WO2013181799A1 - 升降系统 - Google Patents

升降系统 Download PDF

Info

Publication number
WO2013181799A1
WO2013181799A1 PCT/CN2012/076498 CN2012076498W WO2013181799A1 WO 2013181799 A1 WO2013181799 A1 WO 2013181799A1 CN 2012076498 W CN2012076498 W CN 2012076498W WO 2013181799 A1 WO2013181799 A1 WO 2013181799A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
lifting device
lifting
load
counterweight
Prior art date
Application number
PCT/CN2012/076498
Other languages
English (en)
French (fr)
Inventor
吴祥祺
Original Assignee
远东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远东科技大学 filed Critical 远东科技大学
Priority to PCT/CN2012/076498 priority Critical patent/WO2013181799A1/zh
Publication of WO2013181799A1 publication Critical patent/WO2013181799A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0065Roping
    • B66B11/0075Roping with hoisting rope or cable positively attached to a winding drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • B66B11/0484Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation with a clutch or a coupling system between several motors, e.g. switching different speeds, progressive starting, torque limitation, flywheel

Definitions

  • This invention relates to a lifting system, and more particularly to a lifting system that utilizes a combination of a shifting mechanism and a double counterweight to minimize the loss of mechanical energy during elevator lift. Background technique
  • the mechanical energy of the lifting system during the movement is kinetic energy and potential energy.
  • the elevator lifting can be divided into two parts: the load compartment and the counterweight. Therefore, the mechanical energy of the lifting system during the movement is the following.
  • the lifting system needs to provide a large amount of potential energy to make the elevator move.
  • the potential energy ( ⁇ + ⁇ ' _ ) ⁇ is negative, the lifting system will release a large amount of potential energy when it moves, but these bits can not be effectively recovered, resulting in waste of mechanical energy.
  • FIG. 2 is a schematic diagram of a preferred embodiment of a lifting system with a single counterweight energy balance function in the prior art.
  • a load compartment 20a and a counterweight 30a as shown in FIG. 2 each have a cable 13a, 13b and are rolled up by the individual reels 121a, 122a.
  • the cables 13a, 13b, and the individual reels 121a, 122a of the load compartment 20a and the weight 30a are connected by a shifting mechanism 12a, and the shifting mechanism 12a is driven by a driving device 11a, which is measured by a sensor 41a .
  • the speed ratio of the load compartment 20a and the weights 30a of the individual reels 121a, 122a is calculated by the computer 40a, thereby controlling the shifting mechanism 12a, and after the power is input to the shifting mechanism 12a, the load-carrying compartment 20a and the counterweight are outputted.
  • the individual reels 121a, 122a of the piece 30a can have different rotation speeds (the load compartment 20a and the weight member 30a have different speeds), and the load compartment 20a and the weight member 30a can be moved at different distances at the same time, and the load compartment is loaded.
  • the individual reels 121a, 122a of the 20a and the weight members 30a are not independently rotated, but are connected by the shifting mechanism 12a, and the individual reels 121a, 122a are coupled to each other to generate a specific rotational speed ratio.
  • the computer 40a controls the shifting mechanism 12a so that the load compartment 20a and the individual reels 121a of the weight member 30a, (m c + m l )
  • the weight reference of a single counterweight lifting system must be based on more than one or more times the mass at full load, so the counterweight of a single counterweight lifting system is very large.
  • FIG. 3 is a schematic diagram of the mutual interference of the upper and lower winding wires formed by the steel wire wound on the reel according to the preferred embodiment of the prior art. As shown in Fig.
  • a lifting system for performing a lifting function in a main body comprising: a car lifting device fixedly disposed at an upper end of the main body; and a weight lifting device corresponding to the car lifting device disposed on the main body a shifting mechanism for changing the relative rotational speed between the car lift device and the counterweight lifting device, wherein the car lift device is coupled to the counterweight lifting device through the shifting mechanism;
  • One end of the first cable is suspended below the compartment lifting device for carrying a load, wherein the compartment lifting device is operated to lift the heavy-duty vehicle through the first cable;
  • a second weight member The other end of the first cable is suspended below the compartment lifting device, wherein the second weight member is in balance with the load compartment; and a first weight member is passed through the first
  • the second steel cable is suspended under the weight lifting device, wherein the weight lifting device is operated to lift the first weight through the second cable;
  • Elevating means for changing the relative rotational speed between the carriage means and the counterweight elevating member, for the load carrying compartments of load was multiplied potential
  • FIG. 1 is a perspective view of a preferred embodiment of a double counterweight of a lifting system of the present invention
  • FIG. 2 is a schematic view of a preferred embodiment of a lifting system with a single counterweight energy balance function of the prior art
  • Fig. 3 is a schematic view showing the mutual interference of the upper and lower winding wires formed by the steel wire wound on the reel of the preferred embodiment of the prior art.
  • FIG. 1 is a perspective view of a preferred embodiment of a double weight of a lifting system of the present invention.
  • the lifting system 1 is configured to perform a lifting function in a main body, the main body A can be a building, and the lifting system 1 comprises: a car lifting device 11 fixedly disposed at the upper end of the main body A a weight lifting device 12 corresponding to the upper portion of the main body A; a shifting mechanism 13 including a clutch 131 and a speed reducing mechanism 132 for changing the car lifting device 11 and the weight member Lifting
  • the relative rotational speed of 12 is set, wherein the car lift device 11 is connected to the weight lifting device 12 through the shifting mechanism 13; the load truck 14 is suspended from the lower end of the car lifting device 11 through one end of a first cable 15
  • the load compartment 14 is configured to carry a load (not shown), wherein the compartment lift 11 is operated to lift the load compartment 14 through the first cable 15; a second weight 18 The other end of the first cable 15 is suspended below the
  • the lifting device 12 changes the height of the first weight member 16 through the second cable 17 to conform to the predetermined range value.
  • the two ends of the first cable 15 respectively suspend the load compartment 14 and the second weight member 18, and the first cable 15 utilizes the compartment lifting device 11 which is a pulley block to make the first cable 15
  • the second cable 17 wound on the weight lifting device 12 still has the phenomenon that the cables interfere with each other, but the double weighting device of the present invention Therefore, although there is interference, since it occurs on the second cable 17 of the first weight member 16, rather than the first cable 15 of the second weight member 18, the feeling of discomfort is less Passed directly to the passengers as they are in the prior art.
  • Double lifting weight balance function lifting system is a Double lifting weight balance function lifting system
  • the weight is divided into a second weight member 18 and a first weight member 16 ,
  • responsible for balancing the load compartment 14 empty weight ⁇
  • responsible for balancing the load.
  • the structure of the double counterweight lifting system is not exactly the same as that of the single counterweight lifting system. The difference is that the reel of the load compartment 14 in the single counterweight lifting system is changed to a pulley, that is, the car lifting device 11 and the first steel cable 15 connects the load compartment 14 and the second weight 18, and the compartment lifting device 11 is coupled to the shifting mechanism 13.
  • Second weight member 18 moving distance
  • the control unit 19a controls the shifting mechanism 13 so that the load compartment 14 and the first weight member 16 individually reel 1 1 , 12 generate the rotational speed of m wl .
  • the load compartment 14 and the first weight member 16 can be obtained with a distance ratio of h c , so that the positional energy in the equation (8) is balanced to zero.
  • the lifting function of the energy balance function when lifting, will encounter the problem of the height of the weight of the weight, because The height that can move up and down is limited.
  • the double counterweight lifting system as an example, when the load compartment 14 is fully loaded and the load of the load compartment 14 is frequent, the weight of the counterweight end, that is, the first counterweight 16 will continue to be large, and eventually will be The weight of the first weight member 16 at the end of the weight portion is too low to provide an appropriate height, so that the load carrier 14 cannot be raised.
  • the computer performs a "weight adjustment stroke adjustment mechanism. " , that is, controlled by the control unit 19a
  • the speed mechanism 13 suspends the load compartment 14 and raises the first weight member 16 to an appropriate height so that the lifting system can continue to move.
  • the height of the first weight member 16 at the end of the weight member will continue to increase, and eventually the first weight of the weight member will occur.
  • the height of the weight 16 is too high to provide an appropriate height to lower the load compartment 14 at which time the control unit 19a performs a "weight adjustment stroke adjustment mechanism", that is, the shifting mechanism 13 is controlled by the control unit 19a, and the load is carried.
  • the carriage 14 is suspended and the weight member end first weight member 16 is lowered to an appropriate height so that the lifting system can continue to move.
  • the principle of the single counterweight lifting system is also the same. However, as shown in Fig. 2, the "weighting member stroke adjustment mechanism" only needs to adjust the height of the weight member 30a.
  • the second weight member 18 is of the same mass as the empty load compartment 14 and is fixed so that only the mass of the first weight member 16 is selected.
  • the "weight adjustment stroke adjustment mechanism" of the lifting system with double counterweight position balancing function only needs to adjust the height of the first weight member 16.
  • the weight quality selection is twice the mass at full load, it can satisfy the above situation for two consecutive times; if the weight quality selection is three times the mass at full load, it can be repeated three times in succession. Of course, you can also choose four times, five times or more, and the chances of "weighting stroke adjustment mechanism" will be less.
  • the first counterweight 16 of the double counterweight lifting system is much smaller than the single counterweight lifting system, because the weight reference of the single counterweight lifting system It is the mass at full load, but the weight reference of the double counterweight lifting system is the mass of the load at full load, so the first counterweight 16 of the double counterweight lifting system is naturally much smaller than the counterweight of the single counterweight lifting system.
  • the weight of the second weight member 18 is 600 kg, which is a total of 3000 kg.
  • the first counterweight 16 of the dual counterweight lifting system is much less important than the single counterweight lifting system.
  • shifting mechanism Please refer to Tables 1 to 4 below, which are double counterweights (can be switched to airspeed). Under the three-speed shifting mechanism, the five-speed shifting mechanism, the stepless shifting mechanism and the general type. Mechanical energy and related data data sheets.
  • the shifting mechanism 13 can select two-speed, three-speed, four-speed, five-speed...even stepless shifting.
  • the double counterweight ratio can be satisfied in any ratio, so that the lifting system can be moved with minimal mechanical energy.
  • the shifting mechanism 13 shown in Figure 1 provides the closest speed ratio. Lifting system movement.
  • the meaning of movement is represented by coordinates (0, -2), and the field marked with the word "moving case” is represented by coordinates (0, 0), which is an origin position; the load compartment 14 is loaded with weight (car+load) The weight is 600.0+0.0 kg, which is shown in the coordinates (1, -2), which means that the carriage moves down and there is no manned or cargo; the moving speed of the truck 14 is lm/s, and the negative value moves downward because of the indication. Displayed in coordinates (2, -2); The moving distance of the load compartment 14 is 30m, the negative value is displayed in the coordinates (3, -2) because the movement is downward, and the kinetic energy is 300 joul (joules), which is displayed in the coordinates.
  • the speed ratio of the weight member 18 is 1:1, which is shown at coordinates (6, -2); the weight of the second weight member 18 is 600 kg, which is 600 kg for the weight of the load compartment 14
  • the weight of the upper weight is 0kg, which is shown in the coordinates (7, -2); the rising speed of the second weight 18 is 1 m/s, which is shown in the coordinates (8, -2); the movement of the second weight 18
  • the distance is 30 m, shown in coordinates (9, -2); the kinetic energy is 300 joul, which is displayed in coordinates (10, -2); the bit energy is 180,000 joul, which is displayed in coordinates (11, -2);
  • the first weight member 16 is discussed.
  • the speed ratio of the load compartment 14 to the first weight member 16 is 1:0, which is displayed at coordinates (12, -2); the weight of the first weight member 16 is 800 kg, which is displayed in coordinates. (13, -2); the first counterweight 16 has a rising speed of 0 m/s and is displayed at coordinates (14, -2); the first counterweight 16 has a moving distance of 0 m and is displayed at coordinates (15). , -2); kinetic energy is 0 joul, shown in coordinates (16, -2); 0 joul, shown in coordinates (17, -2); In addition, the block of the lifting system of Fig.
  • the lifting system of the present invention particularly the lifting system using the double counterweight, it is possible to greatly reduce the mechanical energy. Because the speed adjustment of the shifting mechanism 13 allows the first weight member 16 to adjust the mechanical energy required, and the second weight member 18 is compensated for. If the first weight member 16 is insufficient in adjustment, At the office. Therefore, by using the numerical data of the double counterweights shown in Tables 1 to 4, it can be confirmed that the mechanical energy saving effect by the double counterweight lifting system is particularly good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Abstract

公开了一种升降系统(1),该升降系统(1)包括:固定设置于主体(A)上端的车厢升降装置(11);对应车厢升降装置(11)设置于主体(A)上端的配重件升降装置(12);用以改变车厢升降装置(11)与配重件升降装置(12)之间的相对转速的变速机构(13);通过第一钢索(15)的一端悬吊于车厢升降装置(11)下方的载重车厢(14),用于乘载载重物,车厢升降装置(11)运转以通过第一钢索(15)升降载重车厢(14);通过第一钢索(15)的另一端悬吊于车厢升降装置(11)下方的第二配重件(18),第二配重件(18)与载重车厢(14)可位能平衡;以及第一配重件(16),其通过第二钢索(17)悬吊于配重件升降装置(12)的下方,配重件升降装置(12)运转以通过第二钢索(17)升降第一配重件(16)。其中变速机构(13)改变车厢升降装置(11)与配重件升降装置(12)之间的转速,使得载重车厢(14)所乘载的载重物与第一配重件(16)之间的位能平衡。该升降系统可以大大减少机械能。

Description

升降系统 技术领域
本发明涉及一种升降系统, 尤指一种利用一变速机构与双配重的 组合, 将电梯升降时机械能的损失减至最低的升降系统。 背景技术
传统电梯:
升降系统在运动时的机械能为动能及位能, 电梯升降可分为载重 车厢及配重两部分, 因此升降系统在运动时的机械能为下式。
1
U (mc + mi )VC + {m + m )gh m V + m gh1 或是.
1 1
U = + Wc 2 +―
Figure imgf000003_0001
:空载重车厢质量
:负载质量
^载重车厢速度
g :重力加速度
^载重车厢移动距离
:配重移动距离
传统电梯运动时, 载重车厢及配重以钢索相互联结,
vw = -vc
κ = -κ
公式(1)可写为
U (mc + m, + mw )VC + imc + ml― mw )ghl 1
(m - + m )V
由(2)式可知动能部分为
另一方面位能部分为 (m ,在^ + m' = 的情形下位能 平衡为零。当位能 ) 为正值时, 升降系统需要提供大量的 位能方才使电梯运动。相反的, 当位能(^ +∞' _ )^为负值时, 升降 系统运动时会释放大量的位能, 但是这些位能无法有效地回收, 造成 机械能损失浪费。
请参阅图 2,其为现有技术的一种单一配重位能平衡功能的升降系 统的一较佳实施例示意图, 在现今一般电梯的构造中, 载重车厢及配 重以钢索相互联结, 使得前述 (3)式中位能部分 无法平 衡为零, 仅可在 m + m' = 的情形下位能才能平衡为零。 若是将钢索 连结载重车厢及配重的方式, 改为如图 2所示的一载重车厢 20a及一 配重件 30a各有一条钢索 13a、 13b并由个别的卷盘 121a、 122a卷起 钢索 13a、 13b , 而载重车厢 20a及配重件 30a个别的卷盘 121a、 122a 由一个变速机构 12a连结, 且该变速机构 12a由一驱动装置 11a驱动, 经一感应器 41a测得 ^ + '大小, 由计算机 40a计算出载重车厢 20a 及配重件 30a个别卷盘 121a、 122a的转速比,以借此控制变速机构 12a, 动力输入变速机构 12a后, 使得输出时载重车厢 20a及配重件 30a个 别的卷盘 121a、 122a可以有不同的转速 (载重车厢 20a及配重件 30a 有不同的速率), 达成同一时间内载重车厢 20a及配重件 30a可以移动 不同的距离, 且载重车厢 20a及配重件 30a个别的卷盘 121a、 122a并 非各自独立旋转, 乃是借着变速机构 12a的连结, 而个别卷盘 121a、 122a因为耦合彼此产生特定的转速比。
将 (2)式中位能部分 、mO^ + m,sK = o
if {mc + ml )ghc = -mwghw
Figure imgf000004_0001
{mc + ml )
由(4)式可知, 只要测得 即可得到 , 此时计算机 40a只 要控制变速机构 12a,使得载重车厢 20a及配重件 30a的个别卷盘 121a、 (mc + ml )
122a产生 mw 的转速比, 就可以使得载重车厢 20a及配重件 30a 得到^:的距离比, 进而使得(1)式中得位能平衡为零。
因此(1)式则成为
Figure imgf000005_0001
如此可以大幅降低升降系统运动时所需要的机械能。
然而, 单一配重升降系统的配重基准必须是依据满载时的一倍或 一倍以上的质量, 因此单一配重升降系统的配重是非常大的。
此外, 请参考图 2, 钢索 13a直接卷绕于卷盘 121a上, 钢索 13b 直接卷绕于卷盘 122a上, 如此, 当钢索 13a、 13b被分别卷收于卷盘 121a, 122a上时, 钢索会因为慢慢地堆积于卷盘的边缘时再往回堆积, 形成第二层卷绕于卷盘上的钢索。 然, 第一层与第二层卷绕的钢索层 便会彼此干扰, 导致电梯在上下移动时会有震动的现象。 请参考图 3, 其为现有技术中的较佳实施例的钢索卷绕于卷盘上所形成上下卷绕钢 索相互干扰的示意图。 如图 3所示, 当钢索 13a被卷收于卷盘 121a上 时, 在较外层的钢索 13a与在较内层的钢索 13a ' 会因没有次序的堆 栈, 而彼此互相干扰。 于是, 如前所述, 在钢索被卷入或被释放的过 程中, 电梯会有不顺利地抖动或跳动的现象。 当然, 因为是直接发生 在吊挂载重车厢 20a上的钢索 13a的干扰, 所以乘坐电梯的人们会有 不舒适的现象。
因此, 如何研发出一种升降系统, 以有效地转换位能、 减少配重 所需的质量, 及去除钢索从卷盘上卷绕与释放时内外层钢索彼此干涉, 以部分减少乘坐电梯时不舒适的问题, 使得机械能不再损失, 将是熟 悉该项技术的人士所欲探讨的一项重要课题。 发明内容
本发明的主要目的在提供一种升降系统, 以有效地转换位能, 并 利用一变速机构与双配重的组合, 将电梯升降时机械能的损失减至最 低。 本发明的另一目的在提供一种升降系统, 以减少配重所需的质量。 本发明的又一目的在提供一种升降系统, 以去除钢索从卷盘上卷 绕与释放时内外层钢索彼此干涉, 而部分减少乘坐电梯时不舒适的的 问题。
一种升降系统, 用以于一主体中进行升降功能, 该升降系统包含: 一车厢升降装置, 其固定设置于该主体上端; 一配重件升降装置, 其 对应该车厢升降装置设置于该主体上端; 一变速机构, 其用以改变车 厢升降装置与该配重件升降装置间的相对转速, 其中车厢升降装置透 过该变速机构连接于配重件升降装置; 一载重车厢, 其透过一第一钢 索的一端悬吊于车厢升降装置下方, 该载重车厢用以乘载一载重物, 其中, 车厢升降装置通过运转以透过该第一钢索升降载重车厢; 一第 二配重件, 其透过该第一钢索的另一端悬吊于车厢升降装置下方, 其 中, 该第二配重件与该载重车厢可位能平衡; 以及一第一配重件, 其 透过一第二钢索悬吊于配重件升降装置下方, 其中配重件升降装置通 过运转以透过该第二钢索升降该第一配重件; 其中, 变速机构用于改 变车厢升降装置与配重件升降装置间的相对转速, 以进行该载重车厢 所乘载的载重物与该第一配重件间的位能平衡。
关于本发明的优点与精神可以借由以下的发明详述及所附图式得 到进一步的了解。 附图说明
图 1为本发明的一种升降系统的一双配重较佳实施例立体图式; 图 2 为现有技术的一种单一配重位能平衡功能的升降系统的一较 佳实施例示意图; 及
图 3 为现有技术中的较佳实施例的钢索卷绕于卷盘上所形成上下 卷绕钢索相互干扰的示意图。
主要组件符号说明
A 主体
I 升降系统
I I 车厢升降装置
12 配重件升降装置 13 变速机构
131 l¾合器
132 减速机构
14 载重车厢
15 第一钢索
16 第一配重件
17 第二钢索
18 第二配重件
19 重量感测单元
19a 控制单元
19b 驱动马达
19c 配重件行程调整装置
11a 驱动装置
12a 变速机构
121a 卷盘
122a 舟
13a 钢索
13a, 钢索
13b 钢索
20a 载重车厢
30a 配重件
40a 计算机
41a 感应器。 具体实施方式
请参阅图 1所示, 其为本发明的一种升降系统的一双配重较佳实 施例立体图式。 如图 1所示, 该升降系统 1用以于一主体 Α中进行升 降功能, 该主体 A可为一栋建筑物, 升降系统 1包含: 一车厢升降装 置 11, 其固定设置于该主体 A上端; 一配重件升降装置 12, 其对应该 车厢升降装置 11设置于该主体 A上端; 一变速机构 13, 其包含一离合 器 131与一减速机构 132, 以改变车厢升降装置 11与该配重件升降装 置 12间的相对转速, 其中车厢升降装置 11透过该变速机构 13连接于 配重件升降装置 12; —载重车厢 14, 透过一第一钢索 15的一端悬吊 于车厢升降装置 11 下方, 该载重车厢 14用以乘载一载重物(图中未 示), 其中, 车厢升降装置 11通过运转以透过该第一钢索 15升降载重 车厢 14; 一第二配重件 18, 其透过该第一钢索 15的另一端悬吊于车 厢升降装置 11下方, 其中, 该第二配重件 18与该载重车厢 14可位能 平衡; 一第一配重件 16, 其透过一第二钢索 17悬吊于配重件升降装置 12下方, 其中, 配重件升降装置 12通过运转以透过该第二钢索 17升 降该第一配重件 16; 其中, 变速机构 13改变车厢升降装置 11与配重 件升降装置 12间的相对转速, 以进行该载重车厢 14所乘载的载重物 与该第一配重件 16间的位能平衡, 此外, 以本实施例而言, 该配重件 升降装置 12为一卷盘, 该第二钢索 17盘卷于该卷盘, 该车厢升降装 置 11为一滑轮组, 该第一钢索 15悬挂于该滑轮组, 使该载重车厢 14 与悬吊于该第一钢索 15另一端的一第二配重件 18成为位能平衡的升 降系统; 一重量感测单元 19, 该重量感测单元 19耦接于该载重车厢 14以测量该载重物的重量 (本图式此处的 「耦接」 仅为示意); 一控制 单元 19a, 该控制单元 19a分别耦接于该重量感测单元 19与该变速机 构 13 (本图式此处的 「耦接」 仅为示意), 其接收来自该重量感测单元 19所测量该载重物的重量,进而控制变速机构 13改变该车厢升降装置 11与该配重件升降装置 12间的相对转速; 一驱动马达 19b, 其耦接该 车厢升降装置 11与该配重件升降装置 12以提供进行升降功能的动力, 本图式该驱动马达 1% 的位置也可设置于他处; 以及一配重件行程调 整装置 19c, 当该配重件行程调整装置 19c测得该第一配重件 16与该 载重车厢 14的相对高度差异超过预定的范围值时, 配重件行程调整装 置 19c透过离合器 131使配重件升降装置 12脱离车厢升降装置 11的 连结, 以个别的动力使配重件升降装置 12透过该第二钢索 17改变该 第一配重件 16的高度以符合所述预定的范围值。 此外, 如图 1所示, 第一钢索 15的二端分别吊挂载重车厢 14与第二配重件 18, 且第一钢 索 15利用为滑轮组的车厢升降装置 11使得第一钢索 15不会有如现有 技术所述的钢索互相干涉的现象。 当然, 卷绕于配重件升降装置 12上 的第二钢索 17还是会有钢索互相干扰的现象, 但因本发明双配重的设 计, 所以虽有干扰, 但因为是发生在第一配重件 16的第二钢索 17上, 而非第二配重件 18的第一钢索 15上, 其不舒适的感较不会直接如现 有技术般传递到乘坐的乘客。
本发明提出的双配重的设计将会降低更多的机械能, 详细说明将 如以下所述。
双配重位能平衡功能的升降系统:
请再参考图 1, 将配重分为第二配重件 18为 及第一配重件 16 为 ,
令 mw2 = mc
其中" ^负责平衡载重车厢 14空重^, "^负责平衡负载 。 双配重升降系统结构与单一配重升降系统并不完全相同, 不同处 在于将单配重升降系统中的载重车厢 14的卷盘改为滑轮, 即车厢升降 装置 11, 并以第一钢索 15连结载重车厢 14及第二配重件 18, 而车厢 升降装置 11则与变速机构 13连结。
因此(1)式可以改为
1 2 1 2
U (mc + ml )VC + (mc + ml )ght
Figure imgf000009_0001
其中 :第一配重件 16速度
:第一配重件 16移动距离
2 :第二配重件 18质量
y- :第二配重件 18速度
第二配重件 18移动距离
因为第一钢索 15连结载重车厢 14及第二配重件 18, 无论有无负 荷, 第二配重件 18速度及移动距离皆为下式:
Figure imgf000010_0001
将 (8)式中位能部分 mi ghc =
既 得
Figure imgf000010_0002
由(4)式可知, 只要测得^:即可得到 , 此时控制单元 19a只要 控制变速机构 13, 使得载重车厢 14及第一配重件 16个别卷盘 1 1、 12 产生 mwl的转速比,就可以使得载重车厢 14及第一配重件 16得到 hc 的 距离比, 进而使得 (8)式中得位能平衡为零。 空车 (无负荷) 时 = Q, 因此第一配重件 16不移动^ :。,1^ :。, 即变速机构切换为空速, 仅 第二配重件 18移动。
因此(8)式可以改写为
1 1 1
U - (fnc + m! )VC 2 + - mwlV^ + - mw2V^
( 10) 配重件行程调整机制:
不论是单一配重 (如图 2所示)或是双配重 (如图 1所示)位能平衡 功能的升降系统, 在升降时, 皆会遇到配重件端高度的问题, 因为配 重能够上下运动的高度有限。 以双配重升降系统为例, 当载重车厢 14 满载上升而且载重车厢 14空车下降发生率频繁时, 此时配重件端, 即 第一配重件 16下降的高度会持续大, 最终会发生配重件端第一配重件 16高度太低, 无法再提供适当的高度, 进而无法使载重车厢 14上升。 因此当载重车厢 14上升时, 若是经由重量感测单元 19测知重量输入 控制单元 19a计算后, 得知第一配重件 16无足够下降的高度时, 计算 机会进行 "配重件行程调整机制" , 也就是借由控制单元 19a控制变 速机构 13, 将载重车厢 14暂停, 并且使第一配重件 16上升至适当高 度, 如此可以使得升降系统继续运动。 相对的, 若是载重车厢 14满载 下降而且载重车厢 14空车上升发生率频繁时, 此时配重件端第一配重 件 16上升的高度会持续大, 最终会发生配重件端第一配重件 16高度 太高,无法再提供适当的高度,使载重车厢 14下降,这时控制单元 19a 会进行 "配重件行程调整机制" , 也就是借由控制单元 19a控制变速 机构 13, 将载重车厢 14暂停, 并且使配重件端第一配重件 16下降至 适当高度, 如此可以使得升降系统继续运动。 单配重升降系统原理也 相同, 不过, 如图 2所示, "配重件行程调整机制"仅需要调整配重 件 30a的高度即可。
配重质量的选择:
双配重位能平衡功能的升降系统配重质量的选择:
请参考图 1,第二配重件 18与空载重车厢 14的质量相同, 是固定 的, 因此只需选择第一配重件 16的质量。 双配重位能平衡功能的升降 系统的 "配重件行程调整机制"仅需要调整第一配重件 16 的高度即 可。 同样若是配重质量选择是满载时质量的二倍, 则可以满足上述情 形连续发生二次; 若是配重质量选择是满载时质量的三倍, 则可以满 足上述情形连续发生三次。 当然也可以选择四倍、 五倍或是更多, 则 "配重件行程调整机制 "激活的机会会愈少。 此时与单一配重升降系 统的配重相比较时发现, 双配重升降系统的第一配重件 16比单一配重 升降系统的配重要小许多, 因为单一配重升降系统的配重基准是满载 时的质量, 但是双配重升降系统的配重基准是满载时负载的质量, 因 此双配重升降系统的第一配重件 16比单一配重升降系统的配重自然要 小许多。 以载重车厢 14空重为 600公斤, 满载时为 1400公斤 (负载 为 800公斤) 为例, 同样配重选择 3倍时, 单一配重升降系统的配重 为 1400 X 3=4200 公斤, 双配重升降系统的第一配重件 16 为 800 X 3=2400公斤, 此时, 第二配重件 18的配重是 600公斤, 合计为 3000公斤。
于是, 可以了解, 双配重升降系统的第一配重件 16比单一配重升 降系统的配重要小许多。
变速机构的选择: 请参考以下表一至表四, 分别是双配重 (可切换为空速) 在三段 变速的变速机构下、 五段变速的变速机构下、 无段变速的变速机构下 及一般型式的各种机械能与相关数据数据表。 简言的, 变速机构 13可 以选择 2速、 3速、 4速、 5速…甚至无段变速。 双配重的情形下且选 择无段变速时, 可以满足任何比例的双配重^比, 因此可以以最少的 机械能进行升降系统运动。相反地, 若选择选择 2速、 3速、 4速…等, 则无法完全满足任何比例的双配重 ^比, 仅能使变速机构 13(如图 1 所示)提供最接近的速度比进行升降系统运动。 以双配重升降系统为 例, 请参考表一, 选择具有各种数值的第二列讨论, 该列的各数值均 有一底线, 以利辨识。先探讨载重车厢 14加载重的区块,若以行 (row) 与列(column)的观念配合坐标的标示, 该第二列的最左边的第一列的 状况标示 "down"是车厢往下移动的意, 且以坐标(0, -2)表示, 而标 示 "moving case"字样的字段是以坐标(0, 0)表示, 为一原点位置; 载重车厢 14加载重(car+load)的重量是 600.0+0.0公斤, 显示于坐标 (1,-2), 代表车厢往下移动, 且没有载人或货物; 载重车厢 14往下移 动速度是 lm/s, 负值因为示往下移动, 显示于坐标(2, -2); 载重车厢 14往下移动距离是 30m, 负值因为示往下移动, 显示于坐标(3, -2); 动能则是 300 joul (焦耳),显示于坐标 (4, -2);位能则是 180,000joul, 负值因为示往下移动, 显示于坐标 (5, -2); 再探讨第二配重件 18的区 块,载重车厢 14与第二配重件 18的速度比为 1:1,显示于坐标(6, -2); 第二配重件 18的重量为 600kg,为配合载重车厢 14重量的 600kg加上 所搭配的重量 0kg, 显示于坐标(7, -2); 第二配重件 18的上升速度为 1 m/s, 显示于坐标(8, -2); 第二配重件 18的移动距离是 30 m, 显示 于坐标(9, -2) ; 动能为 300 joul, 显示于坐标(10, -2); 位能则为 180,000 joul, 显示于坐标(11, -2); 再者, 探讨第一配重件 16, 载重 车厢 14与第一配重件 16的速度比为 1:0, 显示于坐标(12, -2); 第一 配重件 16的重量为 800kg, 显示于坐标(13, -2); 第一配重件 16的上 升速度为 0 m/s, 显示于坐标(14, -2); 第一配重件 16的移动距离是 0 m, 显示于坐标(15, -2); 动能为 0 joul, 显示于坐标(16, -2); 位能则 为 0 joul , 显示于坐标(17, -2) ; 此外, 探讨图 1的升降系统的区块, 对载重车厢 14加载重的区块与第一配重件 16的区块的相关数值进行 物理配合后的显示, 而此次升降系统 1共花了动能 600 joul , 显示于 坐标(18, -2), 位能则是 0 joul , 显示于坐标(19, -2), 所以总能共消 耗 600 joul , 显示于坐标(20, -2), 因此, 本次的升与降的动作必须提 供 600 joul, 显示于坐标(21, -2)。 依此类推, 在表一所示的双配重件 的三段变速的变速机构下总共需要提供 86, 666. 8 joul。表二所示的双 配重件的五段变速的变速机构下总共需要提供 54, 736. 0 joul。表三的 双配重件的无段变速的变速机构下总共需要提供 9, 500 joul。 表四的 一般型式总共需要提供 366, 000 joul。于是,双配重件的三段变速的变 速机构可节省约 76%的机械能, 是由 [1- (86, 666/366, 000) =0. 76321] 得到。 双配重件的五段变速的变速机构可节省约 85%的机械能, 是由
[ 1- (54, 736/366, 000) -0. 85045]得到。 双配重件的无段变速的变速机 构可节省约 97%的机械能, 是由 [ 1- (9, 500/366, 000) =0. 97404]得到。
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000015_0001
Figure imgf000015_0002
*ra « ft
因此, 借由本发明的升降系统, 特别是采用双配重的升降系统确 实是可以大大地减少机械能。 因为, 借由变速机构 13的速度调节, 使 得第一配重件 16得以调节所需要的机械能, 再借由第二配重件 18得 以弥补若第一配重件 16在调节时有所不足的处。 所以, 借由表一至表 四所示的双配重显示的数值资料, 可以确认特别是采用双配重升降系 统的节省机械能效果非常地好。
借由以上较佳具体实施例的详述, 希望能更加清楚描述本发明的 特征与精神, 而并非以上述所揭露的较佳具体实施例来对本发明的范 畴加以限制。 相反地, 其目的是希望能涵盖各种改变及具相等性的安 排于本发明所欲申请的权利要求范畴内。

Claims

权利要求书:
1.一种升降系统, 用以于一主体中进行升降功能, 该升降系统包 含:
一车厢升降装置, 其固定设置于该主体上端;
一配重件升降装置, 其对应该车厢升降装置设置于该主体上端; 一变速机构, 其用以改变该车厢升降装置与该配重件升降装置间 的相对转速, 其中该车厢升降装置透过该变速机构连接该配重件升降 装置;
一载重车厢, 其透过一第一钢索的一端悬吊于该车厢升降装置下 方, 该载重车厢用以乘载一载重物, 其中, 该车厢升降装置运转以透 过该第一钢索升降该载重车厢;
一第二配重件, 其透过该第一钢索的另一端悬吊于该车厢升降装 置下方, 其中, 该第二配重件与该载重车厢可位能平衡; 以及
一第一配重件, 其透过一第二钢索悬吊于该配重件升降装置下方, 其中, 该配重件升降装置运转以透过该第二钢索升降该第一配重件; 其中, 该变速机构改变该车厢升降装置与该配重件升降装置间的 相对转速, 以进行该载重车厢所乘载的载重物与该第一配重件间的位 能平衡。
2.根据权利要求 1 所述的升降系统, 其特征在于, 该配重件升降 装置为一卷盘, 该第二钢索盘卷于该卷盘, 该车厢升降装置为一滑轮 组, 该第一钢索悬挂于该滑轮组, 使该载重车厢与该第二配重件成为 位能平衡的升降系统。
3.根据权利要求 1 所述的升降系统, 其特征在于, 该升降系统更 包含:
一重量感测单元, 该重量感测单元耦接于该载重车厢以测量该载 重物的重量; 以及
一控制单元, 该控制单元分别耦接于该重量感测单元与该变速机 构, 其接收来自该重量感测单元所测量该载重物的重量, 进而控制变 速机构改变该车厢升降装置与该配重件升降装置间的相对转速。
4.根据权利要求 1 所述的升降系统, 其特征在于, 该升降系统更 包含一驱动马达, 其耦接该车厢升降装置与该配重件升降装置以提供 进行升降功能的动力。
5.根据权利要求 1 所述的升降系统, 其特征在于, 该变速机构为 无段变速的变速机构。
6.根据权利要求 1 所述的升降系统, 其特征在于, 该变速机构为 一齿轮变速箱。
7.根据权利要求 1 所述的升降系统, 其特征在于, 该变速机构更 包含一离合器与一减速机构。
8.根据权利要求 7所述的升降系统, 其特征在于, 该系统更包含 一配重件行程调整装置, 当该配重件行程调整装置测得该第一配重件 与该载重车厢的相对高度差异超过预定的范围值时, 该配重件行程调 整装置透过该离合器使该配重件升降装置脱离该车厢升降装置的连 结, 以个别的动力使该配重件升降装置透过该第二钢索改变该第一配 重件的高度以符合所述预定的范围值。
PCT/CN2012/076498 2012-06-06 2012-06-06 升降系统 WO2013181799A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076498 WO2013181799A1 (zh) 2012-06-06 2012-06-06 升降系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076498 WO2013181799A1 (zh) 2012-06-06 2012-06-06 升降系统

Publications (1)

Publication Number Publication Date
WO2013181799A1 true WO2013181799A1 (zh) 2013-12-12

Family

ID=49711274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076498 WO2013181799A1 (zh) 2012-06-06 2012-06-06 升降系统

Country Status (1)

Country Link
WO (1) WO2013181799A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110271939A (zh) * 2019-06-27 2019-09-24 白维 伺服配重周期往返动态客流节能通用升降及兼备遇险逃生功能客梯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2048853U (zh) * 1989-04-08 1989-12-06 万西澄 节能电梯
JP2004224489A (ja) * 2003-01-21 2004-08-12 Yasuo Kita 重力を利用した液圧式昇降駆動システム
US20050006181A1 (en) * 2003-06-30 2005-01-13 Kwan-Chul Lee Gravity potential powered elevator
CN101044085A (zh) * 2004-11-25 2007-09-26 张涥佶 电梯
TW201200456A (en) * 2010-06-23 2012-01-01 Univ Far East Traction elevator with adjustable travel rate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2048853U (zh) * 1989-04-08 1989-12-06 万西澄 节能电梯
JP2004224489A (ja) * 2003-01-21 2004-08-12 Yasuo Kita 重力を利用した液圧式昇降駆動システム
US20050006181A1 (en) * 2003-06-30 2005-01-13 Kwan-Chul Lee Gravity potential powered elevator
CN101044085A (zh) * 2004-11-25 2007-09-26 张涥佶 电梯
TW201200456A (en) * 2010-06-23 2012-01-01 Univ Far East Traction elevator with adjustable travel rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110271939A (zh) * 2019-06-27 2019-09-24 白维 伺服配重周期往返动态客流节能通用升降及兼备遇险逃生功能客梯

Similar Documents

Publication Publication Date Title
JP2008521726A (ja) エレベーター
TWI339185B (en) Elevator (2)
CN102627205B (zh) 采用副对重的电梯轿厢与对重自动平衡节能装置与控制系统
JP6390491B2 (ja) 運搬台車
EP1076033B1 (en) Crane apparatus
CN105110140B (zh) 一种荷载变化自适应的钢丝绳牵引提升系统
WO2013181799A1 (zh) 升降系统
CN203845627U (zh) 重物储能自驱动电梯
JP2011136796A (ja) エレベータ装置
JP2006168978A (ja) エレベータシステム
CN101549819A (zh) 一种节能电梯对重平衡的方法
WO2012124067A1 (ja) ロープ式の間隔調整装置及びエレベーターの制御装置
CN106938828B (zh) 吊机及其起吊机构
TW201348115A (zh) 升降系統
CN106335828A (zh) 一种无配重电梯及其专用变压器
JP2002145544A (ja) エレベータ駆動制御装置
JP2005187156A (ja) エレベーター
CN104418212B (zh) 电梯
CN103031972A (zh) 自动控制对重重量的立体车库曳引系统
JP2639556B2 (ja) 立体駐車装置のキャリッジ昇降装置
CN202529666U (zh) 采用副对重的电梯轿厢与对重自动平衡节能装置
TW201420480A (zh) 單配重升降系統
WO2014100914A1 (zh) 升降系统
CN103068715B (zh) 互连吊车的控制
CN105236226A (zh) 对重与轿厢自动平衡节能电梯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878456

Country of ref document: EP

Kind code of ref document: A1