WO2013182071A1 - 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 - Google Patents
焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 Download PDFInfo
- Publication number
- WO2013182071A1 WO2013182071A1 PCT/CN2013/076881 CN2013076881W WO2013182071A1 WO 2013182071 A1 WO2013182071 A1 WO 2013182071A1 CN 2013076881 W CN2013076881 W CN 2013076881W WO 2013182071 A1 WO2013182071 A1 WO 2013182071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- hydrocyanic acid
- ammonia
- coke oven
- hydrogen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/025—Preparation or purification of gas mixtures for ammonia synthesis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C3/00—Cyanogen; Compounds thereof
- C01C3/02—Preparation, separation or purification of hydrogen cyanide
- C01C3/0208—Preparation in gaseous phase
- C01C3/0229—Preparation in gaseous phase from hydrocarbons and ammonia in the absence of oxygen, e.g. HMA-process
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/068—Ammonia synthesis
Definitions
- a method relating to the production of hydrocyanic acid derivatives refers to an environmentally friendly cleaning process for the comprehensive utilization of coke oven gas to produce hydrocyanic acid derivatives, in particular, the use of coke oven gas to separate the production of formazan gas by means of separation means such as pressure swing adsorption.
- An environmentally friendly cleaning process for hydrocyanic acid derivatives taking full account of the resource-based comprehensive utilization of hydrogen and carbon monoxide obtained by coke oven gas separation and the environmental protection process of producing hydrocyanic acid derivatives, which is an environmentally friendly clean production of comprehensive utilization of resources method. Background technique
- Coke oven gas is the gas produced during the coke production process. Its calorific value is about half of that of natural gas. The main components are hydrogen (about 55 ⁇ 60%), formazan (about 23 ⁇ 27%), and CO (about 5 ⁇ 8). %), CmHn (about 2 to 4%), C0 2 (about 1. 5 to 3%), N 2 (about 3 to 7%), 0 2 (about 0.3 to 8%), and the like. China's annual output of coke is about 400 million tons, and the by-product coke oven gas is about 170 billion Nm 3 .
- Coke oven gas contains a large amount of hydrogen, formazan and carbon monoxide, which are valuable raw materials for synthetic chemicals.
- the use of coke oven gas discharged from flare incineration can produce about 8 billion Nm 3 of natural gas.
- the construction unit if it has a capacity of 1 million tons/year of coke, it will generate about 200 million Nm 3 of surplus coke oven gas every year. If the torch is burned into the atmosphere, it will cause a lot of energy waste.
- the traditional method of coke oven gas utilization is after degassing, naphthalene, benzene and S as civil combustion Gas or power generation, which not only burns valuable chemical raw materials, but also produces co 2 , so 2 and NOn, which still pollute the environment.
- the relevant coking enterprises plan to use coke oven gas for purification treatment of methanol and ammonia, and then use it for downstream product production, so that by-product coke oven gas can bring economic benefits and reduce emissions;
- the gas purification treatment for the synthesis of methanol and ammonia is relatively large, and the added value of synthetic ammonia and synthetic methanol is not high.
- the application fields of downstream products are narrow and the added value is limited, and the investment benefit is not obvious, so the construction effort is not great.
- the object of the present invention is to provide an environmentally friendly cleaning process for the comprehensive utilization of coke oven gas to produce hydrocyanic acid derivatives, in particular, the use of coke oven gas to separate and obtain formazan gas to produce hydrocyanic acid derivatives by separation means such as pressure swing adsorption.
- Environmentally friendly cleaning process fully consider coke oven gas separation
- the resource utilization of the obtained hydrogen, carbon monoxide and the like and the environmental protection process of the process for producing the hydrocyanic acid derivative are characterized in that a coke oven gas is used to obtain relatively concentrated by means of separation means such as pressure swing adsorption, and the quality requirements are relatively high.
- Liquid hydrocyanic acid is used to synthesize downstream hydrocyanic acid derivatives; hydrogen obtained by pressure swing adsorption is used for hydrogenation of derivatives or liquid ammonia is obtained by ammonia synthesis equipment for the oxidation of formazan to produce hydrocyanic acid, carbon monoxide and tail gas for synthesis Methanol can be further oxidized to obtain formaldehyde for absorption of hydrocyanic acid to prepare hydroxyacetonitrile.
- the environmental protection cleaning method for producing hydrocyanic acid derivatives by using coking coal gas provided by the invention is as follows:
- the first one Separation of toluene gas, carbon monoxide, hydrogen, etc. in coke oven gas by coke oven gas separation by means of pressure swing adsorption, etc., to obtain formazan gas, hydrogen gas, carbon monoxide and tail gas with relatively low quality requirements.
- Coke oven gas mainly contains hydrogen, formamidine, carbon monoxide, carbon dioxide, nitrogen, oxygen, and acetamidine.
- the gas is separated by a pressure swing adsorption device and other separation equipment to obtain hydrogen, carbon monoxide, formazan gas and tail gas respectively; hydrogen is used for synthesizing ammonia, carbon monoxide and tail gas are used for synthesizing methanol and then oxidizing to obtain formaldehyde, and formazan gas is directly used for ammoxidation.
- ammoniated dehydrogenation to synthesize hydrocyanic acid and its downstream derivative of hydrocyanic acid, which realizes the clean production of coke oven gas comprehensive utilization and zero discharge.
- the quality of the relatively concentrated formazan gas that we need directly for ammonia oxidation or ammoniated dehydrogenation to synthesize hydrocyanic acid derivatives and their downstream derivatives is very loose.
- the formazan gas may contain a certain amount of hydrogen and carbon monoxide. , nitrogen and oxygen and other gases; the content of formazan is:
- the metformin gas with lower quality requirements and the conventional ammonia ammoxidation or ammoniation dehydrogenation to synthesize hydrocyanic acid, as long as the composition of the mixture of ammonia and hydrocyanic acid is required to be combined with
- the amount of ammonia, air or ammonia dehydrogenation synthesis of hydrogen cyanide reaction mixture requires the use of self-controlled mixing of formazan gas and ammonia to ensure the reaction of ammonia oxidation or ammoniation dehydrogenation to hydrocyanic acid.
- ammonia oxidation or ammonia dehydrogenation synthesis reaction gas and sodium hydroxide aqueous solution absorption reaction to obtain high-purity sodium cyanide and synthesis of downstream hydrocyanic acid derivatives
- ammonia oxidation or ammonia dehydrogenation synthesis reaction gas after deamination with formaldehyde or Other aldehydes synthesize hydroxyacetonitrile or other hydrocyanic acid derivatives and synthesize downstream hydrocyanic acid derivatives, ammonia oxidation or ammonia dehydrogenation synthesis gas.
- water is absorbed and purified by water or other solvent to obtain high purity liquid hydrocyanic acid.
- the main reaction equation for the ammoxidation of formazan The main reaction equation for the ammoxidation of formazan:
- ammonia used in this process may be ammonia synthesized from the hydrogen separated in step 1.
- Aqueous sodium hydroxide solution absorbs hydrocyanic acid from the synthesis gas to produce liquid sodium cyanide or solid sodium cyanide for the production of downstream products of sodium cyanide.
- the reaction gas obtained by the reaction contains free ammonia.
- the absorption process is an absorption process of hydrocyanic acid which is directly carried out in the synthesis reaction gas without undergoing the ammonia removal process, and the free ammonia remains in the exhaust gas after the absorption reaction, and the free ammonia is recovered and utilized in the tail gas treatment, and the ammonia is recovered.
- the separation and recovery device processes the raw material ammonia which can be directly used for the ammoxidation or ammoniation dehydrogenation synthesis reaction, and realizes the recovery and utilization of free ammonia and the clean production of sodium cyanide.
- the above absorption reaction obtains an aqueous solution of sodium cyanide, and is obtained by cooling to obtain a liquid sodium cyanide product; a solid product of sodium cyanide is obtained by concentration, crystallization, centrifugation and drying, and the crystallization mother liquid is directly or purified and applied to the sodium hydroxide absorption reaction liquid. .
- Aqueous formaldehyde solution or other organic aldehydes absorb hydrocyanic acid from the synthesis gas, and react to obtain aqueous hydroxyacetonitrile or other hydrocyanic acid derivatives for the production of various hydrocyanic acid derivatives.
- the synthesis gas containing hydrogen cyanide contains a certain amount of free Ammonia, we use the combined ammonia removal technology to achieve ammonia recycling and achieve clean production.
- the formaldehyde used in the process may be the carbon monoxide obtained by the separation of the carbon monoxide and the tail gas, which are synthesized by synthesizing methanol and then oxidizing.
- the hydrocyanic acid in the synthesis gas is absorbed by water or other solvent, and purified by analytical or rectification to obtain liquid hydrocyanic acid, which is used for synthesizing hydrocyanic acid derivatives and downstream products.
- reaction gas for the synthesis of hydrocyanic acid by ammonia oxidation or ammoniation dehydrogenation contains a certain amount of free ammonia.
- the tail gas recovered by hydrocyanic acid absorption and free ammonia recovery is purified by water or sodium hydroxide aqueous solution or aqueous formaldehyde solution, and the residual hydrocyanic acid in the exhaust gas is purified and a small amount of aqueous solution of hydrogen cyanate or sodium cyanide is harvested.
- the crude aqueous solution or the aqueous solution of formaldehyde containing hydroxyacetonitrile, the purified tail gas is incinerated by an exhaust gas boiler.
- hydrocyanic acid is a highly toxic substance, we must purify the exhaust gas, and at the same time, we can also harvest a small amount of aqueous solution of hydrocyanic acid or a crude aqueous solution of sodium cyanide or An aqueous solution of hydroxyacetonitrile-containing formaldehyde; the obtained aqueous solution of hydrocyanic acid is directly applied to the hydrocyanic acid absorption water or the liquid alkali absorption liquid, and the obtained aqueous sodium cyanide solution is directly applied to the liquid alkali absorption liquid to obtain a hydroxyacetonitrile-containing solution.
- the aqueous formaldehyde solution is directly applied to the formaldehyde absorption liquid, and the purified exhaust gas is sent to the tail gas incineration boiler for incineration.
- the process of the process is: separating coke oven gas through a pressure swing adsorption device and other separation equipment to obtain formazan gas, hydrogen gas, carbon monoxide and tail gas;
- separating coke oven gas through a pressure swing adsorption device and other separation equipment to obtain formazan gas, hydrogen gas, carbon monoxide and tail gas;
- carbon monoxide and tail gas are obtained by synthesizing methanol to obtain methanol raw materials and then oxidized to obtain formaldehyde products.
- Formazan gas is directly used for ammonia oxidation or ammonia dehydrogenation to synthesize hydrocyanate.
- the acid is then used to synthesize various hydrocyanic acid derivatives: formazan gas is hydrolyzed by ammonia oxidation or ammoniation to synthesize hydrocyanate synthesis gas, and the synthesis gas is absorbed by sodium hydroxide aqueous solution to obtain sodium cyanide for synthesis of downstream hydrocyanate.
- the acid derivative and the synthesis gas are synthesized by deamination with formaldehyde or other organic aldehydes to synthesize hydroxyacetonitrile or other hydrocyanic acid derivatives for synthesizing the downstream hydrocyanic acid derivative, and the synthesis gas is absorbed and analyzed by dehydration with water or other solvent.
- the purified liquid hydrogen cyanide is used to synthesize the downstream hydrocyanic acid derivative, and the coke oven gas resource comprehensive utilization is utilized to produce the zero-emission environmentally-friendly clean production of the hydrocyanic acid derivative fine chemical product.
- the invention provides an environmentally friendly cleaning process for producing hydrogen cyanide derivatives by using coke oven gas, and is suitable for a process involving all coke oven gas production of hydrocyanic acid derivatives, and the coke oven gas includes all forms of coking process to produce various processes.
- the coke oven gas of the component; the technical method of the invention provides an environmentally friendly clean production process method capable of realizing zero-emission of the coke oven gas resource comprehensive utilization recycling economy mode.
- the invention utilizes coke oven gas to produce hydrocyanic acid derivatives, which provides an effective way for coke oven gas to be comprehensively utilized for resources, and opens up a circular economy industrial chain with great vitality for comprehensive utilization of coke oven gas; Obtaining very good economic and social benefits; The invention will make a great contribution to energy conservation, emission reduction and protection of the earth.
- the invention provides a new raw material route for natural gas fine chemicals.
- the output of coke oven gas is very large. Therefore, the proposal of the present invention will provide extremely rich raw material guarantee for natural gas fine chemical industry; comprehensive utilization of formazan gas in coke oven gas to produce hydrogen by ammonia oxidation or ammoniation dehydrogenation
- the industrial value of cyanate and its derivatives industry chain has great potential.
- the environmentally friendly cleaning process for producing hydrogen cyanide derivatives by using coke oven gas provided by the invention greatly reduces the purification requirements of the formazan feed gas, greatly improves the purification efficiency, and saves the purification cost compared with the existing purification requirements. More than %; The invention opens up a practical industrialization plan with far-reaching significance for the comprehensive utilization of coke oven gas resources.
- the formazan gas obtained by separation and purification of coke oven gas is an ideal raw material for the synthesis of hydrocyanic acid by ammonia oxidation or ammonia dehydrogenation, which is more advantageous than ordinary natural gas; the coke oven gas generally contains less sulfur element.
- the formazan gas obtained by pressure swing adsorption is also further separated to achieve the separation of sulfur. It is not necessary to carry out the desulfurization process again like ordinary natural gas.
- the catalyst noble metal platinum is used in the process of ammonia oxidation or ammonia dehydrogenation to synthesize hydrocyanic acid. It is very sensitive to sulfur.
- the production of hydrocyanic acid and its derivatives by the process of ammonia oxidation or ammonia dehydrogenation to synthesize hydrocyanic acid by coke oven gas can prolong the life of the catalyst by 2-3 times.
- the continuous driving time can be extended by 2-3 times, the equipment utilization rate is improved, the product yield is improved, the energy consumption is reduced, and the production cost is saved, which fully embodies the practicability of the process technology provided by the present invention.
- the drawing of the specification is a schematic flow chart of an environmentally friendly cleaning process for producing a hydrogen cyanide derivative by comprehensive utilization of coke oven gas according to the present invention. detailed description
- the above-mentioned coke oven gas separation is used to obtain the formazan gas according to the requirements of the ammonia oxidation synthesis reaction, and the calculated amount of ammonia and air are mixed by secondary mixing to obtain the reaction raw material gas, and the reaction raw material gas is synthesized by the ammonia oxidation reaction to obtain the synthesis gas.
- the composition of syngas is as follows:
- the synthesis gas is directly absorbed by the aqueous sodium hydroxide solution without the ammonia removal process to obtain a high-purity sodium cyanide aqueous solution, and the free ammonia is retained in the tail gas;
- the quality of the sodium cyanide aqueous solution is as follows:
- the high-purity liquid sodium cyanide product is obtained by cooling; the high-purity sodium cyanide aqueous solution is obtained by concentration, crystallization and centrifugation to obtain a high-purity solid sodium cyanide product; the quality of the solid sodium cyanide product is as follows: Appearance sodium cyanide (%) co 3 2 - NH 3 + other colorless transparent 99. 56 0. 078 0. 018 water, trace impurities
- the tail gas is recovered from ammonia, and phosphoric acid or ammonium dihydrogen phosphate is used as an absorption carrier; the composition of the tail gas after ammonia recovery is as follows:
- the ammonium dihydrogen phosphate solution absorbs ammonia and converts it into ammonium hydrogen phosphate solution, and analyzes and recovers ammonia.
- the analyzed ammonium dihydrogen phosphate solution is recycled for ammonia absorption, and ammonia is recovered for ammoxidation of raw materials to realize ammonia recovery.
- the exhaust gas after ammonia recovery is absorbed and purified by demineralized water, and the residual hydrocyanic acid in the exhaust gas is purified and a small amount of aqueous solution of hydrocyanic acid is harvested; the quality of the aqueous solution of hydrocyanic acid is as follows:
- the aqueous solution of hydrocyanic acid is applied to the sodium hydroxide absorption liquid; the components of the purified tail gas are as follows: No. Component name Component ratio % No. Component name Component ratio %
- Example 2 In the same manner as in the first embodiment, the above-mentioned coke oven gas separation is used to obtain the synthesis gas of the formazan gas by the ammonia oxidation synthesis reaction; the reaction synthesis gas is combined with the ammonia to obtain the reaction synthesis without ammonia or trace ammonia. The gas; the synthesis gas after ammonia removal is absorbed by a formaldehyde solution to obtain a high-purity aqueous solution of hydroxyacetonitrile for synthesizing a high-purity hydrocyanic acid derivative.
- the syngas components are as follows:
- the synthesis gas is recovered by primary ammonia removal to obtain the primary ammonia removal synthesis gas.
- the components of the primary ammonia removal synthesis gas are as follows:
- Ammonium dihydrogen phosphate solution absorbs ammonia into ammonium hydrogen phosphate solution, and resolves and recovers ammonia; Analytical ammonium dihydrogen phosphate solution is recycled for ammonia absorption, ammonia is recovered for ammonia oxidation raw material; primary ammonia removal achieves ammonia Recycling. The primary ammonia removal synthesis gas is then subjected to fine ammonia removal by sulfuric acid absorption to obtain ammonium sulfate by-product; fine removal No. Component Name Component Proportion % No. Component Name Component Proportion %
- Aqueous solution for the production of downstream products Aqueous solution for the production of downstream products
- composition of the aqueous solution of hydroxyacetonitrile was obtained as follows:
- Example 3 In the same manner as in the second embodiment, the above-mentioned coke oven gas separation is used to obtain the synthesis gas of the formazan gas by the ammonia oxidation synthesis reaction; the synthesis synthesis gas is combined with the ammonia to obtain the reaction synthesis without ammonia or trace ammonia. Gas; synthesis gas after ammonia removal with deionized water to obtain aqueous solution of hydrocyanic acid, and then purified to obtain high purity liquid hydrocyanic acid, high purity liquid hydrogen cyanide for the synthesis of hydrocyanic acid derivatives; absorption of tail gas to the exhaust gas The incinerator is incinerated. The quality of obtaining high purity liquid hydrocyanic acid is as follows:
- the synthesis gas is directly absorbed by the aqueous sodium hydroxide solution without the ammonia removal process to obtain a high-purity sodium cyanide aqueous solution, and the free ammonia remains in the tail gas; the quality of the obtained sodium cyanide aqueous solution is as follows:
- the high-purity liquid sodium cyanide product is obtained by cooling; the high-purity sodium cyanide aqueous solution is obtained by concentration, crystallization and centrifugation to obtain a high-purity solid sodium cyanide product; the quality of the obtained solid sodium cyanide product is as follows:
- the tail gas is recovered from ammonia, using phosphoric acid or ammonium dihydrogen phosphate as the absorption carrier; the composition of the tail gas after ammonia recovery is as follows:
- the ammonium dihydrogen phosphate solution absorbs ammonia and converts it into ammonium hydrogen phosphate solution, and analyzes and recovers ammonia.
- the analyzed ammonium dihydrogen phosphate solution is recycled for ammonia absorption, and ammonia is recovered for ammoxidation of raw materials to realize ammonia recovery.
- the tail gas recovered from ammonia is absorbed and purified by demineralized water, and the residual hydrocyanic acid in the exhaust gas is purified and a small amount of aqueous solution of hydrocyanic acid is harvested; the hydrocyanic acid aqueous solution is as follows:
- the aqueous solution of hydrocyanic acid is applied to the sodium hydroxide absorption liquid; the components of the purified tail gas are as follows:
- the purified tail gas is incinerated with an exhaust gas boiler.
- Example 5 Same as Example 4, using the coke oven gas separation to obtain formazan gas through Ans
- the synthesis gas is obtained by ammoxidation synthesis reaction; the reaction synthesis gas is combined to remove ammonia to obtain a reaction synthesis gas containing no ammonia or trace ammonia; and the synthesis gas after ammonia removal is absorbed by a formaldehyde solution to obtain a high-purity hydroxyacetonitrile aqueous solution for synthesis. High purity hydrocyanic acid derivative.
- the syngas components are as follows:
- the synthesis gas is recovered by primary ammonia removal to obtain the primary ammonia removal synthesis gas.
- the components of the primary ammonia removal synthesis gas are as follows:
- Ammonium dihydrogen phosphate solution absorbs ammonia into ammonium hydrogen phosphate solution, and resolves and recovers ammonia; Analytical ammonium dihydrogen phosphate solution is recycled for ammonia absorption, ammonia is recovered for ammonia oxidation raw material; primary ammonia removal achieves ammonia Recycling.
- the primary ammonia removal synthesis gas is then subjected to fine ammonia removal by sulfuric acid absorption to obtain ammonium sulfate by-product;
- the components of the fine ammonia removal synthesis gas are as follows:
- Aqueous solution for the production of downstream products Aqueous solution for the production of downstream products
- composition of the aqueous solution of hydroxyacetonitrile was obtained as follows:
- Example 6 In the same manner as in the fifth embodiment, the above-mentioned coke oven gas separation is used to obtain the synthesis gas of the formazan gas by the ammonia oxidation synthesis reaction; the synthesis synthesis gas is combined with ammonia to obtain the reaction synthesis without ammonia or trace ammonia. Gas; synthesis gas after ammonia removal with deionized water to obtain aqueous solution of hydrocyanic acid, and then purified to obtain high purity liquid hydrocyanic acid, high purity liquid hydrogen cyanide for the synthesis of hydrocyanic acid derivatives; absorption of tail gas to the exhaust gas The incinerator is incinerated. The quality of obtaining high purity liquid hydrocyanic acid is as follows:
- the syngas is directly absorbed by the aqueous sodium hydroxide solution without the ammonia removal process to obtain a high-purity sodium cyanide aqueous solution, and the free ammonia remains in the tail gas;
- the quality of the sodium cyanide aqueous solution is as follows:
- the high-purity liquid sodium cyanide product is obtained by cooling; the high-purity sodium cyanide aqueous solution is obtained by concentration, crystallization and centrifugation to obtain a high-purity solid sodium cyanide product; the quality of the solid sodium cyanide product is as follows:
- the tail gas is recovered from ammonia, and phosphoric acid or ammonium dihydrogen phosphate is used as an absorption carrier; the composition of the tail gas after recovery of ammonia is as follows: No. Component Name Component Proportion % No. Component Name Component Proportion %
- Ammonium dihydrogen phosphate solution absorbs ammonia into ammonium hydrogen phosphate solution, and resolves and recovers ammonia.
- the analyzed ammonium dihydrogen phosphate solution is recycled for ammonia absorption and ammonia recovery.
- Ammonia is recycled to the ammonia oxidation feedstock.
- the tail gas recovered from ammonia is absorbed and purified by demineralized water, and the residual hydrocyanic acid in the exhaust gas is purified and a small amount of aqueous solution of hydrocyanic acid is harvested; the composition of the aqueous solution of hydrocyanic acid is as follows:
- the aqueous solution of hydrocyanic acid is applied to the sodium hydroxide absorption liquid; the components of the purified tail gas are as follows:
- the purified tail gas is incinerated with an exhaust gas boiler.
- Example 8 In the same manner as in the seventh embodiment, the formazan gas separated by the coke oven gas is subjected to an ammonia oxidation synthesis reaction to obtain a synthesis gas; and the reaction synthesis gas is combined to remove ammonia to obtain a reaction containing no ammonia or trace ammonia. Syngas; synthesis gas after ammonia removal with formaldehyde solution to obtain high purity hydroxyl
- Ammonium dihydrogen phosphate solution absorbs ammonia into ammonium hydrogen phosphate solution, and resolves and recovers ammonia; Analytical ammonium dihydrogen phosphate solution is recycled for ammonia absorption, ammonia is recovered for ammonia oxidation raw material; primary ammonia removal achieves ammonia Recycling.
- the primary ammonia removal synthesis gas is then subjected to fine ammonia removal by sulfuric acid absorption to obtain ammonium sulfate by-product; the components of the fine ammonia removal synthesis gas are as follows:
- Fine ammonia removal gives ammonium sulfate solution, and ammonium sulfate solution is purified and concentrated to obtain ammonium sulfate by-product.
- the synthesis gas after fine ammonia removal is absorbed by formaldehyde solution to obtain an aqueous solution of hydroxyacetonitrile, and the aqueous solution of hydroxyacetonitrile is used for the production of downstream products; the tail gas is sent to the tail gas incineration device for incineration.
- the composition of the aqueous solution of hydroxyacetonitrile is as follows:
- Example 9 In the same manner as in the eighth embodiment, the formazan gas separated by the coke oven gas is subjected to an ammonia oxidation synthesis reaction to obtain a synthesis gas; and the reaction synthesis gas is combined to remove ammonia to obtain a reaction containing no ammonia or trace ammonia. Synthesis gas; synthesis gas after removal of ammonia is absorbed by deionized water to obtain aqueous solution of hydrocyanic acid, and then purified to obtain high-purity liquid hydrocyanic acid, high-purity liquid hydrocyanic acid for synthesis of hydrocyanic acid derivative; The exhaust gas incineration device is incinerated. The quality of obtaining high purity liquid hydrocyanic acid is as follows:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Industrial Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
提供一种焦炉煤气综合利用生产氢氰酸衍生物的方法,包括利用变压吸附等手段分离出品质要求相对较低的甲烷气、氢气和一氧化碳气;将甲烷气作为生产氢氰酸衍生物的原料;将氢气用于衍生物的氢化或通过合成氨装置得到液氨,并用于甲烷氨氧化生产氢氰酸;将一氧化碳和尾气用于合成甲醇,并可进一步氧化得到甲醛,用于吸收氢氰酸制备羟基乙腈。该方法环保清洁,实现了焦炉煤气的零排放。
Description
焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 技术领域
一种涉及生产氢氰酸衍生物的方法,是指焦炉煤气综合利用生产氢氰 酸衍生物的环保清洁工艺方法,尤其是利用焦炉煤气通过变压吸附等分离 手段分离得到甲垸气生产氢氰酸衍生物的环保清洁工艺方法;充分考虑到 焦炉煤气分离得到的氢、一氧化碳等的资源化综合利用与生产氢氰酸衍生 物工艺过程的环保性, 属资源综合利用的环保清洁生产方法。 背景技术
焦炉煤气是在焦炭生产过程中产生的煤气, 其热值约为天然气的一 半, 主要成分为氢气 (约 55〜60%) 、 甲垸 (约 23〜27%) 、 CO (约 5〜8%) 、 CmHn (约 2〜4%) 、 C02 (约 1. 5〜3%) 、 N2 (约 3〜7%) 、 02 (约 0. 3〜0. 8%)等。 我国年产焦炭约 4亿吨, 可副产焦炉煤气约 1700亿 Nm3, 除去炼焦自用部分 外, 尚有约 70CT800亿 Nm3富余焦炉煤气需寻求其他用途, 但据估计目前至 少有 1/3以上的富余焦炉煤气未能加以利用, 通过火炬焚烧后放散至大气 中, 既浪费了大量的宝贵资源又严重污染了环境。焦炉煤气中含有大量的 氢、 甲垸和一氧化碳, 都是合成化学品的宝贵原料, 如将火炬焚烧排放的 焦炉煤气加以利用可以生产天然气约 80亿 Nm3。 就建设单位而言, 若具备 100万吨 /年焦炭生产能力, 每年将产生富余焦炉煤气约 2. 0亿 Nm3, 如火炬 焚烧后排入大气将造成大量能源的浪费。
焦炉煤气传统的利用方法是经过脱焦油、 萘、 苯和 S后作为民用燃
料气或发电, 这样非但将宝贵的化工原料烧掉浪费了, 而且还有 co2、 so2 和 NOn产生, 依然污染环境。 现阶段相关焦化企业拟建将焦炉煤气经净化 处理用于合成甲醇与氨装置, 再进一歩用于下游产品生产, 使副产的焦炉 煤气发挥经济效益, 减少排放污染; 但由于焦炉煤气经净化处理用于合成 甲醇与氨的装置投资比较大, 合成氨和合成甲醇的附加值也不高, 下游产 品的应用领域狭窄且附加值有限,投资效益不明显,所以建设力度也不大。
我国能源资源状况特征是: 富煤、 缺油、 少气。 天然气是清洁能源, 天然气指标受国家严格控制, 以天然气为原料的化工项目尤其是精细化工 项目受到了极大的制约。所以, 我们提出对焦炉煤气综合利用发展精细化 工, 用于合成氢氰酸衍生物及其下游产品, 实现资源充分综合利用, 开拓 焦炉煤气综合利用新领域。 发明内容
针对焦炉煤气应用现状,我们提出一种焦炉煤气综合利用生产氢氰酸 衍生物的环保清洁工艺方法,尤其是利用焦炉煤气通过变压吸附等分离手 段分离得到甲垸气生产氢氰酸衍生物的环保清洁工艺方法;充分考虑到焦 炉煤气分离得到的氢、一氧化碳等的资源化综合利用, 既可以很好的实现 焦炉煤气的综合利用,又可以为发展天然气精细化工开辟一个新的原料途 径, 实现了资源充分利用循环经济模式的环保清洁工艺生产。
本发明的目的是提供一种焦炉煤气综合利用生产氢氰酸衍生物的环 保清洁工艺方法,尤其是利用焦炉煤气通过变压吸附等分离手段分离得到 甲垸气生产氢氰酸衍生物的环保清洁工艺方法;充分考虑到焦炉煤气分离
得到的氢、一氧化碳等的资源化综合利用与生产氢氰酸衍生物工艺过程的 环保性;其特征是提供一种利用焦炉煤气通过变压吸附等分离手段获得相 对浓缩的、 品质要求相对较低的甲垸气, 并利用这种品质要求相对较低的 甲垸气作为原料生产氢氰酸衍生物的环保清洁工艺方法;将焦炉煤气通过 变压吸附等分离手段实现焦炉煤气中甲垸气、 一氧化碳、 氢气等的分离, 得到品质要求相对较低的甲垸气、 氢气、 一氧化碳和尾气; 这种甲垸气作 为生产氢氰酸衍生物的原料,可以残留有一定成分比例的氢和一氧化碳等 成分; 这种品质要求相对较低甲垸气体直接用于本发明提出的应用领域, 本发明提出采用甲垸氨氧化或氨化脱氢方法合成氢氰酸气体混合物,氢氰 酸气体混合物与氢氧化钠水溶液吸收反应得到氰化钠用于合成下游氢氰 酸衍生物、氢氰酸气体混合物脱氨后与甲醛或其它醛类合成羟基乙腈或其 它氢氰酸衍生物用于合成下游氢氰酸衍生物、氢氰酸气体混合物通过脱氨 后用水或其它溶剂吸收并提纯得到高纯液体氢氰酸用于合成下游氢氰酸 衍生物;变压吸附得到的氢用于衍生物的氢化或通过合成氨装置得到液氨 用于甲垸氨氧化生产氢氰酸,一氧化碳和尾气用于合成甲醇并可进一歩氧 化得到甲醛用于吸收氢氰酸制备羟基乙腈。
本发明提供的利用焦化煤气生产氢氰酸衍生物的环保清洁工艺方法, 其具体实施歩骤如下:
第一歩: 将焦炉煤气通过变压吸附等分离手段实现焦炉煤气中甲垸 气、 一氧化碳、 氢气等的分离, 得到品质要求相对较低的甲垸气、 氢气、 一氧化碳和尾气。
焦炉煤气中主要含有氢、 甲垸、 一氧化碳、 二氧化碳、 氮、 氧、 乙垸
等气体,通过变压吸附装置及其它分离设备分离分别得到氢气、一氧化碳、 甲垸气和尾气; 氢气用于合成氨, 一氧化碳和尾气用于合成甲醇进而氧化 得到甲醛, 甲垸气直接用于氨氧化或氨化脱氢合成氢氰酸及其氢氰酸下游 衍生物, 实现了焦炉煤气的综合利用零排放的清洁生产。
我们所需要的直接用于氨氧化或氨化脱氢合成氢氰酸衍生物及其下 游衍生物的相对浓缩的甲垸气体的质量要求非常宽松, 甲垸气中可以含有 一定量的氢气、一氧化碳、氮气和氧气及其它气体;其中甲垸含量要求为:
^55. 0% (体积)、 氢气含量要求为: 10. 0% (体积)、 一氧化碳含量要求 为: 10. 5% (体积)。 这种甲垸气的纯度要求非常低下, 节约净化成本 80%或以上, 采用这种低纯度要求的甲垸气为原料生产氢氰酸衍生物为焦 炉煤气的综合利用开辟了一条非常便利的途径。
第二歩:焦炉煤气通过第一歩分离得到相对净化的品质要求较低的甲 垸气直接用于甲垸氨氧化或氨化脱氢合成氢氰酸再合成多种氢氰酸衍生 物;这种采用品质要求较低的甲垸气与常规天然气氨氧化或氨化脱氢合成 氢氰酸的反应效果没有差异,只要按照氨氧化合成氢氰酸反应混合气的成 分要求将甲垸气与氨、空气的量或氨化脱氢合成氢氰酸反应混合气的成分 要求将甲垸气与氨的量采用自控调配就可以很好地保证氨氧化或氨化脱 氢合成氢氰酸的反应效果;氨氧化或氨化脱氢合成反应气与氢氧化钠水溶 液吸收反应得到高纯氰化钠并合成下游氢氰酸衍生物、氨氧化或氨化脱氢 合成反应气脱氨后与甲醛或其它醛类合成羟基乙腈或其它氢氰酸衍生物 并合成下游氢氰酸衍生物、氨氧化或氨化脱氢合成反应气脱氨后用水或其 它溶剂吸收并提纯得到高纯液体氢氰酸并合成下游氢氰酸衍生物。
甲垸氨氧化主反应方程式:
CH4 + NH3 + 3/202 ► HCN + 3¾0 甲垸氨化脱氢主反应方程式:
CH4 + NH3 ► HCN + 3¾ 本过程采用的氨, 可以是歩骤 1分离得到的氢为原料合成的氨。
1、 氢氧化钠水溶液吸收合成气中的氢氰酸, 生产得到液体氰化钠或 固体氰化钠, 用于生产氰化钠下游产品。
NaOH + HCN ► NaCN + ¾0 甲垸氨氧化或氨化脱氢合成反应气中的氢氰酸与吸收液中的氢氧化 钠反应生成氰化钠, 反应得到的合成反应气中是含有游离氨的, 本吸收过 程是在合成反应气没有经过除氨工序直接进行的氢氰酸的吸收过程,其游 离氨在吸收反应后存留在尾气中, 在尾气处理时再进行游离氨的回收利 用,通过氨分离回收装置处理得到可以直接用于氨氧化或氨化脱氢合成反 应的原料氨, 实现了游离氨的回收利用与氰化钠的清洁生产。
上述吸收反应得到了氰化钠水溶液,通过冷却调配得到液体氰化钠产 品; 通过浓缩、 结晶、 离心、 干燥得到氰化钠固体产品, 结晶母液直接或 净化后套用到氢氧化钠吸收反应液中。
2、 甲醛水溶液或其它有机醛类吸收合成气中的氢氰酸, 反应得到羟 基乙腈水溶液或其它氢氰酸衍生物, 用于生产多种氢氰酸衍生物下游产 p
CH20 + HCN ► H0CH2CN 甲垸气氨氧化或氨化脱氢合成氢氰酸的反应气中含有一定量的游离
氨, 我们采用联合除氨的技术工艺实现氨的回收利用, 实现清洁生产。 本过程采用的甲醛,可以是歩骤 1分离得到的一氧化碳和尾气综合利 用合成甲醇进而氧化得到的甲醛。
3、 用水或其它溶剂吸收合成气中的氢氰酸, 通过解析或精馏等方式 提纯得到液体氢氰酸, 液体氢氰酸用于合成氢氰酸衍生物及下游产品。
甲垸气氨氧化或氨化脱氢合成氢氰酸的反应气中含有一定量的游离 氨, 我们采用联合除氨的技术工艺实现氨的回收利用, 实现清洁生产。
第三歩:通过氢氰酸吸收和游离氨回收后的尾气再采用水或氢氧化钠 水溶液或甲醛水溶液净化吸收,尾气中残余的氢氰酸得到净化同时收获少 量氢氰酸水溶液或氰化钠粗品水溶液或含羟基乙腈的甲醛水溶液,净化后 的尾气用尾气锅炉焚烧。
NaOH + HCN ► NaCN + ¾0
CH20 + HCN ► H0CH2CN
虽然尾气体系中残余的游离氢氰酸的量非常有限,但由于氢氰酸属剧 毒物质, 我们必须对尾气进行净化处理, 同时也可以收获少量的氢氰酸水 溶液或氰化钠粗品水溶液或含羟基乙腈的甲醛水溶液;获得的氢氰酸水溶 液直接套用到氢氰酸吸收水中或液碱吸收液中、获得的氰化钠粗品水溶液 直接套用到液碱吸收液中、获得的含羟基乙腈的甲醛水溶液直接套用到甲 醛吸收液中, 净化处理后的尾气再送尾气焚烧锅炉焚烧。
通过如上三个歩骤,完成了本发明提供的焦炉煤气综合利用生产氢氰 酸衍生物的环保清洁工艺方法。其歩骤过程是: 将焦炉煤气通过变压吸附 装置及其它分离设备进行分离得到甲垸气、 氢气、 一氧化碳及尾气; 氢气
用于氢氰酸衍生物的氢化或通过合成氨装置得到液氨产品,一氧化碳和尾 气通过合成甲醇装置得到甲醇原料进而氧化得到甲醛产品, 甲垸气直接用 于氨氧化或氨化脱氢合成氢氰酸继而用于合成各种氢氰酸衍生物: 甲垸气 通过氨氧化或氨化脱氢合成氢氰酸合成气,合成气与氢氧化钠水溶液吸收 反应得到氰化钠用于合成下游氢氰酸衍生物、合成气通过脱氨后与甲醛或 其它有机醛类合成羟基乙腈或其它氢氰酸衍生物用于合成下游氢氰酸衍 生物、合成气通过脱氨后用水或其它溶剂吸收并解析提纯得到液体氢氰酸 用于合成下游氢氰酸衍生物,实现了焦炉煤气资源化综合利用生产氢氰酸 衍生物精细化工产品的零排放的环保清洁生产。
本发明提供的利用焦炉煤气生产氢氰酸衍生物的环保清洁工艺方法, 适用于涉及所有焦炉煤气生产氢氰酸衍生物的过程,所指焦炉煤气包括所 有形式的焦化过程产生各种组分的焦炉煤气;本发明技术方法提供了可以 实现焦炉煤气资源化综合利用循环经济模式的零排放的环保清洁生产工 艺方法。
本发明提供的技术工艺, 具有如下特征:
1、 本发明利用焦炉煤气生产氢氰酸衍生物, 为焦炉煤气提供了一条 资源化综合利用的有效途径,为焦炉煤气的综合利用开辟了一条具有巨大 生命力的循环经济产业链; 可以获得非常良好的经济效益和社会效益; 本 发明将为节能减排、 保护地球做出巨大的贡献。
2、 本发明为天然气精细化工提供了一种新的原料途径。 焦炉煤气的 产量非常巨大, 因此, 本发明的提出将为天然气精细化工的提供极其丰富 的原料保障;综合利用焦炉煤气中的甲垸气通过氨氧化或氨化脱氢生产氢
氰酸及其衍生物产业链的产业化价值具有非常巨大的潜力。
3、 本发明提供的利用焦炉煤气生产氢氰酸衍生物的环保清洁工艺方 法大大降低了甲垸原料气的纯化要求, 大幅度提高了纯化效率, 与现有纯 化要求相比较节约纯化成本 80 %以上; 本发明为焦炉煤气资源化综合利 用开辟了一条具有深远意义的实用的产业化方案。
4、 采用焦炉煤气分离提纯得到的甲垸气, 是理想的氨氧化或氨化脱 氢合成氢氰酸的原料, 比普通天然气更具质量优势; 焦炉煤气中一般少含 有硫元素, 通过变压吸附分离得到的甲垸气也进一歩实现了硫元素的分 离, 不需要象普通天然气那样再次进行脱硫过程, 在氨氧化或氨化脱氢合 成氢氰酸过程中, 采用的催化剂贵金属铂对硫元素是非常敏感的, 所以, 利用焦炉煤气分离出来的甲垸气采用氨氧化或氨化脱氢合成氢氰酸工艺 生产氢氰酸及其衍生物可以延长催化剂的寿命 2-3倍,相应地可以实现连 续开车时间延长 2-3倍, 非常有效地提高设备利用率、 提高产品收率、 降 低能耗、 节约生产成本, 充分体现了本发明提供的工艺技术的实用性。 附图说明
说明书附图为本发明涉及到的焦炉煤气综合利用生产氢氰酸衍生物 的环保清洁工艺方法流程示意图。 具体实施方式
下面通过实施例进行更详细地说明本发明,但是本发明的范围不受实 施例的限制 (组份比例均指体积百分比例)。
实施例 1 : 焦炉煤气: 氢 57. 6%、 甲垸 27. 3%、 一氧化碳 5. 8%、 二氧 化碳 1. 4%、 氧 0. 4%、 氮 4. 1%、 水 1. 0%、 其它 2. 4%, 通过变压吸附和其 它辅助分离装置进行分离, 分别得到氢、 一氧化碳、 甲垸气和尾气; 氢用 于合成氨或衍生物的氢化、一氧化碳和尾气用于合成甲醇进而氧化得到甲 醛、 甲垸气用于安氏法氨氧化合成氢氰酸。
利用上述焦炉煤气分离得到甲垸气按安氏法氨氧化合成反应要求,以 计算量的氨和空气通过二次混合得到反应原料气,反应原料气通过安氏法 氨氧化合成反应得到合成气, 合成气成份如下:
通过冷却调配得到高纯液体氰化钠产品; 高纯氰化钠水溶液通过浓 、结晶、离心分离得到高纯固体氰化钠产品; 固体氰化钠产品质量如下:
外观 氰化钠 (%) co3 2- NH3 + 其它 无色透明 99. 56 0. 078 0. 018 水、 微量杂质
尾气进行氨的回收, 采用磷酸或磷酸二氢铵作为吸收载体; 回收氨后 的尾气成份如下表:
磷酸二氢铵溶液吸收氨转化为磷酸氢铵溶液, 通过解析与氨的回收; 解析出来的磷酸二氢铵溶液循环用于氨的吸收,回收氨用于氨氧化原料实 现了氨的回收利用。
氢氰酸水溶液套用到氢氧化钠吸收液中; 净化尾气的组分如下表: 序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 HCN 0. 0058 6 N2 80. 1536
2 NH3 0. 0012 7 co2 0. 7477
3 ¾0 4. 2440 8 CO 6. 9414
4 CH4 0. 6828 9 ¾ 7. 0367
5 o2 0. 0292 10 其它 0. 1576 净化后的尾气用尾气锅炉焚烧。 实施例 2: 同实施例 1, 利用上述焦炉煤气分离得到甲垸气通过安氏 法氨氧化合成反应得到合成气;反应合成气通过联合除氨得到不含氨或含 痕量氨的反应合成气体;除氨后的合成气用甲醛溶液吸收得到高纯羟基乙 腈水溶液, 用于合成高纯氢氰酸衍生物。 合成气组份如下表:
合成气通过初级除氨实现游离氨的回收利用后得到初级除氨合成气, 初级除氨合成气的组份如下表:
磷酸二氢铵溶液吸收氨转化为磷酸氢铵溶液, 通过解析与氨的回收; 解析出来的磷酸二氢铵溶液循环用于氨的吸收, 回收氨用于氨氧化原料; 初级除氨实现了氨的回收利用。 初级除氨合成气再通过硫酸吸收精细除氨, 得到副产硫酸铵; 精细除
序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 HCN 9. 1552 6 N2 62. 1552
2 NH3 0. 0018 7 co2 0. 5833
3 H20 16. 6565 8 CO 5. 3648
4 CH4 0. 5227 9 ¾ 5. 4148
水溶液用于下游产品的生产; 尾气送尾
实施例 3 : 同实施例 2, 利用上述焦炉煤气分离得到甲垸气通过安氏 法氨氧化合成反应得到合成气;反应合成气通过联合除氨得到不含氨或含 痕量氨的反应合成气体;除氨后的合成气用去离子水吸收得到氢氰酸水溶 液, 再通过精制得到高纯液体氢氰酸, 高纯液体氢氰酸用于氢氰酸衍生物 的合成;吸收尾气送尾气焚烧装置焚烧。获得高纯液体氢氰酸的质量如下:
实施例 4: 焦炉煤气: 氢 56. 8%、 甲垸 27. 7%、 一氧化碳 5. 6%、 二氧 化碳 1. 3%、 氧 0. 5%、 氮 4. 2%、 水 1. 3%、 其它 2. 6%, 通过变压吸附和其 它辅助分离装置进行分离, 分别得到氢、 一氧化碳、 甲垸气和尾气; 氢用 于合成氨或氢氰酸衍生物的氢化、一氧化碳和尾气用于合成甲醇进而氧化 得到甲醛、 甲垸气用于安氏法氨氧化合成氢氰酸。
序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 CH4 93. 480 6 co2 0. 415
2 ¾ 3. 878 7 CO 0. 832
3 H20 0. 113 8 Ar 0. 045
4 N2 1. 012 9 其它 0. 122
5 o2 0. 103 10 利用上述焦炉煤气分离得到甲垸气按安氏法氨氧化合成反应要求,以 计算量的氨和空气通过二次混合得到反应原料气,反应原料气通过安氏法 氨氧化合成反应得到合成气, 合成气成份如下:
序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 HCN 0. 2241 6 N2 60. 8726
2 NH3 1. 6825 7 co2 0. 5637
3 H20 25. 5094 8 CO 5. 2732
4 CH4 0. 5154 9 ¾ 5. 3359
5 o2 0. 0221 10 其它 0. 0011 尾气进行氨的回收, 采用磷酸或磷酸二氢铵作为吸收载体; 回收氨后 的尾气成份如下表:
磷酸二氢铵溶液吸收氨转化为磷酸氢铵溶液, 通过解析与氨的回收; 解析出来的磷酸二氢铵溶液循环用于氨的吸收,回收氨用于氨氧化原料实 现了氨的回收利用。
氢氰酸水溶液套用到氢氧化钠吸收液中; 净化尾气的组分如下表:
净化后的尾气用尾气锅炉焚烧。
实施例 5: 同实施例 4, 利用上述焦炉煤气分离得到甲垸气通过安氏
法氨氧化合成反应得到合成气;反应合成气通过联合除氨得到不含氨或含 痕量氨的反应合成气体;除氨后的合成气用甲醛溶液吸收得到高纯羟基乙 腈水溶液, 用于合成高纯氢氰酸衍生物。
合成气组份如下表:
合成气通过初级除氨实现游离氨的回收利用后得到初级除氨合成气, 初级除氨合成气的组份如下表:
磷酸二氢铵溶液吸收氨转化为磷酸氢铵溶液, 通过解析与氨的回收; 解析出来的磷酸二氢铵溶液循环用于氨的吸收, 回收氨用于氨氧化原料; 初级除氨实现了氨的回收利用。
初级除氨合成气再通过硫酸吸收精细除氨, 得到副产硫酸铵; 精细除 氨合成气的组分如下表:
序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 HCN 9. 1560 6 N2 62. 1450
2 NH3 0. 0012 7 co2 0. 5844
3 ¾0 16. 6628 8 CO 5. 3672
水溶液用于下游产品的生产; 尾气送尾
实施例 6: 同实施例 5, 利用上述焦炉煤气分离得到甲垸气通过安氏 法氨氧化合成反应得到合成气;反应合成气通过联合除氨得到不含氨或含 痕量氨的反应合成气体;除氨后的合成气用去离子水吸收得到氢氰酸水溶 液, 再通过精制得到高纯液体氢氰酸, 高纯液体氢氰酸用于氢氰酸衍生物 的合成;吸收尾气送尾气焚烧装置焚烧。获得高纯液体氢氰酸的质量如下:
实施例 7 : 焦炉煤气: 氢 56. 9%、 甲垸 27. 8%、 一氧化碳 5. 9%、 二氧 化碳 1. 5%、 氧 0. 4%、 氮 4. 0%、 水 1. 1%、 其它 2. 4%, 通过变压吸附和其 它辅助分离装置进行分离, 分别得到氢、 一氧化碳、 甲垸气和尾气; 氢用 于合成氨或氢氰酸衍生物的氢化、一氧化碳和尾气用于合成甲醇进而氧化 得到甲醛、 甲垸气用于安氏法氨氧化合成氢氰酸。
序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 CH4 92. 956 6 co2 0. 410
2 ¾ 4. 197 7 CO 0. 929
3 H20 0. 108 8 Ar 0. 046
4 N2 1. 108 9 其它 0. 136
5 o2 0. 110 10 利用上述焦炉煤气分离得到甲垸气按安氏法氨氧化合成反应要求,以 计算量的氨和空气通过二次混合得到反应原料气,反应原料气通过安氏法 氨氧化合成反应得到合成气, 合成气成份如下:
尾气进行氨的回收, 采用磷酸或磷酸二氢铵作为吸收载体; 回收氨后 的尾气成份如下表:
序号 组份名称 组份比例% 序号 组份名称 组份比例%
1 HCN 0. 2656 6 N2 74. 7012
2 NH3 0. 0670 7 co2 0. 6914
3 H20 10. 4451 8 CO 6. 4667
4 CH4 0. 6342 9 ¾ 6. 5542
5 o2 0. 0274 10 其它 0. 1472 磷酸二氢铵溶液吸收氨转化为磷酸氢铵溶液, 通过解析与氨的回收; 解析出来的磷酸二氢铵溶液循环用于氨的吸收,回收氨用于氨氧化原料实 现了氨的回收利用。氨回收后的尾气再通过脱盐水吸收净化, 尾气中残余 的氢氰酸得到净化同时收获少量氢氰酸水溶液; 氢氰酸水溶液成份如下:
氢氰酸水溶液套用到氢氧化钠吸收液中; 净化尾气的组分如下表:
净化后的尾气用尾气锅炉焚烧。
实施例 8: 同实施例 7, 利用上述焦炉煤气分离得到的甲垸气通过安 氏法氨氧化合成反应得到合成气;反应合成气通过联合除氨得到不含氨或 含痕量氨的反应合成气体;除氨后的合成气用甲醛溶液吸收得到高纯羟基
磷酸二氢铵溶液吸收氨转化为磷酸氢铵溶液, 通过解析与氨的回收; 解析出来的磷酸二氢铵溶液循环用于氨的吸收, 回收氨用于氨氧化原料; 初级除氨实现了氨的回收利用。 初级除氨合成气再通过硫酸吸收精细除氨, 得到副产硫酸铵; 精细除 氨合成气的组分如下表:
精细除氨得到硫酸铵溶液,硫酸铵溶液经净化处理并浓缩结晶得到硫 酸铵副产品。 精细除氨后的合成气用甲醛溶液吸收得到羟基乙腈水溶液,羟基乙腈 水溶液用于下游产品的生产; 尾气送尾气焚烧装置焚烧。获得羟基乙腈水 溶液的成份如下:
羟基乙腈 (%) 游离甲醛 (%) 游离 CN— (%) 其它
45. 25 0. 09 0. 02 水、 微量杂质
实施例 9: 同实施例 8, 利用上述焦炉煤气分离得到的甲垸气通过安 氏法氨氧化合成反应得到合成气;反应合成气通过联合除氨得到不含氨或 含痕量氨的反应合成气体;除氨后的合成气用去离子水吸收得到氢氰酸水 溶液, 再通过精制得到高纯液体氢氰酸, 高纯液体氢氰酸用于氢氰酸衍生 物的合成; 吸收尾气送尾气焚烧装置焚烧。获得高纯液体氢氰酸的质量如 下:
氢氰酸 (%) C03 2— (%) NH3 + (%) 其它
99. 80 水、 微量杂质
Claims
权 利 要 求 书
、 一种焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法, 其特征是 提供一种利用焦炉煤气通过变压吸附等分离手段获得相对浓缩的、 品质要 求相对较低的甲烷气, 并利用这种品质要求相对较低的甲垸气作为原料生 产氢氰酸衍生物的环保清洁工艺方法; 将焦炉煤气通过变压吸附等分离手 段实现焦炉煤气中甲垸气、 一氧化碳、 氢气等的分离, 得到品质要求相对 较低的甲烷气、 氢气、 一氧化碳和尾气; 这种甲垸气作为生产氢氰酸衍生 物的原料, 可以残留有一定成分比例的氢和一氧化碳等成分; 变压吸附得 到的氢用于衍生物的氢化或通过合成氨装置得到液氨用于甲垸氨氧化生产 氢氰酸, 一氧化碳和尾气用于合成甲醇并可进一步氧化得到甲醛用于吸收 氢氰酸制备羟基乙腈。
、权利要求 1所述焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法, 其特征是所指焦炉煤气包括所有品质的焦炉煤气。
、 权利要求 1所述相对浓缩的甲烷气用于生产氢氰酸衍生物, 其特征是利用 焦炉煤气分离得到的品质要求相对较低的甲垸气体直接采用甲垸氨氧化或 氨化脱氢合成氢氰酸气体混合物, 氢氰酸气体混合物与氢氧化钠水溶液吸 收反应得到氰化钠用于合成下游氢氰酸衍生物、 氢氰酸气体混合物脱氨后 与甲醛或其它醛类合成羟基乙腈或其它氢氰酸衍生物用于合成下游氢氰酸 衍生物、 氢氰酸气体混合物通过脱氨后用水或其它溶剂吸收并提纯得到高 纯液体氢氰酸用于合成下游氢氰酸衍生物。
、 权利要求 1所述相对浓缩的甲垸气体用于生产氢氰酸衍生物, 其特征是相 对浓缩的甲垸气体的质量要求非常宽松, 甲烷气中可以含有一定量的氢气、 一氧化碳、氮气和氧气及其它气体;其中甲垸含量要求为: 55. 0% (体积)、 氢气含量要求为: 10. 0% (体积)、一氧化碳含量要求为: 10. 5% (体积)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210187073.7 | 2012-06-08 | ||
CN2012101870737A CN102897798A (zh) | 2012-06-08 | 2012-06-08 | 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013182071A1 true WO2013182071A1 (zh) | 2013-12-12 |
Family
ID=47570334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/076881 WO2013182071A1 (zh) | 2012-06-08 | 2013-06-06 | 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102897798A (zh) |
WO (1) | WO2013182071A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102897798A (zh) * | 2012-06-08 | 2013-01-30 | 李宽义 | 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 |
CN106479526A (zh) * | 2015-08-28 | 2017-03-08 | 熊知平 | 煤基能源高效清洁精细化综合利用煤焦化方法 |
CN106701132A (zh) * | 2015-08-28 | 2017-05-24 | 李宽义 | 煤基能源高效清洁精细化综合利用褐煤提质方法 |
CN106477597A (zh) * | 2015-08-28 | 2017-03-08 | 李宽义 | 洁净煤尾气综合利用生产氢氰酸衍生物的环保清洁方法 |
CN106479548A (zh) * | 2015-08-28 | 2017-03-08 | 李宽义 | 煤基能源高效清洁精细化利用环保清洁方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3437436A (en) * | 1965-09-11 | 1969-04-08 | Stamicarbon | Process for the preparation of hydrogen cyanide |
CN1903723A (zh) * | 2006-08-15 | 2007-01-31 | 北京科技大学 | 一种利用冶金废气生产液氨、尿素及甲醇的生产方法 |
CN101607859A (zh) * | 2009-07-21 | 2009-12-23 | 太原理工大学 | 一种焦炉气生产甲烷的工艺 |
CN102897797A (zh) * | 2012-04-27 | 2013-01-30 | 李宽义 | 利用煤层气生产氢氰酸衍生物的环保清洁工艺方法 |
CN102897798A (zh) * | 2012-06-08 | 2013-01-30 | 李宽义 | 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 |
CN103086400A (zh) * | 2011-11-08 | 2013-05-08 | 李宽义 | 利用驰放气生产氢氰酸衍生物的环保清洁工艺方法 |
-
2012
- 2012-06-08 CN CN2012101870737A patent/CN102897798A/zh active Pending
-
2013
- 2013-06-06 WO PCT/CN2013/076881 patent/WO2013182071A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3437436A (en) * | 1965-09-11 | 1969-04-08 | Stamicarbon | Process for the preparation of hydrogen cyanide |
CN1903723A (zh) * | 2006-08-15 | 2007-01-31 | 北京科技大学 | 一种利用冶金废气生产液氨、尿素及甲醇的生产方法 |
CN101607859A (zh) * | 2009-07-21 | 2009-12-23 | 太原理工大学 | 一种焦炉气生产甲烷的工艺 |
CN103086400A (zh) * | 2011-11-08 | 2013-05-08 | 李宽义 | 利用驰放气生产氢氰酸衍生物的环保清洁工艺方法 |
CN102897797A (zh) * | 2012-04-27 | 2013-01-30 | 李宽义 | 利用煤层气生产氢氰酸衍生物的环保清洁工艺方法 |
CN102897798A (zh) * | 2012-06-08 | 2013-01-30 | 李宽义 | 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102897798A (zh) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105600990B (zh) | 一种利用焦炉煤气脱硫脱氰废液资源化回收硫磺、硫铵及催化剂的方法 | |
WO2013182071A1 (zh) | 焦炉煤气综合利用生产氢氰酸衍生物的环保清洁工艺方法 | |
CN103204470B (zh) | 电石炉气变换深度净化用于分离提纯co与h2的工艺 | |
CN102125802B (zh) | 粗苯加氢精制生产中的废气回收、净化方法 | |
RU2011116413A (ru) | Многостадийный способ очистки диоксида углерода и производства серной кислоты и азотной кислоты | |
CN102642810B (zh) | 一种焦炉气制备费托合成油原料气的组合工艺 | |
CN106669387B (zh) | 复合型水合物添加剂及其在混合气体分离与富集中的应用 | |
US20160068404A1 (en) | Process for heat recovery from ammonia stripper in andrussow process | |
CN100567244C (zh) | 用合成氨原料气中一氧化碳生产甲酸钠的新工艺 | |
CN104016310B (zh) | 一种用合成氨工业废气选择性生产硫化钠或硫氢化钠的方法 | |
CN103509609A (zh) | 吸收净化与吸附净化相结合的煤气净化工艺方法 | |
CN101607859B (zh) | 一种焦炉气生产甲烷的工艺 | |
CN107446635B (zh) | 一种焦炉煤气利用新方法 | |
CN105238471B (zh) | 一种低温干馏煤气制天然气并联产lpg的系统 | |
CN104610087B (zh) | 一种黄磷尾气经净化连续合成草酰胺的装置和方法 | |
WO2013159670A1 (zh) | 利用煤层气生产氢氰酸衍生物的环保清洁工艺方法 | |
CN106672898A (zh) | 一种以天然气裂解制乙炔的副产尾气为原料合成氨的方法 | |
CN105255531B (zh) | 一种低温干馏煤气制天然气并联产氢气的系统及方法 | |
JP2016502969A (ja) | シアン化水素の生成および水素の回収プロセス | |
CN104447195B (zh) | 一种利用电石炉尾气生产化工产品甲醇、天然气或合成油的方法 | |
CN103483120B (zh) | 一种利用焦炉气和电石炉尾气制备烯烃的方法 | |
CN106477597A (zh) | 洁净煤尾气综合利用生产氢氰酸衍生物的环保清洁方法 | |
CN106479548A (zh) | 煤基能源高效清洁精细化利用环保清洁方法 | |
Hollevoet | Processes for decentralized ammonia synthesis from water, air and renewable energy | |
CN105517692A (zh) | 用于从氯化烃中纯化co2的催化剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13800240 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13800240 Country of ref document: EP Kind code of ref document: A1 |