WO2013181904A1 - 斜流风扇、斜流风机及具有其的空调室内机 - Google Patents

斜流风扇、斜流风机及具有其的空调室内机 Download PDF

Info

Publication number
WO2013181904A1
WO2013181904A1 PCT/CN2012/085406 CN2012085406W WO2013181904A1 WO 2013181904 A1 WO2013181904 A1 WO 2013181904A1 CN 2012085406 W CN2012085406 W CN 2012085406W WO 2013181904 A1 WO2013181904 A1 WO 2013181904A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow fan
diagonal flow
blade
hub
Prior art date
Application number
PCT/CN2012/085406
Other languages
English (en)
French (fr)
Inventor
蔡序杰
黎文斗
张智
周拨
刘阳
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201220268483 external-priority patent/CN202734057U/zh
Priority claimed from CN2012101873025A external-priority patent/CN102705910A/zh
Priority claimed from CN201220415824.1U external-priority patent/CN202883468U/zh
Priority claimed from CN2012102988100A external-priority patent/CN102852854A/zh
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Priority to KR20157000183A priority Critical patent/KR20150030697A/ko
Priority to KR1020177002453A priority patent/KR101783177B1/ko
Publication of WO2013181904A1 publication Critical patent/WO2013181904A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/06Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans

Definitions

  • Diagonal flow fan, diagonal flow fan and air conditioner indoor unit having the same
  • the present invention relates to the field of refrigeration technology, and in particular to a diagonal flow fan, a diagonal flow fan, and an air conditioning indoor unit having the same. Background technique
  • the air duct system of the existing air conditioner indoor unit mostly adopts a centrifugal fan, and the volute and the centrifugal fan are disposed in the lower part of the air conditioner inner cavity, and the heat exchanger is disposed at the upper part of the air conditioner inner cavity and is placed obliquely, and the air inlet and the air outlet respectively are respectively Located in the lower part and upper part of the casing, the air inlet is located in front of or directly in front of the casing, the air outlet is located directly in front of the casing, and the lower fan duct system is blown to the upper heat exchanger to achieve rapid heat exchange. purpose.
  • Some fan duct systems use a cross-flow fan, which places the heat exchanger behind the cross-flow fan, and the air outlet is placed in the middle or on both sides of the air conditioner. The air at the rear of the body is introduced and blown through the heat exchanger by the high-speed rotation of the cross-flow fan.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention needs to provide a diagonal flow fan for an indoor unit of an air conditioner, which has a long air supply distance, a large air supply amount, and a high air supply efficiency.
  • the present invention needs to provide an air conditioner indoor unit having the above-described diagonal flow fan, which has a simple and reasonable structure and a good air blowing effect.
  • a diagonal flow fan for an indoor unit of an air conditioner comprising: a hub having a tapered or spherical wind guiding surface, the wind guiding surface being from a bottom end to a top end The outer dimension is gradually increased; a plurality of blades, the plurality of blades being disposed on the wind guiding surface, each of the blades comprising: a blade root portion, the blade root portion being connected to the wind guiding surface; The top of the leaf is away from the hub; the air inlet end is close to the bottom end of the air guiding surface; and the air outlet end is close to the top end of the air guiding surface, wherein the air inlet of the blade root
  • the ratio of the diameter of the rotating circumference of the end to the diameter of the rotating circumference of the air inlet end of the blade tip is the ratio of the inlet end hub, the diameter of the rotating circumference of the blade root portion and the rotating circumference of the outlet end of the blade tip. The ratio of the diameters is the
  • a diagonal flow fan for an air conditioner indoor unit is particularly suitable for a vertical air conditioning room
  • the inner machine has a wind guiding surface of the hub of the diagonal flow fan, and the outer dimension of the air guiding surface from the bottom end to the top end gradually increases, and the ratio of the air inlet end hub is smaller than that of the air outlet end hub.
  • the diagonal flow fan of the present invention has the characteristics of axial air inlet and oblique air outlet, and the air supply distance is increased, and the air supply efficiency is improved, and the air supply efficiency is improved.
  • the inlet end hub ratio is 0.15 ⁇ 0.45.
  • the ratio of the outlet end hub is 0.55 to 0.85.
  • the angle formed by the rotation of the wire inlet end and the outlet end of the blade root around the axis of the diagonal flow fan is 35° from the axis of the diagonal flow fan. ⁇ 55. .
  • the angle between the faces is 0° ⁇ 30°.
  • the angle between the line connecting the inlet end and the outlet end of the blade and the direction of the wind end is the inclination angle of the blade, and the inclination angle is gradually reduced from the root to the top of the blade. small.
  • the blade root has an inclination angle of 38° - 55°.
  • the tip of the blade has an inclination angle of 18° - 35°.
  • the blade root has an inclination angle of 44.2.
  • the angle of inclination of the top of the leaf is 23°.
  • an angle between a discharge direction of the airflow at the air outlet end and a rotation direction is an outlet installation angle of the blade, and the outlet installation angle gradually increases from the blade root to the blade tip.
  • the blade root has an outlet mounting angle of 90° - 135°.
  • the outlet angle of the top of the blade is from 105° to 150°.
  • the outlet mounting angle of the blade portion is 104°, and the outlet mounting angle of the blade tip portion is 125.7°.
  • the blades are 5-9.
  • a floor-standing air conditioner including: a housing, the housing is provided with an air inlet and an air outlet, and the housing has an air inlet and the outlet respectively a tuyere connected to the tuyere; a heat exchanger, the heat exchanger is disposed in the casing; and a diagonal flow fan, the diagonal flow fan is disposed in the air duct, and the diagonal flow fan has a diagonal flow fan,
  • the diagonal flow fan is a diagonal flow fan according to the above embodiment of the present invention.
  • An air conditioner indoor unit which has a diagonal flow fan, which is particularly suitable for use with a vertical air conditioner indoor unit, since the hub of the diagonal flow fan has an air guiding surface, and the outer surface of the air guiding surface from the bottom end to the top end Gradually increasing, and the inlet end hub ratio is smaller than the outlet end hub ratio.
  • the hub drives the blade to rotate, the air inlet end has a strong pulling force for capturing the airflow, and the air outlet end has a strong centrifugal force for discharging the trapped airflow.
  • the invention is empty When the indoor unit is adjusted to ensure the air supply distance, the air supply volume is increased and the air supply efficiency is improved.
  • the air conditioning indoor unit further includes a wind guiding member, the air guiding member is connected to the inner wall of the air duct, and the air guiding member has a wind guiding passage penetrating the air guiding member in a vertical direction.
  • the diagonal flow fan is located in the air guiding channel.
  • the air guiding member and the inner wall of the air duct have a gap, and the gap is filled with a noise absorbing layer.
  • a wind wheel cover surrounding the blade is provided between the top surfaces of the blades.
  • the lower end of the air guiding surface of the diagonal flow fan is provided with an inlet air guiding ring.
  • the leeward side of the diagonal flow fan is provided with a diffuser cone coaxial with the hub, and the diffuser cone has a large diameter on the air inlet side and a small diameter on the air discharge side. structure.
  • the diameter of the air guiding passage of the air guiding member corresponding to the diffuser cone gradually increases from bottom to top.
  • the leeward side of the diagonal flow fan is provided with a fixed wind guide wheel
  • the fixed wind guide wheel is provided with a fixed wind guide vane blocking the direction of air rotation
  • the leeward side of the diagonal flow fan is provided with a diffuser cone and/or a fixed wind guide coaxial with the hub, and the diffuser cone has a large diameter on the air inlet side, and the air discharge side a truncated cone structure having a diameter 'j'; the fixed wind deflector is provided with a fixed wind guide vane blocking the direction of rotation of the air.
  • Figure 1 shows a front view of a diagonal flow fan in accordance with one embodiment of the present invention
  • FIG. 2 is a perspective view showing the structure of a diagonal flow fan according to an embodiment of the present invention.
  • FIG. 3 shows a schematic view of a meridional plane of a diagonal flow fan according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view showing a blade of a diagonal flow fan according to an embodiment of the present invention
  • FIG. 5 is a schematic plan view showing a wing-shaped plane of a blade having a thousand cross section from a blade root to a tip of the blade in the diagonal flow fan of the present invention
  • FIG. 6 is a perspective structural view showing an indoor unit of an air conditioner according to an embodiment of the present invention.
  • Figure 7 is a front elevational cross-sectional view showing the air conditioner indoor unit according to an embodiment of the present invention
  • Figure 8 is a schematic enlarged view of the structure A in Figure 7;
  • Figure 9 is a perspective view showing a perspective structure of a diagonal flow fan of an air conditioner indoor unit according to an embodiment of the present invention
  • Figure 10 is a view showing a diagonal flow fan of an air conditioner indoor unit in a tangential direction of the impeller according to an embodiment of the present invention
  • Figure 1 1 shows a diagonal flow fan of an air conditioner indoor unit being sent along the central axis direction according to an embodiment of the present invention.
  • Fig. 12 is a front elevational, partial cross-sectional view showing the air conditioner indoor unit according to an embodiment of the present invention.
  • Figure 13 is a schematic enlarged view of the structure C at Figure 12;
  • Figure 14 is a cross-sectional view showing a diagonal flow fan of an air conditioner indoor unit according to an embodiment of the present invention
  • Figure 15 is a perspective view, partly in section, of an air conditioner indoor unit according to an embodiment of the present invention.
  • Figure 17 is a front view showing the structure of Figure 16;
  • Figure 18 is a partial cross-sectional structural view showing a diagonal flow fan of an air conditioning indoor unit according to an embodiment of the present invention.
  • Figure 19 is a front elevational cross-sectional view showing the air conditioner indoor unit according to an embodiment of the present invention
  • Figure 20 is a schematic enlarged view showing the structure of E in Figure 19;
  • 21 is a schematic structural view of an indoor unit of an air conditioner according to an embodiment of the present invention.
  • Figure 22 is a partial cross-sectional structural view showing a diagonal flow fan of an air conditioning indoor unit according to an embodiment of the present invention
  • Figure 23 is a perspective view showing a fixed wind guide of an air conditioner indoor unit according to an embodiment of the present invention.
  • Figure 24 is a cross-sectional enlarged view of the D-D of Figure 21;
  • Figure 25 is a block diagram showing the structure of an indoor unit of an air conditioner according to an embodiment of the present invention.
  • Figure 26 is a view showing an assembly of a diagonal flow fan related assembly of an air conditioner indoor unit according to an embodiment of the present invention
  • Figure 27 is a view showing an explosion development of a diagonal flow fan related assembly of an air conditioner indoor unit according to an embodiment of the present invention.
  • a diagonal flow fan for an air conditioner indoor unit includes: a hub 100 and a plurality of blades 200.
  • the hub 100 may have a tapered or spherical wind guiding surface 101.
  • the outer surface of the air guiding surface 101 is gradually increased from the bottom end to the top end.
  • the hub 100 is rotatable by a motor, and the blade 200 may be coupled to the hub 100.
  • the arrangement may also be detachably coupled to the surface of the hub 100, and when the hub 100 rotates, the blade 200 is rotated.
  • the hub 100 has a conical or hemispherical shape with a large diameter end at the upper end and a smaller diameter end at the lower end.
  • the side of the blade 200 connected to the hub 100 is a blade root 210, the side away from the hub 100 is a blade top 220; and the end of the blade 200 near the bottom end of the hub 100 is the air inlet end 240, and the end near the top end of the hub 100 is the air outlet end.
  • 230 that is, the lower end shown in FIG. 3 is the air inlet end 240, and the upper end is the air outlet end 230.
  • the diameter of the rotating circumference of the blade root portion 210 is d2; the diameter of the rotating end of the tip end portion 220 of the tip portion 220 is D2, and d2/D2 is the ratio of the outlet end 230 to the hub.
  • the inlet end 240 hub ratio is smaller than the outlet end 230 hub ratio.
  • a diagonal flow fan 10 for an air conditioner indoor unit is particularly suitable for use with a vertical air conditioner indoor unit, since the hub 100 of the diagonal flow fan 10 has a wind guiding surface 101 and a wind guiding surface 101 The outer dimension from the bottom end to the top end gradually increases, and the air inlet end 240 has a hub ratio smaller than the air outlet end 230.
  • the hub 100 drives the blade 200 to rotate, the air inlet end 240 has a strong trapping airflow.
  • the lift, and the outlet end 230 has a strong centrifugal force that discharges the trapped airflow.
  • the diagonal flow fan of the present invention has the characteristics of axial air inlet and oblique air outlet, and the air supply distance is increased, and the air supply rate is increased, and the air supply efficiency is improved.
  • the hub ratio of the air inlet end 240 may be 0.15 - 0.45.
  • the hub ratio of the outlet end 230 may be 0.55 - 0.85.
  • the axial pulling force and the centrifugal force of the diagonal flow fan can be maximized to ensure sufficient centrifugal action.
  • the axial pulling force is further increased.
  • the conventional centrifugal fan although the centrifugal force generated by it can send the wind out a long distance, so that the air supply distance of the air conditioner is large, but because the air volume sucked in is small, the air needs to turn a large angle when the air is blown, resulting in air volume. The loss is large, so the amount of air sent out is small and the air supply efficiency is low.
  • the diameter of the hub 100 where the air inlet end 240 of the blade 200 is located is smaller than the diameter of the hub 100 where the air outlet end 230 is located, and the air inlet end 240 has a smaller hub ratio than the air outlet. End 230 hub ratio.
  • the hub 100 drives the blade 200 to rotate, it has strong centrifugal force, can send air far distance, and has a large air supply distance; at the same time, it can generate axial pulling force, force air movement, and inhale a large amount of air.
  • the wind is sent obliquely along the conical slope of the hub 100, and the air loss is small, and the air supply efficiency is high. Therefore, the diagonal flow fan 10 of the present embodiment has the characteristics of axial air inlet and oblique air outlet.
  • the fork increases the air supply amount and improves the air supply efficiency. Therefore, it has the advantages of large airflow of the axial flow fan and good compression resistance of the centrifugal fan.
  • connection between the air inlet end 240 and the air outlet end 230 of the blade root portion 210 of the impeller 200 that is, the connection between the upper and lower ends of the connecting portion of the impeller 200 and the hub 100 in FIG. 3, and the hub 100
  • the angle between the axes is 35° ⁇ 55°, which is ⁇ 1 in the figure. This angle actually distributes both the centrifugal and axial movements of the diagonal flow fan 10 in the air conditioner.
  • the movement in the centrifugal direction is mainly converted into pressure potential energy to ensure the air supply distance of the air conditioner; and the movement in the axial direction is to ensure that the air volume is large enough to ensure the air supply efficiency.
  • the angle range further balances the air supply amount and the air supply distance of the diagonal flow fan 10.
  • the angle between the line connecting the air inlet end 240 and the air outlet end 230 of the blade root portion 210 and the line connecting the air inlet end 240 and the air outlet end 230 of the blade top portion 220 is 0° to 30°, that is, in the figure. ⁇ 2.
  • the purpose of the design is to form a special shrinkage in the work area of the impeller 200, effectively accelerate the flow of the airflow in the work area of the impeller 200, thereby suppressing the generation of eddy currents, further improving the fan efficiency, and simultaneously reducing the eddy current in the cavity.
  • the number of the impellers 200 of the present embodiment is 5 to 9 pieces, and the conical surfaces around the hub 100 may be equidistantly or unequally distributed. If the number of blades is too small, sufficient air volume and air supply distance cannot be guaranteed; if the number of blades 200 is too large, the effective flow area will be reduced due to the boundary effect of the wall, which will affect the efficiency.
  • the 5 - 9 piece is an ideal number to ensure that the air supply efficiency fork does not generate too much noise.
  • the single-phase AC asynchronous motor is generally used for the fixed speed motor of the indoor unit, and the stator of the motor is generally 4, 6, and 8 poles.
  • the structure of the synchronous rotating speed is 1500 rpm, 1000 rpm, 750 rpm, respectively.
  • the diameter of the diagonal flow fan 10 of this embodiment can be set to 250 to 400 mm, and the rated working speed of the fan can be set to 500 rpm to 1500 rpm.
  • Fig. 4 is a schematic cross-sectional view of a blade of a blade in the diagonal flow fan of the present invention.
  • the blade 200 of the present embodiment is not a flat surface but a space-bent shape.
  • the inclination angle of the blade gradually decreases from the blade root portion 210 to the blade top portion 220, and the outlet mounting angle of the blade gradually increases from the blade root portion 210 to the tip portion 220.
  • the direction in which the vane 200 rotates about the axis is that the air inlet end 240 is in front and the air outlet end 230 is behind, and the side of the vane 200 that is in contact with the front side of the air flow is the windward side 260.
  • the airflow enters from the air inlet end 240, climbs obliquely along the windward side 260 to the air outlet end 230, and is discharged from the air outlet end 230 to the air conditioning chamber by centrifugal force.
  • the angle between the line connecting the inlet end 240 and the outlet end 230 of the blade section of the blade 200 and the direction of the inlet end is the inclination angle of the blade, and the inclination angle is gradually reduced from the root to the top of the blade. small.
  • the side of the hub 100 radially intercepts the section obtained by the blade 200, that is, the wing section of the blade 200.
  • the wing profile is understood to mean that, assuming that the sides of the hub 100 are deployed in a plane, all of the hubs 200 are located on one side of the plane and project upwardly.
  • the side of the hub 100 is radially intercepted by the blades 200.
  • the intercepted wing profile is parallel to the plane described above, i.e., assuming that the sides of the hub 100 are deployed into a plane, the blade profiles of all of the blades 200 are parallel to the plane.
  • the left end of the wing section may be the air outlet end 230, and the right end is the air inlet end 240.
  • FIG. 4 the left end of the wing section may be the air outlet end 230, and the right end is the air inlet end 240.
  • the upper curve 250 is the projection curve of the windward side 260, and the string 251 between the two curves is It is the connection between the inlet end 240 and the outlet end 230.
  • the arrow of the air inlet end 240 indicates the direction of rotation of the air inlet end 240.
  • the angle between the tangent to the direction of rotation and the string 251 is the angle of inclination of the blade 200, that is, the angle 1 in the figure.
  • the arrow below the outlet end 230 is the windward side 260
  • the inclination angle of the blade gradually decreases from the root of the blade to the top of the blade, and the outlet mounting angle gradually increases from the root of the blade to the top of the blade.
  • the inclination angle of the blade root portion 210 is preferably 38° to 55°.
  • the outlet mounting angle is preferably 90° to 135°; the angle of inclination of the tip portion 220 is preferably 18° to 35°, and the outlet mounting angle is preferably 105° to 150°.
  • the oblique flow fan formed in the range of the parameters has a blade shape which can generate strong axial pulling force and strong centrifugal force, and the gas flow will not accumulate at the root of the blade nor escape at the top of the blade.
  • the following table shows the inclination angle and installation angle of the position of a plurality of wing sections taken from the blade root 210 of the blade to the blade top 220 in the diagonal flow fan of the present embodiment, wherein the section shows 0% as the blade root 210, and the inclination angle thereof is 44.2°, the outlet installation angle is 104°; the section shows 100% as the tip top 220, the inclination angle is 23°, and the outlet installation angle is 125.7°.
  • Figure 5 is a plan view of the wing plane of each of the above-mentioned wing sections, wherein the direction indicated by the arrow is the direction of the air flow.
  • the blade shape of this embodiment is substantially as follows: the blade at the inlet end gradually curls inward from the root of the blade to the top of the blade, and the blade at the outlet end gradually extends outward from the root of the blade to the top of the blade. Therefore, the blade 200 which is spatially twisted and twisted in this embodiment can generate a strong axial pulling force, pull air from the outside into the air-conditioning cavity and generate a rapid airflow, and the airflow enters the blade 200 from the air inlet end 240. Rotate the space.
  • the curled surface of the inlet end 240 is extremely easy to trap the airflow, so that the airflow is in the fan.
  • the continuous lifting rises rapidly along the windward surface 260 to the outlet end 230; since the blade 200 gradually extends outward from the inlet end 240 to the outlet end 230, the airflow is neither at the blade root 210 during the climb. It does not escape from the top of the blade 220, so it does not cause loss of airflow, nor does it reduce the velocity of the airflow due to the blockage of the accumulated airflow, and thus generates a large amount of noise.
  • the blade 200 which is spatially twisted and twisted in this embodiment can minimize the accumulation of low-energy fluid in the blade root portion 210, further improve the air blowing efficiency of the fan, and reduce noise.
  • an air conditioner indoor unit includes: a housing 2, a heat exchanger (not shown), and a diagonal flow fan 4.
  • the housing 2 is provided with an air inlet (not shown) and an air outlet 3, and the air duct is connected to the air inlet and the air outlet 3 in the housing 2, and the diagonal fan 4 can be disposed in the wind.
  • the diagonal flow fan 4 has the diagonal flow fan 10 according to the above embodiment of the present invention.
  • An air conditioning indoor unit has a diagonal flow fan 10, which is particularly suitable for use with a vertical air conditioner indoor unit, since the hub 100 of the diagonal flow fan 10 has a wind guiding surface 101, and the air guiding surface 101 is bottomed
  • the end-to-top outer dimension is gradually increased, and the inlet end 240 hub ratio is smaller than the outlet end 230 hub ratio.
  • the air-conditioning indoor unit of the present invention increases the air supply amount and improves the air supply efficiency while ensuring the air supply distance.
  • an air passage through which air communicating from the air inlet to the air outlet 3 flows is provided in the casing 2, and a diagonal flow fan 4 is provided in the air passage.
  • the diagonal flow fan 4 is also referred to as a mixed flow fan, and the diagonal flow fan adopts the diagonal flow fan 10 in the above embodiment of the present invention.
  • the air supply direction of the diagonal flow fan 4 includes a component along the axial direction of the motor, and rotates along the impeller. The component of the tangential direction of the direction. The amount of air supplied by the diagonal flow fan 4 is smaller than that of the axial flow fan, and larger than that of the centrifugal fan.
  • the supply air static pressure of the diagonal flow fan 4 is larger than that of the axial flow fan, and smaller than the centrifugal fan.
  • the characteristics of the diagonal flow fan 4 itself are determined. Compared with the existing axial fan drive mode, there is a higher air supply static pressure and a farther air supply distance.
  • the diagonal flow fan 4 includes a diagonal flow wind wheel 41 , a motor 43 and a motor shaft 44 , a motor 43 that drives the diagonal flow wind wheel 41 to rotate, and a motor that connects the motor 43 and the diagonal flow wind wheel 41 .
  • the shaft 44 and the motor 43 drive the diagonal flow rotor 41 to rotate about the center axis 99.
  • the diagonal flow wind wheel 41 includes a hub 100 having a small diameter on the air inlet side and a large diameter on the air discharge side, and a plurality of blades 200 disposed on the windward side of the hub 100.
  • the air conditioner indoor unit 1 is a floor-type top four-sided air outlet type, and the diagonal flow fan 4 is used, which can improve the static air pressure on the one hand, overcome the flow resistance in the air passage, and of course include the air inlet.
  • the flow resistance of the air inlet filter, heat exchanger, volute, air outlet and guide vane, plus a long air passage, can also be sent a long distance.
  • the air from the tuyere is not perpendicular to the air outlet, but in the direction in which the diagonal fan 4 rotates, and has a component in the tangential direction, which can further improve the effect of the four sides of the wind, and there is no dead angle of the air supply. Improve the comfort of the air supply.
  • the air conditioner indoor unit 1 further includes an air guiding member 5, and the air guiding member 5 is connected to an inner wall of the air duct, and the air guiding member 5 has a vertical direction.
  • the air guiding channel, the diagonal flow fan 10 can be located in the air guiding channel.
  • the inner wall surface of the hub 100 and the blade 200 of the diagonal flow fan 4 is provided with an air guiding member 5, and the air guiding member 5 is fixed to the inner wall surface of the casing 2 through the air guiding member connecting portion 17.
  • the air guiding member 5 itself has a certain strength, and the inner surface of the air guiding member 5 has high processing precision and surface smoothness, which is favorable for cooperation with the rotating blade 200, which can facilitate air passage and reduce air resistance.
  • the gap 7 there is a gap 7 between the air guiding member 5 and the inner wall surface of the casing 2.
  • the gap 7 can be reduced outward.
  • the heat transfer especially in the cooling condition, reduces the condensation on the surface of the casing 2 while reducing the noise propagation of the motor and airflow.
  • the gap 7 between the volute 5 and the inner wall surface of the casing 2 may be filled with a heat insulating or noise absorbing layer.
  • the blade 200 has a wind wheel cover 8 connected to each of the blades 200, i.e., a wind wheel cover 8 surrounding the blades between the top surfaces of the blades 200.
  • the wind wheel cover 8 can strengthen the structural strength of each blade 200, and on the other hand, can make the airflow entering the air inlet 15 of the diagonal flow fan 4 accumulate, and the smaller diameter inlet of the lower part of the wind wheel cover 8 makes the inlet air The speed increases. Further, the structure in which the lower portion of the lower portion of the wind wheel cover 8 is large and the structure of the lower portion of the lower portion of the hub 100 is combined to form a duct in which the blade 200 pushes the air to be supercharged.
  • an inlet air guiding ring 12 is disposed at the air inlet 15 of the diagonal flow fan 4, and is imported.
  • the airflow diverted by the air guide ring 12 re-enters the air passage between the wind wheel cover 8 and the hub 100.
  • the inlet air guide 12 reduces the area of the air passage, increases the wind speed at the inlet, and cooperates with the inner diameter of the wind wheel cover 8 to reduce the eddy current formed by the differential pressure generated by the diagonal flow fan 4, thereby reducing noise.
  • a diffuser cone 11 coaxial with the hub 100 is disposed on the leeward side of the diagonal flow fan 4, i.e., on the larger diameter side of the hub 100, and the diffuser cone 11 It is a truncated cone-shaped structure having a large diameter on the air inlet side and a small diameter on the air discharge side.
  • the diffuser cone 11 is fixed to the motor bracket 6, and an air passage is formed between the outer surface of the diffuser cone 11 and the inner surface of the casing 2 of the indoor unit (which may also be the inner surface of the air guiding member 5).
  • a circular structure with a small lower area and a large upper area. The gradually increasing air passage thus formed effectively diffuses the air, reduces the air speed and flow loss, and increases the static pressure and the air supply distance of the air.
  • the inner surface of the air guiding member 5 is inclined toward the indoor unit casing 2, so that the air passage there is further increased, that is, the air guiding portion corresponding to the diffuser cone 11
  • the piece 5 has a structure for expanding the air passage. The air can be further diffused.
  • the air conditioner indoor unit may be a floor type air conditioner indoor unit, the air outlet of the indoor unit is located at the upper front surface of the casing 2, and the diagonal flow fan 4 is generated at a medium level.
  • the advantages of static pressure and large air volume are beneficial to the positive long-distance air supply, but the component of the wind speed rotation direction in the air duct is not conducive to the front air supply.
  • a fixed air guiding wheel 13 is provided, and the fixed air guiding wheel 13 is fixedly connected to the inner wall surface of the air conditioning casing 2. In this embodiment, the air rotating direction in the air duct is smooth.
  • the hour hand rotates, and the inclined direction of the fixed guide vane 14 provided on the fixed wind deflector 13 blocks the air in the clockwise direction, that is, the fixed wind deflector 13 is disposed on the leeward side of the diagonal flow fan 4, and the fixed wind guide wheel 13 is provided with a fixed wind guide vane 14 for obstructing the direction of air rotation, and a fixed wind guide wheel seal 18 is disposed at the middle of the fixed wind guide wheel 13, so that the area of the passing air can be reduced, so that all the air passes through the fixed guide vane 14 Perform a choke boost.
  • the rotation speed of the air is reduced, and on the other hand, the air can be diffused to increase the static pressure of the air supply.
  • FIG. 24 is an enlarged cross-sectional view of the indoor unit in the DD direction, and it can be seen that the outer casing of the indoor unit is formed by connecting a straight line segment L and an arc segment S connecting the straight segments, that is, the present invention
  • the disclosed diagonal flow fan is an air conditioner indoor unit that can be used for other shapes that are not circular.
  • the air passage of the diagonal flow fan fully utilizes the space inside the casing of the indoor unit, in this embodiment.
  • the area of the volute accounts for more than 89% of the area of the indoor unit casing.
  • the diagonal flow fan can effectively utilize the space inside the indoor unit casing, thereby reducing the air supply speed. Low air flow noise.
  • the air outlet 3 of the floor-standing air conditioner indoor unit is located on the upper front surface of the casing 2, and the outer casing of the indoor unit is excessively cylindrical from the upper portion and the lower portion is excessively cylindrical.
  • Fig. 26 is the installation diagram of the components related to the diagonal flow fan, as shown in Fig. 26 is the exploded view of the related components of the diagonal flow fan.
  • the upper air guiding wheel 13 is fixed, and the upper part of the wide pressure cone 11 is in the fixed air guiding wheel 13, and the outer periphery of the diffuser cone 11 is combined with the inner circle of the fixed air guiding wheel 13, and is sealed from the center of the fixed air guiding wheel 13
  • the position of the wind wheel seal is such that the air passage area is reduced, the local wind speed is increased, and the space is effectively utilized, and all the air needs to be fixed from the fixed wind guide 13 in the direction opposite to the rotation direction.
  • the wind speed in the direction of rotation can be greatly reduced, on the other hand, the pressure can be further expanded, and the static pressure of the air supply can be increased to improve the air supply. Distance.
  • a diffuser cone 11 coaxial with the hub 100 and a fixed wind deflector 13 are provided on the leeward side of the air outlet 16 of the diagonal flow fan.
  • the diffuser cone 11 has a large diameter on the air inlet side and a small diameter on the air discharge side. Table structure.
  • the fixed wind guide 13 is provided with a fixed wind guide vane 14 that blocks the direction of air rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种用于空调室内机的斜流风扇以及具有该斜流风扇的空调室内机,斜流风扇包括:轮毂(100)以及多个叶片(200),轮毂(100)具有锥面或球面的导风面(101),导风面(101)由低端到顶端的外部尺寸逐渐增大;叶片(200)包括:叶根部(210)、叶顶部(220)、进风端(240)以及出风端(230),其中叶根部(210)的进风端(240)所在旋转圆周的直径与叶顶部(220)的进风端(240)所在旋转圆周的直径之比值为进风端轮毂比,叶根部(210)的出风端(230)所在旋转圆周的直径与叶顶部(220)的出风端(230)所在旋转圆周的直径之比值为出风端轮毂比,进风端轮毂比小于出风端轮毂比。

Description

斜流风扇、 斜流风机及具有其的空调室内机 扶术领域
本发明涉及制冷技术领域, 具体而言, 涉及一种斜流风扇、 斜流风机及具有其的空 调室内机。 背景技术
现有的空调室内机的风道系统大多采用离心风扇, 将蜗壳及离心风扇设于空调内腔 的下部, 换热器设于空调内腔的上部并倾斜安放, 将进风口. 出风口分别设于壳体的下 部和上部, 进风口位于壳体的正前方或者側前方, 出风口位于壳体的正前方, 下部的风 机风道系统往上部的换热器吹风, 以达到快速换热的目的。
也有少部分落地式空调器将电机、 离心风扇及蜗壳置于空调内腔的上部, 将换热器 设于空调内腔下部, 上部的风道系统吸进的风必须经过下部的换热器, 从而达到快速换 热的目的。
还有部分风机风道系统采用贯流风扇, 将换热器置于贯流风扇的后方, 出风口置于 空调的中间或者两側。 通过贯流风扇的高速旋转将机体后部的空气通过换热器引入并吹 出。
但上述采用离心风扇或贯流风扇的落地式空调器, 虽然其叶片旋转时产生的离心力 能将风送出较远的距离, 送风距离较大, 但由于其吸入的风量小, 在送风时空气需要转 折较大的角度送出, 风量损耗较大, 因而送出的风量较少, 从而导致送风效率低。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
有鉴于此, 本发明需要提供一种用于空调室内机的斜流风扇, 该斜流风扇送风距离 远、 送风量大、 送风效率高。
进一步地, 本发明需要提供具有上述斜流风扇的空调室内机, 该空调室内机结构简 单合理、 送风效果好。
根据本发明的第一方面, 提供了一种用于空调室内机的斜流风扇, 包括: 轮毂, 所述轮 毂具有锥面或球面的导风面, 所述导风面由底端到顶端的外部尺寸逐渐增大; 多个叶片, 所 述多个叶片设在所述导风面上,每个所述叶片包括:叶根部,所述叶根部与所述导风面连接; 叶顶部, 所述叶顶部远离所述轮毂; 进风端, 所述进风端靠近导风面的底端; 以及 出风 端, 所述出风端靠近导风面的顶端, 其中所述叶根部的进风端所在旋转圆周的直径与叶顶部 的进风端所在旋转圓周的直径之比值为进风端轮毂比,所述叶根部的出风端所在旋转圓周的 直径与叶顶部的出风端所在旋转圆周的直径之比值为出风端轮毂比,所述进风端轮毂比小于 出风端轮毂比。
根据本发明的实施例的用于空调室内机的斜流风扇,该斜流风扇尤其适用于立式空调室 内机, 由于斜流风扇的轮毂具有导风面, 且导风面由底端到顶端的外部尺寸逐渐增大, 而且 进风端轮毂比小于出风端轮毂比。 当轮毂带动叶片旋转时, 其进风端具有较强的俘获气流的 拉升力, 而出风端具有较强的排出所俘获气流的离心力。 也即其既具有较强的离心力, 能将 空气送出较远的距离, 送风距离大; 同时又可产生轴向拉升力, 强迫空气运动, 将大量的空 气吸入空调内部, 然后顺着轮毂的侧表面将风斜向送出, 风量损耗小, 送风效率高。 因此本 发明的斜流风扇具有轴向进风、斜向出风的特点,在保证送风距离的同时,又增大了送风量、 提高了送风效率。
才艮据本发明的一个实施例 , 所述进风端轮毂比为 0.15 ~ 0.45。
才艮据本发明的一个实施例, 所述出风端轮毂比为 0.55 ~ 0.85。
根据本发明的一个实施例,所述叶根部的进风端和出风端的连线绕所述斜流风扇的轴线 旋转所形成的锥面与所述斜流风扇的轴线的夹角为 35° ~ 55。 。
根据本发明的一个实施例,所述叶才艮部的进风端和出风端的连线与叶顶部的进风端和出 风端的连线分别绕所述斜流风扇的轴线旋转形成的锥面间的夹角为 0° ~ 30° 。
根据本发明的一个实施例,所述叶片的翼剖面的进风端与出风端的连线与进风端旋向的 夹角为叶片的倾斜角, 该倾斜角从叶根部到叶顶部逐渐减小。
才艮据本发明的一个实施例, 所述叶根部的倾斜角为 38° -55° 。
才艮据本发明的一个实施例, 所述叶顶部的倾斜角为 18° -35° 。
根据本发明的一个实施例, 所述叶根部的倾斜角为 44.2。 , 所述的叶顶部的倾斜角为 23° 。
根据本发明的一个实施例, 所述斜流风扇旋转时, 气流于出风端的排出方向与旋转方向 的夹角为叶片的出口安装角, 该出口安装角从叶根部到叶顶部逐渐增大。
根据本发明的一个实施例, 所述叶根部的出口安装角为 90° -135° 。
根据本发明的一个实施例, 所述叶顶部的出口安装角为 105° -150° 。
根据本发明的一个实施例, 所述叶 4艮部的出口安装角为 104° , 所述叶顶部的出口安装 角为 125.7° 。
根据本发明的一个实施例, 所述叶片为 5 ~ 9个。
根据本发明的第二方面, 提供了一种落地式空调器, 包括: 壳体, 所述壳体上设有进风 口和出风口, 所述壳体内具有分别与所述进风口和所述出风口连接的风道; 换热器, 所述换 热器设在所述壳体内; 以及斜流风机, 所述斜流风机设在所述风道内, 且所述斜流风机具有 斜流风扇, 所述斜流风扇为根据本发明上述实施例中所述的斜流风扇。
根据本发明的空调室内机, 其具有斜流风扇, 该斜流风扇尤其适用与立式空调室内机, 由于斜流风扇的轮毂具有导风面, 且导风面由底端到顶端的外部尺寸逐渐增大, 而且进风端 轮毂比小于出风端轮毂比。当轮毂带动叶片旋转时,其进风端具有较强的俘获气流的拉升力, 而出风端具有较强的排出所俘获气流的离心力。 也即其既具有较强的离心力, 能将空气送出 较远的距离, 送风距离大; 同时叉可产生轴向拉升力, 强迫空气运动, 将大量的空气吸入空 调内部, 然后顺着轮毂的侧表面将风斜向送出, 风量损耗小, 送风效率高。 因此本发明的空 调室内机在保证送风距离的同时, 又增大了送风量、 提高了送风效率。
根据本发明的一个实施例, 空调室内机进一步包括导风件, 所述导风件与所述风道内壁 连接, 所述导风件具有沿竖直方向贯通所述导风件的导风通道, 所述斜流风扇位于所述导风 通道内。
根据本发明的一个实施例, 所述导风件与风道内壁之间具有间隙, 所述间隙内填充有吸 噪层。
根据本发明的一个实施例, 所述叶片顶面之间设有包围叶片的风轮盖。
根据本发明的一个实施例, 所述斜流风扇的导风面的下端设有进口导风圈。
根据本发明的一个实施例, 所述斜流风扇的下风侧设置有与所述轮毂同轴的扩压锥, 所 述的扩压锥为空气入口側直径大, 空气排出侧直径小的圓台形结构。
根据本发明的一个实施例,所述扩压锥对应的导风件的导风通道的直径由下至上逐渐变 大。
根据本发明的一个实施例, 所述斜流风扇的下风侧设置有固定导风轮, 所述固定导风轮 上设置有阻碍空气转动方向的固定导风叶。
根据本发明的一个实施例, 所述斜流风扇的下风侧设置有与轮毂同轴的扩压锥和 /或固 定导风轮, 所述的扩压锥为空气入口侧直径大, 空气排出側直径' j、的圓台形结构; 所述的固 定导风轮上设置有阻碍空气转动方向的固定导风叶。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1显示了根据本发明的一个实施例的斜流风扇的主视图;
图 2显示了根据本发明的一个实施例的斜流风扇的立体结构示意图;
图 3显示了根据本发明的一个实施例的斜流风扇的子午面示意图;
图 4显示了根据本发明的一个实施例的斜流风扇的叶片的翼剖面示意图; 图 5 是本发明的斜流风扇中叶片从叶根部到叶顶部若千截面的翼形平面展开示意 图;
图 6显示了根据本发明的一个实施例的空调室内机的立体结构示意图;
图 7显示了根据本发明的一个实施例的空调室内机的主视局部剖视结构示意图; 图 8显示了图 7中的 A处放大结构示意图;
图 9昱示了根据本发明的一个实施例的空调室内机的斜流风机的立体结构示意图; 图 10 显示了根据本发明的一个实施例的空调室内机的斜流风机沿叶轮旋转切线方 向的送风示意图;
图 1 1 显示了根据本发明的一个实施例的空调室内机的斜流风机沿中轴线方向的送 风示意图;
图 12显示了根据本发明的一个实施例的空调室内机的主视局部剖视结构示意图。 图 13为图 12中的 C处放大结构示意图;
图 14显示了根据本发明的一个实施例的空调室内机的的斜流风机的剖枧示意图; 图 15显示了根据本发明的一个实施例的空调室内机的立体局部剖视示意图; 图 16显示了根据本发明的一个实施例的空调室内机的立体结构示意图;
图 17显示了图 16的主视结构示意图;
图 18 显示了根据本发明的一个实施例的空调室内机的斜流风机的局部剖视结构示 意图;
图 19显示了根据本发明的一个实施例的空调室内机的主视局部剖视结构示意图; 图 20显示了图 19中的 E处放大结构示意图;
图 21显示了根据本发明的一个实施例的空调室内机的结构示意图;
图 22 显示了根据本发明的一个实施例的空调室内机的斜流风机的局部剖视结构示 意图;
图 23显示了根据本发明的一个实施例的空调室内机的固定导风轮的立体示意图; 图 24显示了图 21中的 D-D向剖视放大示意图;
图 25显示了根据本发明的一个实施例的空调室内机的结构示意图;
图 26显示了根据本发明的一个实施例的空调室内机的斜流风机相关组件的装配图; 图 27 显示了根据本发明的一个实施例的空调室内机的斜流风机相关组件的爆炸展 开图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语 "中心"、 "纵向,'、 "横向"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底" "内"、 "外" 等指示的方位或位置关系 为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和筒化描述, 而不是指示或暗 示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本 发明的限制。 此外, 术语 "第一"、 "笫二,, 仅用于描述目的, 而不能理解为指示或暗示相对 重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、 "相连"、 "连接" 应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可 以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以是 两个元件内部的连通。 对于本领域的普通技术人员而言, 可以具体情况理解上述术语在本发 明中的具体含义。 如图 1-3所示, 根据本发明的实施例的用于空调室内机的斜流风扇, 该斜流风扇包括: 轮毂 100以及多个叶片 200。
具体而言, 轮毂 100可以具有锥面或球面的导风面 101, 导风面 101由底端到顶端的外 部尺寸逐渐增大, 轮毂 100可通过电机驱动旋转, 叶片 200可以与轮毂 100—体设置, 也可 以可拆卸地连接于轮毂 100表面, 轮毂 100旋转时带动叶片 200旋转。 所述轮毂 100呈圆锥 形或半球形, 且直径大的一端位于上端, 直径小的一端位于下端。 叶片 200与轮毂 100连接 的一側为叶根部 210, 远离轮毂 100的一侧为叶顶部 220; 且叶片 200靠近轮毂 100底端的 一端为进风端 240, 靠近轮毂 100顶端的一端为出风端 230, 也即如图 3所示的下端为进风 端 240 , 上端为出风端 230。 当叶片 200围绕轮毂 100的轴线旋转时, 叶根部 210的进风端 240所在旋转圆周的直径为 dl ; 叶顶部 220的进风端 240所在旋转圆周的直径为 Dl , dl/Dl 为进风端 240轮榖比。 叶根部 210的出风端 230所在旋转圆周的直径为 d2; 叶顶部 220的 出风端 230所在旋转圆周的直径为 D2 , d2/D2为出风端 230轮毂比。 其中, 进风端 240轮 毂比小于出风端 230轮毂比。
根据本发明的实施例的用于空调室内机的斜流风扇 10 , 该斜流风扇 10尤其适用与立式 空调室内机, 由于斜流风扇 10的轮毂 100具有导风面 101 , 且导风面 101 由底端到顶端的 外部尺寸逐渐增大, 而且进风端 240轮毂比小于出风端 230轮毂比, 当轮毂 100带动叶片 200旋转时, 其进风端 240具有较强的俘获气流的拉升力, 而出风端 230具有较强的排出所 俘获气流的离心力。 也即其既具有较强的离心力, 能将空气送出较远的距离, 送风距离大; 同时又可产生轴向拉升力, 强迫空气运动, 将大量的空气吸入空调内部, 然后顺着轮毂 100 的外側表面将风斜向送出,风量损耗小,送风效率高。 因此本发明的斜流风扇具有轴向进风、 斜向出风的特点, 在保证送风距离的同时, 又增大了送风量、 提高了送风效率。
进一步的, 根据本发明的一个实施例, 进风端 240的轮毂比可以为 0.15 - 0.45。 根据本 发明的一个实施例, 出风端 230的轮毂比可以为 0.55 - 0.85。
当进风端和出风端的轮毂比落入上述参数范围中的至少一个之内时, 能最大限度地平衡 斜流风扇的轴向拉升力和离心作用力, 在保证其有足够的离心作用力的同时, 进一步增大其 轴向拉升力。
传统的离心风扇, 虽然其产生的离心力能将风送出较远的距离, 使得空调的送风距离较 大, 但由于其吸入的风量小, 在送风时空气需要转折较大的角度, 导致风量损耗较大, 因而 送出的风量较少、 送风效率低。 本实施例采用的斜流风扇 10, 由于轮毂 100呈圆锥形, 叶 片 200进风端 240所在的轮毂 100直径比出风端 230所在的轮毂 100直径小, 而且进风端 240轮毂比小于出风端 230轮毂比。 当轮毂 100带动叶片 200旋转时, 其既具有较强的离心 力, 能将空气送出较远的距离, 送风距离大; 同时又可产生轴向拉升力, 强迫空气运动, 将 大量的空气吸入空调内部, 然后顺着轮毂 100的圓锥斜面将风斜向送出, 风量损耗小, 送风 效率高。 因此本实施例的斜流风扇 10具有轴向进风、 斜向出风的特点, 在保证送风距离的 同时, 叉增大了送风量、 提高了送风效率。 因而它既具有轴流风扇风量大的优势, 又具有离 心风扇抗压特性好的优势。 进一步地, 本实施例中叶轮 200的叶根部 210的进风端 240和出风端 230的连线, 也即 图 3中叶轮 200与轮毂 100连接部上下两端的连线, 其与轮毂 100的轴线的夹角为 35° ~ 55° , 即图中的 Θ 1。 这一角度实际上分配了斜流风扇 10在空调器中离心和轴向的两种运动 方式。 离心方向的运动主要转换成压力势能以保证该空调装置的送风距离; 而轴向方向的运 动是为了保证风量足够大, 进而保证送风效率。 因而该角度范围进一步平衡了斜流风扇 10 的送风量和送风距离。 同时, 叶根部 210的进风端 240和出风端 230的连线与叶顶部 220的 进风端 240和出风端 230的连线的夹角为 0° ~ 30° , 也即图中的 Θ 2。 该设计的目的是在 叶轮 200的做功区域形成特殊的缩口, 有效的加速叶轮 200做功区域气流的流动, 从而抑制 涡流的产生, 进一步提升风扇效率, 并同时减少了腔体内的涡噪声。
本实施例的叶轮 200数量为 5 ~ 9片, 围绕轮毂 100的圆锥面等距或不等距分布均可。 如果叶片 200个数过少, 不能保证足够的风量和送风距离; 叶片 200数量过多, 又会由于附 壁边界^效应, 有效通流面积会减小, 影响效率。 而 5 - 9片是较理想的数量, 既能保证送 风效率叉不会产生太大的噪声。 同时, 考虑到空调器结构限制和对风量、风压、噪音的要求, 以及空调电机转速的特点(室内机用定速电机一般使用单相交流异步电机, 电机定子一般为 4、 6、 8极的结构, 同步转速分别为 1500rpm、 lOOOrpm, 750rpm ), 本实施例的斜流风扇 10 的直径可设置为 250 ~ 400mm, 风扇额定工作的转速可设置为 500rpm ~ 1500rpm。
进一步地, 参见图 4 , 其中, 图 4是本发明的斜流风扇中叶片的翼剖面示意图。 为了减 少低能流体在叶根部 210的堆积, 进一步提高风扇的送风效率, 并降低噪音, 本实施例的叶 片 200不是平面, 而是采用空间弯扭的形状。 具体来说, 本实施例的斜流风扇 10, 其叶片 的倾斜角从叶根部 210到叶顶部 220逐渐减小,而叶片的出口安装角则从叶根部 210到叶顶 部 220逐渐增大。 当斜流风扇 10正常工作时, 叶片 200围绕轴线旋转的方向, 为进风端 240 在前, 出风端 230在后, 叶片 200与气流正面接触的一面为迎风面 260。 气流从进风端 240 进入, 沿着迎风面 260斜着爬升到出风端 230, 并在离心力的作用下从出风端 230排出至空 调内腔。
如图 4所示, 叶片 200的翼剖面的进风端 240和出风端 230的连线与进风端旋向的夹角 为叶片的倾斜角, 该倾斜角从叶根部到叶顶部逐渐减小。
换言之, 轮毂 100侧面沿径向截取叶片 200所得的剖面, 也即叶片 200的翼剖面。 翼剖 面可以理解为, 假定轮毂 100的侧面被展开成一个平面, 那么所有位于轮毂 100上 200都位 于该平面的一侧, 并向上伸出, 轮毂 100侧面沿径向截取叶片 200可以理解为, 截取的翼剖 面与上述平面平行, 即,假定轮毂 100的侧面被展开成一个平面所有叶片 200的翼剖面都与 该平面平行。 如在图 4中, 翼剖面的左端可以为出风端 230 , 右端为进风端 240, 图 4中, 上面一条曲线 250即为迎风面 260的投影曲线,两曲线之间的弦线 251即为进风端 240与出 风端 230的连线。 进风端 240的箭头表示进风端 240的旋转方向, 该旋转方向的切线与弦线 251的夹角即为叶片 200的倾斜角, 即图中的 1 角。 出风端 230斜下的箭头为迎风面 260的 投影曲线与出风端 230的切线方向, 也即气流的排出方向; 斜上的箭头为出风端 230的旋转 方向, 其切线与轮毂 100端面平行, 因此两箭头之间的夹角即为叶片 200的出口安装角, 即 图中的 α角。 叶片的倾斜角从叶根部到叶顶部逐渐减小, 出口安装角从叶根部到叶顶部逐渐 增大。
进一步地, 叶根部 210的倾斜角优选为 38° ~ 55。 , 出口安装角优选为 90° ~ 135° ; 叶顶部 220的倾斜角优选为 18° ~ 35° , 出口安装角优选为 105° - 150° 。 该参数范围内 所形成的斜流风扇, 其叶片形状既能产生强大的轴向拉升力又能产生较强的离心作用力, 气 流既不会于叶根部堆积也不会于叶顶部逃逸。
下表为本实施的斜流风扇中,从叶片的叶根部 210到叶顶部 220所截取的若干翼剖面所 在位置的倾斜角和安装角, 其中截面显示 0%为叶根部 210, 其倾斜角为 44.2° , 出口安装 角为 104° ; 截面显示 100%为叶顶部 220, 其倾斜角为 23° , 出口安装角为 125.7° 。
Figure imgf000009_0001
图 5则为上述各翼剖面的翼形平面展开图, 其中箭头所示方向为气流方向。
本实施例的叶片形状大致为: 进风端的叶片从叶根部到叶顶部逐渐向内卷曲, 而出风端 的叶片从叶根部到叶顶部逐渐向外伸展。 因此采用本实施例中呈空间弯扭状的叶片 200, 能 产生强大的轴向拉升力, 将空气从外界拉入空调空腔并产生急速的气流, 气流从进风端 240 进入叶片 200的旋转空间。 由于叶 >部 210到叶顶部 220的倾斜角逐渐减小, 且叶才 部 210 到叶顶部 220的出口安装角逐渐增大, 因此进风端 240的卷曲面极易俘获气流, 使得气流在 风扇的持续拉升下沿着迎风面 260急速爬升到出风端 230; 由于从进风端 240到出风端 230, 叶片 200逐渐向外伸展, 因此气流在爬升过程中既不会于叶根部 210堆积, 也不会从叶顶部 220逃逸, 因此不会造成气流的损耗, 也不会因为堆积气流的阻挡而降低气流的速度, 并因 此产生大量的噪音。 最后大量的气流在风扇强大的离心力作用下, 被叶片 200从出风端 230 甩出。 因此,本实施例中呈空间弯扭状的叶片 200 ,能最大限度的减少低能流体在叶根部 210 的堆积, 进一步提高风扇的送风效率, 并降低噪音。
如图 6-11所示, 根据本发明的实施例的空调室内机, 包括: 壳体 2、 换热器(未示出) 以及斜流风机 4。
具体而言, 壳体 2上设置有进风口 (图中未示出)和出风口 3, 壳体 2内设置有与进风 口和出风口 3连通的风道, 斜流风机 4可以设在风道内, 斜流风机 4具有根据本发明上述实 施例的斜流风扇 10。
根据本发明的空调室内机, 其具有斜流风扇 10, 该斜流风扇 10尤其适用与立式空调室 内机, 由于斜流风扇 10的轮毂 100具有导风面 101 , 且导风面 101 由底端到顶端的外部尺 寸逐渐增大, 而且进风端 240轮毂比小于出风端 230轮毂比。 当轮毂 100带动叶片旋转时, 其进风端 240具有较强的俘获气流的拉升力,而出风端 230具有较强的排出所俘获气流的离 心力。 也即其既具有较强的离心力, 能将空气送出较远的距离, 送风距离大; 同时又可产生 轴向拉升力, 强迫空气运动, 将大量的空气吸入空调内部, 然后顺着轮毂的侧表面将风斜向 送出, 风量损耗小, 送风效率高。 因此本发明的空调室内机在保证送风距离的同时, 又增大 了送风量、 提高了送风效率。
需要说明的是, 在壳体 2内设置有从进风口到出风口 3连通的空气流通的风道, 在风道 中设置有斜流风机 4。 该斜流风机 4又称为混流风机, 斜流风机采用本发明上述实施例中的 斜流风扇 10, 由此, 斜流风机 4的送风方向包括沿电机轴向的分量, 和沿叶轮旋转方向的 切线方向的分量。 斜流风机 4的送风量小于轴流风机, 而大于离心风机。 斜流风机 4的送风 静压力大于轴流风机, 而小于离心风机。 斜流风机 4本身的特性就决定了, 对比现有的采用 轴流风机驱动方式, 有更高的送风静压力, 和更远的送风距离。
结合图 9、 图 10和图 11 , 可以看出斜流风机 4包括斜流风轮 41、 电机 43和电机轴 44, 驱动斜流风轮 41转动的电机 43和连接电机 43与斜流风轮 41的电机轴 44 , 电机 43驱动斜 流风轮 41以中轴线 99为圆心旋转。 其中, 斜流风轮 41包括空气进入侧直径较小, 空气排 出侧直径较大的轮毂 100 , 在该轮毂 100的迎风面设置的多个叶片 200。 当电机 43带动斜流 风轮 42转动时, 叶片 200推动空气沿向上且沿叶片 200转动的切线方向把空气推出。 在本 实施例中, 空调器室内机 1为落地式的顶部四面出风的机型, 采用斜流风机 4, 一方面可以 提高送风静压力, 克服风道中的流动阻力, 当然也包括进风口、 进风过滤网、换热器、蜗壳、 出风口和导风叶等处的流动阻力, 再加上较长的风道, 还可以送比较远的距离。 另一方面, 从风口处的出风并非垂直于出风口, 而是沿斜流风机 4转动的方向, 有切线方向的分量, 这 样可以进一步提高四面出风的效果, 不会存在送风死角, 提高送风舒适性。
如图 12-17所示, 根据本发明的一个实施例, 空调室内机 1进一步包括导风件 5 , 所述 导风件 5与风道的内壁连接, 导风件 5具有沿竖直方向贯通的导风通道, 斜流风扇 10可以 位于导风通道内。 如图 11和图 12所示, 斜流风机 4的轮毂 100和叶片 200对应的内壁面设 置有导风件 5 , 导风件 5通过导风件连接部 17固定在壳体 2的内壁面上。 导风件 5本身有 一定的强度, 而且导风件 5的内表面的加工精度和表面光滑度较高, 利于和旋转的叶片 200 配合, 可以利于空气通过, 减少空气的阻力。
通过图 8的局部放大可以看到, 导风件 5和壳体 2内壁面之间有间隙 7 , 经过换热器降 温或者加热后的空气流经导风件 5时, 间隙 7可以减少向外的传热, 特别是在制冷工况时, 减少壳体 2表面的凝露, 同时减少电机和气流的噪声向外传播。 为了进一步的减少传热和噪 声的传播, 在蜗壳 5和壳体 2内壁面之间的间隙 7可以采用保温或吸噪层进行填充。
结合图 14和图 15 , 叶片 200外部还有与各叶片 200连接在一起的风轮盖 8, 即各个叶 片 200的顶面之间有包围风叶的风轮盖 8。 该风轮盖 8—方面可以加强各个叶片 200的结构 强度, 另一方面可以使进入斜流风机 4进风口 15的气流有聚流的作用, 风轮盖 8下部较小 的直径入口使入口空气的速度增加。 另外, 风轮盖 8的下部小上部大的结构与轮毂 100的下 部小上部大的结构配合, 形成了叶片 200推动空气旋转增压的风道。
结合图 14和图 16、 图 17, 斜流风机 4的进风口 15处设置有进口导风圈 12, 经过进口 导风圈 12导流的气流再进入由风轮盖 8和轮毂 100之间的风道。进口导风圏 12使风道的面 积变小, 提高进口处的风速, 同时与风轮盖 8的内径配合, 减少由于斜流风机 4产生的负压 不同而形成的涡流, 减少噪声。
如图 18- 20所示, 根据本发明的一个实施例, 在斜流风机 4的下风侧, 即轮毂 100的较 大直径侧设置有与轮毂 100同轴的扩压锥 11, 扩压锥 11为空气入口側直径大, 空气排出侧 直径小的圆台形结构。 扩压锥 11 固定在电机支架 6上, 扩压锥 11的外表面和室内机的壳体 2的内表面 (也可以是导风件 5的内表面)之间形成风道, 该风道为一个下部面积小, 上部 面积大的圓环形结构。 这样形成的逐渐变大的风道有效的对空气进行扩压 , 减小空气风速和 流动损失, 提高空气的静压力和送风距离。
进一步, 在本实施例中如图 20所示, 在导风件 5的内表面向室内机壳体 2倾斜, 从而 使该处的风道进一步增大, 即在扩压锥 11对应的导风件 5有使风道扩大的结构。 可以进一 步对空气进行扩压。
如图 21-图 24所示,根据本发明的一个实施例,空调室内机可以为落地式空调器室内机, 该室内机的出风口位于壳体 2的上部正面,斜流风机 4产生的中等静压和较大风量的优势都 有利于正面远距离送风, 但是在风道内的风速旋转方向的分量, 则不利于正面送风。 如图 22所示, 在本实施例中设置有固定导风轮 13 , 该固定导风轮 13固定连接在空调壳体 2的内 壁面上, 本实施例中的风道内的空气旋转方向为顺时针旋转, 而固定导风轮 13上设置的固 定导风叶 14的倾斜方向阻挡顺时针风向的空气, 也即在斜流风机 4的下风侧设置有固定导 风轮 13 , 该固定导风轮 13上设置有阻碍空气转动方向的固定导风叶 14, 在固定导风轮 13 中部设置有固定导风轮封 18, 可以減小通过空气的面积, 使所有的空气都通过固定导风叶 14 进行阻流增压。一方面减少空气的旋转速度, 另一方面可以对空气进行扩压, 提高送风 的静压。
结合图 21和图 24, 图 24为室内机在 D-D向的剖视放大图, 可以看出室内机的外壳是 有直线段 L和连接直线段的弧线段 S连接而成,也即本发明披露的斜流风机是可以用于非圓 形的其他形状的空调室内机, 而从图 24中可以看到, 斜流风机的风道充分的利用室内机外 壳内部的空间, 在本实施例中, 蜗壳中的面积占室内机外壳的面积超过 89%, 换句话说, 对 于同样截面积的室内机, 采用斜流风机可以有效利用室内机外壳内部的空间, 进而减小送风 速度, P 低空气流动噪音。
如图 25-27所示, 根据本发明的一个实施例, 落地式空调器室内机的出风口 3位于壳体 2的上部正面, 室内机的外壳是由上部的圓柱形和下部从圆柱形过度到四边形, 如图 26为 斜流风机相关组件的安装图, 如图 26为斜流风机相关组件的爆炸展开图, 结合两图可以看 出, 在本发明的上述实施例的基础上又增加了固定导风轮 13 , 且 4广压锥 11的上部处于固定 导风轮 13中, 扩压锥 11的外围与固定导风轮 13的内圆結合, 密闭了从固定导风轮 13中心 固定导风轮封的位置, 这样使得风道面积缩小, 提高了局部的风速, 并有效利用了空间, 且 所有的空气都需要从固定导风轮 13的与旋转方向反向设置的固定导风叶 14通过,一方面可 以很大程度的消减旋转方向的风速, 另一方面可进一步扩压, 提高送风静压力从而提高送风 距离。 即在斜流风机出风口 16的下风側,设置有与轮毂 100同轴的扩压锥 11和固定导风轮 13 , 该扩压锥 11为空气入口侧直径大, 空气排出侧直径小的圆台形结构。 固定导风轮 13上 设置有阻碍空气转动方向的固定导风叶 14。 这样的组合可以最大程度的适应拒机大风量、 远距离送风的需求, 特别是对于现有的壳体正面上部送风的形式, 可以通过扩压锥 11一次 增加, 通过固定导风叶 14二次增压, 在电机功率增加不大的情况下, 达到大风量远距离送 风的要求。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例,'、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的 示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者特 点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解, 在不脱离本 发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的 范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种用于空调室内机的斜流风扇, 其特征在于, 包括:
轮毂, 所述轮毂具有呈大致锥面或球面的导风面, 所述导风面由底端到顶端的外部尺寸 逐渐增大; 以及
多个叶片, 所述多个叶片设在所述导风面上, 每个所述叶片包括:
叶根部, 所述叶根部与所述导风面连接;
叶顶部, 所述叶顶部远离所述轮毂;
进风端, 所述进风端靠近导风面的底端; 以及
出风端, 所述出风端靠近导风面的顶端, 其中
所述叶根部的进风端所在旋转圆周的直径与叶顶部的进风端所在旋转圆周的直径之比 值为进风端轮毂比 ,所述叶根部的出风端所在旋转圆周的直径与叶顶部的出风端所在旋转圆 周的直径之比值为出风端轮毂比, 所述进风端轮毂比小于出风端轮毂比。
2、 根据权利要求 1所述的斜流风扇, 其特征在于, 所述进风端轮毂比为 0.15 ~ 0.45。
3、根据权利要求 1或 2所述的斜流风扇,其特征在于,所述出风端轮毂比为 0.55 - 0.85。
4、 根据权利要求 1所述的斜流风扇, 其特征在于, 所述叶根部的进风端和出风端的连 线绕所述斜流风扇的轴线旋转所形成的锥面与所述斜流风扇的轴线的夹角为 35° ~ 55°。
5、 根据权利要求 1或 4所述的斜流风扇, 其特征在于, 所述叶根部的进风端和出风端 的连线与叶顶部的进风端和出风端的连线分别绕所述斜流风庙的轴线旋转形成的锥面间的 夹角为 0° ~ 30°„
6、 根据权利要求 1所述的斜流风扇, 其特征在于, 所述叶片的翼剖面的进风端和出风 端的连线与进风端旋向的夹角为叶片的倾斜角, 该倾斜角从叶根部到叶顶部逐渐减小。
7、 根据权利要求 6所述的斜流风扇, 其特征在于, 所述叶根部的倾斜角为 38。-55。。
8、根据权利要求 6或 7所述的斜流风扇, 其特征在于,所述叶顶部的倾斜角为 18。-35。。
9、 根据权利要求 6所述的斜流风扇, 其特征在于, 所述叶根部的倾斜角为 44.2° , 所述 的叶顶部的倾斜角为 23°。
10、 根据权利要求 1或 6所述的斜流风扇, 其特征在于, 所述斜流风扇旋转时, 气流于 出风端的排出方向与旋转方向的夹角为叶片的出口安装角,该出口安装角从叶根部到叶顶部 逐渐增大。
11、 根据权利要求 10 所述的斜流风扇, 其特征在于, 所述叶根部的出口安装角为 90。-135。。
12、 根据权利要求 10 所述的斜流风扇, 其特征在于, 所述叶顶部的出口安装角为 105°-150°。
13、根据权利要求 10所述的斜流风扇, 其特征在于, 所述叶根部的出口安装角为 104° , 所述叶顶部的出口安装角为 125.7°。
14、 根据权利要求 1所述的斜流风扇, 其特征在于, 所述叶片为 5 ~ 9个。
15、 一种落地式空调器, 其特征在于, 包括:
壳体, 所述壳体上设有进风口和出风口, 所述壳体内具有分别与所述进风口和所述出风 口连接的风道;
换热器, 所述换热器设在所述壳体内; 以及
斜流风机, 所述斜流风机设在所述风道内, 且所述斜流风机具有斜流风扇, 所述斜流风 扇为根据权利要求 1-14中任一项所述的斜流风扇。
16、 根据权利要求 15所述的空调器室内机, 其特征在于, 进一步包括导风件, 所述导 风件与所述风道内壁连接, 所述导风件具有沿竖直方向贯通所述导风件的导风通道, 所述斜 流风扇位于所述导风通道内。
17、 根据权利要求 15所述的空调器室内机, 其特征在于, 所述导风件与风道内壁之间 具有间隙, 所述间隙内填充有吸噪层。
18、 根据权利要求 15所述的空调器室内机, 其特征在于, 所述叶片顶面之间设有包围 叶片的风轮盖。
19、 根据权利要求 15所述的空调器室内机, 其特征在于, 所述斜流风扇的导风面的下 端设有进口导风圏。
20、 根据权利要求 15所述的空调器室内机, 其特征是所述斜流风扇的下风侧设置有与 所述轮毂同轴的扩压锥, 所述的扩压锥为空气入口侧直径大, 空气排出侧直径小的圆台形结 构。
21、 根据权利要求 20所述的空调器室内机, 其特征在于, 所述; T压锥对应的导风件的 导风通道的直径由下至上逐渐变大。
22、 根据权利要求 15所述的空调器室内机, 其特征在于, 所述斜流风扇的下风侧设置 有固定导风轮, 所述固定导风轮上设置有阻碍空气转动方向的固定导风叶。
23、 根据权利要求 15所述的空调器室内机, 其特征在于, 所述斜流风扇的下风侧设置 有与轮毂同轴的扩压锥和 /或固定导风轮, 所述的扩压锥为空气入口侧直径大, 空气排出侧 直径小的圆台形结构; 所述的固定导风轮上设置有阻碍空气转动方向的固定导风叶。
24、一种斜流风机, 其特征在于, 所述斜流风机包括如权利要求 1-14任一所述的斜流 风扇。
PCT/CN2012/085406 2012-06-07 2012-11-28 斜流风扇、斜流风机及具有其的空调室内机 WO2013181904A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20157000183A KR20150030697A (ko) 2012-06-07 2012-11-28 사류 팬, 사류 송풍기 및 이를 구비한 에어컨 실내기
KR1020177002453A KR101783177B1 (ko) 2012-06-07 2012-11-28 사류 팬, 사류 송풍기 및 이를 구비한 콘솔형 에어컨

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN 201220268483 CN202734057U (zh) 2012-06-07 2012-06-07 空调器室内机
CN2012101873025A CN102705910A (zh) 2012-06-07 2012-06-07 空调器室内机
CN201210187302.5 2012-06-07
CN201220268483.X 2012-06-07
CN201220415824.1U CN202883468U (zh) 2012-08-20 2012-08-20 落地式空调器及其斜流风扇
CN2012102988100A CN102852854A (zh) 2012-08-20 2012-08-20 落地式空调器及其斜流风扇
CN201210298810.0 2012-08-20
CN201220415824.1 2012-08-20

Publications (1)

Publication Number Publication Date
WO2013181904A1 true WO2013181904A1 (zh) 2013-12-12

Family

ID=49711322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085406 WO2013181904A1 (zh) 2012-06-07 2012-11-28 斜流风扇、斜流风机及具有其的空调室内机

Country Status (2)

Country Link
KR (2) KR101783177B1 (zh)
WO (1) WO2013181904A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964340A (zh) * 2015-05-26 2015-10-07 广东美的制冷设备有限公司 空调器
CN108488083A (zh) * 2018-04-26 2018-09-04 英飞凌(深圳)智慧科技有限公司 一种风机及空气净化器
WO2019087078A1 (en) * 2017-10-30 2019-05-09 Zehnder Group International Ag Cover plate for a fan, impeller and fan therewith
CN110160146A (zh) * 2019-06-25 2019-08-23 宁波奥克斯电气股份有限公司 一种空调室内机及空调器
CN110762620A (zh) * 2019-11-08 2020-02-07 珠海格力电器股份有限公司 一种可逆送风的空调室内机和空调器
CN111750433A (zh) * 2019-03-26 2020-10-09 广东美的制冷设备有限公司 空调器室内机和空调器
CN114001043A (zh) * 2021-11-01 2022-02-01 宁波公牛生活电器有限公司 风扇和风扇灯
WO2023052361A1 (en) * 2021-09-30 2023-04-06 Philips Domestic Appliances Holding B.V. Air delivery device
WO2023172217A1 (en) * 2022-03-10 2023-09-14 Aytok Maki̇na İnşaat Plasti̇k Gida Maddeleri̇ Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Vortex cleaning screen filter
CN111750433B (zh) * 2019-03-26 2024-06-07 广东美的制冷设备有限公司 空调器室内机和空调器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726160B1 (ko) * 2016-03-11 2017-04-12 고려엠지주식회사 무동력 자동세척 필터링장치용 임펠러
CN111322701A (zh) * 2020-04-03 2020-06-23 杰马科技(中山)有限公司 无叶冷风扇

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752457A (zh) * 2004-09-22 2006-03-29 松下电器产业株式会社 鼓风机叶轮
JP2007205230A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 送風機羽根車
CN201407198Y (zh) * 2009-05-07 2010-02-17 漳州灿坤实业有限公司 一种混流风扇
JP2011226654A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 斜流ファン及び空気調和機
JP2011226725A (ja) * 2010-04-22 2011-11-10 Panasonic Corp 空気調和機の室内ユニット
CN102345638A (zh) * 2010-07-27 2012-02-08 松下电器产业株式会社 斜流风扇和具有该斜流风扇的空调机
CN102374588A (zh) * 2010-08-04 2012-03-14 三菱电机株式会社 空调机的室内机以及空调机
CN102705910A (zh) * 2012-06-07 2012-10-03 广东美的制冷设备有限公司 空调器室内机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752457A (zh) * 2004-09-22 2006-03-29 松下电器产业株式会社 鼓风机叶轮
JP2007205230A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 送風機羽根車
CN201407198Y (zh) * 2009-05-07 2010-02-17 漳州灿坤实业有限公司 一种混流风扇
JP2011226654A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 斜流ファン及び空気調和機
JP2011226725A (ja) * 2010-04-22 2011-11-10 Panasonic Corp 空気調和機の室内ユニット
CN102345638A (zh) * 2010-07-27 2012-02-08 松下电器产业株式会社 斜流风扇和具有该斜流风扇的空调机
CN102374588A (zh) * 2010-08-04 2012-03-14 三菱电机株式会社 空调机的室内机以及空调机
CN102705910A (zh) * 2012-06-07 2012-10-03 广东美的制冷设备有限公司 空调器室内机

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964340A (zh) * 2015-05-26 2015-10-07 广东美的制冷设备有限公司 空调器
WO2019087078A1 (en) * 2017-10-30 2019-05-09 Zehnder Group International Ag Cover plate for a fan, impeller and fan therewith
CN108488083A (zh) * 2018-04-26 2018-09-04 英飞凌(深圳)智慧科技有限公司 一种风机及空气净化器
CN111750433A (zh) * 2019-03-26 2020-10-09 广东美的制冷设备有限公司 空调器室内机和空调器
CN111750433B (zh) * 2019-03-26 2024-06-07 广东美的制冷设备有限公司 空调器室内机和空调器
CN110160146A (zh) * 2019-06-25 2019-08-23 宁波奥克斯电气股份有限公司 一种空调室内机及空调器
CN110160146B (zh) * 2019-06-25 2024-06-11 宁波奥克斯电气股份有限公司 一种空调室内机及空调器
CN110762620A (zh) * 2019-11-08 2020-02-07 珠海格力电器股份有限公司 一种可逆送风的空调室内机和空调器
WO2023052361A1 (en) * 2021-09-30 2023-04-06 Philips Domestic Appliances Holding B.V. Air delivery device
CN114001043A (zh) * 2021-11-01 2022-02-01 宁波公牛生活电器有限公司 风扇和风扇灯
WO2023172217A1 (en) * 2022-03-10 2023-09-14 Aytok Maki̇na İnşaat Plasti̇k Gida Maddeleri̇ Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Vortex cleaning screen filter

Also Published As

Publication number Publication date
KR20150030697A (ko) 2015-03-20
KR101783177B1 (ko) 2017-09-28
KR20170027800A (ko) 2017-03-10

Similar Documents

Publication Publication Date Title
WO2013181904A1 (zh) 斜流风扇、斜流风机及具有其的空调室内机
US9829004B2 (en) Turbo fan and air conditioner
CN106246581B (zh) 一种加压风机结构及具有该结构的空调
CN108644905B (zh) 出风风道结构和空调器
JPWO2013150568A1 (ja) 床置き型空気調和機
CN214788140U (zh) 多翼型离心风机及风电设备
CN203163119U (zh) 一种空调室外机用带导叶的风机出口网罩
CN205481331U (zh) 轴流柜机
CN213808156U (zh) 风机装置以及空调室外机
CN202382333U (zh) 一种改进的空调室外机用新型出口网罩
AU2016385149A1 (en) Axial fan assembly and motor home air-conditioner using same
CN203130602U (zh) 空调器用贯流风扇、贯流风机及空调器
CN202883468U (zh) 落地式空调器及其斜流风扇
CN102852854A (zh) 落地式空调器及其斜流风扇
WO2020147312A1 (zh) 吊顶式空调室内机
CN105937500A (zh) 离心风扇
JPH0539930A (ja) 空気調和装置
CN207420973U (zh) 空调器、轴流风机及其风道
CN213808153U (zh) 风机装置以及空调室外机
CN216111362U (zh) 一种蜗壳式节能风机
CN213808155U (zh) 风机装置以及空调室外机
CN213808152U (zh) 风机装置以及空调室外机
CN205977816U (zh) 导流圈、离心风机及空调
CN2756877Y (zh) 一种用于吸油烟机的离心风机叶轮
CN105588226B (zh) 一种斜向出风空调器室外机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157000183

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12878359

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12878359

Country of ref document: EP

Kind code of ref document: A1