06-08 一种酚醛树脂组合物及其制备的发泡材料

Publications (1)

Publication Number Publication Date
WO2013182074A1 true WO2013182074A1 (zh) 2013-12-12

Family

ID=49711391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076898 WO2013182074A1 (zh) 2012-06-08 2013-06-07 酚醛树脂组合物、由其制备的发泡材料及其制备方法和由其制备的成型材料

Country Status (1)

Country Link
WO (1) WO2013182074A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2454491A1 (fr) * 1979-04-18 1980-11-14 Saunier Jean Pierre Procede de fabrication de plaques ou de panneaux et plaques ou panneaux obtenus selon ledit procede
JPH06240022A (ja) * 1993-02-19 1994-08-30 Dainippon Ink & Chem Inc プリプレグ
US6326077B1 (en) * 1997-06-25 2001-12-04 Roberto Monaci Composite polymeric material having high resistance to impact energy
CN1711311A (zh) * 2002-11-18 2005-12-21 热技术有限公司 组合酚醛泡沫组合物
CN101724171A (zh) * 2009-12-10 2010-06-09 谢建华 发泡酚醛树脂组合物的制备方法
CN102690494A (zh) * 2012-06-08 2012-09-26 中国石油化工股份有限公司 一种酚醛树脂组合物及其制备的发泡材料
CN102746611A (zh) * 2012-06-08 2012-10-24 中国石油化工股份有限公司 一种酚醛树脂组合物及其制备的发泡材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2454491A1 (fr) * 1979-04-18 1980-11-14 Saunier Jean Pierre Procede de fabrication de plaques ou de panneaux et plaques ou panneaux obtenus selon ledit procede
JPH06240022A (ja) * 1993-02-19 1994-08-30 Dainippon Ink & Chem Inc プリプレグ
US6326077B1 (en) * 1997-06-25 2001-12-04 Roberto Monaci Composite polymeric material having high resistance to impact energy
CN1711311A (zh) * 2002-11-18 2005-12-21 热技术有限公司 组合酚醛泡沫组合物
CN101724171A (zh) * 2009-12-10 2010-06-09 谢建华 发泡酚醛树脂组合物的制备方法
CN102690494A (zh) * 2012-06-08 2012-09-26 中国石油化工股份有限公司 一种酚醛树脂组合物及其制备的发泡材料
CN102746611A (zh) * 2012-06-08 2012-10-24 中国石油化工股份有限公司 一种酚醛树脂组合物及其制备的发泡材料

Similar Documents

Publication Publication Date Title
CN102690494B (zh) 一种酚醛树脂组合物及其制备的发泡材料
RU2510406C2 (ru) Композиции из вспениваемых винилароматических полимеров с улучшенной теплоизоляционной способностью, способ их получения и вспененные изделия, полученные из этих композиций
JP6216506B2 (ja) 発泡性スチレン系樹脂粒子とその製造方法、スチレン系樹脂発泡成形体
RU2406734C1 (ru) Вспенивающиеся винилароматические полимеры с улучшенной теплоизоляцией и способ их получения
ES2392321T3 (es) Composiciones de polímeros aromáticos de vinilo expansibles con una capacidad de aislamiento térmico mejorada, procedimiento para su preparación y artículos expandidos obtenidos a partir de las mismas
HU223710B1 (hu) Részecske formájú expandálható sztirol polimerizátumok, eljárás ezek előállítására és az ezekből kapott polisztirolhabok
JP6068920B2 (ja) 発泡性スチレン系樹脂粒子とその製造方法、スチレン系樹脂発泡成形体
CN105482357B (zh) 一种酚醛树脂组合物及其制备的发泡材料和成型材料
CN105482243B (zh) 一种酚醛树脂组合物及其制备的发泡材料和成型材料
CA2998094C (en) Expandable styrene resin particles, pre-expanded particles of styrene resin, styrene resin foam molded body, and method for producing expandable resin particles
KR100782311B1 (ko) 단열 특성이 우수한 발포성 폴리스티렌 입자의 제조 방법
US5422378A (en) Foamable styrenic polymer gel and resulting foam
CN102746611B (zh) 一种酚醛树脂组合物及其制备的发泡材料
JP5798554B2 (ja) 断熱性発泡物品及びその調製のための組成物
CN105462161B (zh) 一种酚醛树脂组合物及其制备的发泡材料和成型材料
CN104788886B (zh) 一种酚醛树脂组合物及其制备的发泡材料
WO2013182074A1 (zh) 酚醛树脂组合物、由其制备的发泡材料及其制备方法和由其制备的成型材料
JP6306643B2 (ja) 発泡性スチレン系樹脂粒子とその製造方法、スチレン系樹脂発泡成形体
JP6946038B2 (ja) フェノール樹脂発泡体積層板及びその製造方法
JP2018145212A (ja) 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、成形体
JP7482740B2 (ja) 発泡性塩化ビニル系樹脂粒子、その発泡粒子およびこれを用いた発泡成形体
EP1514895A2 (en) Activated graphite-containing particulate, expandable polystyrene
JP2018090707A (ja) 発泡性ポリスチレン系樹脂粒子およびその製造方法
JP7194535B2 (ja) 発泡性ポリスチレン系樹脂粒子、ポリスチレン系樹脂予備発泡粒子、およびポリスチレン系樹脂発泡成形体
JP2018145342A (ja) 発泡性熱可塑性樹脂粒子、およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800577

Country of ref document: EP

Kind code of ref document: A1