WO2013178853A2 - Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state - Google Patents

Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state Download PDF

Info

Publication number
WO2013178853A2
WO2013178853A2 PCT/ES2013/070341 ES2013070341W WO2013178853A2 WO 2013178853 A2 WO2013178853 A2 WO 2013178853A2 ES 2013070341 W ES2013070341 W ES 2013070341W WO 2013178853 A2 WO2013178853 A2 WO 2013178853A2
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
propeller
edge
profile
watercraft
Prior art date
Application number
PCT/ES2013/070341
Other languages
Spanish (es)
French (fr)
Other versions
WO2013178853A3 (en
Inventor
Juan José ROMERO VÁZQUEZ
Original Assignee
Romero Vazquez Juan Jose
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201200572A external-priority patent/ES2385994B2/en
Application filed by Romero Vazquez Juan Jose filed Critical Romero Vazquez Juan Jose
Publication of WO2013178853A2 publication Critical patent/WO2013178853A2/en
Publication of WO2013178853A3 publication Critical patent/WO2013178853A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type

Definitions

  • the invention relates to a fixed symmetrical accelerator nozzle for watercraft in free navigation condition, forming part of the propulsion system of floating or underwater watercraft.
  • Free navigation condition when sailing with exclusively indoor cargo; in this condition the load index C T has a value between 1.5 and 3 in cruising speed at 80% of the nominal power.
  • Trawling or shooting navigation condition when sailing by pulling a fishing net or towing to another ship; in this case the speed of the ship is very small in relation to the thrust or shot of the propulsive system constituted by an open propeller or by a nozzle propeller, it is said that the propulsive system is very loaded, the load index C T is by above value 4; Only fishing trawlers and tugboats navigate in this condition when they are doing their specific job.
  • Propeller thrust coefficient ⁇ T p / T, where T p is the thrust exerted by the propeller only and T the thrust exerted by the propeller-nozzle assembly. In the open propeller (without nozzle) it is worth 1, in accelerating nozzles less than 1 and in decelerating nozzles more than 1.
  • a liquid vein when a liquid is driven by a propeller, in the case at hand, inside the same liquid, differentiating itself from the rest of the same liquid that surrounds the vein by its kinematic characteristics, both downstream of the propeller over everything, like upstream of the propeller.
  • a naval propeller generates, in a certain direction, an effective wake speed downstream with axial, tangential and radial components.
  • the axial component is the most important in terms of module.
  • Angle of attack of a profile is the one that forms the line that contains the rope with the general direction of the fluid that falls on said profile.
  • Codaste continuation of the keel of the watercraft by stern, both in floating ships and in submarine ships.
  • Ae refers to the total surface of the blades and Ao refers to the area of the scanning disc.
  • the nozzle ⁇ 9 ⁇ "developed by" MARIN “(" Maritime Research Institute Netherlands ”) is used in the 1960s, the nozzle" HR “commercialized by the company” Wártsilá “in the 1990s, and the nozzle” Rice speed "marketed by the" Rice Group "company of Mexico in the 1990s; in all of them the L / D ratio is very about 0.50; the line containing the rope of each profile intersects the axis of symmetry of the nozzle downstream of it; the difference between the outer radius of the nozzle and the inner radius is approximately 0.10D in the three nozzles cited; the outer surface is not cylindrical in any of them.
  • the rounded leading edge has a radius of curvature in profile of 0.0141 D for ⁇ 9 ⁇ "and 0.0216D for” HR ";
  • the sweeping plane from the center of the blade tips of the propeller perpendicular to the axis of symmetry of the nozzle is at the same distance from the entrance edge of the nozzle as from the exit edge of the nozzle; in profile the line tangent to the convergent convex interior surface at 0.046L downstream of the inlet edge it forms an angle with the axis of symmetry of the nozzle greater than 34 e at the "HR” and "Rice speed” nozzles and greater than 40 e at the nozzle "19A”.
  • the nozzles that are currently used produce a lot of resistance (drag) compared to the power used especially when navigating with C T load indices lower than the value 3, in the free navigation condition.
  • JP2006306304 A priority 04/28/2005, published 09/11/2006.
  • JP58085792 (A) priority 11/16/1981, published on 05/23/1983.
  • the technical advantage provided by this invention lies in reducing axial losses, greatly reducing the nozzle drag, and significantly increasing the lift coefficient C L with the consequent acceleration of water in the plane of sweeping the propeller, all which combined contributes to a significant increase in efficiency of the propulsive system.
  • the invention relates to a symmetrical fixed accelerator nozzle for watercraft in free navigation condition according to claim 1.
  • Preferred embodiments of the nozzle are defined in the dependent claims.
  • the solution to the technical problem raised above consists in the use of a fixed symmetric accelerator nozzle for watercraft in free navigation condition, which comprises, in the sense of general water circulation, first a converging convex interior surface, then a cylindrical interior surface and Finally, a divergent convex interior surface, with a single nozzle for each propeller.
  • the difference between the outer radius of the nozzle and the inner radius of the nozzle is comprised between 0.050D and 0.076D, where D is the inside diameter of the nozzle, to considerably reduce the nozzle drag, as for load coefficients below the value 3 the influence of the suction of the propeller does not reach a greater radial distance. Only with these indicated characteristics of the nozzle the technical problem raised is solved.
  • the line containing the nozzle profile cord which runs from the front end of the inlet edge to the rear end of the outlet edge, forms an angle with the axis of symmetry of the nozzle, so that they intersect at a point upstream of the nozzle (to increase the lift coefficient C L with respect to the current nozzles at which the crossing occurs downstream);
  • the outer surface of the nozzle is cylindrical along its entire axial length from the leading inlet edge to the trailing edge of the water in accordance with the general direction of water circulation (to avoid detachment of the boundary layer in this area and therefore the turbulence);
  • the leading edge, with circumference as a generatrix of the toroidal surface has a radius of curvature in profile, of said circumference, between 0.01019D and 0.004D (so that the penetration of the nozzle in the fluid causes less resistance);
  • the scanning plane of the center of the propeller blade tips, perpendicular to the axis of symmetry of the nozzle, is closer to the inlet edge
  • the difference between the outer radius of the nozzle and the inner radius of the nozzle is 0.063D;
  • the L / D ratio is 0.4970;
  • the inlet edge of the nozzle has a radius of curvature in profile of 0.01019D;
  • the divergent convex inner surface has the downstream end portion having a very pronounced divergence of more than 50 e with respect to the axis of symmetry of the nozzle.
  • the L / D ratio is between 0.40 and 0.60; the converging inner surface is joined to the outer surface by means of a toroidal surface, with circumference as a generatrix, forming the inlet edge of water in the nozzle, and the divergent inner surface and the outer surface of the nozzle coincide in a living edge (not rounded), forming the exit edge of the water from the nozzle, the profile of the nozzle being exactly the same in the 360 e of coverage.
  • This fixed symmetric accelerator nozzle for watercraft in free navigation condition is part of a floating or underwater watercraft, with an engine that is attached and imparts turning movement to the propeller shaft of the propulsion system constituted by the propeller and said nozzle.
  • the nozzle with all these characteristics acts together with the propeller (influence or mutual interaction), increasing the performance of the propeller system, compared to those currently used, which are naturally the most efficient to date.
  • This symmetrical nozzle having a profile with greater peripheral length inside than outside, from the leading edge to the trailing edge, is a water speed accelerating nozzle inside the nozzle; decelerating nozzles such as the "33" nozzle of "MARIN” have a profile with greater outer peripheral length and are only used on military ships to reduce cavitation and noise, especially if lower performance is obtained even than with an open propeller, in order to make detection more difficult; the line that contains the rope of the profile that goes from the center of the rounded anterior edge to the living edge of the trailing edge, intersects with the axis of symmetry of the nozzle upstream of it, thereby presenting a greater angle of attack with respect to the general direction of water entering to the nozzle (which is always convergent even with low load indexes C T ) the lift coefficient C L is greater and therefore the acceleration caused by this concept of the nozzle to the water that it goes through it; as is well known to elder higher efficiency of a nozzle, and as it is designed for load indexes C T
  • the thrust coefficient of the propeller ⁇ is lower for the same speed of the spacecraft and therefore this increases efficiency; in the decelerating nozzles, the thrust coefficient of the propeller ⁇ is greater than the unit and therefore decreases the efficiency of the propeller-nozzle propulsion system as a whole.
  • the notable minor difference between the outer radius of the nozzle and the inner radius causes a minimum drag for load indexes of value 3 or lower.
  • Axial losses in the effective wake are reduced, since the nozzle, having the trailing edge with the maximum radius, induces the liquid vein that passes through the interior of the nozzle to reach said maximum radius downstream to join with the water coming from the cylindrical outer surface, with which increasing the diameter of the liquid vein increases the static pressure in this posterior area which is transmitted to the propeller-nozzle system as an increase in thrust and most importantly decreases the speed difference of the liquid vein downstream of the nozzle with respect to the speed of the surrounding water, whereby axial losses due to friction and turbulence in the effective wake considerably decrease.
  • the final truncation of the nozzle with a divergence greater than 50 e implies the detachment of the boundary layer in a plane very close to the plane of the trailing edge, where it is profitable from the point of view of efficiency, since the reverse flow in the wall it is scarce and a free expansion of the liquid vein is allowed until reaching the peripheral current from the cylindrical outer surface of the nozzle to join both downstream; lengthening the nozzle would lead to greater drag by friction.
  • This proposed nozzle has the advantage of increasing the propulsive performance of the propeller-nozzle assembly and, therefore, decreasing fuel consumption in the same proportion, in all types of watercraft in free navigation condition up to a cruising speed exceeding 20 knots, with respect to the propulsive systems that are currently used; all semiplaneadoras and glider ships are left out where both the open propeller and the water jet systems are more efficient.
  • the invention also relates to a floating or underwater watercraft, in free navigation condition, comprising a propulsion system comprising a propeller with a shaft attached to a motor to impart rotation movement to said shaft, where said propulsion system It also includes a fixed symmetrical accelerator nozzle as defined in the foregoing.
  • Figure 1 is a schematic representation in axial section of the nozzle.
  • Figure 2 is a schematic representation of the profile of the nozzle with representation of the rope and other details.
  • Figure 3 is an enlarged detail of the front part of the nozzle profile.
  • Figure 4 is a schematic representation of the propeller assembly, nozzle and nozzle supports, seen from downstream.
  • Figure 5 is a schematic representation of the propulsion system of propeller and fixed nozzle with respect to the propeller, in vertical section of the nozzle by a plane containing the axis of rotation of the propeller; and in view the propeller is represented with the blades and the core (hub), the horn (rear support of the propeller shaft), the elbow, a nozzle holder and the rudder; forming part of a ship, so that the details of the set can be well appreciated.
  • Figure 1 shows the front part 1 of the nozzle, the central part 2 of the nozzle and the rear part 3 of the nozzle; the axial length A of the front part, the axial length B of the central part and the axial length C of the rear part; the nozzle 4, the inlet edge 5 of the water in the nozzle and the outlet edge 6 of the water of the nozzle, observing how the inner walls are convergent convexes in the direction of the flow in the anterior part, then straight and, by both, cylindrical the surface, and then convex divergent to the rear end.
  • Figure 2 shows the profile of the nozzle in which the rope 9 is represented by a line that goes from the front end of the entrance edge to the rear end of the exit edge; the scanning plane 10 of the center of the propeller blade tips perpendicular to the axis of symmetry of the nozzle, represented by a broken line, observing how the axial distance H of 0.4564L to the inlet edge is less than the axial distance E to the exit edge; the tangent line 11 to the profile is also represented by a point located at an axial distance F of 0.046L downstream of the inlet edge forming an angle to a line 12 parallel to the axis of symmetry of the nozzle of 26 °.
  • Figure 3 shows the current line G indicating the direction and general direction of the upstream fluid, immediately before entering the front part of the nozzle; part of the rope 9 and the angle ⁇ that form both directions are also observed, in the same plane that contains the axis of symmetry of the nozzle; and also the radius r of the circumference generated by the surface is observed propeller and fixed nozzle with respect to the propeller, in vertical section of the nozzle by a plane containing the axis of rotation of the propeller; and in view the propeller is represented with the blades and the core (hub), the horn (rear support of the propeller shaft), the elbow, a nozzle holder and the rudder; forming part of a ship, so that the details of the set can be well appreciated.
  • Figure 1 shows the front part 1 of the nozzle, the central part 2 of the nozzle and the rear part 3 of the nozzle; the axial length A of the front part, the axial length B of the central part and the axial length C of the rear part; the nozzle 4, the inlet edge 5 of the water in the nozzle and the outlet edge 6 of the water of the nozzle, observing how the inner walls are convergent convexes in the direction of the flow in the anterior part, then straight and, by both, cylindrical the surface, and then convex divergent to the rear end.
  • Figure 2 shows the profile of the nozzle in which the rope 9 is represented by a line that goes from the front end of the entrance edge to the rear end of the exit edge; the scanning plane 10 of the center of the propeller blade tips perpendicular to the axis of symmetry of the nozzle, represented by a broken line, observing how the axial distance H of 0.4564L to the inlet edge is less than the axial distance E to the exit edge; the tangent line 11 to the profile is also represented by a point located at an axial distance F of 0.046L downstream of the inlet edge forming an angle a with a line 12 parallel to the axis of symmetry of the nozzle of 26 e .
  • Figure 3 shows the current line G indicating the direction and general direction of the upstream fluid, immediately before entering the front part of the nozzle; part of the rope 9 and the angle ⁇ that form both directions are also observed, in the same plane that contains the axis of symmetry of the nozzle; and also the radius r of the circumference generated by the surface is observed 10 toroidal of the entrance edge, having as axis of rotation the axis of symmetry of the nozzle; said radius r of the circumference has a value of 0.01019D and naturally the leading edge of the complete nozzle has a toroidal surface.
  • Figure 4 shows the blades 14, the blade tips in the form of an arc coaxial to the axis of rotation, the direction of rotation of the blades indicated by arrow, the core (hub) of the propeller, and the supports 13 of the nozzle 4 joining this to the stern of the ship, not shown in this figure.
  • Figure 5 shows the nozzle 4, the propeller with its blades 14, the rudder 15, one of the two supports 13 of the nozzle, and the elbow 16 belonging to the vessel.
  • the core of the propeller (central part of the propeller) is attached to the shaft and this to the ship's engine.
  • the motor shaft passes through the interior of the horn that acts as a support at the stern end of the hull.
  • the rotating propeller causes less static pressure in front and greater static pressure behind, such pressures are also transmitted locally on the interior walls of the nozzle, whereby the nozzle pushes the vessel with the axial component, through the supports that connect it to the stern of the ship.
  • Both the propeller and the nozzle push the vessel, both forming the propulsion system.
  • the propulsion system is part of the ship.
  • the nozzle protects the propeller from most shocks with external elements and therefore from irreversible deterioration; and also of networks and cables that could temporarily disable it.
  • the length of the radius has the same value as the abscissa.
  • This invention has industrial application in the naval industry.

Abstract

The invention concerns a symmetrical fixed accelerating nozzle (4) for aquatic vessels in the free navigation state which comprises, in the general sense of circulation of the water, a convergent convex inner surface (1) , a cylindrical inner surface (2) ,and a divergent convex inner surface (3), with a single nozzle for each propeller. The invention is characterized in that the difference between the outer radius (Ro) of the nozzle and the inner radius (Ri) thereof is between 0.050 D and 0.076 D, D being the inner diameter of the nozzle. The invention also concerns a floating or submarine aquatic vessel in the free navigation state, comprising a symmetrical fixed accelerating nozzle of this type.

Description

TOBERA FIJA SIMÉTRICA ACELERADORA PARA NAVES ACUÁTICAS EN CONDICIÓN DE NAVEGACIÓN LIBRE  SYNTHETIC ACCELERATING FIXED NOZZLE FOR AQUATIC VESSELS IN FREE NAVIGATION CONDITION
Sector de la técnica Technical sector
La invención se refiere una tobera fija simétrica aceleradora para naves acuáticas en condición de navegación libre, formando parte del sistema de propulsión de naves acuáticas flotantes o submarinas.  The invention relates to a fixed symmetrical accelerator nozzle for watercraft in free navigation condition, forming part of the propulsion system of floating or underwater watercraft.
Estado de la técnica State of the art
Aclaración de conceptos técnicos:  Clarification of technical concepts:
El coeficiente de avance J = VA/ n DP, siendo VA la velocidad de avance del propulsor, n el número de revoluciones por segundo de la hélice y DP el diámetro de la hélice. The coefficient of advance J = V A / n D P, where V A the speed of advance of the propellant, n the number of revolutions per second of the propeller and D P the propeller diameter.
Coeficiente de tracción o empuje total Ktt = T / p n2 DP 4, siendo T la tracción o empuje total de la hélice y de la tobera juntas, y p la densidad del agua, Coefficient of traction or total thrust Ktt = T / pn 2 D P 4 , where T is the total traction or thrust of the propeller and the nozzle together, and p the density of water,
índice de carga CT= (T) / (½ P VA 2 % DP 2). load index C T = (T) / (½ PV A 2 % D P 2 ).
Condición de navegación libre: cuando se navega con carga exclusivamente interior; en esta condición el índice de carga CT tiene un valor comprendido entre 1.5 y 3 en velocidad de crucero al 80% de la potencia nominal. Free navigation condition: when sailing with exclusively indoor cargo; in this condition the load index C T has a value between 1.5 and 3 in cruising speed at 80% of the nominal power.
Condición de navegación en arrastre o tiro: cuando se navega tirando de una red de pesca o remolcando a otra nave; en este caso la velocidad de la nave es muy pequeña con relación al empuje o tiro del sistema propulsivo constituido por una hélice abierta o por una hélice en tobera, se dice que el sistema propulsivo está muy cargado, el índice de carga CT está por encima del valor 4; sólo navegan en esta condición los buques arrastreros de pesca y los remolcadores, cuando están realizando su trabajo específico. Trawling or shooting navigation condition: when sailing by pulling a fishing net or towing to another ship; in this case the speed of the ship is very small in relation to the thrust or shot of the propulsive system constituted by an open propeller or by a nozzle propeller, it is said that the propulsive system is very loaded, the load index C T is by above value 4; Only fishing trawlers and tugboats navigate in this condition when they are doing their specific job.
Coeficiente de empuje de la hélice τ = Tp/ T, siendo Tpel empuje ejercido por la hélice solamente y T el empuje ejercido por el conjunto hélice-tobera. En la hélice abierta (sin tobera) vale 1, en toberas aceleradoras menos de 1 y en toberas deceleradoras más de 1. Propeller thrust coefficient τ = T p / T, where T p is the thrust exerted by the propeller only and T the thrust exerted by the propeller-nozzle assembly. In the open propeller (without nozzle) it is worth 1, in accelerating nozzles less than 1 and in decelerating nozzles more than 1.
Se utilizan algunos coeficientes, con el factor D o L para indicar algunas distancias en función del diámetro interior de la tobera D o de la longitud axial de la tobera L. Al multiplicar el coeficiente por el valor concreto en cada caso de D o de L nos da la medida concreta.  Some coefficients are used, with the factor D or L to indicate some distances depending on the inside diameter of the nozzle D or the axial length of the nozzle L. By multiplying the coefficient by the specific value in each case of D or L It gives us the concrete measure.
En toberas la relación L/D, longitud axial de la tobera dividida por el diámetro interior de la tobera, es una referencia imprescindible. In nozzles the ratio L / D, axial length of the nozzle divided by the diameter inside the nozzle, it is an essential reference.
Se denomina vena líquida, cuando un líquido es impulsado por una hélice, en el caso que nos ocupa, en el interior del mismo líquido, diferenciándose del resto del mismo líquido que rodea la vena por sus características cinemáticas, tanto aguas abajo de la hélice sobre todo, como aguas arriba de la hélice.  It is called a liquid vein, when a liquid is driven by a propeller, in the case at hand, inside the same liquid, differentiating itself from the rest of the same liquid that surrounds the vein by its kinematic characteristics, both downstream of the propeller over everything, like upstream of the propeller.
En una nave acuática se denomina estela nominal en cualquier plano perpendicular a la longitud de la nave, a las características cinemáticas del agua en dichos planos alrededor de la nave, esto sucede cuando la nave es remolcada; y estela efectiva es la que se produce en autopropulsión cuando la hélice o hélices empujan a la nave; en este caso la diferencia más notable se presenta a partir del plano de la hélice aguas abajo, al generar la hélice una vena líquida claramente diferenciada por sus características cinemáticas del resto de características cinemáticas del agua que la rodea, sobre todo mayor velocidad, provocando muchísima turbulencia, por tanto mucho rozamiento y por lo tanto pérdida de rendimiento del sistema propulsivo.  In a watercraft it is called a nominal wake in any plane perpendicular to the length of the ship, to the kinematic characteristics of the water in said planes around the ship, this happens when the ship is towed; and effective wake is the one that takes place in self-propelled when the propeller or propellers push to the ship; in this case the most notable difference is presented from the plane of the downstream propeller, when the propeller generates a liquid vein clearly differentiated by its kinematic characteristics from the rest of the kinematic characteristics of the surrounding water, especially higher speed, causing a lot turbulence, therefore much friction and therefore loss of performance of the propulsive system.
Una hélice naval genera al girar en un determinado sentido, una velocidad de la estela efectiva aguas abajo con componentes axial, tangencial y radial. La componente axial es la más importante en cuanto a módulo.  A naval propeller generates, in a certain direction, an effective wake speed downstream with axial, tangential and radial components. The axial component is the most important in terms of module.
Ángulo de ataque de un perfil es el que forma la línea que contiene la cuerda con la dirección general del fluido que incide sobre dicho perfil.  Angle of attack of a profile is the one that forms the line that contains the rope with the general direction of the fluid that falls on said profile.
Cuanto mayor sea el ángulo de ataque de un perfil en este caso de tobera respecto a la dirección general de la corriente, mayor es el coeficiente de sustentación CL y por tanto la sustentación y la aceleración que induce en el interior de la tobera. The greater the angle of attack of a profile in this case of nozzle with respect to the general direction of the current, the greater the coefficient of lift C L and therefore the lift and acceleration that it induces inside the nozzle.
Codaste: continuación de la quilla de la nave acuática por popa, tanto en naves flotantes como en naves submarinas.  Codaste: continuation of the keel of the watercraft by stern, both in floating ships and in submarine ships.
Bocina: soporte del árbol de la hélice en el codaste.  Horn: support of the propeller tree in the codaste.
En la relación de áreas Ae/Ao, Ae se refiere a la superficie total de las palas y Ao se refiere al área del disco de barrido.  In the ratio of areas Ae / Ao, Ae refers to the total surface of the blades and Ao refers to the area of the scanning disc.
Actualmente para la propulsión de naves acuáticas en condición de navegación libre, se usa la tobera Ί 9Α" desarrollada por "MARIN" ("Maritime Research Institute Netherlands") en la década de 1960, la tobera "HR" comercializada por la empresa "Wártsilá" en la década de 1990, y la tobera "Rice speed" comercializada por el "Grupo Rice" empresa de Méjico en la década de 1990; en todas ellas la relación L/D está muy aproximadamente sobre 0.50; la línea que contiene la cuerda de cada perfil se cruza con el eje de simetría de la tobera aguas abajo de esta; la diferencia entre el radio exterior de la tobera y el radio interior está aproximadamente sobre 0.10D en las tres toberas citadas; la superficie exterior no es cilindrica en ninguna de ellas. At the moment for the propulsion of aquatic ships in condition of free navigation, the nozzle Ί 9Α "developed by" MARIN "(" Maritime Research Institute Netherlands ") is used in the 1960s, the nozzle" HR "commercialized by the company" Wártsilá "in the 1990s, and the nozzle" Rice speed "marketed by the" Rice Group "company of Mexico in the 1990s; in all of them the L / D ratio is very about 0.50; the line containing the rope of each profile intersects the axis of symmetry of the nozzle downstream of it; the difference between the outer radius of the nozzle and the inner radius is approximately 0.10D in the three nozzles cited; the outer surface is not cylindrical in any of them.
En el documento de patente ES2317799 (A1 ) presentado el 01 /08/2008, publicado el 16/04/2009, y concesión el 04/03/2010 se presenta un sistema de propulsión con tobera para naves en condición de navegación libre. El resto de toberas que se usan en la actualidad, aparte de las tres citadas anteriormente, son para buques arrastreros y remolcadores, como las toberas "37" y "38" desarrolladas por "MARIN"; "AHT" desarrollada por "MAN Diesel & Turbo"; otra desarrollada por Josip Gruzling, DE3840958 (A1 ) con fecha de presentación 06/02/1987 y fecha de publicación 07/06/1990, también publicada como US4789302 (A), comercializada por una empresa canadiense; y "Rice thrust". Los buques arrastreros utilizan tanto la condición de navegación libre para sus desplazamientos a los lugares de pesca como la condición de arrastre para su faena específica y es por este motivo que muchos utilizan la tobera "19A" cuando prevalece el consumo de combustible en desplazamiento, pues las toberas diseñadas específicamente para arrastre o tiro en la condición de navegación libre dan un rendimiento muy bajo; en condición de arrastre o tiro el coeficiente de avance J es muy bajo y el coeficiente de tracción total KTT es muy alto. Para buques militares se usan las toberas simétricas deceleradoras. In patent document ES2317799 (A1) filed on 01/08/2008, published on 04/16/2009, and concession on 04/03/2010 a propulsion system with nozzle for ships in free navigation condition is presented. The rest of the nozzles currently used, apart from the three mentioned above, are for trawlers and tugs, such as the "37" and "38" nozzles developed by "MARIN";"AHT" developed by "MAN Diesel &Turbo"; another developed by Josip Gruzling, DE3840958 (A1) with filing date 06/02/1987 and publication date 06/07/1990, also published as US4789302 (A), marketed by a Canadian company; and "Rice thrust." Trawlers use both the free navigation condition for their trips to the fishing sites and the drag condition for their specific task and it is for this reason that many use the nozzle "19A" when the consumption of fuel in displacement prevails, as nozzles specifically designed for dragging or pulling in the free navigation condition give very low performance; in drag or pull condition the feed coefficient J is very low and the total tensile coefficient K TT is very high. For military ships symmetrical decelerating nozzles are used.
En las toberas "19A" y "HR" para naves usadas actualmente en condición de navegación libre, el borde anterior redondeado tiene un radio de curvatura en perfil de 0.0141 D para Ί 9Α" y 0.0216D para "HR"; el plano de barrido del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la tobera está a la misma distancia del borde de entrada de la tobera que del borde de salida de la tobera; en perfil la línea tangente a la superficie interior convexa convergente a 0.046L aguas abajo del borde de entrada forma un ángulo con el eje de simetría de la tobera superior a 34e en las toberas "HR" y "Rice speed" y superior a 40e en la tobera "19A". In the nozzles "19A" and "HR" for ships currently used in free navigation, the rounded leading edge has a radius of curvature in profile of 0.0141 D for Ί 9Α "and 0.0216D for" HR "; the sweeping plane from the center of the blade tips of the propeller perpendicular to the axis of symmetry of the nozzle is at the same distance from the entrance edge of the nozzle as from the exit edge of the nozzle; in profile the line tangent to the convergent convex interior surface at 0.046L downstream of the inlet edge it forms an angle with the axis of symmetry of the nozzle greater than 34 e at the "HR" and "Rice speed" nozzles and greater than 40 e at the nozzle "19A".
Las toberas que se usan actualmente producen mucha resistencia (arrastre) en comparación con la potencia empleada sobre todo cuando se navega con índices de carga CT inferiores al valor 3, en la condición de navegación libre. The nozzles that are currently used produce a lot of resistance (drag) compared to the power used especially when navigating with C T load indices lower than the value 3, in the free navigation condition.
Referencias documentales:  Documentary References:
JP2006306304 A prioridad 28/04/2005, publicada 09/11 /2006.  JP2006306304 A priority 04/28/2005, published 09/11/2006.
US4832633 A prioridad 30/11 /1977, publicada 23/05/1989. US4832633 A priority 11/30/1977, published 5/23/1989.
WO0027697 A1 prioridad 09/11/1998, publicada 18/05/2000. WO0027697 A1 priority 09/11/1998, published 05/18/2000.
US5799394 (A) prioridad 05/02/1996, publicada el 01/09/1998. US5799394 (A) priority 05/02/1996, published 01/09/1998.
DE4325290 (A1 ) prioridad 28/07/1993, publicada el 02/02/1995. W08911998 (A1 ) prioridad 01 /06/1988, publicada el 14/12/1989. DE4325290 (A1) priority 07/28/1993, published 02/02/1995. W08911998 (A1) priority 01/06/1988, published on 12/14/1989.
JP58085792 (A) prioridad 16/11/1981 , publicada el 23/05/1983. JP58085792 (A) priority 11/16/1981, published on 05/23/1983.
JP52099597 (A) prioridad 17/02/1976, publicada el 20/08/1977. JP52099597 (A) priority 02/17/1976, published 08/20/1977.
US2139594 (A) prioridad 08/02/1936, publicada el 06/12/1938. US2139594 (A) priority 08/02/1936, published on 06/12/1938.
El problema técnico que existe actualmente es el relativamente bajo rendimiento de los sistemas propulsivos para naves en condición de navegación libre con velocidad de crucero hasta un máximo de 18 nudos (que es el límite para las toberas actuales) por las pérdidas en la estela efectiva (llamadas pérdidas axiales), por las pérdidas de arrastre de la tobera y por el bajo coeficiente de sustentación CL que se obtiene con los perfiles actuales para índices de carga CT inferiores al valor 3. The technical problem that currently exists is the relatively low performance of propulsive systems for ships in free navigation condition with cruising speed up to a maximum of 18 knots (which is the limit for current nozzles) due to losses in the effective wake ( called axial losses), due to the drag losses of the nozzle and the low coefficient of support C L obtained with the current profiles for load indexes C T lower than the value 3.
El esfuerzo por conseguir mayor rendimiento en los sistemas propulsivos ha sido constante por parte de todos los investigadores y grupos de investigación tanto de empresas como de universidades, sobre todo a partir de la crisis del petróleo del año 1973 hasta la actualidad.  The effort to achieve greater performance in the propulsive systems has been constant by all researchers and research groups of both companies and universities, especially since the oil crisis of 1973 until today.
La ventaja técnica que aporta esta invención radica en disminuir las pérdidas axiales, disminuir mucho el arrastre de la tobera, e incrementar de forma importante el coeficiente de sustentación CLcon la consiguiente aceleración del agua en el plano de barrido de la hélice , todo lo cual combinado contribuye a un importante incremento de eficiencia del sistema propulsivo. The technical advantage provided by this invention lies in reducing axial losses, greatly reducing the nozzle drag, and significantly increasing the lift coefficient C L with the consequent acceleration of water in the plane of sweeping the propeller, all which combined contributes to a significant increase in efficiency of the propulsive system.
Explicación de la invención Explanation of the invention.
La invención se refiere a una tobera fija simétrica aceleradora para naves acuáticas en condición de navegación libre de acuerdo con la reivindicación 1 . Realizaciones preferidas de la tobera se definen en las reivindicaciones dependientes.  The invention relates to a symmetrical fixed accelerator nozzle for watercraft in free navigation condition according to claim 1. Preferred embodiments of the nozzle are defined in the dependent claims.
La solución al problema técnico planteado anteriormente consiste en el uso de una tobera fija simétrica aceleradora para naves acuáticas en condición de navegación libre, que comprende en el sentido de circulación general del agua, primero una superficie interior convexa convergente, después una superficie interior cilindrica y por último una superficie interior convexa divergente, con una sola tobera para cada hélice.  The solution to the technical problem raised above consists in the use of a fixed symmetric accelerator nozzle for watercraft in free navigation condition, which comprises, in the sense of general water circulation, first a converging convex interior surface, then a cylindrical interior surface and Finally, a divergent convex interior surface, with a single nozzle for each propeller.
De acuerdo con la invención, la diferencia entre el radio exterior de la tobera y el radio interior de la tobera está comprendida entre 0.050D y 0.076D, siendo D el diámetro interior de la tobera, para disminuir considerablemente el arrastre de la tobera, pues para coeficientes de carga inferiores al valor 3 la influencia de la succión de la hélice no alcanza mayor distancia radial. Únicamente con estas características señaladas de la tobera se resuelve el problema técnico planteado. According to the invention, the difference between the outer radius of the nozzle and the inner radius of the nozzle is comprised between 0.050D and 0.076D, where D is the inside diameter of the nozzle, to considerably reduce the nozzle drag, as for load coefficients below the value 3 the influence of the suction of the propeller does not reach a greater radial distance. Only with these indicated characteristics of the nozzle the technical problem raised is solved.
El resto de características indicadas a continuación como preferidas son prescindibles, pues la omisión estricta de alguna de ellas o de todas las características, implica poca variación en el rendimiento, pues se trata de características que con poca variación de forma del perfil de la tobera dejan de cumplirse.  The rest of the characteristics indicated below as preferred are expendable, since the strict omission of some of them or of all the characteristics implies little variation in the performance, since these are characteristics that with little variation of the shape of the nozzle profile leave to be fulfilled
De acuerdo con una realización preferida de la invención, la línea que contiene la cuerda del perfil de la tobera, que va desde el extremo anterior del borde de entrada hasta el extremo posterior del borde de salida, forma un ángulo con el eje de simetría de la tobera, de tal forma que se cruzan en un punto aguas arriba de la tobera (para aumentar el coeficiente de sustentación CL respecto a las toberas actuales en que el cruce se produce aguas abajo); la superficie exterior de la tobera es cilindrica en toda su longitud axial desde el borde de entrada anterior hasta el borde de salida posterior de acuerdo con el sentido general de circulación del agua (para evitar desprendimientos de la capa límite en esta zona y por tanto la turbulencia); el borde de entrada, con circunferencia como generatriz de la superficie toroidal, tiene un radio de curvatura en perfil, de dicha circunferencia, comprendido entre 0.01019D y 0.004D (para que la penetración de la tobera en el fluido origine menos resistencia); el plano de barrido del centro de las puntas de pala de la hélice, perpendicular al eje de simetría de la tobera, está más próximo al borde de entrada de la tobera que al borde de salida de la tobera (para que los efectos de succión de la hélice sean más notables en la superficie interior convergente lo cual se traduce en mayor empuje de la tobera); en el perfil de la tobera la línea tangente a la superficie interior convexa convergente por un punto a una distancia axial de 0.046L aguas abajo del borde de entrada, forma un ángulo con el eje de simetría de la tobera de entre 20e y 30e, siendo L la longitud axial del perfil de la tobera (como punto para definir una pendiente característica que tiene mucha influencia en la resistencia del perfil); y la longitud axial de la superficie divergente posterior es manifiestamente mayor que la longitud axial de la superficie convergente anterior entre un 15% y un 25% (para retrasar el punto de desprendimiento de la capa límite, al tener una divergencia menos pronunciada). According to a preferred embodiment of the invention, the line containing the nozzle profile cord, which runs from the front end of the inlet edge to the rear end of the outlet edge, forms an angle with the axis of symmetry of the nozzle, so that they intersect at a point upstream of the nozzle (to increase the lift coefficient C L with respect to the current nozzles at which the crossing occurs downstream); the outer surface of the nozzle is cylindrical along its entire axial length from the leading inlet edge to the trailing edge of the water in accordance with the general direction of water circulation (to avoid detachment of the boundary layer in this area and therefore the turbulence); the leading edge, with circumference as a generatrix of the toroidal surface, has a radius of curvature in profile, of said circumference, between 0.01019D and 0.004D (so that the penetration of the nozzle in the fluid causes less resistance); The scanning plane of the center of the propeller blade tips, perpendicular to the axis of symmetry of the nozzle, is closer to the inlet edge of the nozzle than to the outlet edge of the nozzle (so that the suction effects of the propeller are more noticeable on the convergent inner surface which results in greater thrust of the nozzle); in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the nozzle between 20 e and 30 e , where L is the axial length of the profile of the nozzle (as a point to define a characteristic slope that has a great influence on the strength of the profile); and the axial length of the posterior divergent surface is manifestly greater than the axial length of the anterior convergent surface between 15% and 25% (to delay the detachment point of the boundary layer, having a less pronounced divergence).
Más preferiblemente, la diferencia entre el radio exterior de la tobera y el radio interior de la tobera es de 0.063D; la relación L/D es de 0.4970; el borde de entrada de la tobera tiene un radio de curvatura en perfil de 0,01019D; el plano de barrido del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la tobera está situado a una distancia del borde de entrada de 0.4564L; y en el perfil de la tobera la línea tangente a la superficie interior convexa convergente por un punto a una distancia axial de 0.046L aguas abajo del borde de entrada, forma un ángulo con el eje de simetría de la tobera de 26e. More preferably, the difference between the outer radius of the nozzle and the inner radius of the nozzle is 0.063D; The L / D ratio is 0.4970; the inlet edge of the nozzle has a radius of curvature in profile of 0.01019D; the scanning plane of the center of the propeller blade tips perpendicular to the axis of symmetry of the nozzle it is located at a distance of the leading edge of 0.4564L; and in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the nozzle of 26 e .
De acuerdo con una realización preferida de la invención, la superficie interior convexa divergente tiene la parte final aguas abajo presentando una divergencia muy pronunciada de más de 50e respecto al eje de simetría de la tobera. According to a preferred embodiment of the invention, the divergent convex inner surface has the downstream end portion having a very pronounced divergence of more than 50 e with respect to the axis of symmetry of the nozzle.
De acuerdo con una realización preferida de la invención la relación L/D, está comprendida entre 0.40 y 0.60; la superficie interior convergente se une a la superficie exterior por medio de una superficie toroidal, con circunferencia como generatriz, formando el borde de entrada de agua en la tobera, y la superficie interior divergente y la superficie exterior de la tobera coinciden en una arista viva (no redondeada), formando el borde de salida del agua de la tobera, siendo el perfil de la tobera exactamente el mismo en los 360e de cobertura. According to a preferred embodiment of the invention, the L / D ratio is between 0.40 and 0.60; the converging inner surface is joined to the outer surface by means of a toroidal surface, with circumference as a generatrix, forming the inlet edge of water in the nozzle, and the divergent inner surface and the outer surface of the nozzle coincide in a living edge (not rounded), forming the exit edge of the water from the nozzle, the profile of the nozzle being exactly the same in the 360 e of coverage.
Esta tobera fija simétrica aceleradora para naves acuáticas en condición de navegación libre forma parte de una nave acuática flotante o submarina, con motor que está unido e imparte movimiento de giro al árbol de la hélice del sistema de propulsión constituido por la hélice y dicha tobera.  This fixed symmetric accelerator nozzle for watercraft in free navigation condition is part of a floating or underwater watercraft, with an engine that is attached and imparts turning movement to the propeller shaft of the propulsion system constituted by the propeller and said nozzle.
La tobera con el conjunto de estas características actúa junto con la hélice (influencia o interacción mutua), incrementando el rendimiento del sistema hélice- tobera, respecto a las que se usan actualmente, que naturalmente son las más eficientes hasta la fecha.  The nozzle with all these characteristics acts together with the propeller (influence or mutual interaction), increasing the performance of the propeller system, compared to those currently used, which are naturally the most efficient to date.
Esta tobera simétrica al tener un perfil con mayor longitud periférica interior que exterior, desde el borde de entrada al borde de salida, se trata de una tobera aceleradora de la velocidad del agua dentro de la tobera; las toberas deceleradoras como la tobera "33" de "MARIN" tienen un perfil con mayor longitud periférica exterior y sólo se usan en buques militares para disminuir la cavitación y el ruido sobre todo, aunque se obtiene menor rendimiento incluso que con una hélice abierta, con objeto de que sea más difícil su detección; la línea que contiene la cuerda del perfil que va desde el centro del borde anterior redondeado hasta la arista viva del borde de salida, se cruza con el eje de simetría de la tobera aguas arriba de esta, con lo cual al presentar mayor ángulo de ataque respecto a la dirección general de entrada de agua hacia la tobera (que siempre es convergente incluso con índices de carga CT bajos) el coeficiente de sustentación CL es mayor y por lo tanto la aceleración que provoca por este concepto la tobera al agua que la atraviesa; como es bien conocido a mayor aceleración mayor eficiencia de una tobera, y como está diseñada para índices de carga CT iguales o inferiores al valor 3 no se corre el riesgo de alcanzar valores del coeficiente de sustentación CL superiores a 1 .5 con entrada en pérdida; como se sabe a mayor índice de carga CT mayor es el ángulo que presenta la dirección general de entrada de agua hacia la tobera respecto al eje de simetría de la tobera, con lo cual para índices de carga, por ejemplo, de 4.5 y superiores el ángulo de ataque es positivo en toberas 9Α", "HR" y "Rice speed", para índices de carga inferiores en estas toberas referidas, aunque el ángulo de ataque sea negativo, sigue habiendo sustentación y por lo tanto aceleración del agua en el interior de la tobera, por tratarse de perfiles asimétricos. This symmetrical nozzle, having a profile with greater peripheral length inside than outside, from the leading edge to the trailing edge, is a water speed accelerating nozzle inside the nozzle; decelerating nozzles such as the "33" nozzle of "MARIN" have a profile with greater outer peripheral length and are only used on military ships to reduce cavitation and noise, especially if lower performance is obtained even than with an open propeller, in order to make detection more difficult; the line that contains the rope of the profile that goes from the center of the rounded anterior edge to the living edge of the trailing edge, intersects with the axis of symmetry of the nozzle upstream of it, thereby presenting a greater angle of attack with respect to the general direction of water entering to the nozzle (which is always convergent even with low load indexes C T ) the lift coefficient C L is greater and therefore the acceleration caused by this concept of the nozzle to the water that it goes through it; as is well known to elder higher efficiency of a nozzle, and as it is designed for load indexes C T equal to or less than value 3, there is no risk of reaching values of the lift coefficient C L greater than 1.5 with loss entry; As is known at a higher load index C T, the greater the angle of the general direction of water entering towards the nozzle with respect to the axis of symmetry of the nozzle, whereby for load indices, for example, 4.5 and higher the angle of attack is positive in nozzles 9Α "," HR "and" Rice speed ", for lower loading rates in these referred nozzles, although the angle of attack is negative, there is still lift and therefore water acceleration in the inside the nozzle, because they are asymmetric profiles.
Puesto que la aceleración ejercida por esta tobera es mayor, el coeficiente de empuje de la hélice τ es menor para la misma velocidad de la nave y por lo tanto esto hace que se incremente la eficiencia; en las toberas deceleradoras el coeficiente de empuje de la hélice τ es mayor que la unidad y por lo tanto disminuye la eficiencia del sistema propulsivo hélice-tobera en su conjunto. La notable menor diferencia entre el radio exterior de la tobera y el radio interior origina un arrastre mínimo para índices de carga de valor 3 o inferiores. Se disminuyen las pérdidas axiales en la estela efectiva, puesto que la tobera al tener el borde de salida en arista con el máximo radio, induce a la vena líquida que pasa por el interior de la tobera a alcanzar dicho radio máximo aguas abajo para unirse con el agua procedente de la superficie exterior cilindrica, con lo cual al aumentar el diámetro de la vena líquida aumenta la presión estática en esta zona posterior lo cual se transmite al sistema hélice-tobera como incremento de empuje y lo más importante disminuye la diferencia de velocidad de la vena líquida aguas abajo de la tobera respecto a la velocidad del agua que la rodea, por lo cual disminuyen considerablemente las pérdidas axiales por rozamiento y turbulencia en la estela efectiva. El truncamiento final de la tobera con una divergencia superior a 50e, implica el desprendimiento de la capa límite en un plano muy próximo al plano del borde de salida, donde resulta rentable desde el punto de vista de la eficiencia, ya que el flujo inverso en la pared es escaso y se permite una expansión libre de la vena líquida hasta alcanzar la corriente periférica procedente de la superficie exterior cilindrica de la tobera para unirse ambas, aguas abajo; alargar la tobera supondría mayor arrastre por fricción. De acuerdo con la observación del flujo en el túnel de cavitación, con modelo a escala de la tobera "HR" que se usa actualmente, el desprendimiento de la capa límite para valores del índice de carga comprendidos entre 3 y 1 .5, se produce en dicha tobera "HR" antes del truncamiento final; con la tobera propuesta, al presentar menor divergencia hasta la zona de truncamiento, por tener mayor longitud, se retrasa el punto de desprendimiento de la capa límite, lo cual favorece una mayor expansión libre de la vena líquida hasta unirse con la corriente periférica procedente de la superficie exterior cilindrica. Since the acceleration exerted by this nozzle is greater, the thrust coefficient of the propeller τ is lower for the same speed of the spacecraft and therefore this increases efficiency; in the decelerating nozzles, the thrust coefficient of the propeller τ is greater than the unit and therefore decreases the efficiency of the propeller-nozzle propulsion system as a whole. The notable minor difference between the outer radius of the nozzle and the inner radius causes a minimum drag for load indexes of value 3 or lower. Axial losses in the effective wake are reduced, since the nozzle, having the trailing edge with the maximum radius, induces the liquid vein that passes through the interior of the nozzle to reach said maximum radius downstream to join with the water coming from the cylindrical outer surface, with which increasing the diameter of the liquid vein increases the static pressure in this posterior area which is transmitted to the propeller-nozzle system as an increase in thrust and most importantly decreases the speed difference of the liquid vein downstream of the nozzle with respect to the speed of the surrounding water, whereby axial losses due to friction and turbulence in the effective wake considerably decrease. The final truncation of the nozzle with a divergence greater than 50 e , implies the detachment of the boundary layer in a plane very close to the plane of the trailing edge, where it is profitable from the point of view of efficiency, since the reverse flow in the wall it is scarce and a free expansion of the liquid vein is allowed until reaching the peripheral current from the cylindrical outer surface of the nozzle to join both downstream; lengthening the nozzle would lead to greater drag by friction. According to the observation of the flow in the cavitation tunnel, with a scale model of the "HR" nozzle that is currently used, the shedding of the boundary layer for values of the load index between 3 and 1 .5 occurs in said nozzle "HR" before the final truncation; with the nozzle proposed, since it presents less divergence to the truncation zone, due to its greater length, the detachment point of the boundary layer is delayed, which favors a greater free expansion of the liquid vein until it joins with the peripheral current from the outer surface cylindrical
Hasta la fecha no se ha construido ninguna tobera simétrica con una diferencia entre radio exterior y radio interior tan pequeña, pues se ha considerado que disminuyendo el área normal (proyección de la tobera sobre un plano perpendicular al eje de simetría) se reduciría su eficiencia.  To date, no symmetric nozzle has been constructed with a difference between the outer radius and the inner radius so small, since it has been considered that reducing the normal area (projection of the nozzle on a plane perpendicular to the axis of symmetry) would reduce its efficiency.
Esta tobera propuesta tiene la ventaja de incrementar el rendimiento propulsivo del conjunto hélice-tobera y, por tanto, disminuir en la misma proporción el consumo de combustible, en todo tipo de naves acuáticas en condición de navegación libre hasta una velocidad de crucero superior a 20 nudos, respecto a los sistemas propulsivos que se usan en la actualidad; quedan fuera todas las naves semiplaneadoras y planeadoras donde tanto la hélice abierta como los sistemas de chorro de agua son más eficientes.  This proposed nozzle has the advantage of increasing the propulsive performance of the propeller-nozzle assembly and, therefore, decreasing fuel consumption in the same proportion, in all types of watercraft in free navigation condition up to a cruising speed exceeding 20 knots, with respect to the propulsive systems that are currently used; all semiplaneadoras and glider ships are left out where both the open propeller and the water jet systems are more efficient.
La invención también se refiere a una nave acuática flotante o submarina, en condición de navegación libre, que comprende un sistema de propulsión que comprende una hélice con un árbol unido a un motor para impartir movimiento de giro a dicho árbol, donde dicho sistema de propulsión comprende además una tobera fija simétrica aceleradora según ha sido definida en lo anterior.  The invention also relates to a floating or underwater watercraft, in free navigation condition, comprising a propulsion system comprising a propeller with a shaft attached to a motor to impart rotation movement to said shaft, where said propulsion system It also includes a fixed symmetrical accelerator nozzle as defined in the foregoing.
Ventajas y características adicionales de la invención serán evidentes de la descripción detallada que sigue y serán particularmente señaladas en las reivindicaciones adjuntas. Descripción de los dibujos  Additional advantages and features of the invention will be apparent from the detailed description that follows and will be particularly noted in the appended claims. Description of the drawings
A continuación se pasa a describir una serie de dibujos que ayudan a comprender mejor la invención y que se presentan como ejemplo ilustrativo y no limitativo de esta.  A series of drawings that help to better understand the invention and which are presented as an illustrative and non-limiting example thereof are described below.
La figura 1 es una representación esquemática en corte axial de la tobera. La figura 2 es una representación esquemática del perfil de la tobera con representación de la cuerda y otros detalles.  Figure 1 is a schematic representation in axial section of the nozzle. Figure 2 is a schematic representation of the profile of the nozzle with representation of the rope and other details.
La figura 3 es un detalle ampliado de la parte anterior del perfil de la tobera. La figura 4 es una representación esquemática del conjunto hélice, tobera y soportes de tobera, en vista desde aguas abajo.  Figure 3 is an enlarged detail of the front part of the nozzle profile. Figure 4 is a schematic representation of the propeller assembly, nozzle and nozzle supports, seen from downstream.
La figura 5 es una representación esquemática del sistema de propulsión de hélice y tobera fija respecto a la hélice, en corte vertical de la tobera por un plano que contiene el eje de giro de la hélice; y en vista se representan la hélice con las palas y el núcleo (cubo), la bocina (soporte posterior del árbol de la hélice), el codaste, un soporte de la tobera y el timón; formando parte de un buque, para que puedan apreciarse bien los detalles del conjunto. Figure 5 is a schematic representation of the propulsion system of propeller and fixed nozzle with respect to the propeller, in vertical section of the nozzle by a plane containing the axis of rotation of the propeller; and in view the propeller is represented with the blades and the core (hub), the horn (rear support of the propeller shaft), the elbow, a nozzle holder and the rudder; forming part of a ship, so that the details of the set can be well appreciated.
Exposición detallada de una realización preferida Detailed statement of a preferred embodiment
En la figura 1 se observa la parte anterior 1 de la tobera, la parte central 2 de la tobera y la parte posterior 3 de la tobera; la longitud axial A de la parte anterior, la longitud axial B de la parte central y la longitud axial C de la parte posterior; la tobera 4, el borde de entrada 5 del agua en la tobera y el borde de salida 6 del agua de la tobera, observándose cómo las paredes interiores son convexas convergentes en el sentido del flujo en la parte anterior, a continuación recta y, por tanto, cilindrica la superficie, y después divergentes convexas hasta el extremo posterior. En esta figura se observa cómo las paredes exteriores 8 del perfil son rectas con la misma distancia al eje de simetría 7 de la tobera en toda su extensión axial y, por tanto, la superficie exterior es cilindrica; la tobera 4 tiene mayor espesor en la parte central; la longitud axial C de la superficie divergente posterior es un 20% mayor que la longitud axial A de la superficie convergente anterior. También se observa el radio interior Ri de la tobera, el radio exterior Ro de la tobera y su diferencia S de 0.063D que coincide con el espesor máximo de la tobera.  Figure 1 shows the front part 1 of the nozzle, the central part 2 of the nozzle and the rear part 3 of the nozzle; the axial length A of the front part, the axial length B of the central part and the axial length C of the rear part; the nozzle 4, the inlet edge 5 of the water in the nozzle and the outlet edge 6 of the water of the nozzle, observing how the inner walls are convergent convexes in the direction of the flow in the anterior part, then straight and, by both, cylindrical the surface, and then convex divergent to the rear end. In this figure it is observed how the outer walls 8 of the profile are straight with the same distance to the axis of symmetry 7 of the nozzle in all its axial extension and, therefore, the outer surface is cylindrical; the nozzle 4 has a greater thickness in the central part; the axial length C of the posterior divergent surface is 20% greater than the axial length A of the anterior convergent surface. The inner radius Ri of the nozzle, the outer radius Ro of the nozzle and its difference S of 0.063D which coincides with the maximum thickness of the nozzle are also observed.
En la figura 2 se observa el perfil de la tobera en el cual está representada la cuerda 9 por una línea que va desde el extremo anterior del borde de entrada hasta el extremo posterior del borde de salida; el plano de barrido 10 del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la tobera, representado por línea discontinua, observándose cómo la distancia axial H de 0.4564L hasta el borde de entrada es inferior a la distancia axial E hasta el borde de salida; también está representada la línea tangente 11 al perfil por un punto situado a una distancia axial F de 0.046L aguas abajo del borde de entrada formando un ángulo a cón una línea 12 paralela al eje de simetría de la tobera de 26°.  Figure 2 shows the profile of the nozzle in which the rope 9 is represented by a line that goes from the front end of the entrance edge to the rear end of the exit edge; the scanning plane 10 of the center of the propeller blade tips perpendicular to the axis of symmetry of the nozzle, represented by a broken line, observing how the axial distance H of 0.4564L to the inlet edge is less than the axial distance E to the exit edge; the tangent line 11 to the profile is also represented by a point located at an axial distance F of 0.046L downstream of the inlet edge forming an angle to a line 12 parallel to the axis of symmetry of the nozzle of 26 °.
En la figura 3 se observa la línea de corriente G que indica la dirección y el sentido general del fluido aguas arriba, inmediatamente antes de entrar en la parte anterior de la tobera; también se observa parte de la cuerda 9 y el ángulo β que forman ambas direcciones, en un mismo plano que contiene el eje de simetría de la tobera; y también se observa el radio r de la circunferencia que genera la superficie hélice y tobera fija respecto a la hélice, en corte vertical de la tobera por un plano que contiene el eje de giro de la hélice; y en vista se representan la hélice con las palas y el núcleo (cubo), la bocina (soporte posterior del árbol de la hélice), el codaste, un soporte de la tobera y el timón; formando parte de un buque, para que puedan apreciarse bien los detalles del conjunto. Figure 3 shows the current line G indicating the direction and general direction of the upstream fluid, immediately before entering the front part of the nozzle; part of the rope 9 and the angle β that form both directions are also observed, in the same plane that contains the axis of symmetry of the nozzle; and also the radius r of the circumference generated by the surface is observed propeller and fixed nozzle with respect to the propeller, in vertical section of the nozzle by a plane containing the axis of rotation of the propeller; and in view the propeller is represented with the blades and the core (hub), the horn (rear support of the propeller shaft), the elbow, a nozzle holder and the rudder; forming part of a ship, so that the details of the set can be well appreciated.
Exposición detallada de una realización preferida Detailed statement of a preferred embodiment
En la figura 1 se observa la parte anterior 1 de la tobera, la parte central 2 de la tobera y la parte posterior 3 de la tobera; la longitud axial A de la parte anterior, la longitud axial B de la parte central y la longitud axial C de la parte posterior; la tobera 4, el borde de entrada 5 del agua en la tobera y el borde de salida 6 del agua de la tobera, observándose cómo las paredes interiores son convexas convergentes en el sentido del flujo en la parte anterior, a continuación recta y, por tanto, cilindrica la superficie, y después divergentes convexas hasta el extremo posterior. En esta figura se observa cómo las paredes exteriores 8 del perfil son rectas con la misma distancia al eje de simetría 7 de la tobera en toda su extensión axial y, por tanto, la superficie exterior es cilindrica; la tobera 4 tiene mayor espesor en la parte central; la longitud axial C de la superficie divergente posterior es un 20% mayor que la longitud axial A de la superficie convergente anterior. También se observa el radio interior Ri de la tobera, el radio exterior Ro de la tobera y su diferencia S de 0.063D que coincide con el espesor máximo de la tobera.  Figure 1 shows the front part 1 of the nozzle, the central part 2 of the nozzle and the rear part 3 of the nozzle; the axial length A of the front part, the axial length B of the central part and the axial length C of the rear part; the nozzle 4, the inlet edge 5 of the water in the nozzle and the outlet edge 6 of the water of the nozzle, observing how the inner walls are convergent convexes in the direction of the flow in the anterior part, then straight and, by both, cylindrical the surface, and then convex divergent to the rear end. In this figure it is observed how the outer walls 8 of the profile are straight with the same distance to the axis of symmetry 7 of the nozzle in all its axial extension and, therefore, the outer surface is cylindrical; the nozzle 4 has a greater thickness in the central part; the axial length C of the posterior divergent surface is 20% greater than the axial length A of the anterior convergent surface. The inner radius Ri of the nozzle, the outer radius Ro of the nozzle and its difference S of 0.063D which coincides with the maximum thickness of the nozzle are also observed.
En la figura 2 se observa el perfil de la tobera en el cual está representada la cuerda 9 por una línea que va desde el extremo anterior del borde de entrada hasta el extremo posterior del borde de salida; el plano de barrido 10 del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la tobera, representado por línea discontinua, observándose cómo la distancia axial H de 0.4564L hasta el borde de entrada es inferior a la distancia axial E hasta el borde de salida; también está representada la línea tangente 11 al perfil por un punto situado a una distancia axial F de 0.046L aguas abajo del borde de entrada formando un ángulo a con una línea 12 paralela al eje de simetría de la tobera de 26e. Figure 2 shows the profile of the nozzle in which the rope 9 is represented by a line that goes from the front end of the entrance edge to the rear end of the exit edge; the scanning plane 10 of the center of the propeller blade tips perpendicular to the axis of symmetry of the nozzle, represented by a broken line, observing how the axial distance H of 0.4564L to the inlet edge is less than the axial distance E to the exit edge; the tangent line 11 to the profile is also represented by a point located at an axial distance F of 0.046L downstream of the inlet edge forming an angle a with a line 12 parallel to the axis of symmetry of the nozzle of 26 e .
En la figura 3 se observa la línea de corriente G que indica la dirección y el sentido general del fluido aguas arriba, inmediatamente antes de entrar en la parte anterior de la tobera; también se observa parte de la cuerda 9 y el ángulo β que forman ambas direcciones, en un mismo plano que contiene el eje de simetría de la tobera; y también se observa el radio r de la circunferencia que genera la superficie 10 toroidal del borde de entrada, teniendo como eje de rotación el eje de simetría de la tobera; dicho radio r de la circunferencia tiene un valor de 0.01019D y naturalmente el borde de entrada de la tobera completa tiene superficie toroidal. Figure 3 shows the current line G indicating the direction and general direction of the upstream fluid, immediately before entering the front part of the nozzle; part of the rope 9 and the angle β that form both directions are also observed, in the same plane that contains the axis of symmetry of the nozzle; and also the radius r of the circumference generated by the surface is observed 10 toroidal of the entrance edge, having as axis of rotation the axis of symmetry of the nozzle; said radius r of the circumference has a value of 0.01019D and naturally the leading edge of the complete nozzle has a toroidal surface.
En la figura 4 se observan las palas 14, las puntas de pala en forma de arco coaxial al eje de giro, el sentido de giro de las palas indicado por flecha, el núcleo (cubo) de la hélice, y los soportes 13 de la tobera 4 que unen ésta a la popa del buque, no representado en esta figura.  Figure 4 shows the blades 14, the blade tips in the form of an arc coaxial to the axis of rotation, the direction of rotation of the blades indicated by arrow, the core (hub) of the propeller, and the supports 13 of the nozzle 4 joining this to the stern of the ship, not shown in this figure.
En la figura 5 se observa la tobera 4, la hélice con sus palas 14, el timón 15, uno de los dos soportes 13 de la tobera, y el codaste 16 que pertenece al buque. El núcleo de la hélice (parte central de la hélice) está unido al árbol y éste al motor del buque. El árbol motor pasa por el interior de la bocina que hace la función de soporte en el extremo de popa del casco. De acuerdo con el sistema de propulsión hélice- tobera, la hélice al girar origina menor presión estática delante y mayor presión estática detrás, dichas presiones también se transmiten localmente sobre las paredes interiores de la tobera, por lo cual la tobera empuja al buque con la componente axial, a través de los soportes que la unen a la popa del buque. Tanto la hélice como la tobera empujan al buque, formando ambas el sistema de propulsión. El sistema de propulsión forma parte del buque. La tobera protege a la hélice de la mayoría de los choques con elementos exteriores y por lo tanto de un deterioro irreversible; y también de redes y cables que podrían llegar a inutilizarla temporalmente.  Figure 5 shows the nozzle 4, the propeller with its blades 14, the rudder 15, one of the two supports 13 of the nozzle, and the elbow 16 belonging to the vessel. The core of the propeller (central part of the propeller) is attached to the shaft and this to the ship's engine. The motor shaft passes through the interior of the horn that acts as a support at the stern end of the hull. According to the propeller propulsion system, the rotating propeller causes less static pressure in front and greater static pressure behind, such pressures are also transmitted locally on the interior walls of the nozzle, whereby the nozzle pushes the vessel with the axial component, through the supports that connect it to the stern of the ship. Both the propeller and the nozzle push the vessel, both forming the propulsion system. The propulsion system is part of the ship. The nozzle protects the propeller from most shocks with external elements and therefore from irreversible deterioration; and also of networks and cables that could temporarily disable it.
Las coordenadas del perfil son las siguientes para una hélice tipo "Kaplan" de cuatro palas, relación de áreas AE/A0 = 0.60 y relación L/D = 0.4970; de acuerdo con la representación ordinaria para coordenadas de perfiles de tobera, queda establecido el valor de las abscisas en 100 X/L tomando los valores de X a partir del borde de entrada; 100 Yi/L para el valor de las ordenadas interiores; y 100 Yo/L para el valor de las ordenadas exteriores: The coordinates of the profile are as follows for a four-blade "Kaplan" type propeller, ratio of areas A E / A 0 = 0.60 and ratio L / D = 0.4970; according to the ordinary representation for coordinates of nozzle profiles, the value of the abscissa is set at 100 X / L taking the values of X from the leading edge; 100 Yi / L for the value of the ordered interiors; and 100 Yo / L for the value of the external ordinates:
100 X/L 100 Yi/L 100 Yo/L 100 X / L 100 Yi / L 100 Yo / L
0.000 10.7648 10.7648  0.000 10.7648 10.7648
2.051 8.1527 12.8158  2,051 8.1527 12.8158
4.615 6.7280 12.8158  4,615 6,7280 12.8158
7.179 5.5407 12.8158  7,179 5.5407 12.8158
9.743 4.5908 12.8158  9,743 4,5908 12.8158
12.307 3.7201 12.8158  12,307 3.7201 12.8158
14.871 2.9286 12.8158 11 14,871 2.9286 12.8158 eleven
17.435 2.2162 12.8158 17,435 2.2162 12.8158
20.000 1 .5830 12.8158  20,000 1,55830 12.8158
22.564 1 .0289 12.8158  22,564 1 .0289 12.8158
25.128 0.6332 12.8158  25.128 0.6332 12.8158
27.692 0.3166 12.8158  27.692 0.3166 12.8158
30.256 0.0791 12.8158  30,256 0.0791 12.8158
32.820 0.0 12.8158  32,820 0.0 12.8158
58.974 0.0 12.8158  58,974 0.0 12.8158
66.666 0.1583 12.8158  66.666 0.1583 12.8158
71 .794 0.3957 12.8158  71 .794 0.3957 12.8158
76.923 0.8706 12.8158  76.923 0.8706 12.8158
82.051 1 .5039 12.8158  82.051 1 .5039 12.8158
84.615 1 .9788 12.8158  84.615 1.9788 12.8158
87.179 2.5328 12.8158  87,179 2.5328 12.8158
89.743 3.1661 12.8158  89,743 3,161 12.8158
92.307 4.0368 12.8158  92,307 4.0368 12.8158
94.871 5.0657 12.8158  94.871 5.0657 12.8158
96.153 5.6990 12.8158  96,153 5,690 12.8158
97.435 6.4905 12.8158  97,435 6,4905 12.8158
98.717 7.5986 12.8158  98.717 7.5986 12.8158
100.000 12.8158 12.8158  100,000 12.8158 12.8158
El centro de giro del radio r de la circunferencia generadora de la superficie toroidal del borde de entrada, queda establecido en abscisa 100X/L = 2.051 y ordenada 100Y/L = 10.7648; la longitud del radio tiene el mismo valor que la abscisa.  The center of rotation of the radius r of the generating circumference of the toroidal surface of the entry edge is set at abscissa 100X / L = 2.051 and ordered 100Y / L = 10.7648; The length of the radius has the same value as the abscissa.
Aplicación industrial Industrial application
Esta invención tiene aplicación industrial en la industria naval.  This invention has industrial application in the naval industry.

Claims

12 REIVINDICACIONES 12 CLAIMS
1 . - Tobera (4) fija simétrica aceleradora para naves acuáticas en condición de navegación libre, que comprende: one . - Nozzle (4) fixed symmetrical accelerator for watercraft in free navigation condition, comprising:
en el sentido de circulación general del agua, primero una superficie interior convexa convergente (1 ), después una superficie interior cilindrica (2) y por último una superficie interior convexa divergente (3); con una sola tobera para cada hélice; in the sense of general water circulation, first a convergent convex interior surface (1), then a cylindrical interior surface (2) and finally a divergent convex interior surface (3); with a single nozzle for each propeller;
caracterizada por que la diferencia entre el radio exterior (Ro) de la tobera y el radio interior (Ri) de la tobera está comprendida entre 0.050D y 0.076D, siendo D el diámetro interior de la tobera. characterized in that the difference between the outer radius (Ro) of the nozzle and the inner radius (Ri) of the nozzle is between 0.050D and 0.076D, where D is the inside diameter of the nozzle.
2. - Tobera (4) fija simétrica aceleradora para naves acuáticas en condición de navegación libre según la reivindicación 1 , caracterizada por que la línea que contiene la cuerda (9) del perfil de la tobera, que va desde el extremo anterior del borde de entrada (5) hasta el extremo posterior del borde de salida (6), forma un ángulo con el eje de simetría (7) de la tobera, de tal forma que se cruzan en un punto aguas arriba de la tobera; la superficie exterior (8) de la tobera es cilindrica en toda su longitud axial desde el borde de entrada anterior hasta el borde de salida posterior de acuerdo con el sentido general de circulación del agua; el borde de entrada (5), con circunferencia como generatriz de la superficie toroidal, tiene un radio (r) de curvatura en perfil, de dicha circunferencia, comprendido entre 0.01019D y 0.004D; el plano de barrido (10) del centro de las puntas de pala de la hélice, perpendicular al eje de simetría (7) de la tobera, está más próximo al borde de entrada (5) de la tobera que al borde de salida (6) de la tobera; en el perfil de la tobera la línea tangente (11 ) a la superficie interior convexa convergente (1 ) por un punto a una distancia axial (F) de 0.046L aguas abajo del borde de entrada, forma un ángulo (a) con el eje de simetría de la tobera de entre 20e y 30e, siendo L la longitud axial del perfil de la tobera; y la longitud axial (C) de la superficie divergente posterior (3) es mayor que la longitud axial (A) de la superficie convergente anterior (1 ) entre un 15% y un 25%. 2. - Nozzle (4) fixed symmetrical accelerator for watercraft in free navigation condition according to claim 1, characterized in that the line containing the rope (9) of the profile of the nozzle, which runs from the front end of the edge of inlet (5) to the rear end of the trailing edge (6), forms an angle with the axis of symmetry (7) of the nozzle, such that they intersect at a point upstream of the nozzle; the outer surface (8) of the nozzle is cylindrical along its entire axial length from the leading inlet edge to the trailing edge in accordance with the general direction of water circulation; the leading edge (5), with circumference as a generatrix of the toroidal surface, has a radius (r) of curvature in profile, of said circumference, between 0.01019D and 0.004D; the scanning plane (10) of the center of the propeller blade tips, perpendicular to the axis of symmetry (7) of the nozzle, is closer to the inlet edge (5) of the nozzle than to the outlet edge (6 ) of the nozzle; in the nozzle profile the tangent line (11) to the convergent convex inner surface (1) by a point at an axial distance (F) of 0.046L downstream of the inlet edge, forms an angle (a) with the axis of symmetry of the nozzle between 20 e and 30 e , where L is the axial length of the profile of the nozzle; and the axial length (C) of the posterior divergent surface (3) is greater than the axial length (A) of the anterior convergent surface (1) between 15% and 25%.
3. - Tobera (4) fija simétrica aceleradora para naves acuáticas en condición de navegación libre según cualquiera de las reivindicaciones 1 -2, caracterizada por que la diferencia entre el radio exterior (Ro) de la tobera y el radio interior (Ri) de la tobera es de 0.063D; la relación L/D es de 0.4970; el borde de entrada de la tobera tiene un radio (r) de curvatura en perfil de 0,01019D; el plano de barrido (10) del centro de las 13 puntas de pala de la hélice perpendicular al eje de simetría de la tobera está situado a una distancia del borde de entrada de 0.4564L; y en el perfil de la tobera la línea tangente a la superficie interior convexa convergente por un punto a una distancia axial de 0.046L aguas abajo del borde de entrada, forma un ángulo con el eje de simetría de la tobera de 26e. 3. - Nozzle (4) fixed symmetrical accelerator for watercraft in free navigation condition according to any of claims 1 -2, characterized in that the difference between the outer radius (Ro) of the nozzle and the inner radius (Ri) of the nozzle is 0.063D; The L / D ratio is 0.4970; the inlet edge of the nozzle has a radius (r) of curvature in profile of 0.01019D; the sweeping plane (10) of the center of the 13 propeller blade tips perpendicular to the axis of symmetry of the nozzle is located at a distance of the leading edge of 0.4564L; and in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the nozzle of 26 e .
4. - Tobera (4) fija simétrica aceleradora para naves acuáticas en condición de navegación libre según cualquiera de las reivindicaciones 1 -3, caracterizada por que la superficie interior convexa divergente (3) tiene la parte final aguas abajo presentando una divergencia muy pronunciada de más de 50e respecto al eje de simetría de la tobera. 4. - Nozzle (4) fixed symmetrical accelerator for watercraft in free navigation condition according to any of claims 1 -3, characterized in that the divergent convex interior surface (3) has the downstream end part presenting a very pronounced divergence of more than 50 e with respect to the axis of symmetry of the nozzle.
5. - Tobera (4) fija simétrica aceleradora para naves acuáticas en condición de navegación libre según cualquiera de las reivindicaciones 1 -4, caracterizada por que la relación L/D está comprendida entre 0.40 y 0.60; la superficie interior convergente se une a la superficie exterior por medio de una superficie toroidal, con circunferencia como generatriz, formando el borde de entrada de agua en la tobera; la superficie interior divergente y la superficie exterior de la tobera coinciden en una arista, formando el borde de salida del agua de la tobera; y el perfil de la tobera es exactamente el mismo en los 360e de cobertura; 5. - Nozzle (4) fixed symmetrical accelerator for watercraft in free navigation condition according to any of claims 1 -4, characterized in that the L / D ratio is between 0.40 and 0.60; the converging inner surface joins the outer surface by means of a toroidal surface, with circumference as a generatrix, forming the water inlet edge in the nozzle; the divergent inner surface and the outer surface of the nozzle coincide in an edge, forming the trailing edge of the water of the nozzle; and the profile of the nozzle is exactly the same in the 360 e of coverage;
6. Tobera (4) fija simétrica aceleradora para naves acuáticas en condición de navegación libre según cualquiera de las reivindicaciones 1 -5, caracterizada por que forma parte de una nave acuática flotante o submarina, con motor que está unido e imparte movimiento de giro al árbol de la hélice del sistema de propulsión constituido por la hélice y dicha tobera. 6. Nozzle (4) fixed symmetrical accelerator for watercraft in free navigation condition according to any of claims 1 -5, characterized in that it is part of a floating or underwater watercraft, with an engine that is attached and imparts turning movement to the propeller shaft of the propulsion system constituted by the propeller and said nozzle.
7. - Nave acuática flotante o submarina, que comprende un sistema de propulsión que comprende una hélice con un árbol unido a un motor para impartir movimiento de giro a dicho árbol, comprendiendo además dicho sistema de propulsión una tobera (4) según cualquiera de las reivindicaciones 1 -6. 7. - Floating or underwater watercraft, comprising a propulsion system comprising a propeller with a shaft attached to a motor for imparting rotation movement to said shaft, said propulsion system further comprising a nozzle (4) according to any of the claims 1-6.
PCT/ES2013/070341 2012-05-30 2013-05-28 Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state WO2013178853A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ESP201200572 2012-05-30
ES201200572A ES2385994B2 (en) 2012-05-30 2012-05-30 Fixed symmetric accelerator nozzle for watercraft in free navigation condition
PCT/ES2012/070835 WO2013178837A1 (en) 2012-05-30 2012-11-28 Accelerating nozzle for watercraft in a free navigation condition
ESPCT/ES2012/070835 2012-11-28
EPPCT/EP2013/057943 2013-04-16
EP2013057943 2013-04-16

Publications (2)

Publication Number Publication Date
WO2013178853A2 true WO2013178853A2 (en) 2013-12-05
WO2013178853A3 WO2013178853A3 (en) 2014-01-23

Family

ID=49673978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070341 WO2013178853A2 (en) 2012-05-30 2013-05-28 Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state

Country Status (1)

Country Link
WO (1) WO2013178853A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106081029A (en) * 2016-06-17 2016-11-09 哈尔滨工程大学 The thrust ducted propeller such as forward and reverse
US9751593B2 (en) 2015-01-30 2017-09-05 Peter Van Diepen Wave piercing ship hull

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139594A (en) 1936-02-08 1938-12-06 Kort Ludwig Combined propelling and steering device for screw propelled ships
JPS5299597A (en) 1976-02-17 1977-08-20 Hitachi Zosen Corp Propeller with nozzle
JPS5885792A (en) 1981-11-16 1983-05-23 Mitsubishi Heavy Ind Ltd Nozzle for ship
US4789302A (en) 1987-02-06 1988-12-06 Josip Gruzling Propeller shroud
US4832633A (en) 1977-11-30 1989-05-23 Hydronic, Ltd. Marine propulsion system
WO1989011998A1 (en) 1988-06-01 1989-12-14 Van Gunsteren & Gelling Marine Propulsion Developm Double nozzle
DE4325290A1 (en) 1993-07-28 1995-02-02 Dudszus Alfred Prof Dr Ing Hab Wake nozzle
US5799394A (en) 1996-02-05 1998-09-01 Rice; Jose Luis Method of making a marine speed nozzle
WO2000027697A1 (en) 1998-11-09 2000-05-18 Scheepswerf Van De Giessen B.V. Device for propelling ships, and a nozzle used in the device
JP2006306304A (en) 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method
ES2317799A1 (en) 2008-08-01 2009-04-16 Juan Jose Romero Vazquez Propulsion system with helix and fixed nozzle regarding the helice (Machine-translation by Google Translate, not legally binding)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120395A (en) * 1974-08-13 1976-02-18 Mitsubishi Heavy Ind Ltd HAKUYONOZURUPUROPERA
SU1134477A1 (en) * 1983-10-05 1985-01-15 Центральное технико-конструкторское бюро Министерства речного флота РСФСР Propeller and steering device of ship
ES2385994B2 (en) * 2012-05-30 2013-01-02 Juan José ROMERO VÁZQUEZ Fixed symmetric accelerator nozzle for watercraft in free navigation condition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139594A (en) 1936-02-08 1938-12-06 Kort Ludwig Combined propelling and steering device for screw propelled ships
JPS5299597A (en) 1976-02-17 1977-08-20 Hitachi Zosen Corp Propeller with nozzle
US4832633A (en) 1977-11-30 1989-05-23 Hydronic, Ltd. Marine propulsion system
JPS5885792A (en) 1981-11-16 1983-05-23 Mitsubishi Heavy Ind Ltd Nozzle for ship
US4789302A (en) 1987-02-06 1988-12-06 Josip Gruzling Propeller shroud
DE3840958A1 (en) 1987-02-06 1990-06-07 Gruzling PROPELLER COATING
WO1989011998A1 (en) 1988-06-01 1989-12-14 Van Gunsteren & Gelling Marine Propulsion Developm Double nozzle
DE4325290A1 (en) 1993-07-28 1995-02-02 Dudszus Alfred Prof Dr Ing Hab Wake nozzle
US5799394A (en) 1996-02-05 1998-09-01 Rice; Jose Luis Method of making a marine speed nozzle
WO2000027697A1 (en) 1998-11-09 2000-05-18 Scheepswerf Van De Giessen B.V. Device for propelling ships, and a nozzle used in the device
JP2006306304A (en) 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method
ES2317799A1 (en) 2008-08-01 2009-04-16 Juan Jose Romero Vazquez Propulsion system with helix and fixed nozzle regarding the helice (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9751593B2 (en) 2015-01-30 2017-09-05 Peter Van Diepen Wave piercing ship hull
CN106081029A (en) * 2016-06-17 2016-11-09 哈尔滨工程大学 The thrust ducted propeller such as forward and reverse

Also Published As

Publication number Publication date
WO2013178853A3 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
US4370096A (en) Marine propeller
CN105936332B (en) Arrangement for a multi-propeller vessel comprising an outer propeller shaft and method for producing such an arrangement
CN105818951B (en) Novel preposition skew back guide-vane pump-jet propulsor and its design method
RU2629812C1 (en) Propulsive arrangement
JP6490595B2 (en) Ship propulsion device
US20080200081A1 (en) Vessel propulsion
WO2013178853A2 (en) Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
ES2385994B2 (en) Fixed symmetric accelerator nozzle for watercraft in free navigation condition
GB2525049A (en) Water-borne vessel
ES2772573B2 (en) THROTTLE NOZZLE HELICE SYSTEM TO POWER BOATS
US9376186B2 (en) Marine tunnel thruster
KR101780910B1 (en) Duct device
KR101523920B1 (en) Propulsion apparatus for vessel
Sasaki ZEUS and NOAH projects of NMRI
WO2015101683A1 (en) Accelerating ducted propeller system for propelling boats
CN208085983U (en) A kind of runner propeller and unmanned boat
CN205524904U (en) Novel leading skew stator formula pump spouts propeller
ES2317799B1 (en) PROPULSION SYSTEM WITH HELICE AND FIXED TOWER REGARDING HELICE.
CN111237216A (en) Centrifugal through-flow water navigation body propulsion device and application
ES2460815A1 (en) Helix system accelerator nozzle to boost boats (Machine-translation by Google Translate, not legally binding)
WO2018211155A2 (en) Accelerating ducted propeller system for propelling boats
Hordnes et al. Sea trials of the ducted tip propeller
KR101589124B1 (en) Propulsion apparatus of vessel
CN108341021A (en) A kind of complexity shallow water area electric ducted fan propulsion M type racy speed boats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753669

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13753669

Country of ref document: EP

Kind code of ref document: A2