WO2013181876A1 - 一种生产熔铸耐火材料的复合模具 - Google Patents

一种生产熔铸耐火材料的复合模具 Download PDF

Info

Publication number
WO2013181876A1
WO2013181876A1 PCT/CN2012/078521 CN2012078521W WO2013181876A1 WO 2013181876 A1 WO2013181876 A1 WO 2013181876A1 CN 2012078521 W CN2012078521 W CN 2012078521W WO 2013181876 A1 WO2013181876 A1 WO 2013181876A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
riser
heat
cast refractory
incubator
Prior art date
Application number
PCT/CN2012/078521
Other languages
English (en)
French (fr)
Inventor
陈龙
龙希成
冯中起
张鑫
罗凯
罗峰
Original Assignee
都江堰瑞泰科技有限公司
瑞泰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 都江堰瑞泰科技有限公司, 瑞泰科技股份有限公司 filed Critical 都江堰瑞泰科技有限公司
Publication of WO2013181876A1 publication Critical patent/WO2013181876A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings

Definitions

  • the invention belongs to the technical field of fused cast refractories, and more particularly to a composite mold for producing fused cast refractories.
  • the fused cast refractory product is an important lining material for the glass industrial melting furnace.
  • the models used for the production of fused cast refractory materials are mainly three kinds of graphite mold, resin bonded quartz sand mold and water glass combined quartz sand mold.
  • Graphite mold is expensive and difficult to process; resin-bonded quartz sand mold has self-hardening characteristics at room temperature, and it is easy to make integral sand mold.
  • the product has high dimensional accuracy, but the sand type has high technical content and cost higher than water glass;
  • the combined quartz sand mold technology has low content and is easy to manufacture and low in cost, but its disadvantage is that the dimensional accuracy of the sand mold is poor, resulting in large processing margin and poor appearance quality.
  • the vacuum negative pressure forming process is a technology that uses only dry sand, plastic film sealing, and negative pressure to form without using binders, water and other additives, and has the advantages of accurate casting size, clear outline, energy saving and environmental protection. Moreover, the process has been hailed as "the casting technology of the 21st century” and “the green revolution of the foundry industry” by the casting industry at home and abroad. However, the casting technology of cast iron and other metal materials and the fused cast refractory technology have significant problems in terms of material composition and temperature. Therefore, there are still many problems to be solved in the vacuum casting process for the fused cast refractory industry.
  • Patent Application Publication No. CN101823122A discloses a negative pressure molding process for a fused cast refractory product.
  • the process is complicated, the box is easy to collapse, the efficiency is low, and the product is easy to crack.
  • the object of the present invention is to provide a composite mold for producing a fused cast refractory material, and the composite mold of the invention can well solve the negative pressure forming process applied in the process of melting and casting refractory materials.
  • the object of the present invention is to provide a composite mold for producing a fused cast refractory material, and the composite mold of the invention can well solve the negative pressure forming process applied in the process of melting and casting refractory materials.
  • the composite mold riser of the invention adopts a non-vacuum forming process, and the body is manufactured by a negative pressure forming process.
  • the body is manufactured by a negative pressure forming process.
  • It is mixed into the filling material in a proper proportion, and the resin binder is fully utilized at room temperature and self-hardening.
  • the membrane wall can support at normal temperature and high temperature, so that casting can be carried out under a low vacuum pressure, and the negative solution is solved.
  • the press forming process is easy to collapse and the product is easy to crack, and further improves the quality of the product.
  • a composite mold for producing a fused cast refractory material comprising a mold body and a riser, wherein the mold body is disposed in an incubator, the incubator is filled with a vibrating heat insulating material; and the riser and the mold body are disposed There is a transition plate, a heat preservation cover is arranged on the periphery of the riser, and the heat preservation cover is filled with dry sand;
  • the composite mold is prepared by the following steps: (1) making a porous and hollow model wall according to the shape of the product; (2) placing the model obtained in the step (1) on a stencil with a vacuum evacuation chamber, and performing a vacuuming operation on the outer surface covered by the softened ethylene-vinyl acetate copolymer film, so that The film is adhered to the mold wall of the mold, wherein the ethylene-vinyl acetate copolymer has a vinyl acetate content of 25-35 wt%; (3)
  • the model obtained by the step (2) closely attached to the film is placed in an incubator with
  • the riser is made of a heat-resistant metal, a resin-bonded sand plate, a water glass-bonded sand plate or a heat-insulating heating body. Further preferably, the riser is made of a heat-insulating heating body, and the heat-insulating heating body contains 2.2-3.5 Wt% of silicon fiber, 72-85 wt% of quartz sand, 2.5-5.0 wt% of aluminum powder, 2.5-6.0 wt% of ferric oxide, 1.2-2.5 of manganese dioxide, and 0.8-1.5 wt% of furan resin And 0.6-1.5% by weight of phenolic resin.
  • the content of vinyl acetate in the ethylene-vinyl acetate copolymer film is 32% by weight.
  • the content of vinyl acetate in the film can affect the hardening properties of the film.
  • the insulating material comprises 1.8 wt% phenolic resin, 1.2 wt% stearic acid, 1.5 wt% dimethicone, 1.2 wt% acrylic modified rosin and the balance quartz sand.
  • the present invention has the following beneficial effects:
  • the riser part of the product does not need to be vacuumed, and it can realize the batch production of the standard temperature self-hardness and the same specification, which improves the production efficiency.
  • the vacuuming of the invention can meet the production requirements under the lower pressure, and the time for casting the pressure keeping is also greatly shortened, thereby saving energy, and the selection of the riser material is selected to be the heat-insulating heating body to save energy in 30. %the above.
  • the composite sand type technology can not only ensure the normal temperature strength of the composite mold, but also ensure the high temperature casting without boxing, which effectively guarantees the superiority of the appearance and internal quality of the product.
  • Figure 1 is a cross-sectional view showing the structure of a negative pressure forming portion according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view showing the structure of a composite mold according to an embodiment of the present invention
  • This embodiment exemplarily illustrates the production of a composite mold of a cast-cast zirconium corundum product of 250 x 400 x 1200 mm.
  • the composite mold is prepared by the following steps:
  • the riser 8 is made of a heat-insulating heating body (including 2.2-3.5) Wt% of silicon fiber, 72-85 wt% of quartz sand, 2.5-5.0 wt% of aluminum powder, 2.5-6.0 wt% of ferric oxide, 1.2-2.5 of manganese dioxide, and 0.8-1.5 wt% of furan resin And 0.6-1.5wt% phenolic resin), according to the shape of the paper set by the process, 400 (height) ⁇ 400 ⁇ 40mm (thick) (2 pieces) and 400 (height) ⁇ 250 ⁇ 40 mm (thickness) (2 pieces) insulation heating body plate, assembled with steel wire with a diameter of 2mm;
  • Model 1 (outer size 250 ⁇ 400 ⁇ 1200) will be made according to the shape of the product. Mm) (using a metal model, such as an aluminum or aluminum alloy model), connected to the vacuum pumping chamber 2, and softening the EVA film 3 (EVA plastic film with a vinyl acetate content of 32% by weight) with a softening heating device, covering The outer surface of the model 1 is evacuated by the vent hole 4 and the model vent hole 12 connected to the model 1 through the vacuum pumping chamber 2, and the air between the dedicated mold 1 and the dedicated film 3 and the special model 1 is evacuated, so that the softened EVA film 3 can be attached to the outer surface of the model 1;
  • a metal model such as an aluminum or aluminum alloy model
  • the model 1 closely attached to the EVA film 3 is placed in the negative pressure forming incubator 5, and the insulating material 6 (having a particle size of 50 mesh, 0.5-5.0% by weight of furan resin or phenolic resin, and 95-99.5) Wt% quartz sand or alumina hollow sphere) is filled into the incubator 5 for tapping operation to ensure that the insulating material 6 can closely contact the EVA film 3;
  • the vacuum pump is started to vacuum the incubator 5 through the connection port 11, so that a negative pressure is formed in the box of the incubator 5, the EVA film 3 is further hardened, and the vacuum state in the special model 1 is released, and the incubator 5 and the special film 3 are kept.
  • the negative pressure state of the intermediate portion is taken out of the model 1.
  • the incubator 5 with the EVA film 3 is turned over, the transition plate 7 and the raised heat-generating body riser 8 are placed, and the heat-insulation cover 9 is placed and the riser 8 is filled with the dry sand 10 to obtain the circumference of the riser 8 to obtain the embodiment.
  • Composite mold
  • This embodiment exemplarily illustrates the production of a composite mold of a cast-cast zirconium-corundum product of 250 ⁇ 400 ⁇ 1200 mm.
  • the composite mold is prepared by the following steps:
  • the riser 8 is made of resin sand type riser 8 (furan resin 3wt%, quartz sand 97wt%). According to the shape of the paper set by the process, the inner shape of the riser 8 made of resin sand type is 600 (height) ⁇ 400 ⁇ 250mm. The riser 8 has a wall thickness of 30 mm.
  • Hollow negative pressure forming model 1 (outer size 250 ⁇ 400 ⁇ 1200) will be made according to the shape of the product. Mm), connected to the vacuum pumping chamber 2, and softening the EVA film 3 (EVA plastic film having a vinyl acetate content of 32% by weight) by a softening heating device, covering the outer surface of the model 1 through the vacuum pumping chamber 2
  • the vent hole 4 and the model vent hole 12 connected to the model 1 evacuate the air between the special model 1 and the special film 3 and the special model 1 so that the softened EVA film 3 can be attached to the outer surface of the model 1;
  • the model 1 in which the EVA film 3 is adhered is placed in the negative pressure molding incubator 5, and the heat insulating material 6 (the insulating material includes 1.8 wt% of phenol resin, 1.2 wt% of stearic acid, 1.5 wt%).
  • Dimethyl silicone oil, 1.2wt% acrylic modified rosin and the balance of quartz sand are filled into the incubator 5, and tapping operation to ensure that the insulating material 6 can closely contact the EVA film 3;
  • the vacuum pump is started to vacuum the incubator 5 through the connection port 11, so that a negative pressure is formed in the box of the incubator 5, the EVA film 3 is further hardened, and the vacuum state in the special model 1 is released, and the incubator 5 and the special film 3 are kept.
  • the negative pressure state of the intermediate portion is taken out of the model 1.
  • the thermal insulation box 5 with the EVA film 3 is turned over, the transition plate 7 and the produced riser 8 are placed, and the heat preservation cover 9 is placed and the riser 8 is filled with the dry sand 10 to obtain the composite mold of the embodiment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

提供了一种生产熔铸耐火材料的复合模具,包括模具本体以及冒口,所述的模具本体设置在保温箱中,保温箱中填充有振实的保温材料;所述的冒口与模具本体之间设置有过渡板,冒口外围设置有保温罩,并且保温罩内填充有干型砂;并且所述的模具本体通过负压成型工艺制备得到。该复合模具很好的解决了负压成型工艺应用于熔铸耐火材工艺中所存在的易塌箱、制品容易开裂等方面的缺陷。将该复合模具用于熔铸耐火材料的制备,既节能环保,又提高了制品外观质量。

Description

一种生产熔铸耐火材料的复合模具 技术领域
本发明属于熔铸耐火材料的技术领域,更具体地说,本发明涉及一种生产熔铸耐火材料的复合模具。
背景技术
熔铸耐火材料制品是玻璃工业熔窑重要的内衬材料,熔铸耐火材料生产使用的模型目前主要有石墨模、树脂结合的石英砂砂模和水玻璃结合的石英砂砂模3种。石墨模价格昂贵加工难度大;树脂结合的石英砂砂模具有在常温下自硬特性,易于制作整体砂模,产品外观尺寸精度高,但是该砂型技术含量高,成本高于水玻璃;水玻璃结合的石英砂砂模技术含量低容易制造、成本低,但其缺点是砂模的尺寸精度差,造成产品加工余量大,外观质量差。
目前,国内熔铸耐火材料生产企业普遍采用水玻璃结合的石英砂砂型,这也是造成我国熔铸耐火材料制品长期以来外观质量明显低于国外产品、市场竞争力明显低于国外产品的重要因素之一。另外,水玻璃砂含有大量溶剂物质,难以被再生利用,砂型为一次性使用,每年要产生大量的工业垃圾,造成资源浪费和环境污染。
真空负压成型工艺是一种不用粘结剂、水和其它添加剂,仅用干砂、塑料薄膜密封、抽负压进行造型的技术,具备铸件尺寸精确、轮廓清晰、节能环保等方面的优点,而且该工艺被国内外铸造界誉为“二十一世纪的铸造技术”和“铸造工业的绿色革命”。然而铸铁等金属材料的铸造技术和熔铸耐火材料技术,由于材料组成、温度等方面存在显著差异,因而将真空负压成型工艺运用于熔铸耐火材料行业仍有诸多问题亟待解决。
发明专利CN101143460 B公开了一种利用负压空型生产熔铸耐火材料的方法。公开号为CN101823122A的专利申请文件公开了一种熔铸耐火材料制品的负压造型工艺。但是上述熔铸耐火制品工艺过程中存在着流程工艺复杂、易塌箱、效率低、制品容易开裂等方面的缺陷。
技术问题
为了解决现有技术中存在的上述技术问题,本发明的目的在于提供一种生产熔铸耐火材料的复合模具,本发明的复合模具,很好的解决了负压成型工艺应用于熔铸耐火材工艺中所存在的易塌箱、制品容易开裂的技术难题。
本发明的复合模具冒口采用非真空成型工艺,而本体采用负压成型工艺制作。如此,既能发挥冒口砂型高效简便、节能、高温性能优异等方面的特性,又充分利用负压成型的环保节能、制品外观质量优异等方面的优点;而且在制备的过程中将树脂结合剂按适宜的比例混入到填充材料中,充分发挥树脂结合剂常温自硬的特点,对膜壁在常温及高温均能起到支撑作用,从而能够在较低的真空压力下实施浇铸,解决了负压成型工艺易塌箱、制品容易开裂的技术难题,并且进一步提高了制品的质量。
技术解决方案
为了实现上述目的,本发明采用了以下技术方案:
一种生产熔铸耐火材料的复合模具,包括模具本体以及冒口,所述的模具本体设置在保温箱中,保温箱中填充有振实的保温材料;所述的冒口与模具本体之间设置有过渡板,冒口外围设置有保温罩,并且保温罩内填充有干型砂;其特征在于所述的复合模具采用以下步骤制备得到:(1)按照制品的外形制作模壁多孔并且中空的模型;(2)将步骤(1)所得的模型放置在带有真空抽气室的型板上,并将软化的乙烯-醋酸乙烯酯共聚物薄膜覆盖的外表面上实施抽真空操作,使得所述薄膜紧贴在所述模型的模壁上,其中所述的乙烯-醋酸乙烯酯共聚物中醋酸乙烯的含量为25-35wt%;(3) 将步骤(2)得到的紧贴有所述薄膜的模型放置到带有真空抽气室的保温箱内,填入保温材料并振实,实施对保温箱抽真空操作,翻转保温箱并取出模型,放置过渡板及冒口,罩上保温罩并以干型砂充填冒口四周即得到所述的复合模具,其中所述的保温材料包括0.5-5.0wt%的呋喃树脂或者酚醛树脂,以及95-99.5 wt%的石英砂或氧化铝空心球。
其中,所述的冒口采用耐热金属、树脂结合的砂型板、水玻璃结合的砂型板或者保温发热体制成。进一步优选地,所述的冒口由保温发热体制成,并且所述的保温发热体含有2.2-3.5 wt%的硅纤维、72-85wt%的石英砂、2.5-5.0wt%的铝粉、2.5-6.0wt%的三氧化二铁、1.2-2.5的二氧化锰、0.8-1.5wt%的呋喃树脂和0.6-1.5wt%的酚醛树脂。
其中,所述的乙烯-醋酸乙烯酯共聚物薄膜中醋酸乙烯的含量为32wt%。薄膜中醋酸乙烯的含量能够影响到薄膜的硬化性能。
其中,所述的保温材料包括1.8wt%的酚醛树脂、1.2wt%的硬脂酸、1.5wt%的二甲基硅油、1.2wt%的丙烯酸改性松香和余量的石英砂。
有益效果
与现有技术相比,本发明具有以下有益效果:
①制品的冒口部分不需要抽真空,可以实现常温自硬及同规格的标件批量制作,提高了生产效率。②本发明的抽真空可以在较低的压力下就能满足生产的需要,同时浇铸保压的时间也大大缩短,从而有利于节约能源,另外冒口材质选择上选用保温发热体可节能在30%以上。③复合砂型工艺的采用既能保证复合模具的常温强度,又能保证高温浇铸不垮箱,有力地保证了制品外观及内在质量的优越性。
附图说明
图1 :本发明一个具体实施例所述的负压成型部分结构剖面图;
图2 :本发明一个具体实施例所述的复合模具结构剖面图;
图中各附图标记所表示的含义分别为:1-模型、2-真空抽气室、3-薄膜、4-通气孔、5-保温箱、6-保温材料、7-过渡板、8-冒口、9-保温罩、10-干型砂、11-连接口、12-模型通气孔。
本发明的实施方式
以下将结合附图和具体实施例对本发明的技术方案做进一步的说明。
实施例1
本实施例示例性地阐述生产熔铸锆刚玉制品250×400×1200mm的复合模具。参照附图1-2所示,所述复合模具通过以下步骤制备:
冒口8采用保温发热体制作型板(含有2.2-3.5 wt%的硅纤维、72-85wt%的石英砂、2.5-5.0wt%的铝粉、2.5-6.0wt%的三氧化二铁、1.2-2.5的二氧化锰、0.8-1.5wt%的呋喃树脂和0.6-1.5wt%的酚醛树脂),根据工艺设定的图纸形状,将400 (高)×400×40mm(厚)(2块)及400 (高)×250×40 mm(厚)(2块)保温发热体板,采用直径2mm的钢丝紧固拼装在一起;
将根据制品形状制作中空的负压成型模型1(外形尺寸250×400×1200 mm)(采用金属模型,例如铝或铝合金模型),与真空抽气室2连接,并将采用软化加热装置对EVA薄膜3(醋酸乙烯含量在32wt%的EVA塑料薄膜)进行软化,覆盖于模型1的外表面,通过真空抽气室2与模型1连接的通气孔4及模型通气孔12将专用模型1内及专用薄膜3与专用模型1之间的空气抽走,使得软化的EVA薄膜3能够贴紧在模型1外表面上;
将紧贴有EVA薄膜3的模型1置于负压成型保温箱5内,并将保温材料6(粒度在50目,0.5-5.0wt%的呋喃树脂或者酚醛树脂,以及95-99.5 wt%的石英砂或氧化铝空心球)填入保温箱5内,进行振实操作,以确保保温材料6能够紧密接触EVA薄膜3;
启动真空泵通过连接口11对保温箱5进行抽真空操作,使得保温箱5箱内形成负压,进一步硬化EVA薄膜3,并释放专用模型1内的真空状态,保持保温箱5与专用薄膜3之间部分的负压状态,将模型1取出。
翻转带有EVA薄膜3的保温箱5,放置过渡板7及制作好的保温发热体冒口8,并放置保温罩9及以干型砂10充填冒口8四周,即可得到本实施例所述的复合模具。
实施例2
本实施例示例性地阐述生产熔铸锆刚玉制品250×400×1200mm的复合模具,参照附图1-2所示,所述复合模具通过以下步骤制备:
冒口8采用树脂砂型冒口8(呋喃树脂3wt%,石英砂97wt%),根据工艺设定的图纸形状,将采用树脂砂型制作的冒口8内部形状为600(高)×400×250mm,冒口8四周壁厚为30mm。
将根据制品形状制作中空的负压成型模型1(外形尺寸250×400×1200 mm),与真空抽气室2连接,并将采用软化加热装置对EVA薄膜3(醋酸乙烯含量在32wt%的EVA塑料薄膜)进行软化,覆盖于模型1的外表面,通过真空抽气室2与模型1连接的通气孔4及模型通气孔12将专用模型1内及专用薄膜3与专用模型1之间的空气抽走,使得软化的EVA薄膜3能够贴紧在模型1外表面上;
将紧贴有EVA薄膜3的模型1置于负压成型保温箱5内,并将保温材料6(所述的保温材料包括1.8wt%的酚醛树脂、1.2wt%的硬脂酸、1.5wt%的二甲基硅油、1.2wt%的丙烯酸改性松香和余量的石英砂)填入保温箱5内,进行振实操作,以确保保温材料6能够紧密接触EVA薄膜3;
启动真空泵通过连接口11对保温箱5进行抽真空操作,使得保温箱5箱内形成负压,进一步硬化EVA薄膜3,并释放专用模型1内的真空状态,保持保温箱5与专用薄膜3之间部分的负压状态,将模型1取出。
翻转带有EVA薄膜3的保温箱5,放置过渡板7及制作好的冒口8,并放置保温罩9及以干型砂10充填冒口8四周,即可得到本实施例所述的复合模具。
本发明的具体实施方式仅用于对本发明的技术方案做进一步的阐述和说明,任何人均不能依据实施例限定本发明的范围,凡在本发明的权利要求书要求保护的范围内所做出的等同的变形和改变的实施方式均在本发明所要求保护的范围内。

Claims (1)

  1. 一种生产熔铸耐火材料的复合模具,包括模具本体以及冒口,所述的模具本体设置在保温箱中,保温箱中填充有振实的保温材料;所述的冒口与模具本体之间设置有过渡板,冒口外围设置有保温罩,并且保温罩内填充有干型砂;其特征在于所述的复合模具采用以下步骤制备得到:(1)按照制品的外形制作模壁多孔并且中空的模型;(2)将步骤(1)所得的模型放置在带有真空抽气室的型板上,并将软化的乙烯-醋酸乙烯酯共聚物薄膜覆盖的外表面上实施抽真空操作,使得所述薄膜紧贴在所述模型的模壁上,其中所述的乙烯-醋酸乙烯酯共聚物中醋酸乙烯的含量为25-35wt%;(3) 将步骤(2)得到的紧贴有所述薄膜的模型放置到带有真空抽气室的保温箱内,填入保温材料并振实,实施对保温箱抽真空操作,翻转保温箱并取出模型,放置过渡板及冒口,罩上保温罩并以干型砂充填冒口四周即得到所述的复合模具,其中所述的保温材料包括0.5-5.0wt%的呋喃树脂或者酚醛树脂,以及95-99.5 wt%的石英砂或氧化铝空心球。
    2.权利要求1所述的生产所述的熔铸耐火材料的复合模具,其特征在于冒口采用耐热金属、树脂结合的砂型板、水玻璃结合的砂型板或者保温发热体制成。
    3.权利要求2所述的生产所述的熔铸耐火材料的复合模具,其特征在于所述的冒口由保温发热体制成,并且所述的保温发热体含有2.2-3.5 wt%的硅纤维、72-85wt%的石英砂、2.5-5.0wt%的铝粉、2.5-6.0wt%的三氧化二铁、1.2-2.5的二氧化锰、0.8-1.5wt%的呋喃树脂和0.6-1.5wt%的酚醛树脂。
    4.权利要求1所述的生产所述的熔铸耐火材料的复合模具,其特征在于所述的乙烯-醋酸乙烯酯共聚物薄膜中醋酸乙烯的含量为32wt%。
    5.权利要求1所述的生产所述的熔铸耐火材料的复合模具,其特征在于所述的保温材料含有1.8wt%的酚醛树脂、1.2wt%的硬脂酸、1.5wt%的二甲基硅油、1.2wt%的丙烯酸改性松香和余量的石英砂。
PCT/CN2012/078521 2012-06-06 2012-07-11 一种生产熔铸耐火材料的复合模具 WO2013181876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210184412.6A CN102672808B (zh) 2012-06-06 2012-06-06 一种生产熔铸耐火材料的复合模具
CN201210184412.6 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013181876A1 true WO2013181876A1 (zh) 2013-12-12

Family

ID=46805688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078521 WO2013181876A1 (zh) 2012-06-06 2012-07-11 一种生产熔铸耐火材料的复合模具

Country Status (2)

Country Link
CN (1) CN102672808B (zh)
WO (1) WO2013181876A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108145833A (zh) * 2018-01-08 2018-06-12 郑州远东耐火材料有限公司 锆刚玉电熔砖普通浇铸冒口圈模具及冒口圈生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672794B (zh) * 2012-06-06 2014-05-28 瑞泰科技股份有限公司 一种生产熔铸耐火材料的复合砂型成型工艺
CN108481523B (zh) * 2018-05-21 2023-10-31 都江堰瑞泰科技有限公司 Azs-格子体砖模具、生产装置及生产工艺
CN109366699A (zh) * 2018-11-07 2019-02-22 南通祥发模具制造有限公司 一种装配式建筑模具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148442A (en) * 1980-04-21 1981-11-17 Mitsubishi Heavy Ind Ltd Production of mold
CN101143460A (zh) * 2007-08-31 2008-03-19 侯松发 负压空型生产熔铸耐火材料的方法
CN101823122A (zh) * 2010-03-24 2010-09-08 河南省前卫实业有限公司 熔铸耐火材料制品的负压造型工艺
CN102672794A (zh) * 2012-06-06 2012-09-19 瑞泰科技股份有限公司 一种生产熔铸耐火材料的复合砂型成型工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407322A (zh) * 2011-12-01 2012-04-11 昆明理工大学 一种锌及锌合金熔铸用浇铸系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148442A (en) * 1980-04-21 1981-11-17 Mitsubishi Heavy Ind Ltd Production of mold
CN101143460A (zh) * 2007-08-31 2008-03-19 侯松发 负压空型生产熔铸耐火材料的方法
CN101823122A (zh) * 2010-03-24 2010-09-08 河南省前卫实业有限公司 熔铸耐火材料制品的负压造型工艺
CN102672794A (zh) * 2012-06-06 2012-09-19 瑞泰科技股份有限公司 一种生产熔铸耐火材料的复合砂型成型工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108145833A (zh) * 2018-01-08 2018-06-12 郑州远东耐火材料有限公司 锆刚玉电熔砖普通浇铸冒口圈模具及冒口圈生产方法
CN108145833B (zh) * 2018-01-08 2023-07-21 郑州远东耐火材料有限公司 锆刚玉电熔砖普通浇铸冒口圈模具及冒口圈生产方法

Also Published As

Publication number Publication date
CN102672808B (zh) 2014-05-28
CN102672808A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2013181875A1 (zh) 一种生产熔铸耐火材料的复合砂型成型工艺
CN105436411B (zh) 一种高透气消失模铸造方法
CN102366812B (zh) 一种铸造用水玻璃砂的制备方法
WO2013181876A1 (zh) 一种生产熔铸耐火材料的复合模具
CN107021771B (zh) 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法
CN105537516B (zh) 一种柴油发动机壳砂型铸造方法
CN109020581B (zh) 一种炼铸中间包复合干式料及其制备方法
CN106518043B (zh) 低成本铝钙硅质锡槽底砖的制备方法
CN102030470A (zh) 一种注凝成型熔融石英坩埚及其制造方法
CN110465622A (zh) 风力发电机球铁轮毂铸造用涂料及制备方法和应用
CN102674867B (zh) 一种生产熔铸耐火材料制品用新型砂型工艺
CN103553699B (zh) 一种瘠性煤矸石工业废料制备泡沫保温材料的方法
CN103159482A (zh) 一种Mo(Sil-x,Alx)2/MoSi2复相硅化钼材料发热体的制备方法
CN102419094A (zh) 立式中频炉整体浇铸复合炉胆和保温层的制备方法
CN102815957A (zh) 一种有色金属合金增韧氮化铝陶瓷基复合材料及制备方法
CN115073203A (zh) 一种具有良好吊挂功能的泡沫陶瓷墙体材料及其制备方法
CN103360095B (zh) 生产熔铸耐火材料产品的真空实型工艺
CN211640344U (zh) 一种新型异型坯中间包湍流控制器
CN107602137A (zh) 一种浇注成型转炉出钢口内水口砖及其制备方法
CN201587027U (zh) 多功能筒子砖模具
CN111113633A (zh) 一种新型异型坯中间包湍流控制器及其制备方法
CN208468672U (zh) Azs-格子体砖生产模具
CN201771138U (zh) 一种高炉矿渣陶板
CN105330315A (zh) 一种消除浇注成型耐火材料制品表面气孔的方法
CN202169636U (zh) 一种浇注电熔砖的排气砂模

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878442

Country of ref document: EP

Kind code of ref document: A1