WO2013178837A1 - Accelerating nozzle for watercraft in a free navigation condition - Google Patents

Accelerating nozzle for watercraft in a free navigation condition Download PDF

Info

Publication number
WO2013178837A1
WO2013178837A1 PCT/ES2012/070835 ES2012070835W WO2013178837A1 WO 2013178837 A1 WO2013178837 A1 WO 2013178837A1 ES 2012070835 W ES2012070835 W ES 2012070835W WO 2013178837 A1 WO2013178837 A1 WO 2013178837A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
watercraft
propeller
edge
free navigation
Prior art date
Application number
PCT/ES2012/070835
Other languages
Spanish (es)
French (fr)
Inventor
Juan José ROMERO VÁZQUEZ
Original Assignee
Romero Vazquez Juan Jose
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Romero Vazquez Juan Jose filed Critical Romero Vazquez Juan Jose
Priority to PCT/ES2013/070341 priority Critical patent/WO2013178853A2/en
Publication of WO2013178837A1 publication Critical patent/WO2013178837A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type

Definitions

  • the invention relates to an accelerator nozzle for watercraft in free navigation condition, forming part of the propulsion system of floating or underwater watercraft.
  • Feed coefficient J V A / nD P.
  • a V being the speed of advance of the propellant, n the number of revolutions per second of the propeller and D P the propeller diameter.
  • Free navigation condition when sailing with exclusively indoor cargo; in this condition the load index C T has a value between 1.5 and 3 in cruising speed at 80% of the nominal power.
  • Trawling or shooting navigation condition when sailing by pulling a fishing net or towing to another ship; in this case the speed of the ship is very small in relation to the thrust or shot of the propulsive system constituted by an open propeller or by a nozzle propeller, it is said that the propulsive system is very loaded, the load index C T is by above value 4; Only fishing trawlers and tugboats navigate in this condition when they are doing their specific job.
  • Propeller thrust coefficient ⁇ T p / T, where T p is the thrust exerted by the propeller only and T the thrust exerted by the propeller-nozzle assembly. In the open propeller (without nozzle) it is worth 1, in accelerating nozzles less than 1 and in decelerating nozzles more than 1.
  • the ratio L / D axial length of the nozzle divided by the inside diameter of the nozzle, is an essential reference. It is called a liquid vein, when a liquid is driven by a propeller, in the case at hand, inside the same liquid, differentiating itself from the rest of the same liquid that surrounds the vein by its kinematic characteristics, both downstream of the propeller over everything, like upstream of the propeller.
  • a naval propeller generates, in a certain direction, an effective wake speed downstream with axial, tangential and radial components.
  • the axial component is the most important in terms of module.
  • Angle of attack of a profile is the one that forms the line that contains the rope with the general direction of the fluid that falls on said profile.
  • Codaste continuation of the keel of the watercraft by stern, both in floating ships and in submarine ships.
  • Ae refers to the total surface of the blades and Ao refers to the area of the scanning disc.
  • the propeller-nozzle assembly can rotate 360 e on a vertical axis, which does not require a rudder.
  • the most similar nozzle is the so-called "38" nozzle developed for use in the tugging condition; described and represented on pages 62 and 63 of the following book, Title: "The Wageningen Propeller Series", ISBN: 90-900 7247-0, Author G. Kuiper, Edited by: MARIN Maritime Research Institute Netherlands, First Edition, Place of edition: Holland, Year of publication 1992;
  • the profile of said nozzle has, in the sense of general water circulation, first a converging inner surface, then a cylindrical inner surface and finally a divergent inner surface;
  • the L / D ratio is 0.738, with L being the axial length of the profile of the nozzle and D the inside diameter of the nozzle; with a single nozzle for each propeller;
  • the cylindrical interior surface of the nozzle is around the propeller; the maximum thickness is 0.13L;
  • the outer surface of the nozzle is cylindrical; both the inlet and the trailing edge are formed by a toroidal surface, with the same radius of curvature in the profile of the
  • the technical problem that currently exists is the relatively low performance of propulsive systems for ships in free navigation condition with cruising speed up to a maximum of 18 knots (which is the limit for current nozzles) due to losses in the effective wake mainly (called axial losses), due to the low coefficient of support C L that is obtained with the current profiles for load indexes C T lower than the value 3 and for the drag losses of the nozzle.
  • the effort to achieve greater performance in the propulsive systems has been constant by all researchers and research groups of both companies and universities, especially since the oil crisis of 1973 until today.
  • the technical advantage provided by this invention lies in reducing axial losses mainly, increasing very significantly the lift coefficient C L with the consequent acceleration of water in the plane of sweeping the propeller and greatly reducing the drag of the nozzle, all which combined contributes to a significant increase in efficiency of the propulsive system.
  • the ratio L / D is between 0.20 and 1.90, with L being the axial length of the profile of the nozzle and D the inside diameter of the nozzle; with a single nozzle for each propeller; the cylindrical interior surface of the nozzle is around the propeller; the nozzle is fixed with respect to the support of the propeller shaft;
  • the line containing the rope of the nozzle profile which runs from the front end of the inlet edge to the rear end of the outlet edge, intersects with the axis of symmetry of the cylindrical inner part of the nozzle, upstream of said nozzle, in the general direction of the ship's bow when navigating straight forward, (to mainly reduce axial losses and to increase the coefficient of lift C L with respect to the current nozzles, both in the Traditional configuration of the propulsion system with propeller shaft and nozzle in the longitudinal direction of the ship permanently, as in the azimuthal configuration in "pod" where the propeller-nozzle assembly can rotate 360 e ).
  • the difference between the outer radius of the nozzle and the inner radius of the nozzle is between 0.050D and 0.076D, (to considerably reduce the nozzle drag, because for load coefficients below the value 3 the influence of the suction of the propeller does not reach greater radial distance);
  • the outer surface of the nozzle is cylindrical along its entire axial length from the leading inlet edge to the trailing edge of the water in accordance with the general direction of water circulation (to avoid detachment of the boundary layer in this area and therefore the associated turbulence) and the convergent inner surface is convex;
  • the convergent inner surface joins the outer surface by means of a toroidal surface, with circumference as a generatrix, forming the water inlet edge in the nozzle, said edge has a radius of curvature in profile, between 0.01019D and 0.004D (so that the penetration of the nozzle in the fluid causes less resistance);
  • the divergent inner surface is convex and in its
  • the difference between the outer radius of the nozzle and the inner radius of the nozzle is 0.063D;
  • the L / D ratio is 0.4970;
  • the inlet edge of the nozzle has a radius of curvature in profile of 0.01019D;
  • the scanning plane of the center of the blade tips of the propeller perpendicular to the axis of symmetry of the cylindrical inner part of the nozzle is located at a distance of the leading edge of 0.4564L; and in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the nozzle of 26 e .
  • This accelerator nozzle for watercraft in free navigation condition is part of a floating or underwater watercraft, with an engine that is attached and imparts turning movement to the propeller shaft of the propulsion system constituted by the propeller and said nozzle.
  • the nozzle with all these characteristics acts together with the propeller (influence or mutual interaction), increasing the performance of the propeller-nozzle system, compared to those currently used, which are naturally the most efficient to date.
  • This nozzle having a profile with greater peripheral length inside than outside, from the leading edge to the trailing edge, is a water speed accelerating nozzle inside the nozzle; decelerating nozzles such as the "33" nozzle of "MARIN” have a profile with greater outer peripheral length and are only used on military ships to reduce cavitation and noise, especially if lower performance is obtained even than with an open propeller, in order to make detection more difficult; the line that contains the rope of the profile that goes from the center of the rounded anterior edge to the living edge of the trailing edge, intersects with the axis of symmetry of the cylindrical interior part of the nozzle upstream of it, whereby present a greater angle of attack with respect to the general direction of water entering the nozzle (which is always convergent even with low load indexes C T ) the bearing coefficient C L is greater and therefore the acceleration caused by this concept the nozzle to the water that flows through it; as is well known to greater acceleration greater efficiency of a nozzle; as is known at a higher load index C T, the
  • the thrust coefficient of the propeller ⁇ is lower for the same speed of the spacecraft and therefore this increases efficiency; in the decelerating nozzles, the thrust coefficient of the propeller ⁇ is greater than the unit and therefore decreases the efficiency of the propeller-nozzle propulsion system as a whole.
  • the notable minor difference between the outer radius of the nozzle and the inner radius causes a minimum drag for load indexes of value 3 or lower.
  • Axial losses in the effective wake are transcendently reduced, since the nozzle, having the trailing edge with the maximum radius, and due to the position of the profile rope, induces the liquid vein that passes through the inside the nozzle to reach said maximum radius downstream to join with the water coming from the cylindrical outer surface, whereby increasing the diameter of the liquid vein increases the static pressure in this posterior area which is transmitted to the propeller system.
  • nozzle as an increase in thrust and most importantly, the difference in velocity of the liquid vein downstream of the nozzle with respect to the velocity of the surrounding water decreases, whereby axial losses due to friction and turbulence in the effective wake are considerably reduced; It is well known that axial losses are the most important in any propulsion system.
  • the final truncation of the nozzle with a divergence greater than 50 e implies the detachment of the boundary layer in a plane very close to the plane of the trailing edge, where it is profitable from the point of view of efficiency, since the reverse flow in the wall it is scarce and a free expansion of the liquid vein is allowed until reaching the peripheral current from the cylindrical outer surface of the nozzle to join both downstream; lengthening the nozzle would lead to greater drag by friction.
  • This proposed nozzle has the advantage of increasing the propulsive performance of the propeller-nozzle assembly and therefore reducing the fuel consumption in the same proportion, in all types of watercraft in free navigation condition, especially up to a cruising speed exceeding 20 knots, with respect to the propulsive systems that are currently used.
  • Figure 1 is a schematic representation in axial section of the nozzle.
  • Figure 2 is a schematic representation of the profile of the nozzle with representation of the rope and other details.
  • Figure 3 is an enlarged detail of the front part of the nozzle profile.
  • Figure 4 is a schematic representation of the propeller assembly, nozzle and nozzle supports, seen from downstream.
  • Figure 5 is a schematic representation of the propeller system and fixed nozzle with respect to the propeller, in vertical section of the nozzle by a plane containing the axis of rotation of the propeller; and in view the propeller is represented with the blades and the core (hub), the horn (rear support of the propeller shaft), the elbow, a nozzle holder and the rudder; forming part of a ship, so that the details of the set can be well appreciated.
  • Figure 1 shows the front part 1 of the nozzle, the central part 2 of the nozzle and the rear part 3 of the nozzle; the axial length A of the front part, the length axial B of the central part and the axial length C of the rear; the nozzle 4, the inlet edge 5 of the water in the nozzle and the outlet edge 6 of the water of the nozzle, observing how the inner walls are convergent convexes in the direction of the flow in the anterior part, then straight and therefore cylindrical surface and then convex divergent to the rear end; in this figure it is observed how the outer walls 8 of the profile are straight with the same distance to the axis of symmetry 7 of the cylindrical inner part of the nozzle in all its axial extension and therefore the outer surface is cylindrical; the nozzle 4 has a greater thickness in the central part; the axial length C of the posterior divergent surface is 20% greater than the axial length A of the anterior convergent surface; the inner radius Ri of the nozzle, the outer radius Ro of the nozzle and its difference S of 0.063D which
  • FIG 2 the profile of the nozzle in which the rope 9 is shown, which is shown from the front end of the entrance edge to the rear end of the exit edge is shown; the scanning plane 10 of the center of the blade tips of the propeller perpendicular to the axis of symmetry of the cylindrical inner part of the nozzle, represented by dashed line, observing how the axial distance H of 0.4564L to the inlet edge is smaller at axial distance E to the trailing edge; the tangent line 11 to the profile is also represented by a point located at an axial distance F of 0.046L downstream of the inlet edge forming an angle ⁇ with a line 12 parallel to the axis of symmetry of the cylindrical inner part of the nozzle of 26 e .
  • Figure 3 shows the current line G indicating the direction and general direction of the upstream fluid, immediately before entering the front part of the nozzle, part of the rope 9 and the angle ⁇ that form both directions, in the same plane that contains the axis of symmetry of the cylindrical inner part of the nozzle; and also the radius r of the circumference generated by the toroidal surface of the inlet edge is observed, having as axis of rotation the axis of symmetry of the cylindrical inner part of the nozzle; said radius r of the circumference has a value of 0.01019D and naturally the leading edge of the complete nozzle has a toroidal surface.
  • the blades 14, the blade tips in the form of an arc coaxial to the axis of rotation, the direction of rotation of the blades indicated by arrow, the core (hub) of the propeller, and the supports 13 of the nozzle 4 that joins is at the stern of the ship, not shown in this figure.
  • the nozzle 4 the propeller with its blades 14, the rudder 15, one of the two supports 13 of the nozzle, and the elbow 16 belonging to the vessel.
  • the core of the propeller (central part of the propeller) is attached to the tree and this to the ship's engine.
  • the motor shaft passes through the interior of the horn that acts as a support at the stern end of the hull.
  • the rotating propeller causes less static pressure in front and greater static pressure behind, such pressures are also transmitted locally on the interior walls of the nozzle, whereby the nozzle pushes the vessel with the axial component, through the supports that connect it to the stern of the ship.
  • Both the propeller and the nozzle push the vessel, both forming the propulsion system.
  • the propulsion system is part of the ship.
  • the nozzle protects the propeller from most shocks with external elements and therefore from irreversible deterioration; and also of networks and cables that could temporarily disable it.
  • the length of the radius has the same value as the abscissa.
  • This invention has industrial application in the naval industry.

Abstract

The invention relates to an accelerating nozzle for watercraft in a free navigation condition. The invention provides improved performance in watercraft as a result of the nozzle wherein: the line containing the chord (9) of the contour of the nozzle intersects with the axis of symmetry of the lower cylindrical part of the nozzle, upstream of said nozzle; the difference between the outer radius of the nozzle and the inner radius is between 0.050D and 0.076D, D being the inner diameter of the nozzle; the outer surface (8) of the nozzle is cylindrical; and the inlet edge has a cross-sectional curvature radius of between 0.01019D and 0.004D. The nozzle forms part of a propulsion system which, in turn, forms part of a watercraft.

Description

TOBERA ACELERADORA PARA NAVES ACUÁTICAS EN CONDICÓN DE NAVEGACIÓN LIBRE  THROTTLE NOZZLE FOR AQUATIC VESSELS IN FREE NAVIGATION CONDITION
Sector técnico. Technical Sector
La invención se refiere a una tobera aceleradora para naves acuáticas en condición de navegación libre, formando parte del sistema de propulsión de naves acuáticas flotantes o submarinas.  The invention relates to an accelerator nozzle for watercraft in free navigation condition, forming part of the propulsion system of floating or underwater watercraft.
Técnica anterior. Prior art.
Aclaración de conceptos técnicos:  Clarification of technical concepts:
Coeficiente de avance J = VA/nDP. Siendo VA la velocidad de avance del propulsor, n el número de revoluciones por segundo de la hélice y DP el diámetro de la hélice. Feed coefficient J = V A / nD P. A V being the speed of advance of the propellant, n the number of revolutions per second of the propeller and D P the propeller diameter.
Coeficiente de tracción o empuje total Ktt = T / p n2 DP 4, siento T la tracción o empuje total de la hélice y de la tobera juntas, y p la densidad del agua. Coefficient of traction or total thrust Ktt = T / pn 2 D P 4 , I feel T the traction or total thrust of the propeller and the nozzle together, and p the density of water.
Indice de carga CT = ( T ) / ( ½ p VA 2 π/4 DP 2). Load index C T = (T) / (½ p V A 2 π / 4 D P 2 ).
Condición de navegación libre: cuando se navega con carga exclusivamente interior; en esta condición el índice de carga CT tiene un valor comprendido entre 1 .5 y 3 en velocidad de crucero al 80% de la potencia nominal. Free navigation condition: when sailing with exclusively indoor cargo; in this condition the load index C T has a value between 1.5 and 3 in cruising speed at 80% of the nominal power.
Condición de navegación en arrastre o tiro: cuando se navega tirando de una red de pesca o remolcando a otra nave; en este caso la velocidad de la nave es muy pequeña con relación al empuje o tiro del sistema propulsivo constituido por una hélice abierta o por una hélice en tobera, se dice que el sistema propulsivo está muy cargado, el índice de carga CT está por encima del valor 4; sólo navegan en esta condición los buques arrastreros de pesca y los remolcadores, cuando están realizando su trabajo específico. Trawling or shooting navigation condition: when sailing by pulling a fishing net or towing to another ship; in this case the speed of the ship is very small in relation to the thrust or shot of the propulsive system constituted by an open propeller or by a nozzle propeller, it is said that the propulsive system is very loaded, the load index C T is by above value 4; Only fishing trawlers and tugboats navigate in this condition when they are doing their specific job.
Coeficiente de empuje de la hélice τ = Tp/ T, siendo Tp el empuje ejercido por la hélice solamente y T el empuje ejercido por el conjunto hélice-tobera. En la hélice abierta (sin tobera) vale 1 , en toberas aceleradoras menos de 1 y en toberas deceleradoras más de 1 . Propeller thrust coefficient τ = T p / T, where T p is the thrust exerted by the propeller only and T the thrust exerted by the propeller-nozzle assembly. In the open propeller (without nozzle) it is worth 1, in accelerating nozzles less than 1 and in decelerating nozzles more than 1.
Se utilizan algunos coeficientes, con el factor D o L para indicar algunas distancias en función del diámetro interior de la tobera D o de la longitud axial de la tobera L. Al multiplicar el coeficiente por el valor concreto en cada caso de D o de L nos da la medida concreta.  Some coefficients are used, with the factor D or L to indicate some distances depending on the inside diameter of the nozzle D or the axial length of the nozzle L. By multiplying the coefficient by the specific value in each case of D or L It gives us the concrete measure.
En toberas la relación L/D, longitud axial de la tobera dividida por el diámetro interior de la tobera, es una referencia imprescindible. Se denomina vena líquida, cuando un líquido es impulsado por una hélice, en el caso que nos ocupa, en el interior del mismo líquido, diferenciándose del resto del mismo líquido que rodea la vena por sus características cinemáticas, tanto aguas abajo de la hélice sobre todo, como aguas arriba de la hélice. In nozzles the ratio L / D, axial length of the nozzle divided by the inside diameter of the nozzle, is an essential reference. It is called a liquid vein, when a liquid is driven by a propeller, in the case at hand, inside the same liquid, differentiating itself from the rest of the same liquid that surrounds the vein by its kinematic characteristics, both downstream of the propeller over everything, like upstream of the propeller.
En una nave acuática se denomina estela nominal en cualquier plano perpendicular a la longitud de la nave, a las características cinemáticas del agua en dichos planos alrededor de la nave, esto sucede cuando la nave es remolcada; y estela efectiva es la que se produce en autopropulsión cuando la hélice o hélices empujan a la nave; en este caso la diferencia más notable se presenta a partir del plano de la hélice aguas abajo, al generar la hélice una vena líquida claramente diferenciada por sus características cinemáticas del resto de características cinemáticas del agua que la rodea, sobre todo mayor velocidad, provocando muchísima turbulencia, por tanto mucho rozamiento y por lo tanto pérdida de rendimiento del sistema propulsivo.  In a watercraft it is called a nominal wake in any plane perpendicular to the length of the ship, to the kinematic characteristics of the water in said planes around the ship, this happens when the ship is towed; and effective wake is the one that takes place in self-propelled when the propeller or propellers push to the ship; in this case the most notable difference is presented from the plane of the downstream propeller, when the propeller generates a liquid vein clearly differentiated by its kinematic characteristics from the rest of the kinematic characteristics of the surrounding water, especially higher speed, causing a lot turbulence, therefore much friction and therefore loss of performance of the propulsive system.
Una hélice naval genera al girar en un determinado sentido, una velocidad de la estela efectiva aguas abajo con componentes axial, tangencial y radial. La componente axial es la más importante en cuanto a módulo. A naval propeller generates, in a certain direction, an effective wake speed downstream with axial, tangential and radial components. The axial component is the most important in terms of module.
Ángulo de ataque de un perfil es el que forma la línea que contiene la cuerda con la dirección general del fluido que incide sobre dicho perfil.  Angle of attack of a profile is the one that forms the line that contains the rope with the general direction of the fluid that falls on said profile.
Cuanto mayor sea el ángulo de ataque de un perfil en este caso de tobera respecto a la dirección general de la corriente, mayor es el coeficiente de sustentación CL y por tanto la sustentación y la aceleración que induce en el interior de la tobera. The greater the angle of attack of a profile in this case of nozzle with respect to the general direction of the current, the greater the coefficient of lift C L and therefore the lift and acceleration that it induces inside the nozzle.
Codaste: continuación de la quilla de la nave acuática por popa, tanto en naves flotantes como en naves submarinas.  Codaste: continuation of the keel of the watercraft by stern, both in floating ships and in submarine ships.
Bocina: soporte del árbol de la hélice en el codaste.  Horn: support of the propeller tree in the codaste.
En la relación de áreas Ae/Ao, Ae se refiere a la superficie total de las palas y Ao se refiere al área del disco de barrido.  In the ratio of areas Ae / Ao, Ae refers to the total surface of the blades and Ao refers to the area of the scanning disc.
"Pod": sistema de propulsión azimutal, el conjunto hélice-tobera puede girar 360e sobre un eje vertical, con lo cual no hace falta timón. "Pod": azimuthal propulsion system, the propeller-nozzle assembly can rotate 360 e on a vertical axis, which does not require a rudder.
La tobera más parecida es la llamada tobera "38" desarrollada para ser usada en la condición de tiro en remolcadores; descrita y representada en las páginas 62 y 63 del siguiente libro, Título: "The Wageningen Propeller Series", ISBN: 90-900 7247-0, Autor G. Kuiper, Editado por: MARIN Maritime Research Institute Netherlands, Primera edición, Lugar de edición: Holanda, Año de publicación 1992; el perfil de dicha tobera presenta en el sentido de circulación general del agua, primero una superficie interior convergente, después una superficie interior cilindrica y por último una superficie interior divergente; la relación L/D es de 0.738, siendo L la longitud axial del perfil de la tobera y D el diámetro interior de la tobera; con una sola tobera para cada hélice; la superficie interior cilindrica de la tobera, está alrededor de la hélice; el espesor máximo es de 0.13L; la superficie exterior de la tobera es cilindrica; tanto el borde de entrada como el borde de salida están formados por una superficie toroidal, con el mismo radio de curvatura en el perfil de la tobera y con valor 0.051 L, siendo tangente la generatriz de la superficie cilindrica exterior de la tobera a los círculos que describen dichos radios de los bordes de entrada y de salida en el perfil de la tobera, por lo cual la cuerda de dicho perfil que une el punto anterior del borde de entrada con el punto posterior del borde de salida, es paralela a dicha generatriz y también paralela al eje de simetría de la tobera, pues el punto anterior del borde de entrada y el punto posterior del borde de salida están a la misma distancia radial del eje de simetría de la tobera. The most similar nozzle is the so-called "38" nozzle developed for use in the tugging condition; described and represented on pages 62 and 63 of the following book, Title: "The Wageningen Propeller Series", ISBN: 90-900 7247-0, Author G. Kuiper, Edited by: MARIN Maritime Research Institute Netherlands, First Edition, Place of edition: Holland, Year of publication 1992; the profile of said nozzle has, in the sense of general water circulation, first a converging inner surface, then a cylindrical inner surface and finally a divergent inner surface; the L / D ratio is 0.738, with L being the axial length of the profile of the nozzle and D the inside diameter of the nozzle; with a single nozzle for each propeller; the cylindrical interior surface of the nozzle is around the propeller; the maximum thickness is 0.13L; the outer surface of the nozzle is cylindrical; both the inlet and the trailing edge are formed by a toroidal surface, with the same radius of curvature in the profile of the nozzle and with a value of 0.051 L, the generatrix of the outer cylindrical surface of the nozzle being circles describing said radii of the inlet and outlet edges in the profile of the nozzle, whereby the rope of said profile that joins the anterior point of the inlet edge with the posterior point of the outlet edge, is parallel to said generatrix and also parallel to the axis of symmetry of the nozzle, since the anterior point of the inlet edge and the posterior point of the outlet edge are at the same radial distance from the axis of symmetry of the nozzle.
Actualmente para la propulsión de naves acuáticas en condición de navegación libre, se usa la tobera Ί 9Α" desarrollada por "MARIN", la tobera "HR" comercializada por la empresa "Wártsilá" y la tobera "Rice speed" comercializada por el "Grupo Rice" empresa de Méjico en todas ellas la línea que contiene la cuerda de cada perfil se cruza con el eje de simetría de la tobera aguas abajo de esta; la superficie exterior no es cilindrica en ninguna de ellas. El resto de toberas que se usan en la actualidad, aparte de las tres citadas anteriormente, son para buques arrastreros y remolcadores, como la tobera "37" ; "AHT" desarrollada por "MAN Diesel & Turbo"; otra desarrollada por Josip Gruzling, DE3840958 (A1 ) con fecha de presentación 06/02/1987 y fecha de publicación 07/06/1990, también publicada como US4789302 (A), comercializada por una empresa canadiense; y "Rice thrust". Los buques arrastreros utilizan tanto la condición de navegación libre para sus desplazamientos a los lugares de pesca como la condición de arrastre para su faena específica y es por este motivo que muchos utilizan la tobera "19A" cuando prevalece el ahorro de combustible en desplazamiento, pues las toberas diseñadas específicamente para arrastre o tiro en la condición de navegación libre dan un rendimiento muy bajo; en condición de arrastre o tiro el coeficiente de avance J es muy bajo y el coeficiente de tracción total Κπ es muy alto. Para buques militares se usan las toberas simétricas deceleradoras. At the moment for the propulsion of aquatic ships in condition of free navigation, the nozzle Ί 9Α "developed by" MARIN ", the nozzle" HR "commercialized by the company" Wártsilá "and the nozzle" Rice speed "commercialized by the" Group are used Rice "company of Mexico in all of them the line that contains the rope of each profile intersects the axis of symmetry of the nozzle downstream of it; the outer surface is not cylindrical in any of them. The rest of the nozzles that are used At present, apart from the three mentioned above, they are for trawlers and tugboats, such as the nozzle "37";"AHT" developed by "MAN Diesel &Turbo"; another developed by Josip Gruzling, DE3840958 (A1) dated presentation 06/02/1987 and publication date 06/07/1990, also published as US4789302 (A), marketed by a Canadian company; and "Rice thrust." Trawlers use both the free navigation condition for their journeys to the fishing places as the drag condition for their specific task and that is why many use the nozzle "19A" when fuel saving in displacement prevails, as the nozzles specifically designed for drag or shot in the free navigation condition give a very low yield; in drag or pull condition the feed coefficient J is very low and the total tensile coefficient Κ π is very high. For military ships symmetrical decelerating nozzles are used.
Referencias documentales: Documentary References:
ES2317799 (A1 ) prioridad 01/08/2008, publicada 16/04/2009, concesión 04/03/2010 JP2006306304 A prioridad 28/04/2005, publicada 09/11/2006.  ES2317799 (A1) priority 01/08/2008, published 04/16/2009, concession 03/04/2010 JP2006306304 Priority 04/28/2005, published 11/09/2006.
US4832633 A prioridad 30/11 /1977, publicada 23/05/1989. US4832633 A priority 11/30/1977, published 5/23/1989.
WO0027697 A1 prioridad 09/11/1998, publicada 18/05/2000. WO0027697 A1 priority 09/11/1998, published 05/18/2000.
US5799394 (A) prioridad 05/02/1996, publicada el 01 /09/1998 DE4325290 (A1 ) prioridad 28/07/1993, publicada el 02/02/1995 US5799394 (A) priority 05/02/1996, published 01/09/1998 DE4325290 (A1) priority 07/28/1993, published 02/02/1995
W08911998 (A1 ) prioridad 01 /06/1988, publicada el 14/12/1989 W08911998 (A1) priority 01/06/1988, published on 12/14/1989
JP58085792 (A) prioridad 16/11/1981 , publicada el 23/05/1983 JP58085792 (A) priority 11/16/1981, published on 05/23/1983
JP52099597 (A) prioridad 17/02/1976, publicada el 20/08/1977 JP52099597 (A) priority 02/17/1976, published 08/20/1977
US2139594 (A) prioridad 08/02/1936, publicada el 06/12/1938 US2139594 (A) priority 08/02/1936, published on 12/06/1938
El problema técnico que existe actualmente es el relativamente bajo rendimiento de los sistemas propulsivos para naves en condición de navegación libre con velocidad de crucero hasta un máximo de 18 nudos (que es el límite para las toberas actuales) por las pérdidas en la estela efectiva principalmente (llamadas pérdidas axiales), por el bajo coeficiente de sustentación CL que se obtiene con los perfiles actuales para índices de carga CT inferiores al valor 3 y por las pérdidas de arrastre de la tobera. El esfuerzo por conseguir mayor rendimiento en los sistemas propulsivos ha sido constante por parte de todos los investigadores y grupos de investigación tanto de empresas como de universidades, sobre todo a partir de la crisis del petróleo del año 1973 hasta la actualidad. The technical problem that currently exists is the relatively low performance of propulsive systems for ships in free navigation condition with cruising speed up to a maximum of 18 knots (which is the limit for current nozzles) due to losses in the effective wake mainly (called axial losses), due to the low coefficient of support C L that is obtained with the current profiles for load indexes C T lower than the value 3 and for the drag losses of the nozzle. The effort to achieve greater performance in the propulsive systems has been constant by all researchers and research groups of both companies and universities, especially since the oil crisis of 1973 until today.
La ventaja técnica que aporta esta invención radica en disminuir las pérdidas axiales principalmente, incrementar de forma muy importante el coeficiente de sustentación CL con la consiguiente aceleración del agua en el plano de barrido de la hélice y disminuir mucho el arrastre de la tobera, todo lo cual combinado contribuye a un importante incremento de eficiencia del sistema propulsivo. The technical advantage provided by this invention lies in reducing axial losses mainly, increasing very significantly the lift coefficient C L with the consequent acceleration of water in the plane of sweeping the propeller and greatly reducing the drag of the nozzle, all which combined contributes to a significant increase in efficiency of the propulsive system.
Divulgación de la invención. Disclosure of the invention.
La solución al problema técnico planteado anteriormente consiste, en el uso de una tobera aceleradora para naves acuáticas en condición de navegación libre, que comprende:  The solution to the technical problem outlined above consists in the use of an accelerator nozzle for watercraft in free navigation, which includes:
En el sentido de circulación general del agua, primero una superficie interior convergente, después una superficie interior cilindrica y por último una superficie interior divergente; la relación L/D está comprendida entre 0.20 y 1 .90 siendo L la longitud axial del perfil de la tobera y D el diámetro interior de la tobera; con una sola tobera para cada hélice; la superficie interior cilindrica de la tobera, está alrededor de la hélice; la tobera es fija respecto al soporte del árbol de la hélice;  In the sense of general water circulation, first a converging inner surface, then a cylindrical inner surface and finally a divergent inner surface; the ratio L / D is between 0.20 and 1.90, with L being the axial length of the profile of the nozzle and D the inside diameter of the nozzle; with a single nozzle for each propeller; the cylindrical interior surface of the nozzle is around the propeller; the nozzle is fixed with respect to the support of the propeller shaft;
De acuerdo con la invención, la línea que contiene la cuerda del perfil de la tobera, que va desde el extremo anterior del borde de entrada hasta el extremo posterior del borde de salida, se cruza con el eje de simetría de la parte interior cilindrica de la tobera, aguas arriba de dicha tobera, en el sentido general de proa de la nave cuando se navega avante en línea recta, (para disminuir principalmente las pérdidas axiales y para aumentar el coeficiente de sustentación CL respecto a las toberas actuales, tanto en la configuración tradicional del sistema de propulsión con árbol de la hélice y la tobera en la dirección longitudinal de la nave de forma permanente, como en la configuración azimutal en "pod" donde el conjunto hélice-tobera puede girar 360e). According to the invention, the line containing the rope of the nozzle profile, which runs from the front end of the inlet edge to the rear end of the outlet edge, intersects with the axis of symmetry of the cylindrical inner part of the nozzle, upstream of said nozzle, in the general direction of the ship's bow when navigating straight forward, (to mainly reduce axial losses and to increase the coefficient of lift C L with respect to the current nozzles, both in the Traditional configuration of the propulsion system with propeller shaft and nozzle in the longitudinal direction of the ship permanently, as in the azimuthal configuration in "pod" where the propeller-nozzle assembly can rotate 360 e ).
Como opción para incrementar más la eficiencia pueden realizarse las siguientes características: la diferencia entre el radio exterior de la tobera y el radio interior de la tobera está comprendida entre 0.050D y 0.076D, (para disminuir considerablemente el arrastre de la tobera, pues para coeficientes de carga inferiores al valor 3 la influencia de la succión de la hélice no alcanza mayor distancia radial); la superficie exterior de la tobera es cilindrica en toda su longitud axial desde el borde de entrada anterior hasta el borde de salida posterior de acuerdo con el sentido general de circulación del agua (para evitar desprendimientos de la capa límite en esta zona y por tanto la turbulencia asociada) y la superficie interior convergente es convexa; la superficie interior convergente se une a la superficie exterior por medio de una superficie toroidal, con circunferencia como generatriz, formando el borde de entrada de agua en la tobera, dicho borde tiene un radio de curvatura en perfil, comprendido entre 0.01019D y 0.004D (para que la penetración de la tobera en el fluido origine menos resistencia); la superficie interior divergente es convexa y en su parte final aguas abajo presenta una divergencia muy pronunciada de más de 50e respecto al eje de simetría de la parte interior cilindrica de la tobera; esta superficie interior divergente y la superficie exterior de la tobera coinciden en una arista, formando el borde de salida del agua de la tobera (para que el agua que circula por la superficie exterior cilindrica se desprenda bruscamente sin cambiar de dirección); el plano de barrido del centro de las puntas de pala de la hélice, perpendicular al eje de simetría de la parte interior cilindrica de la tobera, está más próximo al borde de entrada de la tobera que al borde de salida de la tobera (para que los efectos de succión de la hélice sean más notables en la superficie interior convergente lo cual se traduce en mayor empuje de la tobera); en el perfil de la tobera la línea tangente a la superficie interior convexa convergente por un punto a una distancia axial de 0.046L aguas abajo del borde de entrada, forma un ángulo con el eje de simetría de la parte interior cilindrica de la tobera de entre 20e y 30e, (como punto para definir una pendiente característica que tiene mucha influencia en la resistencia del perfil); y la longitud axial de la superficie divergente posterior es manifiestamente mayor que la longitud axial de la superficie convergente anterior entre un 15% y un 25% (para retrasar el punto de desprendimiento de la capa límite, al tener una divergencia menos pronunciada, hasta el tramo de divergencia pronunciada de más de 50e). As an option to further increase the efficiency, the following characteristics can be realized: the difference between the outer radius of the nozzle and the inner radius of the nozzle is between 0.050D and 0.076D, (to considerably reduce the nozzle drag, because for load coefficients below the value 3 the influence of the suction of the propeller does not reach greater radial distance); the outer surface of the nozzle is cylindrical along its entire axial length from the leading inlet edge to the trailing edge of the water in accordance with the general direction of water circulation (to avoid detachment of the boundary layer in this area and therefore the associated turbulence) and the convergent inner surface is convex; the convergent inner surface joins the outer surface by means of a toroidal surface, with circumference as a generatrix, forming the water inlet edge in the nozzle, said edge has a radius of curvature in profile, between 0.01019D and 0.004D (so that the penetration of the nozzle in the fluid causes less resistance); the divergent inner surface is convex and in its final downstream part it presents a very pronounced divergence of more than 50 e with respect to the axis of symmetry of the cylindrical inner part of the nozzle; this divergent inner surface and the outer surface of the nozzle coincide in an edge, forming the outlet edge of the water from the nozzle (so that the water circulating through the cylindrical outer surface abruptly detaches without changing direction); the scanning plane of the center of the propeller blade tips, perpendicular to the axis of symmetry of the cylindrical inner part of the nozzle, is closer to the inlet edge of the nozzle than to the outlet edge of the nozzle (so that the effects of suction of the propeller are more notable in the convergent inner surface which translates into greater thrust of the nozzle); in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the cylindrical inner part of the nozzle between 20 e and 30 e , (as a point to define a characteristic slope that has a great influence on the resistance of the profile); and the axial length of the posterior divergent surface is manifestly greater than the axial length of the Convergent anterior surface between 15% and 25% (to delay the detachment point of the boundary layer, having a less pronounced divergence, up to the pronounced divergence section of more than 50 e ).
Concretando más, la diferencia entre el radio exterior de la tobera y el radio interior de la tobera es de 0.063D; la relación L/D es de 0.4970; el borde de entrada de la tobera tiene un radio de curvatura en perfil de 0,01019D; el plano de barrido del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la parte interior cilindrica de la tobera está situado a una distancia del borde de entrada de 0.4564L; y en el perfil de la tobera la línea tangente a la superficie interior convexa convergente por un punto a una distancia axial de 0.046L aguas abajo del borde de entrada, forma un ángulo con el eje de simetría de la tobera de 26e. Specifically, the difference between the outer radius of the nozzle and the inner radius of the nozzle is 0.063D; The L / D ratio is 0.4970; the inlet edge of the nozzle has a radius of curvature in profile of 0.01019D; the scanning plane of the center of the blade tips of the propeller perpendicular to the axis of symmetry of the cylindrical inner part of the nozzle is located at a distance of the leading edge of 0.4564L; and in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the nozzle of 26 e .
Esta tobera aceleradora para naves acuáticas en condición de navegación libre, forma parte de una nave acuática flotante o submarina, con motor que está unido e imparte movimiento de giro al árbol de la hélice del sistema de propulsión constituido por la hélice y dicha tobera. This accelerator nozzle for watercraft in free navigation condition, is part of a floating or underwater watercraft, with an engine that is attached and imparts turning movement to the propeller shaft of the propulsion system constituted by the propeller and said nozzle.
La tobera con el conjunto de estas características actúa junto con la hélice (influencia o interacción mutua), incrementando el rendimiento del sistema hélice-tobera, respecto a las que se usan actualmente, que naturalmente son las más eficientes hasta la fecha. The nozzle with all these characteristics acts together with the propeller (influence or mutual interaction), increasing the performance of the propeller-nozzle system, compared to those currently used, which are naturally the most efficient to date.
Esta tobera al tener un perfil con mayor longitud periférica interior que exterior, desde el borde de entrada al borde de salida, se trata de una tobera aceleradora de la velocidad del agua dentro de la tobera; las toberas deceleradoras como la tobera "33" de "MARIN" tienen un perfil con mayor longitud periférica exterior y sólo se usan en buques militares para disminuir la cavitación y el ruido sobre todo, aunque se obtiene menor rendimiento incluso que con una hélice abierta, con objeto de que sea más difícil su detección; la línea que contiene la cuerda del perfil que va desde el centro del borde anterior redondeado hasta la arista viva del borde de salida, se cruza con el eje de simetría de la parte interior cilindrica de la tobera aguas arriba de esta, con lo cual al presentar mayor ángulo de ataque respecto a la dirección general de entrada de agua hacia la tobera (que siempre es convergente incluso con índices de carga CT bajos) el coeficiente de sustentación CL es mayor y por lo tanto la aceleración que provoca por este concepto la tobera al agua que la atraviesa; como es bien conocido a mayor aceleración mayor eficiencia de una tobera; como se sabe a mayor índice de carga CT mayor es el ángulo que presenta la dirección general de entrada de agua hacia la tobera respecto al eje de simetría de la parte interior cilindrica de la tobera, con lo cual para índices de carga por ejemplo de 4.5 y superiores el ángulo de ataque es positivo en toberas Ί 9Α", "HR" y "Rice speed", para índices de carga inferiores en estas toberas referidas, aunque el ángulo de ataque sea negativo, sigue habiendo sustentación y por lo tanto aceleración del agua en el interior de la tobera, por tratarse de perfiles asimétricos. This nozzle, having a profile with greater peripheral length inside than outside, from the leading edge to the trailing edge, is a water speed accelerating nozzle inside the nozzle; decelerating nozzles such as the "33" nozzle of "MARIN" have a profile with greater outer peripheral length and are only used on military ships to reduce cavitation and noise, especially if lower performance is obtained even than with an open propeller, in order to make detection more difficult; the line that contains the rope of the profile that goes from the center of the rounded anterior edge to the living edge of the trailing edge, intersects with the axis of symmetry of the cylindrical interior part of the nozzle upstream of it, whereby present a greater angle of attack with respect to the general direction of water entering the nozzle (which is always convergent even with low load indexes C T ) the bearing coefficient C L is greater and therefore the acceleration caused by this concept the nozzle to the water that flows through it; as is well known to greater acceleration greater efficiency of a nozzle; as is known at a higher load index C T, the greater the angle of the general direction of the water inlet towards the nozzle with respect to the axis of symmetry of the cylindrical inner part of the nozzle, whereby for load indices for example of 4.5 and higher the angle of attack is positive in nozzles Ί 9Α "," HR "and" Rice speed ", for lower loading rates in these nozzles, although the angle of attack is negative, there is still lift and therefore acceleration of water inside the nozzle, because they are asymmetric profiles.
Puesto que la aceleración ejercida por esta tobera es mayor, el coeficiente de empuje de la hélice τ es menor para la misma velocidad de la nave y por lo tanto esto hace que se incremente la eficiencia; en las toberas deceleradoras el coeficiente de empuje de la hélice τ es mayor que la unidad y por lo tanto disminuye la eficiencia del sistema propulsivo hélice-tobera en su conjunto. La notable menor diferencia entre el radio exterior de la tobera y el radio interior origina un arrastre mínimo para índices de carga de valor 3 o inferiores. Se disminuyen de forma trascendente las pérdidas axiales en la estela efectiva, puesto que la tobera al tener el borde de salida en arista con el máximo radio, y debido a la posición de la cuerda del perfil, induce a la vena líquida que pasa por el interior de la tobera a alcanzar dicho radio máximo aguas abajo para unirse con el agua procedente de la superficie exterior cilindrica, con lo cual al aumentar el diámetro de la vena líquida aumenta la presión estática en esta zona posterior lo cual se transmite al sistema hélice-tobera como incremento de empuje y lo más importante disminuye la diferencia de velocidad de la vena líquida aguas abajo de la tobera respecto a la velocidad del agua que la rodea, por lo cual disminuyen considerablemente las pérdidas axiales por rozamiento y turbulencia en la estela efectiva; es de sobra conocido que las pérdidas axiales son las más importantes en cualquier sistema de propulsión. El truncamiento final de la tobera con una divergencia superior a 50e, implica el desprendimiento de la capa límite en un plano muy próximo al plano del borde de salida, donde resulta rentable desde el punto de vista de la eficiencia, ya que el flujo inverso en la pared es escaso y se permite una expansión libre de la vena líquida hasta alcanzar la corriente periférica procedente de la superficie exterior cilindrica de la tobera para unirse ambas, aguas abajo; alargar la tobera supondría mayor arrastre por fricción. De acuerdo con la observación del flujo en el túnel de cavitación, con modelo a escala de la tobera "HR" que se usa actualmente, el desprendimiento de la capa límite para valores del índice de carga comprendidos entre 3 y 1 .5, se produce en dicha tobera "HR" antes del truncamiento final; con la tobera propuesta, al presentar menor divergencia hasta la zona de truncamiento, por tener mayor longitud, se retrasa el punto de desprendimiento de la capa límite, lo cual favorece una mayor expansión libre de la vena líquida hasta unirse con la corriente periférica procedente de la superficie exterior cilindrica. Since the acceleration exerted by this nozzle is greater, the thrust coefficient of the propeller τ is lower for the same speed of the spacecraft and therefore this increases efficiency; in the decelerating nozzles, the thrust coefficient of the propeller τ is greater than the unit and therefore decreases the efficiency of the propeller-nozzle propulsion system as a whole. The notable minor difference between the outer radius of the nozzle and the inner radius causes a minimum drag for load indexes of value 3 or lower. Axial losses in the effective wake are transcendently reduced, since the nozzle, having the trailing edge with the maximum radius, and due to the position of the profile rope, induces the liquid vein that passes through the inside the nozzle to reach said maximum radius downstream to join with the water coming from the cylindrical outer surface, whereby increasing the diameter of the liquid vein increases the static pressure in this posterior area which is transmitted to the propeller system. nozzle as an increase in thrust and most importantly, the difference in velocity of the liquid vein downstream of the nozzle with respect to the velocity of the surrounding water decreases, whereby axial losses due to friction and turbulence in the effective wake are considerably reduced; It is well known that axial losses are the most important in any propulsion system. The final truncation of the nozzle with a divergence greater than 50 e , implies the detachment of the boundary layer in a plane very close to the plane of the trailing edge, where it is profitable from the point of view of efficiency, since the reverse flow in the wall it is scarce and a free expansion of the liquid vein is allowed until reaching the peripheral current from the cylindrical outer surface of the nozzle to join both downstream; lengthening the nozzle would lead to greater drag by friction. According to the observation of the flow in the cavitation tunnel, with a scale model of the "HR" nozzle that is currently used, the shedding of the boundary layer for values of the load index between 3 and 1 .5 occurs in said nozzle "HR" before truncation final; With the proposed nozzle, since it presents less divergence to the truncation zone, due to its longer length, the detachment point of the boundary layer is delayed, which favors a greater free expansion of the liquid vein until it joins with the peripheral current from the cylindrical outer surface.
Hasta la fecha no se ha construido ninguna tobera con la línea que contiene la cuerda del perfil cruzándose con el eje de simetría de la parte interior cilindrica de la tobera aguas arriba, en el sentido general de proa de la nave cuando se navega avante en línea recta, siendo esta una característica esencial de la tobera para obtener alta eficiencia y que además permite el resto de características. Naturalmente esta tobera puede aplicarse en sistemas de propulsión azimutal "pod". To date no nozzle has been constructed with the line containing the profile rope crossing the axis of symmetry of the cylindrical interior part of the nozzle upstream, in the general direction of the ship's bow when navigating forward straight, this being an essential characteristic of the nozzle to obtain high efficiency and that also allows the rest of the characteristics. Naturally this nozzle can be applied in "pod" azimuthal propulsion systems.
Esta tobera propuesta, tiene la ventaja de incrementar el rendimiento propulsivo del conjunto hélice-tobera y por tanto disminuir en la misma proporción el consumo de combustible, en todo tipo de naves acuáticas en condición de navegación libre, especialmente hasta una velocidad de crucero superior a 20 nudos, respecto a los sistemas propulsivos que se usan en la actualidad. This proposed nozzle has the advantage of increasing the propulsive performance of the propeller-nozzle assembly and therefore reducing the fuel consumption in the same proportion, in all types of watercraft in free navigation condition, especially up to a cruising speed exceeding 20 knots, with respect to the propulsive systems that are currently used.
Breve descripción de los dibujos. Brief description of the drawings.
A continuación se pasa a describir una serie de dibujos que ayudan a comprender mejor la invención y que se presentan como ejemplo ilustrativo y no limitativo de esta. La figura 1 , es una representación esquemática en corte axial de la tobera.  A series of drawings that help to better understand the invention and which are presented as an illustrative and non-limiting example thereof are described below. Figure 1 is a schematic representation in axial section of the nozzle.
La figura 2, es una representación esquemática del perfil de la tobera con representación de la cuerda y otros detalles. Figure 2 is a schematic representation of the profile of the nozzle with representation of the rope and other details.
La figura 3, es un detalle ampliado de la parte anterior del perfil de la tobera.  Figure 3 is an enlarged detail of the front part of the nozzle profile.
La figura 4, es una representación esquemática del conjunto hélice, tobera y soportes de tobera, en vista desde aguas abajo.  Figure 4 is a schematic representation of the propeller assembly, nozzle and nozzle supports, seen from downstream.
La figura 5, es una representación esquemática del sistema de propulsión de hélice y tobera fija respecto a la hélice, en corte vertical de la tobera por un plano que contiene el eje de giro de la hélice; y en vista se representan la hélice con las palas y el núcleo (cubo), la bocina (soporte posterior del árbol de la hélice), el codaste, un soporte de la tobera y el timón; formando parte de un buque, para que puedan apreciarse bien los detalles del conjunto.  Figure 5 is a schematic representation of the propeller system and fixed nozzle with respect to the propeller, in vertical section of the nozzle by a plane containing the axis of rotation of the propeller; and in view the propeller is represented with the blades and the core (hub), the horn (rear support of the propeller shaft), the elbow, a nozzle holder and the rudder; forming part of a ship, so that the details of the set can be well appreciated.
Mejor manera de realizar la invención. Best way to realize the invention.
En la figura 1 se observa la parte anterior 1 de la tobera, la parte central 2 de la tobera y la parte posterior 3 de la tobera; la longitud axial A de la parte anterior, la longitud axial B de la parte central y la longitud axial C de la parte posterior; la tobera 4, el borde de entrada 5 del agua en la tobera y el borde de salida 6 del agua de la tobera, observándose cómo las paredes interiores son convexas convergentes en el sentido del flujo en la parte anterior, a continuación recta y por tanto cilindrica la superficie y después divergentes convexas hasta el extremo posterior; en esta figura se observa cómo las paredes exteriores 8 del perfil son rectas con la misma distancia al eje de simetría 7 de la parte interior cilindrica de la tobera en toda su extensión axial y por tanto la superficie exterior es cilindrica; la tobera 4 tiene mayor espesor en la parte central; la longitud axial C de la superficie divergente posterior es un 20% mayor que la longitud axial A de la superficie convergente anterior; también se observa el radio interior Ri de la tobera, el radio exterior Ro de la tobera y su diferencia S de 0.063D que coincide con el espesor máximo de la tobera. Figure 1 shows the front part 1 of the nozzle, the central part 2 of the nozzle and the rear part 3 of the nozzle; the axial length A of the front part, the length axial B of the central part and the axial length C of the rear; the nozzle 4, the inlet edge 5 of the water in the nozzle and the outlet edge 6 of the water of the nozzle, observing how the inner walls are convergent convexes in the direction of the flow in the anterior part, then straight and therefore cylindrical surface and then convex divergent to the rear end; in this figure it is observed how the outer walls 8 of the profile are straight with the same distance to the axis of symmetry 7 of the cylindrical inner part of the nozzle in all its axial extension and therefore the outer surface is cylindrical; the nozzle 4 has a greater thickness in the central part; the axial length C of the posterior divergent surface is 20% greater than the axial length A of the anterior convergent surface; the inner radius Ri of the nozzle, the outer radius Ro of the nozzle and its difference S of 0.063D which coincides with the maximum thickness of the nozzle are also observed.
En la figura 2, se observa el perfil de la tobera en el cual está representada la cuerda 9 que va desde el extremo anterior del borde de entrada hasta el extremo posterior del borde de salida; el plano de barrido 10 del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la parte interior cilindrica de la tobera, representado por línea discontinua, observándose cómo la distancia axial H de 0.4564L hasta el borde de entrada es inferior a la distancia axial E hasta el borde de salida; también está representada la línea tangente 11 al perfil por un punto situado a una distancia axial F de 0.046L aguas abajo del borde de entrada formando un ángulo α con una línea 12 paralela al eje de simetría de la parte interior cilindrica de la tobera de 26e. En la figura 3 se observa la línea de corriente G que indica la dirección y el sentido general del fluido aguas arriba, inmediatamente antes de entrar en la parte anterior de la tobera, también se observa parte de la cuerda 9 y el ángulo β que forman ambas direcciones, en un mismo plano que contiene el eje de simetría de la parte interior cilindrica de la tobera; y también se observa el radio r de la circunferencia que genera la superficie toroidal del borde de entrada, teniendo como eje de rotación el eje de simetría de la parte interior cilindrica de la tobera; dicho radio r de la circunferencia tiene un valor de 0.01019D y naturalmente el borde de entrada de la tobera completa tiene superficie toroidal. In figure 2, the profile of the nozzle in which the rope 9 is shown, which is shown from the front end of the entrance edge to the rear end of the exit edge is shown; the scanning plane 10 of the center of the blade tips of the propeller perpendicular to the axis of symmetry of the cylindrical inner part of the nozzle, represented by dashed line, observing how the axial distance H of 0.4564L to the inlet edge is smaller at axial distance E to the trailing edge; the tangent line 11 to the profile is also represented by a point located at an axial distance F of 0.046L downstream of the inlet edge forming an angle α with a line 12 parallel to the axis of symmetry of the cylindrical inner part of the nozzle of 26 e . Figure 3 shows the current line G indicating the direction and general direction of the upstream fluid, immediately before entering the front part of the nozzle, part of the rope 9 and the angle β that form both directions, in the same plane that contains the axis of symmetry of the cylindrical inner part of the nozzle; and also the radius r of the circumference generated by the toroidal surface of the inlet edge is observed, having as axis of rotation the axis of symmetry of the cylindrical inner part of the nozzle; said radius r of the circumference has a value of 0.01019D and naturally the leading edge of the complete nozzle has a toroidal surface.
En la figura 4, se observan las palas 14, las puntas de pala en forma de arco coaxial al eje de giro, el sentido de giro de las palas indicado por flecha, el núcleo (cubo) de la hélice, y los soportes 13 de la tobera 4 que unen esta a la popa del buque, no representado en esta figura.  In figure 4, the blades 14, the blade tips in the form of an arc coaxial to the axis of rotation, the direction of rotation of the blades indicated by arrow, the core (hub) of the propeller, and the supports 13 of the nozzle 4 that joins is at the stern of the ship, not shown in this figure.
En la figura 5, se observa la tobera 4, la hélice con sus palas 14, el timón 15, uno de los dos soportes 13 de la tobera, y el codaste 16 que pertenece al buque. El núcleo de la hélice (parte central de la hélice) está unido al árbol y este al motor del buque. El árbol motor pasa por el interior de la bocina que hace la función de soporte en el extremo de popa del casco. De acuerdo con el sistema de propulsión hélice-tobera, la hélice al girar origina menor presión estática delante y mayor presión estática detrás, dichas presiones también se transmiten localmente sobre las paredes interiores de la tobera, por lo cual la tobera empuja al buque con la componente axial, a través de los soportes que la unen a la popa del buque. Tanto la hélice como la tobera empujan al buque, formando ambas el sistema de propulsión. El sistema de propulsión forma parte del buque. La tobera protege a la hélice de la mayoría de los choques con elementos exteriores y por lo tanto de un deterioro irreversible; y también de redes y cables que podrían llegar a inutilizarla temporalmente. In figure 5, the nozzle 4, the propeller with its blades 14, the rudder 15, one of the two supports 13 of the nozzle, and the elbow 16 belonging to the vessel. The core of the propeller (central part of the propeller) is attached to the tree and this to the ship's engine. The motor shaft passes through the interior of the horn that acts as a support at the stern end of the hull. According to the propeller-nozzle propulsion system, the rotating propeller causes less static pressure in front and greater static pressure behind, such pressures are also transmitted locally on the interior walls of the nozzle, whereby the nozzle pushes the vessel with the axial component, through the supports that connect it to the stern of the ship. Both the propeller and the nozzle push the vessel, both forming the propulsion system. The propulsion system is part of the ship. The nozzle protects the propeller from most shocks with external elements and therefore from irreversible deterioration; and also of networks and cables that could temporarily disable it.
Las coordenadas del perfil son las siguientes para una hélice tipo "Kaplan" de cuatro palas, relación de áreas AE/A0 = 0.60 y relación L/D = 0.4970; de acuerdo con la representación ordinaria para coordenadas de perfiles de tobera, queda establecido el valor de las abscisas en 100 X/L tomando los valores de X a partir del borde de entrada; 100 Yi/L para el valor de las ordenadas interiores; y 100 Yo/L para el valor de las ordenadas exteriores: The coordinates of the profile are as follows for a four-blade "Kaplan" type propeller, ratio of areas A E / A 0 = 0.60 and ratio L / D = 0.4970; according to the ordinary representation for coordinates of nozzle profiles, the value of the abscissa is set at 100 X / L taking the values of X from the leading edge; 100 Yi / L for the value of the ordered interiors; and 100 Yo / L for the value of the external ordinates:
100 X/L 100 Yi/L 100 Yo/L  100 X / L 100 Yi / L 100 Yo / L
0.000 10.7648 10.7648  0.000 10.7648 10.7648
2.051 8.1527 12.8158  2,051 8.1527 12.8158
4.615 6.7280 12.8158  4,615 6,7280 12.8158
7.179 5.5407 12.8158  7,179 5.5407 12.8158
9.743 4.5908 12.8158  9,743 4,5908 12.8158
12.307 3.7201 12.8158  12,307 3.7201 12.8158
14.871 2.9286 12.8158  14,871 2.9286 12.8158
17.435 2.2162 12.8158  17,435 2.2162 12.8158
20.000 1 .5830 12.8158  20,000 1,55830 12.8158
22.564 1 .0289 12.8158  22,564 1 .0289 12.8158
25.128 0.6332 12.8158  25.128 0.6332 12.8158
27.692 0.3166 12.8158  27.692 0.3166 12.8158
32.820 0.0 12.8158  32,820 0.0 12.8158
58.974 0.0 12.8158  58,974 0.0 12.8158
66.666 0.1583 12.8158  66.666 0.1583 12.8158
71 .794 0.3957 12.8158 76.923 0.8706 12.8158 71 .794 0.3957 12.8158 76.923 0.8706 12.8158
82.051 1.5039 12.8158  82.051 1.5039 12.8158
84.615 1.9788 12.8158  84.615 1.9788 12.8158
87.179 2.5328 12.8158  87,179 2.5328 12.8158
89.743 3.1661 12.8158  89,743 3,161 12.8158
92.307 4.0368 12.8158  92,307 4.0368 12.8158
94.871 5.0657 12.8158  94.871 5.0657 12.8158
96.153 5.6990 12.8158  96,153 5,690 12.8158
97.435 6.4905 12.8158  97,435 6,4905 12.8158
98.717 7.5986 12.8158  98.717 7.5986 12.8158
100.000 12.8158 12.8158  100,000 12.8158 12.8158
El centro de giro del radio r de la circunferencia generadora de la superficie toroidal del borde de entrada, queda establecido en abscisa 100X/L = 2.051 y ordenada 100Y/L = 10.7648; la longitud del radio tiene el mismo valor que la abscisa.  The center of rotation of the radius r of the generating circumference of the toroidal surface of the entry edge is set at abscissa 100X / L = 2.051 and ordered 100Y / L = 10.7648; The length of the radius has the same value as the abscissa.
Aplicación industrial. Industrial application.
Esta invención tiene aplicación industrial en la industria naval.  This invention has industrial application in the naval industry.

Claims

REIVINDICACIONES
1 . - Tobera aceleradora para naves acuáticas en condición de navegación libre, que comprende: one . - Accelerator nozzle for watercraft in free navigation condition, comprising:
en el sentido de circulación general del agua, primero una superficie interior convergente, después una superficie interior cilindrica y por último una superficie interior divergente; la relación L/D está comprendida entre 0.20 y 1 .90 siendo L la longitud axial del perfil de la tobera y D el diámetro interior de la tobera; con una sola tobera para cada hélice; la superficie interior cilindrica de la tobera, está alrededor de la hélice; la tobera es fija respecto al soporte del árbol de la hélice; in the sense of general circulation of water, first a converging inner surface, then a cylindrical inner surface and finally a divergent inner surface; the ratio L / D is between 0.20 and 1.90, with L being the axial length of the profile of the nozzle and D the inside diameter of the nozzle; with a single nozzle for each propeller; the cylindrical interior surface of the nozzle is around the propeller; the nozzle is fixed with respect to the support of the propeller shaft;
caracterizada porque, la línea que contiene la cuerda ( 9 ) del perfil de la tobera, que va desde el extremo anterior del borde de entrada hasta el extremo posterior del borde de salida, se cruza con el eje de simetría ( 7 ) de la parte interior cilindrica de la tobera, aguas arriba de dicha tobera, en el sentido general de proa de la nave cuando se navega avante en línea recta. characterized in that, the line containing the rope (9) of the nozzle profile, which goes from the front end of the inlet edge to the rear end of the outlet edge, intersects with the axis of symmetry (7) of the part cylindrical interior of the nozzle, upstream of said nozzle, in the general direction of the ship's bow when sailing straight ahead.
2. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque la diferencia entre el radio exterior ( Ro ) de la tobera y el radio interior ( Ri ) de la tobera está comprendida entre 0.050D y 0.076D. 2. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the difference between the outer radius (Ro) of the nozzle and the inner radius (Ri) of the nozzle is between 0.050D and 0.076D .
3. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque la superficie exterior ( 8 ) de la tobera es cilindrica en toda su longitud axial desde el borde de entrada anterior hasta el borde de salida posterior de acuerdo con el sentido general de circulación del agua y la superficie interior convergente es convexa. 3. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the outer surface (8) of the nozzle is cylindrical along its entire axial length from the leading inlet edge to the trailing edge in accordance with with the general sense of water circulation and the convergent inner surface is convex.
4. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque la superficie interior convergente se une a la superficie exterior por medio de una superficie toroidal, con circunferencia como generatriz, formando el borde de entrada de agua en la tobera, dicho borde tiene un radio ( r ) de curvatura en perfil, comprendido entre 0.01019D y 0.004D. 4. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the converging inner surface is joined to the outer surface by means of a toroidal surface, with circumference as a generatrix, forming the water inlet edge in the nozzle, said edge has a radius (r) of curvature in profile, between 0.01019D and 0.004D.
5. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque la superficie interior divergente es convexa y en su parte final aguas abajo presenta una divergencia muy pronunciada de más de 50e respecto al eje de simetría de la parte interior cilindrica de la tobera; esta superficie interior divergente y la superficie exterior de la tobera coinciden en una arista, formando el borde de salida del agua de la tobera. 5. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the divergent inner surface is convex and in its final part downstream it presents a very pronounced divergence of more than 50 e with respect to the axis of symmetry of the cylindrical interior part of the nozzle; this surface divergent interior and the outer surface of the nozzle coincide in an edge, forming the trailing edge of the water from the nozzle.
6. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque el plano de barrido ( 10 ) del centro de las puntas de pala de la hélice, perpendicular al eje de simetría de la parte interior cilindrica de la tobera, está más próximo al borde de entrada de la tobera que al borde de salida de la tobera. 6. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the scanning plane (10) of the center of the propeller blade tips, perpendicular to the axis of symmetry of the cylindrical interior part of the nozzle, is closer to the entrance edge of the nozzle than to the exit edge of the nozzle.
7. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque en el perfil de la tobera la línea tangente ( 11 ) a la superficie interior convexa convergente ( 1 ) por un punto a una distancia axial ( F ) de 0.046L aguas abajo del borde de entrada, forma un ángulo ( α ) con el eje de simetría de la parte interior cilindrica de la tobera de entre 20e y 30e. 7. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that in the profile of the nozzle the tangent line (11) to the convergent convex inner surface (1) by a point at an axial distance (F ) of 0.046L downstream inlet edge, forms an angle (α) with the axis of symmetry of the inner cylindrical part of the nozzle of between 20 and 30 and.
8. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque la longitud axial ( C ) de la superficie divergente posterior es manifiestamente mayor que la longitud axial ( A ) de la superficie convergente anterior entre un 15% y un 25%. 8. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the axial length (C) of the posterior divergent surface is manifestly greater than the axial length (A) of the anterior convergent surface between 15% and 25%.
9. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según reivindicación 1 , caracterizada porque la diferencia entre el radio exterior ( Ro ) de la tobera y el radio interior ( Ri ) de la tobera es de 0.063D; la relación L/D es de 0.4970; el borde de entrada de la tobera tiene un radio ( r ) de curvatura en perfil de 0,01019D; el plano de barrido ( 10 ) del centro de las puntas de pala de la hélice perpendicular al eje de simetría de la parte interior cilindrica de la tobera está situado a una distancia del borde de entrada de 0.4564L; y en el perfil de la tobera la línea tangente a la superficie interior convexa convergente por un punto a una distancia axial de 0.046L aguas abajo del borde de entrada, forma un ángulo con el eje de simetría de la tobera de 26e. 9. - Accelerator nozzle for watercraft in free navigation condition, according to claim 1, characterized in that the difference between the outer radius (Ro) of the nozzle and the inner radius (Ri) of the nozzle is 0.063D; The L / D ratio is 0.4970; the inlet edge of the nozzle has a radius (r) of curvature in profile of 0.01019D; the scanning plane (10) of the center of the propeller blade tips perpendicular to the axis of symmetry of the cylindrical inner part of the nozzle is located at a distance of the leading edge of 0.4564L; and in the profile of the nozzle the line tangent to the convex inner surface converging by a point at an axial distance of 0.046L downstream of the inlet edge, forms an angle with the axis of symmetry of the nozzle of 26 e .
10. - Tobera aceleradora para naves acuáticas en condición de navegación libre, según cualquiera de las reivindicaciones anteriores, caracterizada porque forma parte de una nave acuática flotante o submarina, con motor que está unido e imparte movimiento de giro al árbol de la hélice del sistema de propulsión constituido por la hélice y dicha tobera. 10. - Accelerator nozzle for watercraft in free navigation condition, according to any of the preceding claims, characterized in that it is part of a floating or underwater watercraft, with an engine that is attached and imparts turning movement to the propeller shaft of the system of propulsion constituted by the propeller and said nozzle.
PCT/ES2012/070835 2012-05-30 2012-11-28 Accelerating nozzle for watercraft in a free navigation condition WO2013178837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070341 WO2013178853A2 (en) 2012-05-30 2013-05-28 Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201200572A ES2385994B2 (en) 2012-05-30 2012-05-30 Fixed symmetric accelerator nozzle for watercraft in free navigation condition
ESP201200572 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013178837A1 true WO2013178837A1 (en) 2013-12-05

Family

ID=46514899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070835 WO2013178837A1 (en) 2012-05-30 2012-11-28 Accelerating nozzle for watercraft in a free navigation condition

Country Status (2)

Country Link
ES (1) ES2385994B2 (en)
WO (1) WO2013178837A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178853A2 (en) * 2012-05-30 2013-12-05 Romero Vazquez Juan Jose Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832633A (en) * 1977-11-30 1989-05-23 Hydronic, Ltd. Marine propulsion system
WO2000027697A1 (en) * 1998-11-09 2000-05-18 Scheepswerf Van De Giessen B.V. Device for propelling ships, and a nozzle used in the device
JP2006306304A (en) * 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832633A (en) * 1977-11-30 1989-05-23 Hydronic, Ltd. Marine propulsion system
WO2000027697A1 (en) * 1998-11-09 2000-05-18 Scheepswerf Van De Giessen B.V. Device for propelling ships, and a nozzle used in the device
JP2006306304A (en) * 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method

Also Published As

Publication number Publication date
ES2385994A1 (en) 2012-08-06
ES2385994B2 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
Carlton Marine propellers and propulsion
US4370096A (en) Marine propeller
CN105292420A (en) Propulsion and steering device installed below sea level of outside of right and left shipwall in a ship
CN105818951B (en) Novel preposition skew back guide-vane pump-jet propulsor and its design method
Dang et al. The Wageningen C-and D-series propellers
JP2016506892A (en) Ship propulsion device
AU2005331946A1 (en) Multi-hull watercraft with amidships-mounted propellers
US20080200081A1 (en) Vessel propulsion
ES2772573B2 (en) THROTTLE NOZZLE HELICE SYSTEM TO POWER BOATS
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
WO2013178853A2 (en) Symmetrical fixed accelerating nozzle for aquatic vessels in the free navigation state
ES2385994B2 (en) Fixed symmetric accelerator nozzle for watercraft in free navigation condition
US9376186B2 (en) Marine tunnel thruster
Sasaki et al. Full scale performance of gate rudder
Sasaki ZEUS and NOAH projects of NMRI
KR101523920B1 (en) Propulsion apparatus for vessel
WO2013078526A1 (en) Hydrodynamic submarine
ES2317799B1 (en) PROPULSION SYSTEM WITH HELICE AND FIXED TOWER REGARDING HELICE.
WO2015101683A1 (en) Accelerating ducted propeller system for propelling boats
ES2460815A1 (en) Helix system accelerator nozzle to boost boats (Machine-translation by Google Translate, not legally binding)
WO2018211155A2 (en) Accelerating ducted propeller system for propelling boats
CN205524904U (en) Novel leading skew stator formula pump spouts propeller
Hordnes et al. Sea trials of the ducted tip propeller
CN108341021A (en) A kind of complexity shallow water area electric ducted fan propulsion M type racy speed boats
KR101589124B1 (en) Propulsion apparatus of vessel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14258162

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877834

Country of ref document: EP

Kind code of ref document: A1