WO2013176255A1 - 超音波診断装置およびデータ処理方法 - Google Patents

超音波診断装置およびデータ処理方法 Download PDF

Info

Publication number
WO2013176255A1
WO2013176255A1 PCT/JP2013/064486 JP2013064486W WO2013176255A1 WO 2013176255 A1 WO2013176255 A1 WO 2013176255A1 JP 2013064486 W JP2013064486 W JP 2013064486W WO 2013176255 A1 WO2013176255 A1 WO 2013176255A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound speed
ultrasonic
data
environmental sound
reception
Prior art date
Application number
PCT/JP2013/064486
Other languages
English (en)
French (fr)
Inventor
拓明 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013176255A1 publication Critical patent/WO2013176255A1/ja
Priority to US14/551,774 priority Critical patent/US20150080732A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52049Techniques for image enhancement involving transmitter or receiver using correction of medium-induced phase aberration
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and a data processing method for creating and displaying an ultrasonic image of a diagnostic part of a subject using ultrasonic waves.
  • an ultrasonic diagnostic apparatus using an ultrasonic image has been put into practical use.
  • an ultrasonic diagnostic apparatus has an ultrasonic probe (ultrasonic probe) with a built-in transducer array, and an apparatus main body connected to the ultrasonic probe.
  • An ultrasonic image is transmitted by transmitting an ultrasonic beam, receiving an ultrasonic echo reflected from the subject by an ultrasonic probe, obtaining a received signal, and electrically processing the acquired received signal by the apparatus main body. Is generated.
  • the ultrasonic sound velocity value set for the entire apparatus is fixed to a certain value on the assumption that the ultrasonic sound velocity in the living body of the subject is constant.
  • the ultrasonic sound speed (hereinafter referred to as environmental sound speed) in the subject is not uniform.
  • the thickness of the fat layer and the muscle layer differs between a fat subject and a thin subject, there are individual differences in the environmental sound speed for each subject.
  • the value of the ultrasonic sound speed (hereinafter referred to as the set sound speed) set for the entire apparatus is fixed to a certain value.
  • the set sound speed deviates, the arrival time of the reflected wave (ultrasonic echo) deviates from the delay time set in the ultrasonic transmission / reception circuit, the focus deteriorates, and the quality of the obtained ultrasonic image deteriorates. was there.
  • the region-of-interest setting unit 701 sets the region of interest on the ultrasonic image
  • the transmission focus The control unit 702 issues a transmission focus instruction to the CPU 100 so that the transmission circuit performs transmission focus on the region of interest, and the transmission focus position is set as a pseudo point reflection
  • the set sound speed designating unit 703 determines the start sound speed of the set sound speed.
  • the end sound speed is set
  • the focus index calculation unit 704 calculates the focus index by receiving and focusing the received data in the region of interest for each set step speed
  • the environmental sound speed determination unit 705 sets the focus index as the focus index. Based on this, it is described that the environmental sound speed of the region of interest is determined.
  • Japanese Patent Application Laid-Open No. H10-228688 describes that the signal processing unit 502 performs reception focus processing using the environmental sound speed calculated by the data analysis unit 700.
  • a luminance image is generated by transmitting / receiving ultrasonic waves of a relatively high frequency (high frequency) to / from a subject.
  • the ultrasonic wave reflected from the region of interest has an aberration-like phenomenon (hereinafter simply referred to as “aberration”) due to various path differences.
  • Aberration an aberration-like phenomenon
  • the wave front is easy to collapse.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to calculate an accurate environmental sound speed regardless of the state of a diagnostic part of a subject, and to perform an ultrasonic diagnosis that can accurately focus a luminance image To provide an apparatus and a data processing method.
  • the present invention includes an ultrasonic transmission / reception unit that transmits an ultrasonic beam to a subject, receives an ultrasonic echo reflected from the subject, and outputs received data;
  • the first received data that is lower frequency data than the second received data for generating the luminance image of the subject and that calculates the environmental sound speed that is the sound speed in the subject is acquired, and the acquired first
  • An ultrasonic diagnostic apparatus comprising: an environmental sound speed calculation unit that analyzes received data of 1 and calculates an environmental sound speed.
  • the first received data is obtained by extracting a low frequency component from the second received data.
  • the low frequency when acquiring the first reception data is a frequency of 2 MHz or less.
  • the number of times that the environmental sound speed calculation unit acquires the first reception data and calculates the environmental sound speed is preferably equal to or less than the number of times the second reception data is acquired.
  • a signal processing unit that corrects a difference in arrival time of the ultrasonic echoes in the second received data based on the ambient sound velocity, and performs data processing on the corrected second received data to generate a luminance image. Is preferred.
  • the ultrasonic transmitting / receiving unit transmits the ultrasonic beam to the subject, receives the ultrasonic echo reflected from the subject, and outputs the received data.
  • the environmental sound speed calculation unit is data having a frequency lower than that of the second reception data for generating the luminance image of the subject, and first reception data for calculating the environmental sound speed that is the sound speed in the subject. And a step of calculating the ambient sound speed by analyzing the acquired first received data and providing the data processing method.
  • the first reception data by transmitting an ultrasonic beam having a frequency lower than that of the ultrasonic beam transmitted to the subject in order to acquire the second reception data.
  • the first reception data by extracting the low frequency component from the second reception data.
  • the number of times that the environmental sound speed calculation unit acquires the first reception data and calculates the environmental sound speed is preferably equal to or less than the number of times the second reception data is acquired.
  • the signal processing unit corrects the difference in arrival time of the ultrasonic echo in the second received data based on the environmental sound velocity, and performs data processing on the corrected second received data to generate a luminance image It is preferable to contain.
  • the environmental sound speed is robust to the aberration, Regardless of the state of the diagnostic region of the subject, the environmental sound speed can be accurately obtained. Further, by using the environmental sound speed calculated from the first reception data of the low frequency, the delay time of the second reception data of the high frequency for generating the luminance image is corrected, and the luminance image is generated. Thus, the brightness image can be focused on, and a high-quality brightness image can be generated with little influence of nonuniform sound speed.
  • FIG. 1 It is a block diagram showing the structure of one Embodiment of the ultrasonic diagnosing device which implements the data processing method of this invention. It is a block diagram showing the structure of the environmental sound speed calculation part shown in FIG. It is a flowchart which shows the flow of a process of the environmental sound speed calculation part shown in FIG. It is a figure showing a mode that the reception focus was implemented with respect to the reception data from a point reflection. It is a figure showing the mode of the countless scattering point of a speckle area
  • FIG. 2 is a flowchart showing a flow of processing in a live mode of the ultrasonic diagnostic apparatus shown in FIG. It is a conceptual diagram of 1st Embodiment showing the flow of the reception focus process implemented with the ultrasound diagnosing device shown in FIG. It is a conceptual diagram of 2nd Embodiment showing the flow of the reception focus process implemented with the ultrasound diagnosing device shown in FIG. It is a conceptual diagram showing a mode that the delay time of reception data is correct
  • 10 is a block diagram illustrating a configuration of a data analysis unit described in Patent Document 1.
  • FIG. 1 is a block diagram showing the configuration of an embodiment of an ultrasonic diagnostic apparatus that implements the data processing method of the present invention.
  • An ultrasonic diagnostic apparatus 10 shown in FIG. 1 includes an ultrasonic probe 12 and an apparatus main body 13 connected to the ultrasonic probe 12.
  • the apparatus body 13 includes a transmission circuit 14 and a reception circuit 16, an image generation unit 18, a cine memory 22, an environmental sound speed calculation unit 24, a display control unit 32, a display unit 34, a control unit 36, and an operation.
  • the unit 38 and the storage unit 40 are included.
  • the ultrasound diagnostic apparatus 10 transmits an ultrasound beam from the ultrasound probe 12 to the subject, receives an ultrasound echo reflected from the subject, and obtains an ultrasound image from the received signal of the ultrasound echo. It is a device that generates and displays.
  • the ultrasonic probe 12 is used in contact with a subject and has a transducer array 42 used in a normal ultrasonic diagnostic apparatus.
  • the transducer array 42 has a plurality of ultrasonic transducers (ultrasonic transmitting / receiving elements) arranged one-dimensionally or two-dimensionally. Each of these ultrasonic transducers transmits an ultrasonic beam to the subject according to the drive signal supplied from the transmission circuit 14 at the time of imaging an ultrasonic image, and an ultrasonic echo reflected from the subject. And outputs a received signal.
  • Each ultrasonic transducer includes, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), and PMN-PT (magnesium niobate / lead titanate). It is constituted by a vibrator in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal represented by a solid solution).
  • PZT lead zirconate titanate
  • PVDF polymer piezoelectric element represented by PVDF (polyvinylidene fluoride)
  • PMN-PT magnesium niobate / lead titanate
  • each transducer When a pulsed or continuous wave voltage is applied to the electrodes of such a transducer, the piezoelectric material expands and contracts, generating pulsed or continuous wave ultrasonic waves from the respective transducers, and synthesizing those ultrasonic waves. As a result, an ultrasonic beam is formed.
  • each transducer generates an electric signal by expanding and contracting by receiving propagating ultrasonic waves, and these electric signals are output as ultrasonic reception signals.
  • the transmission circuit 14 includes, for example, a plurality of pulsers, and is transmitted from the plurality of ultrasonic transducers of the transducer array 42 based on the transmission delay pattern selected by the control unit 36.
  • a transmission focus for adjusting the delay amount of each drive signal (timing for applying the drive signal) is performed so that the sound wave forms an ultrasonic beam, and the resultant is supplied to a plurality of ultrasonic transducers. Thereby, an ultrasonic beam is transmitted from a plurality of ultrasonic transducers to the subject.
  • the reception circuit 16 amplifies the reception signal supplied from each ultrasonic transducer of the transducer array 42 and performs A / D (analog / digital) conversion to generate reception data (RF data).
  • the reception circuit 16 supplies the reception data to the image generation unit 18, the cine memory 22, and the environmental sound speed calculation unit 24.
  • the ultrasonic probe 12, the transmission circuit 14, and the reception circuit 16 constitute an ultrasonic transmission / reception unit of the present invention.
  • the transmission delay pattern is pattern data of a delay time given to the drive signal in order to form an ultrasonic beam in a desired direction by ultrasonic waves transmitted from a plurality of ultrasonic transducers.
  • the reception delay pattern is pattern data of delay time given to a reception signal in order to extract ultrasonic echoes from a desired direction by ultrasonic waves received by a plurality of ultrasonic transducers.
  • a plurality of transmission delay patterns and reception delay patterns are stored in the storage unit 40 in advance.
  • the control unit 36 selects one transmission delay pattern and reception delay pattern from among the plurality of transmission delay patterns and reception delay patterns stored in the storage unit 40, and transmits in accordance with the selected transmission delay pattern and reception delay pattern. Control signals are output to the circuit 14 and the signal processing unit 46 to control transmission / reception of ultrasonic waves.
  • the image generation unit 18 generates an ultrasonic image from the reception data supplied from the reception circuit 16.
  • the image generation unit 18 includes a signal processing unit 46, a DSC 48, an image processing unit 50, and an image memory 52.
  • the signal processing unit 46 corrects a difference (delay time) of the arrival time of the ultrasonic echo in the reception data of the luminance image based on the environmental sound speed from the environmental sound speed calculation unit 24 described later, and performs reception focus processing.
  • the signal processing unit 46 delays each received data by an amount corresponding to the difference (delay time) of arrival times of ultrasonic echoes, and digitally adds the received data given the delay time by matching. Receive focus processing is performed.
  • the arrival time of the received signal from the other ultrasonic reflection source is different.
  • the phases of the received signals from the sound wave reflection sources cancel each other.
  • the received signal from the ultrasonic wave reflection source becomes the largest and is focused.
  • Reception data sound ray signal in which the focus of the ultrasonic echo is narrowed down is generated by the reception focus process.
  • FIG. 11 is a conceptual diagram showing how the delay time of received data is corrected based on the environmental sound speed. As shown in the figure, consider a case where a plurality of ultrasonic transducers (ultrasonic transmitting / receiving elements) of the ultrasonic probe 12 are arranged in a line in the left-right direction in the figure.
  • the width of each ultrasonic transducer in the arrangement direction of the ultrasonic transducers is L
  • the distance from the ultrasonic transducer at the center in the arrangement direction to the nth ultrasonic transducer toward the end is nL.
  • the ultrasonic reflection point is at a position (depth) d perpendicular to the arrangement direction from the central ultrasonic transducer, the nth ultrasonic transducer, the reflection point, and the distance (length) d n between, is calculated by the equation (1).
  • the ultrasonic wave received by the nth ultrasonic transducer is the ultrasonic wave received by the central ultrasonic transducer, where t 1 is the time from when the ultrasonic wave is received by the central ultrasonic transducer to the central ultrasonic transducer.
  • the signal processing unit 46 corrects the delay time represented by the time ⁇ t for the reception data corresponding to each ultrasonic transducer. This delayed delay time ⁇ t is called a reception delay pattern.
  • the delay time ⁇ t of each received data is calculated from the distance obtained from the geometrical arrangement of the reflection point and the ultrasonic transducer and the ambient sound velocity.
  • the signal processing unit 46 performs predetermined data processing on the reception data on which the reception focus processing has been performed.
  • the signal processing unit 46 corrects attenuation by distance according to the depth of the reflection position of the ultrasonic wave, and then performs envelope detection processing to obtain a tomographic image relating to the tissue in the subject.
  • a B-mode image signal image signal of a luminance image in which the amplitude of the ultrasonic echo is expressed by the brightness (luminance) of a point) as information is generated.
  • the B-mode image signal generated by the signal processing unit 46 is obtained by a scanning method different from a normal television signal scanning method. Therefore, the DSC (digital scan converter) 48 converts the B-mode image signal generated by the signal processing unit 46 under the control of the control unit 36 into a normal image signal, for example, a television signal scanning method (for example, (Raster conversion).
  • a television signal scanning method for example, (Raster conversion).
  • the image processing unit 50 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 48, stores the B-mode image signal after the image processing in the image memory 52, and displays it. Output to the control unit 32.
  • the display control unit 32 causes the display unit 34 to display an ultrasound diagnostic image based on the B-mode image signal that has been subjected to image processing by the image processing unit 50.
  • the display unit 34 is a display device such as an LCD, for example, and displays ultrasonic diagnostic images (moving images and still images), various setting screens, and the like under the control of the display control unit 32.
  • the cine memory (reception data memory) 22 sequentially stores the reception data supplied from the reception circuit 16.
  • the cine memory 22 stores information related to the frame rate (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the visual field width) input from the control unit 36 in association with the received data.
  • Information regarding the received data and the frame rate stored in the cine memory 22 is supplied to the signal processing unit 46 and the environmental sound speed calculation unit 24.
  • the control unit 36 controls each unit of the ultrasonic diagnostic apparatus 10 based on an instruction input from the operation unit 38 by the operator.
  • the operation unit 38 is an input device that receives an instruction input from an operator, and for example, a keyboard, a mouse, a trackball, and a touch panel can be used.
  • the storage unit 40 stores an operation program, a transmission delay pattern, a reception delay pattern, and the like for the control unit 36 to control each unit of the ultrasonic diagnostic apparatus 10, and includes a hard disk, flexible disk, MO, MT, and RAM. Recording media such as CD-ROM and DVD-ROM can be used.
  • the signal processing unit 46, the DSC 48, the image processing unit 50, the display control unit 32, and the environmental sound speed calculation unit 24 include a CPU (computer) and an operation program for causing the CPU to execute various processes. You may comprise them with a digital circuit.
  • FIG. 2 is a block diagram showing the configuration of the environmental sound speed calculation unit shown in FIG.
  • the environmental sound speed calculation unit 24 includes a region-of-interest setting unit 60, a transmission focus control unit 62, a set sound speed designation unit 64, a focus index calculation unit 66, and an environmental sound speed determination unit 68.
  • the attention area setting section 60 sets an attention area on an ultrasonic image displayed on the display section 34 by an input instruction from the operation section 38 by the operator via the control section 36.
  • the transmission focus control unit 62 gives a transmission focus instruction to the control unit 36 so that the transmission circuit 14 performs transmission focus on the set target region.
  • the set sound speed designation unit 64 designates a set sound speed for executing reception focus on the received data based on the control of the control unit 36.
  • the focus index calculation unit 66 reads the reception data of the region of interest from the cine memory 22, performs reception focus on the reception data for each of a plurality of set sound speeds specified by the set sound speed specification unit 64, and calculates a focus index of the reception data. Is.
  • the environmental sound speed determination unit 68 determines the environmental sound speed of the region of interest based on a focus index for each of a plurality of set sound speeds.
  • FIG. 3 is a flowchart showing the flow of processing of the environmental sound speed calculation unit shown in FIG.
  • the ambient sound speed calculation unit 24 is instructed by the operator from the operation unit 38 via the control unit 36 on the ultrasonic image displayed on the display unit 34 by the attention area setting unit 60.
  • a region of interest is set based on the input (step S10).
  • the ambient sound speed calculation unit 24 sets the start sound speed Vst and the end sound speed Vend of the set sound speed V in the set sound speed designating unit 64 (step S20), and sets the start sound speed Vst to the set sound speed V (step S30). ).
  • received data that can be analyzed for intensity and sharpness when receiving focus is applied to received data from point reflection, but as shown in FIG.
  • the peak value and the spatial frequency in the azimuth direction collapse due to interference, making it difficult to obtain received data that can be analyzed for intensity and sharpness when receiving focus is performed. .
  • the ambient sound velocity calculation unit 24 forms pseudo point reflection by applying transmission focus to the innumerable scattering points in the speckle region, and the received reception data of the received receiving element positions.
  • the ambient sound speed is obtained also in the speckle region by the same method as the point reflection in which the reception focus is performed and the intensity and sharpness are analyzed.
  • the environmental sound speed calculation unit 24 instructs the control unit 36 to perform transmission focus so that the transmission circuit 14 performs transmission focus on the region of interest set by the transmission focus control unit 62, and sets the transmission focus position in a pseudo manner.
  • Point reflection is set (step S40).
  • the ambient sound speed calculation unit 24 reads the received data from the cine memory 22 at the focus index calculation unit 66, and receives and focuses the received data for each of the plurality of set sound speeds designated by the set sound speed designating unit 64.
  • a data focus index is calculated (step S50).
  • the ambient sound speed calculation unit 24 uses the focus index calculation unit 66 to calculate the integral value and the square integral value.
  • the environmental sound speed calculation unit 24 determines whether the set sound speed V has reached the end sound speed Vend in the set sound speed designating section 64 (step S60). If the set sound speed V is less than the end sound speed Vend (step S60). “No”) A predetermined step sound speed amount ⁇ V is added to the set sound speed V (step 70), the process returns to step S40, and if it is determined that the set sound speed V has reached the end sound speed Vend (“Yes” in step S60), the process proceeds to step S80. move on.
  • the transmission focus is applied to innumerable scattering points in the speckle region to generate a pseudo point reflection, and a focus index for each of a plurality of set sound speeds is generated. Because the ambient sound velocity of the region of interest is determined based on the focus index, it is possible to appropriately determine the environmental sound velocity of the region of interest including the speckle region at the point reflection level, and construct a highly accurate ultrasonic image. be able to.
  • the ultrasonic diagnostic apparatus 10 has two operation modes, a live mode and a cine memory reproduction mode.
  • FIG. 8 is a flowchart showing the flow of processing in the live mode of the ultrasonic diagnostic apparatus shown in FIG.
  • the live mode is a mode in which an ultrasonic image (moving image) obtained by transmitting and receiving ultrasonic waves by bringing the ultrasonic probe 12 into contact with a subject is displayed.
  • the ultrasonic probe 12 In the live mode, the ultrasonic probe 12 is brought into contact with the subject, and ultrasonic diagnosis is started by an instruction input from the operation unit 38 by the operator.
  • the control unit 36 sets the transmission direction of the ultrasonic beam and the reception direction of the ultrasonic echo for each ultrasonic transducer, and selects the transmission delay pattern according to the transmission direction of the ultrasonic beam. At the same time, a reception delay pattern is selected according to the reception direction of the ultrasonic echo (step S100). Then, according to the selected transmission delay pattern and reception delay pattern, a control signal is output to the transmission circuit 14 and the signal processing unit 46 to perform ultrasonic transmission / reception control.
  • the transmission circuit 14 performs transmission focus of the drive signal of each ultrasonic transducer based on the selected transmission delay pattern, and transmits the ultrasonic beam from the plurality of ultrasonic transducers to the subject. (Step S110). Then, ultrasonic echoes from the subject are received by the plural ultrasonic transducers, and reception signals are output from the plural ultrasonic transducers. In the reception circuit 16, the reception signal supplied from each ultrasonic transducer is amplified and A / D converted to generate reception data (step S120).
  • the signal processing unit 46 digitally performs reception focus processing on the reception data based on the environmental sound speed supplied from the environmental sound speed calculation unit 24, and receives the reception data in which the focus of the ultrasonic echo is narrowed down. Is generated (step S130).
  • the reception data that has been subjected to the reception focus process is processed by the signal processing unit 46 to generate a B-mode image signal (step S140).
  • the reception data generated by the receiving circuit 16 is sequentially stored in the cine memory 22 in association with information on the frame rate input from the control unit 36 and supplied to the environmental sound speed calculation unit 24 to generate the environmental sound speed. Is done.
  • the environmental sound speed calculation unit 24 calculates the environmental sound speed in the region of interest of the subject, and the reception focus process is performed using the calculated environmental sound speed.
  • the environmental sound speed is calculated from the reception data of the ultrasonic image having a lower frequency (low frequency) than the reception data of the luminance image, and the frequency (high frequency) is higher than the reception data of the ultrasonic image for calculating the environmental sound speed.
  • Reception focus processing is performed on the reception data for generating the luminance image. That is, the reception data for calculating the environmental sound speed is lower frequency data than the reception data for generating the luminance image.
  • FIG. 9 is a conceptual diagram of the first embodiment showing the flow of reception focus processing performed by the ultrasonic diagnostic apparatus shown in FIG.
  • the environmental sound speed in the region of interest of the subject is calculated in advance, and the reception focus process is performed on the received data of the luminance image using the calculated environmental sound speed when the luminance image is created.
  • the transmission circuit 14 and the reception circuit 16 are used to acquire the reception data of the luminance image.
  • An ultrasonic beam having a frequency lower than that of the ultrasonic beam transmitted to the specimen is transmitted to the subject, an ultrasonic echo from the subject is received, and reception data for calculating the environmental sound speed is acquired.
  • the environmental sound speed calculation unit 24 analyzes the acquired reception data and calculates the environmental sound speed.
  • the frequency of the ultrasonic beam when acquiring the reception data for calculating the environmental sound speed is preferably 2 MHz or less, for example, when acquiring the reception data of the abdomen.
  • an ultrasonic beam having a higher frequency than that when acquiring the reception data for calculating the environmental sound speed by the transmission circuit 14 and the reception circuit 16 under the control of the control unit 36. Is transmitted / received to / from the subject to receive data.
  • the image generation unit 18 performs reception focus processing on the acquired reception data of the luminance image using the calculated environmental sound speed, and the luminance image is displayed on the display unit 34.
  • the calculation of the environmental sound speed and the acquisition of the reception data of the luminance image are performed in a one-to-one correspondence.
  • the present invention is not limited to this, and the environmental sound speed calculation unit 24 calculates the environmental sound speed.
  • the number of times of obtaining the reception data for calculating the environmental sound speed may be thinned to a number equal to or less than the number of times of obtaining the luminance image reception data.
  • the luminance obtained by using the same environmental sound speed (the environmental sound speed calculated at the diagnosis part).
  • a reception focus process may be performed on the received data of the image.
  • the transmission circuit 14 and the reception circuit 16 transmit and receive an ultrasonic beam to and from the subject to obtain reception data.
  • Low frequency component and other high frequency components corresponding to received data for creating a luminance image are extracted.
  • a simple method using a band-pass filter can be considered to separate the frequency components.
  • the frequency of the low frequency component corresponding to the reception data of the ultrasonic image for calculating the environmental sound speed is desirably 2 MHz or less in the case of acquiring the reception data of the abdomen.
  • the ambient sound speed calculation unit 24 calculates the ambient sound speed from the extracted low frequency components.
  • the image generation unit 18 performs reception focus processing on the received data of the extracted high-frequency component using the calculated ambient sound velocity, and the high-frequency component subjected to the reception focus processing, that is, the luminance image is displayed on the display unit 34. Is displayed.
  • the high frequency component extracted from the acquired reception data is used as the reception data for creating the luminance image.
  • the reception data is not the high frequency component extracted from the reception data. May be used as they are.
  • the environmental sound speed is robust against the aberration, and the state of the diagnosis part of the subject Regardless of this, it is possible to accurately determine the environmental sound speed. Furthermore, using the ambient sound speed calculated from the low-frequency received data, the delay time of the high-frequency received data for generating the luminance image is corrected and the luminance image is generated, thereby accurately adjusting the reception focus. Therefore, it is possible to generate a high-quality luminance image that is less affected by the nonuniformity of sound speed.
  • the cine memory playback mode is a mode in which an ultrasonic image is displayed based on received data stored in the cine memory 22.
  • the control unit 36 switches the operation mode of the ultrasonic diagnostic apparatus 10 to the cine memory reproduction mode.
  • the control unit 36 reads the received data from the cine memory 22 and transmits it to the signal processing unit 46 of the image generation unit 18.
  • the subsequent operation is the same as in the live mode.
  • an ultrasonic image (moving image or still image) based on the received data stored in the cine memory 22 is displayed on the display unit 34.
  • the environmental sound speed calculation unit 24 calculates the environmental sound speed from the received data
  • the environmental sound speed may be calculated by any calculation method, not limited to the above embodiment.
  • the present invention is basically as described above. Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and it is needless to say that various improvements and modifications may be made without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Gynecology & Obstetrics (AREA)

Abstract

 超音波診断装置は、超音波ビームを被検体に送信し、超音波ビームが被検体から反射した超音波エコーを受信して受信データを出力する超音波送受信部と、被検体の輝度画像を生成するための第2の受信データよりも低周波のデータであり、被検体内の音速である環境音速を算出するための第1の受信データを取得し、取得した第1の受信データを解析して、環境音速を算出する環境音速算出部とを備える。

Description

超音波診断装置およびデータ処理方法
 本発明は、超音波を利用して被検体の診断部位の超音波画像を作成して表示する超音波診断装置およびデータ処理方法に関する。
 従来から、医療分野において、超音波画像を利用した超音波診断装置が実用化されている。一般に、超音波診断装置は、振動子アレイを内蔵した超音波プローブ(超音波探触子)と、超音波プローブに接続された装置本体とを有し、超音波プローブから被検体に向けて超音波ビームを送信し、超音波ビームが被検体から反射した超音波エコーを超音波プローブで受信して受信信号を取得し、取得した受信信号を装置本体で電気的に処理することにより超音波画像を生成する。
 従来の超音波診断装置では、被検体の生体内における超音波の音速は一定であると仮定して、装置全体として設定された超音波音速値はある値に固定されていた。
 しかし、生体内の脂肪層、筋肉層等の組織の違いによりその音速が異なるので、被検体内の超音波音速(以下、環境音速)は一様ではない。また、太った被検者と、やせた被検者とでは、脂肪層や筋肉層の厚さが異なるので、被検者ごとの環境音速には個人差がある。
 上述したように、従来の超音波診断装置は、装置全体として設定された超音波音速(以下、設定音速)の値をある値に固定していたので、被検体内の音速である環境音速が設定音速とずれる程、反射波(超音波エコー)の到達時刻が超音波送受信回路に設定された遅延時間とずれることとなり、フォーカスが劣化して、得られる超音波画像の画質が劣化するという問題があった。
 これに対し、特許文献1の第1の実施形態には、図12に示すように、データ解析部700にて、着目領域設定部701が、超音波画像上において着目領域を設定し、送信フォーカス制御部702が、着目領域に送信回路が送信フォーカスを実行するようにCPU100に送信フォーカス指示を行って送信フォーカス位置を擬似的な点反射とし、設定音速指定部703が、設定音速の開始音速と終了音速を設定し、フォーカス指標算出部704が、所定ステップ音速量の設定音速毎に着目領域の受信データに対して受信フォーカスしてフォーカス指標を算出し、環境音速決定部705が、フォーカス指標に基づいて着目領域の環境音速を決定することが記載されている。
 また、特許文献1には、信号処理部502にて、データ解析部700が算出した環境音速を用いて、受信フォーカス処理を行うことが記載されている。
特開2011-92686号公報
 一般的に、輝度画像(超音波画像)の空間分解能を得るために、比較的高い周波数(高周波)の超音波を被検体に対して送受信して輝度画像の作成が行われる。
 しかし、着目領域から反射された超音波には、様々な経路の違いにより収差のような現象(以下、単に収差と表現する)が発生し、高周波の超音波の場合には収差の影響を受けて波面が崩れやすい。
 特許文献1のように、スペックル領域の無数の散乱点に対して超音波を送受信する場合、超音波の周波数が高くなるにつれて波面が大きく崩れる。
 特許文献1の方法では、この超音波の波面の崩れが環境音速を求める際に誤差として影響を受け、正確な環境音速を求めることができない。従って、輝度画像の受信フォーカス処理を行っても正確にフォーカスを合わせることができない場合があるという問題があった。
 本発明の目的は、前記従来技術の問題点を解消し、被検体の診断部位の状態に係わらず、正確な環境音速を算出して、正確に輝度画像のフォーカスを合わせることができる超音波診断装置およびデータ処理方法を提供することにある。
 上記目的を達成するために、本発明は、超音波ビームを被検体に送信し、超音波ビームが被検体から反射した超音波エコーを受信して受信データを出力する超音波送受信部と、
 被検体の輝度画像を生成するための第2の受信データよりも低周波のデータであり、被検体内の音速である環境音速を算出するための第1の受信データを取得し、取得した第1の受信データを解析して、環境音速を算出する環境音速算出部とを備えることを特徴とする超音波診断装置を提供するものである。
 ここで、第1の受信データは、第2の受信データを取得するために被検体に送信される超音波ビームよりも低周波の超音波ビームを被検体に送信して取得されるものであることが好ましい。
 また、第1の受信データは、第2の受信データから、低周波の成分を抽出して取得されるものであることが好ましい。
 また、第1の受信データを取得する場合の低周波は、2MHz以下の周波数であることが好ましい。
 また、環境音速算出部が、第1の受信データを取得して環境音速を算出する回数は、第2の受信データを取得する回数以下の回数であることが好ましい。
 さらに、環境音速に基づいて、第2の受信データにおける超音波エコーの到達時刻の差を補正し、補正した第2の受信データにデータ処理を施して輝度画像を生成する信号処理部を備えることが好ましい。
 また、本発明は、超音波送受信部が、超音波ビームを被検体に送信し、超音波ビームが被検体から反射した超音波エコーを受信して受信データを出力するステップと、
 環境音速算出部が、被検体の輝度画像を生成するための第2の受信データよりも低周波のデータであり、被検体内の音速である環境音速を算出するための第1の受信データを取得し、取得した第1の受信データを解析して、環境音速を算出するステップとを含むことを特徴とするデータ処理方法を提供する。
 ここで、第2の受信データを取得するために被検体に送信する超音波ビームよりも低周波の超音波ビームを被検体に送信して第1の受信データを取得することが好ましい。
 また、第2の受信データから、低周波の成分を抽出して第1の受信データを取得することが好ましい。
 また、第1の受信データを取得する時の低周波は、2MHz以下の周波数であることが好ましい。
 また、環境音速算出部が、第1の受信データを取得して環境音速を算出する回数は、第2の受信データを取得する回数以下の回数であることが好ましい。
 さらに、信号処理部が、環境音速に基づいて、第2の受信データにおける超音波エコーの到達時刻の差を補正し、補正した第2の受信データにデータ処理を施して輝度画像を生成するステップを含むことが好ましい。
 本発明によれば、輝度画像を生成するための第2の受信データよりも低周波の第1の受信データを用いて環境音速を算出することにより、環境音速は収差に対してロバストになり、被検体の診断部位の状態に係わらず、正確に環境音速を求めることができる。さらに、低周波の第1の受信データから算出した環境音速を用いて、輝度画像を生成するための高周波の第2の受信データの遅延時間を補正して、輝度画像を生成することにより、正確に輝度画像のフォーカスを合わせることができ、音速の不均一さの影響が少ない高画質な輝度画像を生成することができる。
本発明のデータ処理方法を実施する超音波診断装置の一実施形態の構成を表すブロック図である。 図1に示す環境音速算出部の構成を表すブロック図である。 図2に示す環境音速算出部の処理の流れを示すフローチャートである。 点反射からの受信データに対して受信フォーカスを実施した様子を表す図である。 スペックル領域の無数の散乱点の様子を表す図である。 スペックル領域の無数の散乱点に対して送信フォーカスを掛けて擬似的な点反射を形成した様子を表す図である。 設定音速毎のフォーカス指標を表すグラフである。 図1に示す超音波診断装置のライブモード時の処理の流れを示すフローチャートである。 図1に示す超音波診断装置で実施される受信フォーカス処理の流れを表す第1の実施形態の概念図である。 図1に示す超音波診断装置で実施される受信フォーカス処理の流れを表す第2の実施形態の概念図である。 環境音速に基づいて、受信データの遅延時間を補正する様子を表す概念図である。 特許文献1に記載されたデータ解析部の構成を表すブロック図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の超音波診断装置およびデータ処理方法を詳細に説明する。
 図1は、本発明のデータ処理方法を実施する超音波診断装置の一実施形態の構成を表すブロック図である。
 同図に示す超音波診断装置10は、超音波プローブ12と、超音波プローブ12に接続される装置本体13とによって構成されている。
 また、装置本体13は、送信回路14および受信回路16と、画像生成部18と、シネメモリ22と、環境音速算出部24と、表示制御部32と、表示部34と、制御部36と、操作部38と、格納部40とを有する。
 超音波診断装置10は、超音波プローブ12から被検体に超音波ビームを送信して、超音波ビームが被検体から反射した超音波エコーを受信し、超音波エコーの受信信号から超音波画像を生成して表示する装置である。
 超音波プローブ12は、被検体に当接させて使用するものであり、通常の超音波診断装置に用いられる振動子アレイ42を有する。
 振動子アレイ42は、1次元または2次元に配列された複数の超音波トランスデューサ(超音波送受信素子)を有する。これらの超音波トランスデューサは、超音波画像の撮像の際に、それぞれ送信回路14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、超音波ビームが被検体から反射した超音波エコーを受信して受信信号を出力する。
 各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN-PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した振動子によって構成される。
 そのような振動子の電極に、パルス状または連続波の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状または連続波の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号として出力される。
 一方、装置本体13において、送信回路14は、例えば、複数のパルサを有し、制御部36によって選択された送信遅延パターンに基づいて、振動子アレイ42の複数の超音波トランスデューサから送信される超音波が超音波ビームを形成するように、それぞれの駆動信号の遅延量(駆動信号を印加するタイミング)を調節する送信フォーカスを行って、複数の超音波トランスデューサに供給する。これにより、複数の超音波トランスデューサから被検体へ超音波ビームが送信される。
 受信回路16は、振動子アレイ42の各超音波トランスデューサから供給される受信信号を増幅し、A/D(アナログ/デジタル)変換して受信データ(RFデータ)を生成する。
 受信回路16は、受信データを画像生成部18、シネメモリ22、および、環境音速算出部24に供給する。
 超音波プローブ12、送信回路14および受信回路16は、本発明の超音波送受信部を構成する。
 ここで、送信遅延パターンは、複数の超音波トランスデューサから送信される超音波によって所望の方向に超音波ビームを形成するために駆動信号に与えられる遅延時間のパターンデータである。受信遅延パターンは、複数の超音波トランスデューサによって受信される超音波によって所望の方向からの超音波エコーを抽出するために受信信号に与えられる遅延時間のパターンデータである。
 複数の送信遅延パターンおよび受信遅延パターンが予め格納部40に格納されている。制御部36は、格納部40に格納されている複数の送信遅延パターンおよび受信遅延パターンの中から1つの送信遅延パターンおよび受信遅延パターンを選択し、選択した送信遅延パターンおよび受信遅延パターンに従って、送信回路14および信号処理部46に制御信号を出力して超音波の送受信制御を行う。
 続いて、画像生成部18は、受信回路16から供給された受信データから超音波画像を生成するものである。
 画像生成部18は、図1に示すように、信号処理部46、DSC48、画像処理部50、および、画像メモリ52を有する。
 各超音波トランスデューサと被検体内の超音波反射源との間の距離がそれぞれ異なるため、各超音波トランスデューサに超音波エコーが到達する時間が異なる。
 信号処理部46は、後述する環境音速算出部24からの環境音速に基づいて、輝度画像の受信データにおける超音波エコーの到達時刻の差(遅延時間)を補正して受信フォーカス処理を行う。
 本実施形態の場合、信号処理部46は、超音波エコーの到達時刻の差(遅延時間)に相当する分、各受信データを遅延し、遅延時間を与えた受信データを整合加算することによりデジタル的に受信フォーカス処理を行う。
 超音波反射源と異なる位置に別の超音波反射源がある場合には、別の超音波反射源からの受信信号は到達時刻が異なるので、信号処理部46で加算することにより、別の超音波反射源からの受信信号の位相が打ち消し合う。これにより、超音波反射源からの受信信号が最も大きくなり、フォーカスが合う。受信フォーカス処理によって、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
 以下、信号処理部46による受信データの遅延時間の補正について説明する。
 図11は、環境音速に基づいて、受信データの遅延時間を補正する様子を表す概念図である。同図に示すように、超音波プローブ12が有する複数の超音波トランスデューサ(超音波送受信素子)が、同図中左右方向に一列に配列されている場合を考える。
 ここで、超音波トランスデューサの配列方向における各々の超音波トランスデューサの幅をLとすると、配列方向の中心の超音波トランスデューサから端部に向かってn番目の超音波トランスデューサまでの距離はnLとなる。
 同図に示すように、超音波の反射点が、中心の超音波トランスデューサから配列方向に対して垂直な距離(深さ)dの位置にあるとすると、n番目の超音波トランスデューサと反射点との間の距離(長さ)dは、式(1)により算出される。
 d=((nL)+d1/2 … (1)
 従って、環境音速Vを用いて、超音波が反射点からn番目の超音波トランスデューサで受信されるまでの時間tは、式(2)により算出される。
 t=d/V=((nL)+d1/2/V … (2)
 上記のように、各々の超音波トランスデューサと反射点との間の距離はそれぞれ異なるため、この例の場合、同図上部のグラフに示すように、配列方向の端部側の超音波トランスデューサになればなるほど、時間tは長くなる。
 つまり、n番目の超音波トランスデューサで受信される超音波は、超音波が反射点から中心の超音波トランスデューサで受信されるまでの時間をtとすると、中心の超音波トランスデューサで受信される超音波に対して、時間Δt=t-tだけ遅れる。信号処理部46は、各々の超音波トランスデューサに対応する受信データについて、上記時間Δtで表される遅延時間を補正する。この遅れた遅延時間Δtを受信遅延パターンと呼ぶ。以上のように、各々の受信データの遅延時間Δtは、反射点と超音波トランスデューサの幾何学的な配置から求めた距離と環境音速から算出される。
 なお、上記例は、超音波プローブ12がリニアプローブの場合であるが、コンベックスプローブの場合もプローブ形状が違うだけで考え方は同じである。
 また、信号処理部46は、受信フォーカス処理が行われた受信データに対し、所定のデータ処理を施す。
 本実施形態の場合、信号処理部46は、超音波の反射位置の深度に応じて、距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号(超音波エコーの振幅を点の明るさ(輝度)により表した輝度画像の画像信号)を生成する。
 信号処理部46によって生成されたBモード画像信号は、通常のテレビジョン信号の走査方式と異なる走査方式によって得られたものである。
 このため、DSC(digital scan converter)48は、制御部36の制御の下で、信号処理部46で生成されたBモード画像信号を通常の画像信号、例えば、テレビジョン信号の走査方式(例えば、NTSC方式)に従う画像信号に変換(ラスター変換)する。
 画像処理部50は、DSC48から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、画像処理後のBモード画像信号を画像メモリ52に格納すると共に、表示制御部32に出力する。
 続いて、表示制御部32は、画像処理部50によって画像処理が施されたBモード画像信号に基づいて、表示部34に超音波診断画像を表示させる。
 表示部34は、例えば、LCD等のディスプレイ装置であり、表示制御部32の制御の下で、超音波診断画像(動画及び静止画)および各種の設定画面等を表示する。
 続いて、シネメモリ(受信データメモリ)22は、受信回路16から供給される受信データを順次格納する。また、シネメモリ22は、制御部36から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記の受信データに関連付けて格納する。
 シネメモリ22に格納された受信データおよびフレームレートに関する情報は、信号処理部46および環境音速算出部24に供給される。
 環境音速算出部24は、輝度画像を生成するための受信データよりも低周波のデータであり、環境音速を算出するための受信データを取得し、取得した受信データを解析して、環境音速を算出する。
 本実施形態の場合、環境音速算出部24は、環境音速を算出するための受信データを取得し、取得した受信データを受信フォーカスしてフォーカス指標を算出し、算出したフォーカス指標に基づいて着目領域の環境音速を算出する。
 環境音速算出部24は、算出した環境音速を信号処理部46に出力する。
 制御部36は、操作者により操作部38から入力された指示に基づいて超音波診断装置10各部の制御を行う。
 操作部38は、操作者からの指示入力を受け付ける入力デバイスであり、例えば、キーボード、マウス、トラックボール、タッチパネルを用いることができる。
 格納部40は、制御部36が超音波診断装置10の各部の制御を実行するための動作プログラム、送信遅延パターンおよび受信遅延パターン等を格納するもので、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD-ROM、DVD-ROM等の記録媒体を用いることができる。
 なお、信号処理部46、DSC48、画像処理部50、表示制御部32および環境音速算出部24は、CPU(コンピュータ)と、CPUに各種の処理を実行させるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。
 次に、環境音速算出部24の詳細について説明する。
 図2は、図1に示す環境音速算出部の構成を表すブロック図である。
 環境音速算出部24は、図2に示すように、着目領域設定部60、送信フォーカス制御部62、設定音速指定部64、フォーカス指標算出部66および環境音速決定部68を有する。
 着目領域設定部60は、表示部34に表示される超音波画像上において、制御部36を介して操作者による操作部38からの入力指示により着目領域を設定するものである。
 送信フォーカス制御部62は、設定された着目領域に送信回路14が送信フォーカスを実行するように制御部36に送信フォーカス指示を行うものである。
 設定音速指定部64は、制御部36の制御に基づき、受信データに対して受信フォーカスを実行するための設定音速を指定するものである。
 フォーカス指標算出部66は、シネメモリ22から着目領域の受信データを読み出し、設定音速指定部64が指定した複数の設定音速毎に受信データに対して受信フォーカスして、受信データのフォーカス指標を算出するものである。
 環境音速決定部68は、複数の設定音速毎のフォーカス指標に基づき、着目領域の環境音速を決定するものである。
 次に、図3のフローチャートを参照して、環境音速算出部24の動作を説明する。図3は、図2に示す環境音速算出部の処理の流れを示すフローチャートである。
 図3に示すように、環境音速算出部24は、着目領域設定部60にて、表示部34に表示される超音波画像上において、制御部36を介して操作者による操作部38からの指示入力より着目領域を設定する(ステップS10)。
 次に、環境音速算出部24は、設定音速指定部64にて、設定音速Vの開始音速Vstと終了音速Vendを設定(ステップS20)し、設定音速Vに開始音速Vstをセットする(ステップS30)。
 図4に示すように、点反射からの受信データに対しては受信フォーカスを実施した際に強度やシャープネスを解析することのできる受信データを取得できるが、図5に示すように、スペックル領域の無数の散乱点に対してはピーク値と方位方向の空間周波数が干渉によって崩れてしまい、受信フォーカスを実施した際に強度やシャープネスを解析することのできる受信データを取得することが困難となる。
 そこで、環境音速算出部24は、図6に示すように、スペックル領域の無数の散乱点に対して送信フォーカスを掛けることによって擬似的な点反射を形成し、取得した受信素子位置の受信データに対し受信フォーカスを実施し強度やシャープネスを解析する点反射と同様な方法によってスペックル領域においても環境音速を求める。
 すなわち、環境音速算出部24は、送信フォーカス制御部62にて設定された着目領域に送信回路14が送信フォーカスを実行するように制御部36に送信フォーカス指示を行い、送信フォーカス位置を擬似的な点反射とする(ステップS40)。
 そして、環境音速算出部24は、フォーカス指標算出部66にて、シネメモリ22から受信データを読み出し、設定音速指定部64が指定した複数の設定音速毎に受信データに対して受信フォーカスして、受信データのフォーカス指標を算出する(ステップS50)。
 ここで、図4の点反射の受信データの場合、図7に示すように、ピーク値と方位方向の空間周波数に設定音速による変化傾向が見られるが、図6に示すように、送信フォーカスを掛けることによって擬似的な点反射を形成した時の受信データの場合も、図7に示す傾向が見られるため、環境音速算出部24は、フォーカス指標算出部66にて積分値、2乗積分値、ピーク値、コントラスト、半値幅、周波数スペクトル積分、最大値や直流成分で規格化された周波数スペクトル積分値や2乗積分値、自己相関値等をフォーカス指標として算出する(図7の場合、設定音速=Amp1490のときのフォーカス指標が最大となる)。
 次に環境音速算出部24は、設定音速指定部64にて、設定音速Vが終了音速Vendに達したかどうか判定し(ステップS60)、設定音速Vが終了音速Vend未満ならば(ステップS60で“No”)所定ステップ音速量ΔVを設定音速Vに加算して(ステップ70)ステップS40に戻り、設定音速Vが終了音速Vendに達したと判定すると(ステップS60で“Yes”)ステップS80に進む。
 そして、環境音速算出部24は、ステップS80において、環境音速決定部68にて、複数の設定音速毎のフォーカス指標に基づき、例えば、最も高いフォーカス指標の設定音速を着目領域の環境音速とするなどして、着目領域の環境音速を決定し、決定した環境音速を信号処理部46に出力して処理を終了する(図7の場合、最も高いフォーカス指標の設定音速=Amp1490が環境音速となる)。
 このように、超音波診断装置10では、スペックル領域の無数の散乱点に対して送信フォーカスを掛け擬似的な点反射とし、複数の設定音速毎のフォーカス指標を生成し、複数の設定音速毎のフォーカス指標に基づき、着目領域の環境音速を決定するので、スペックル領域を含む着目領域の環境音速を点反射レベルにて適正に決定することが可能となり、高精度の超音波画像を構築することができる。
 次に、超音波診断装置10の動作を説明する。
 超音波診断装置10は、ライブモードとシネメモリ再生モードという2つの動作モードを有する。
 まず、図8に示すフローチャートを参照して、ライブモード時における超音波診断装置10の動作を説明する。図8は、図1に示す超音波診断装置のライブモード時の処理の流れを示すフローチャートである。
 ライブモードは、被検体に超音波プローブ12を当接させて超音波の送受信を行うことによって得られた超音波画像(動画)の表示を行うモードである。
 ライブモードでは、超音波プローブ12が被検体に当接され、操作者による操作部38からの指示入力により超音波診断が開始される。
 超音波診断が開始されると、制御部36は、超音波トランスデューサごとに超音波ビームの送信方向と超音波エコーの受信方向を設定し、超音波ビームの送信方向に応じて送信遅延パターンを選択するとともに、超音波エコーの受信方向に応じて受信遅延パターンを選択する(ステップS100)。そして、選択した送信遅延パターンおよび受信遅延パターンに従って、送信回路14および信号処理部46に制御信号を出力して超音波の送受信制御を行う。
 これに応じて、送信回路14では、選択された送信遅延パターンに基づいて、各超音波トランスデューサの駆動信号の送信フォーカスが行われて、複数の超音波トランスデューサから被検体へ超音波ビームが送信される(ステップS110)。
 そして、被検体からの超音波エコーが複数の超音波トランスデューサによって受信され、複数の超音波トランスデューサから受信信号が出力される。
 受信回路16では、各超音波トランスデューサから供給される受信信号が増幅され、A/D変換されて受信データが生成される(ステップS120)。
 続いて、信号処理部46では、環境音速算出部24から供給される環境音速に基づいて、受信データに対してデジタル的に受信フォーカス処理が行われ、超音波エコーの焦点が絞り込まれた受信データが生成される(ステップS130)。また、受信フォーカス処理が施された受信データは、信号処理部46によりデータ処理されてBモード画像信号が生成される(ステップS140)。
 信号処理部46によって生成されたBモード画像信号は、DSC48でテレビジョン信号の走査方式に従う画像信号に変換され、画像処理部50により必要な画像処理が施されて超音波画像が生成される。
 画像処理部50によって生成された超音波画像は、画像メモリ52に格納されると共に、表示制御部32の制御により表示部34に表示される(ステップS150)。
 また、受信回路16によって生成された受信データは、制御部36から入力されるフレームレートに関する情報と関連付けて、シネメモリ22に順次格納されると共に、環境音速算出部24に供給され、環境音速が生成される。
 上記のように、超音波診断装置10では、環境音速算出部24により、被検体の着目領域における環境音速が算出され、算出された環境音速を用いて、受信フォーカス処理が行われる。この時、輝度画像の受信データよりも低い周波数(低周波)の超音波画像の受信データから環境音速が算出され、環境音速を算出するための超音波画像の受信データよりも高い周波数(高周波)の輝度画像を生成するための受信データに対して受信フォーカス処理が行われる。
 つまり、環境音速を算出するための受信データは、輝度画像を生成するための受信データよりも低周波のデータである。
 なお、環境音速を算出するための低周波の超音波画像を取得する方法は何ら限定されない。以下に、低周波の超音波画像を取得する2つの例を挙げて説明する。
 図9は、図1に示す超音波診断装置で実施される受信フォーカス処理の流れを表す第1の実施形態の概念図である。
 第1の実施形態の場合、あらかじめ被検体の着目領域における環境音速が算出され、輝度画像作成時に、算出された環境音速を用いて、輝度画像の受信データに対する受信フォーカス処理が行われる。
 同図に示すように、環境音速を算出するための受信データを取得する場合、制御部36の制御の下で、送信回路14および受信回路16により、輝度画像の受信データを取得するために被検体に送信される超音波ビームよりも低周波の超音波ビームを被検体に送信し、被検体からの超音波エコーを受信して、環境音速を算出するための受信データが取得される。そして、環境音速算出部24により、取得された受信データが解析されて環境音速が算出される。
 環境音速を算出するための受信データを取得する場合の超音波ビームの周波数は、例えば、腹部の受信データの取得を行う場合、2MHz以下であることが望ましい。
 一方、輝度画像の受信データを取得する場合、制御部36の制御の下で、送信回路14および受信回路16により、環境音速を算出するための受信データを取得する場合よりも高周波の超音波ビームを被検体に対して送受信して受信データが取得される。そして、画像生成部18により、算出された環境音速を用いて、取得された輝度画像の受信データに対して受信フォーカス処理が行われ、輝度画像が表示部34に表示される。
 なお、第1の実施形態では、環境音速の算出と、輝度画像の受信データの取得を1対1に対応させて行うが、これに限定されず、環境音速算出部24が、環境音速を算出するための受信データを取得して環境音速を算出する回数は、輝度画像の受信データを取得する回数以下の回数に間引いてもよい。環境音速は、例えば、診断部位が変更された場合に算出するのが望ましく、診断部位が同じ場合には、同じ環境音速(その診断部位で算出した環境音速)を使用して、取得される輝度画像の受信データに対して受信フォーカス処理を行ってもよい。
 続いて、図10は、図1に示す超音波診断画像で実施される受信フォーカス処理の流れを表す第2の実施形態の概念図である。
 第2の実施形態の場合、第1の実施形態における輝度画像の受信データが周波数分離されて、低周波成分と高周波成分が抽出される。そして、低周波成分から環境音速が算出され、算出された環境音速を用いて、高周波成分に対して受信フォーカス処理、輝度画像の作成が行われる。
 同図に示すように、制御部36の制御の下で、送信回路14および受信回路16により、超音波ビームを被検体に対して送受信して受信データが取得される。そして、周波数分離部26により、取得された受信データから、受信データを取得するために被検体に送信された超音波ビームよりも低周波の、環境音速を算出するための受信データに相当する成分(低周波成分)と、それ以外の、輝度画像作成のための受信データに相当する高周波成分が抽出される。周波数成分の分離には、たとえば単純にバンドパスフィルタを用いる方法が考えられる。
 なお、環境音速を算出するための超音波画像の受信データに相当する低周波成分の周波数は、同様に、腹部の受信データの取得の場合、2MHz以下であることが望ましい。
 続いて、環境音速算出部24により、抽出された低周波成分から環境音速が算出される。一方、画像生成部18により、算出された環境音速を用いて、抽出された高周波成分の受信データに対する受信フォーカス処理が行われ、受信フォーカス処理された高周波成分、すなわち、輝度画像が表示部34に表示される。
 なお、第2の実施形態では、輝度画像作成のための受信データとして、取得された受信データから抽出された高周波成分を使用しているが、受信データから抽出された高周波成分ではなく、受信データをそのまま使用してもよい。
 上記のように、輝度画像を生成するための受信データよりも低周波の受信データを用いて環境音速を算出することにより、環境音速は収差に対してロバストになり、被検体の診断部位の状態に係わらず、正確に環境音速を求めることができる。さらに、低周波の受信データから算出した環境音速を用いて、輝度画像を生成するための高周波の受信データの遅延時間を補正して、輝度画像を生成することにより、正確に受信フォーカスを合わせることができ、音速の不均一さの影響が少ない高画質な輝度画像を生成することができる。
 次に、シネメモリ再生モード時における超音波診断装置10の動作を説明する。
 シネメモリ再生モードは、シネメモリ22に格納されている受信データに基づいて、超音波画像の表示を行うモードである。
 操作部38からの指示入力により、制御部36は、超音波診断装置10の動作モードをシネメモリ再生モードに切り替える。
 シネメモリ再生モードの場合、制御部36は、シネメモリ22から受信データを読み出して、画像生成部18の信号処理部46に送信する。これ以後の動作はライブモードの場合と同様である。これにより、シネメモリ22に格納された受信データに基づく超音波画像(動画又は静止画)が表示部34に表示される。
 なお、環境音速算出部24が受信データから環境音速を算出する場合、上記実施形態に限らず、どのような算出方法で環境音速を算出してもよい。
 本発明は、基本的に以上のようなものである。
 以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 10 超音波診断装置
 12 超音波プローブ
 13 装置本体
 14 送信回路
 16 受信回路
 18 画像生成部
 22 シネメモリ
 24 環境音速算出部
 26 周波数分離部
 32 表示制御部
 34 表示部
 36 制御部
 38 操作部
 40 格納部
 42 振動子アレイ
 46 信号処理部
 48 DSC
 50 画像処理部
 52 画像メモリ
 60 着目領域設定部
 62 送信フォーカス制御部
 64 設定音速指定部
 66 フォーカス指標算出部
 68 環境音速決定部

Claims (12)

  1.  超音波ビームを被検体に送信し、該超音波ビームが該被検体から反射した超音波エコーを受信して受信データを出力する超音波送受信部と、
     前記被検体の輝度画像を生成するための第2の受信データよりも低周波のデータであり、前記被検体内の音速である環境音速を算出するための第1の受信データを取得し、該取得した第1の受信データを解析して、前記環境音速を算出する環境音速算出部とを備えることを特徴とする超音波診断装置。
  2.  前記第1の受信データは、前記第2の受信データを取得するために前記被検体に送信される超音波ビームよりも低周波の超音波ビームを該被検体に送信して取得されるものである請求項1に記載の超音波診断装置。
  3.  前記第1の受信データは、前記第2の受信データから、低周波の成分を抽出して取得されるものである請求項1に記載の超音波診断装置。
  4.  前記第1の受信データを取得する場合の低周波は、2MHz以下の周波数である請求項2または3に記載の超音波診断装置。
  5.  前記環境音速算出部が、前記第1の受信データを取得して前記環境音速を算出する回数は、前記第2の受信データを取得する回数以下の回数である請求項1~4のいずれか1項に記載の超音波診断装置。
  6.  さらに、前記環境音速に基づいて、前記第2の受信データにおける超音波エコーの到達時刻の差を補正し、該補正した第2の受信データにデータ処理を施して前記輝度画像を生成する信号処理部を備える請求項1~5のいずれか1項に記載の超音波診断装置。
  7.  超音波送受信部が、超音波ビームを被検体に送信し、該超音波ビームが該被検体から反射した超音波エコーを受信して受信データを出力するステップと、
     環境音速算出部が、前記被検体の輝度画像を生成するための第2の受信データよりも低周波のデータであり、前記被検体内の音速である環境音速を算出するための第1の受信データを取得し、該取得した第1の受信データを解析して、前記環境音速を算出するステップとを含むことを特徴とするデータ処理方法。
  8.  前記第2の受信データを取得するために前記被検体に送信する超音波ビームよりも低周波の超音波ビームを該被検体に送信して前記第1の受信データを取得する請求項7に記載のデータ処理方法。
  9.  前記第2の受信データから、低周波の成分を抽出して前記第1の受信データを取得する請求項7に記載のデータ処理方法。
  10.  前記第1の受信データを取得する時の低周波は、2MHz以下の周波数である請求項8または9に記載のデータ処理方法。
  11.  前記環境音速算出部が、前記第1の受信データを取得して前記環境音速を算出する回数は、前記第2の受信データを取得する回数以下の回数である請求項7~10のいずれか1項に記載のデータ処理方法。
  12.  さらに、信号処理部が、前記環境音速に基づいて、前記第2の受信データにおける超音波エコーの到達時刻の差を補正し、該補正した第2の受信データにデータ処理を施して前記輝度画像を生成するステップを含む請求項7~11のいずれか1項に記載のデータ処理方法。
PCT/JP2013/064486 2012-05-25 2013-05-24 超音波診断装置およびデータ処理方法 WO2013176255A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/551,774 US20150080732A1 (en) 2012-05-25 2014-11-24 Ultrasound diagnostic apparatus and data processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-120014 2012-05-25
JP2012120014A JP5851345B2 (ja) 2012-05-25 2012-05-25 超音波診断装置およびデータ処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/551,774 Continuation US20150080732A1 (en) 2012-05-25 2014-11-24 Ultrasound diagnostic apparatus and data processing method

Publications (1)

Publication Number Publication Date
WO2013176255A1 true WO2013176255A1 (ja) 2013-11-28

Family

ID=49623935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064486 WO2013176255A1 (ja) 2012-05-25 2013-05-24 超音波診断装置およびデータ処理方法

Country Status (3)

Country Link
US (1) US20150080732A1 (ja)
JP (1) JP5851345B2 (ja)
WO (1) WO2013176255A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622034B (zh) * 2017-05-11 2023-10-20 皇家飞利浦有限公司 超声诊断图像中的混响伪影消除
CN112370073A (zh) * 2020-10-12 2021-02-19 深圳华声医疗技术股份有限公司 超声声速校正方法、超声信号处理设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170232A (ja) * 1986-01-21 1987-07-27 株式会社東芝 超音波診断装置
JP2009078124A (ja) * 2007-09-04 2009-04-16 Fujifilm Corp 超音波診断装置、並びに、画像処理方法及びプログラム
JP2011092686A (ja) * 2009-09-30 2011-05-12 Fujifilm Corp 超音波診断装置及びその信号処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023977A (en) * 1997-08-01 2000-02-15 Acuson Corporation Ultrasonic imaging aberration correction system and method
KR20000038847A (ko) * 1998-12-09 2000-07-05 이민화 초음파영상화시스템에서의 집속방법
US6705994B2 (en) * 2002-07-08 2004-03-16 Insightec - Image Guided Treatment Ltd Tissue inhomogeneity correction in ultrasound imaging
US8038616B2 (en) * 2003-05-30 2011-10-18 Surf Technology As Acoustic imaging by nonlinear low frequency manipulation of high frequency scattering and propagation properties
US8234923B2 (en) * 2004-09-20 2012-08-07 Innervision Medical Technologies Inc. Systems and methods for ultrasound imaging
US8784318B1 (en) * 2005-07-22 2014-07-22 Zonare Medical Systems, Inc. Aberration correction using channel data in ultrasound imaging system
JP5235477B2 (ja) * 2008-04-14 2013-07-10 キヤノン株式会社 超音波による画像形成方法及び超音波装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170232A (ja) * 1986-01-21 1987-07-27 株式会社東芝 超音波診断装置
JP2009078124A (ja) * 2007-09-04 2009-04-16 Fujifilm Corp 超音波診断装置、並びに、画像処理方法及びプログラム
JP2011092686A (ja) * 2009-09-30 2011-05-12 Fujifilm Corp 超音波診断装置及びその信号処理方法

Also Published As

Publication number Publication date
JP5851345B2 (ja) 2016-02-03
US20150080732A1 (en) 2015-03-19
JP2013244207A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5389722B2 (ja) 超音波診断装置及びその作動方法
US20120259225A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
EP2589342A1 (en) Ultrasound diagnosis device and ultrasound diagnosis method
JP2009279306A (ja) 超音波診断装置
WO2017033502A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5800324B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
WO2013176045A1 (ja) 超音波信号処理装置および超音波信号処理方法
JP2012010943A (ja) 超音波診断装置及び超音波診断方法
US9895134B2 (en) Ultrasound diagnostic apparatus and data processing method
WO2013176112A1 (ja) 超音波画像生成方法および超音波画像診断装置
JP2012010875A (ja) 超音波診断装置及び超音波診断方法
US8398548B2 (en) Ultrasound diagnostic apparatus and ultrasound diagnostic method
JP5836241B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5836197B2 (ja) 超音波診断装置およびデータ処理方法
JP5851345B2 (ja) 超音波診断装置およびデータ処理方法
WO2014050889A1 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5869411B2 (ja) 超音波診断装置および超音波画像生成方法
JP5841034B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP2014064856A (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP2013244162A (ja) 超音波診断装置
JP5681755B2 (ja) 超音波診断装置及びその作動方法
JP5946324B2 (ja) 超音波診断装置およびデータ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793768

Country of ref document: EP

Kind code of ref document: A1